JP2004012145A - 非凝縮性ガスの蓄積燃焼防止システム - Google Patents

非凝縮性ガスの蓄積燃焼防止システム Download PDF

Info

Publication number
JP2004012145A
JP2004012145A JP2002161922A JP2002161922A JP2004012145A JP 2004012145 A JP2004012145 A JP 2004012145A JP 2002161922 A JP2002161922 A JP 2002161922A JP 2002161922 A JP2002161922 A JP 2002161922A JP 2004012145 A JP2004012145 A JP 2004012145A
Authority
JP
Japan
Prior art keywords
gas
condensable gas
pipe
combustion
accumulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002161922A
Other languages
English (en)
Inventor
Takao Sasayama
笹山 隆生
Yasushi Yamamoto
山本 泰
Sunao Narabayashi
奈良林 直
Nobuhide Abe
阿部 信英
Tamaki Takahashi
高橋 玲樹
Kiyoshi Iwata
岩田 潔
Akira Shida
志田 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002161922A priority Critical patent/JP2004012145A/ja
Publication of JP2004012145A publication Critical patent/JP2004012145A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

【課題】ガス蓄積可能箇所における非凝縮性ガスの蓄積燃焼を未然にかつ確実に防止し、原子力発電所内機器や配管の健全性を確保し、信頼性を向上させたシステムを提供する。
【解決手段】本発明に係る非凝縮性ガスの蓄積燃焼防止システム52は、非凝縮性ガス47が滞留する可能性のあるガス蓄積可能性箇所50に保温材51を設け、この保温材51でガス蓄積可能箇所50の蒸気凝縮量を低下させ、非凝縮性ガス47の発生量を抑制したものである。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は原子力発電所内で発生する非凝縮性ガスの取扱い技術に係り、特に非凝縮性ガスが蓄積される可能性のあるガス蓄積可能箇所に適用される非凝縮性ガスの蓄積燃焼防止システムに関する。
【0002】
【従来の技術】
原子力発電所内には原子炉圧力容器(以下、RPVという。)が収容されており、このRPV内の原子炉冷却水は、炉心での核反応に伴なう中性子照射により、冷却水の一部が分解して水素ガスおよび酸素ガスが生成されたり、また、場合によっては燃料棒より漏洩する微量なKr,Xe等の放射性希ガス等の非凝縮性ガスが存在する。このため、原子力発電所には、発生した非凝縮性ガスを処理するために、気体廃棄物処理系が設けられる。
【0003】
原子力発電所では、原子炉圧力容器内で発生した蒸気は主蒸気となり、主蒸気系を通って蒸気タービンに送られ、この蒸気タービンで仕事をして発電機を駆動させている。また、主蒸気系を構成する主蒸気管には流れがない行止まり枝管(分岐管)が分岐されており、この行止まり枝管は1つの原子力プラント当り何百ラインも存在する。さらに、原子炉圧力容器の頂部から原子炉圧力容器ベント系(以下、RPVベント系という。)や原子炉圧力容器ヘッドスプレイ系(以下、RPVヘッドスプレイ系という。)等の原子炉圧力容器頂部ベント設備が設けられている。
【0004】
一方、原子炉主蒸気には、放射性分解により生成された可燃性の非凝縮性ガスが含まれており、この非凝縮性ガスは主蒸気系を流れる主蒸気とともに流動せしめられる。原子炉主蒸気を内包する配管や容器は、立上り枝管や立上り分岐部のように滞溜部が存在すると、この滞溜部が非凝縮性ガスのガス蓄積可能箇所となり、非凝縮性ガスが蓄積されていく。蓄積された非凝縮性ガスに何らかの原因で着火することで急速燃焼する例が報告されている。
【0005】
図22は、非凝縮性ガス蓄積のメカニズムを説明するものである。一般に、主蒸気を内包する配管(母管)および容器1とそこから分岐する立上り枝管2に設けられた止め弁3にて隔離される空間に、非凝縮性ガスが蓄積される可能性が高い。母管(配管)1には主蒸気が流れており、枝管2は行き止まりとなっていることから流入した蒸気は放熱により凝縮される。凝縮しない非凝縮性ガスが枝管2内に残され、蒸気より比重の軽い非凝縮性ガスは枝管立上り部に順次蓄積されていく。
【0006】
【発明が解決しようとする課題】
原子力発電所において、原子炉主蒸気を内包する配管や容器1から分岐する枝管2のうち、立上り枝管のようなガス蓄積可能箇所4に、非凝縮性ガス5が滞溜していき、滞溜した非凝縮性ガスが何らかの原因により着火燃焼する可能性がある。
【0007】
非凝縮性ガスへの着火燃焼を未然にかつ確実に防止するために、非凝縮性ガスの発生を抑止したり、非凝縮性ガスのガス蓄積を防止したり、ガス蓄積可能箇所を燃焼環境条件としない条件を構築する必要がある。
【0008】
本発明は、上述した事情を考慮してなされたもので、非凝縮性ガスの蓄積燃焼を未然にかつ確実に防止し、原子力発電所内機器、配管の健全性を確保し、信頼性を向上させた非凝縮性ガスの蓄積燃焼防止システムを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明に係る非凝縮性ガスの蓄積燃焼防止システムは、上述した課題を解決するために、請求項1に記載したように、非凝縮性ガスが滞留する可能性があるガス蓄積可能箇所に保温材を設け、この保温材でガス蓄積可能箇所の蒸気凝縮量を低下させて非凝縮性ガスの発生量を抑制するようにしたものである。
【0010】
また、本発明に係る非凝縮性ガスの蓄積燃焼防止システムは、上述した課題を解決するために、請求項2に記載したように、非凝縮性ガスが滞留する可能性があるガス蓄積可能箇所に止め弁を設け、この止め弁の弁体にベント孔を形成して弁上流側と弁下流側とを連通させ、前記ガス蓄積可能箇所に非凝縮性ガスのガス蓄積を抑制するようにしたものである。
【0011】
さらに、本発明に係る非凝縮性ガスの蓄積燃焼防止システムは、上述した課題を解決するために、請求項3に記載したように、非凝縮性ガスが滞留する可能性があるガス蓄積可能箇所にベントラインを接続し、このベントラインを通してガス蓄積可能箇所の非凝縮性ガスを常時掃気させるようにしたものである。
【0012】
一方、上述した課題を解決するために、本発明に係る非凝縮性ガスの蓄積燃焼防止システムは、請求項4に記載したように、前記ベントラインにオリフィスを設け、このオリフィスで流量制限しながら非凝縮性ガスを常時掃気させるようにしたものであり、また、請求項5に記載したように、前記ベントラインにバイメタル式トラップを設け、このバイメタル式トラップはガス蓄積可能箇所が非凝縮性ガス燃焼温度に近付いたとき、開いて非凝縮性ガスを掃気させるようにしたものである。
【0013】
また、本発明に係る非凝縮性ガスの蓄積燃焼防止システムは、上述した課題を解決するために、請求項6に記載したように、非凝縮性ガスが滞留する可能性があるガス蓄積可能箇所に加熱設備あるいは冷却設備を設け、この加熱設備あるいは冷却設備でガス蓄積可能箇所を非凝縮性ガス燃焼温度に近付けないように所定温度に保持するようにしたものである。
【0014】
さらに、本発明に係る非凝縮性ガスの蓄積燃焼防止システムは、上述した課題を解決するために、請求項7に記載したように、非凝縮性ガスが滞留する可能性があるガス蓄積可能箇所に開閉弁を設け、この開閉弁の上流側に設けた温度計および圧力計で前記ガス蓄積可能箇所の温度および圧力を監視し、ガス蓄積可能箇所が前記非凝縮性ガスの燃焼温度に近付いたとき、前記開閉弁を開いて非凝縮性ガスを掃気させるようにしたものである。
【0015】
さらにまた、本発明に係る非凝縮性ガスの蓄積燃焼防止システムは、上述した課題を解決するために、請求項8に記載したように、蒸気が流れる母管から分岐して立ち上がる行止まり枝管内にガス蓄積可能箇所を形成し、上記枝管と母管とを接続する連通管を設け、この連通管を母管内に開口させたものである。
【0016】
さらに、上述した課題を解決するために、本発明に係る非凝縮性ガスの蓄積燃焼防止システムは、請求項9に記載したように、前記連通管は母管内に突出して開口し、この開口部が母管内の上流側および下流側の少なくとも一方に開口したり、また、請求項10に記載したように、前記連通管は少なくとも枝管内に軸方向に沿って設けられた細管であるものである。
【0017】
他方、本発明に係る非凝縮性ガスの蓄積燃焼防止システムは、上述した課題を解決するために、請求項11に記載したように、蒸気が流れる母管から立ち上がる逆U字状の枝管を設け、この枝管内の非凝縮性ガスが滞留する可能性のあるガス蓄積可能箇所に換気孔を形成し、この換気孔を通して非凝縮性ガスを外部に排出させたものである。
【0018】
また、本発明に係る非凝縮性ガスの蓄積燃焼防止システムは、上述した課題を解決するために、請求項12に記載したように、母管から分岐した枝管の端部に直列2段の止め弁を設け、この止め弁間にリーク流体をベントするベントラインを設け、このベントラインはガスサンプリング部を介して低圧側配管または容器に接続したものである。
【0019】
さらに、本発明に係る非凝縮性ガスの蓄積燃焼防止システムは、上述した課題を解決するために、請求項13に記載したように、母管から分岐した枝管の頂部にウェルまたは細管に収納された電気ヒータを設け、この電気ヒータにより枝管内のガス蓄積可能箇所を所定時間毎に通電加熱し、微量蓄積された非凝縮性ガスの水素または酸素を着火させ、燃焼反応で再結合させるようにしたものである。
【0020】
さらにまた、本発明に係る非凝縮性ガスの蓄積燃焼防止システムは、上述した課題を解決するために、請求項14に記載したように、母管から分岐されて立ち上がる枝管あるいは容器内にガス蓄積可能箇所を形成する一方、上記枝管あるいは容器の頂部にベントラインを設け、このベントラインを低圧側配管あるいは容器に接続し、途中にベント弁を設けてガス蓄積可能箇所を所定時間毎にベント処理したものである。
【0021】
またさらに、本発明に係る非凝縮性ガスの蓄積燃焼防止システムは、上述した課題を解決するために、請求項15に記載したように、前記ベントラインはベント弁の上流側にベント孔あるいはオリフィスを設け、所定時間毎にベントしてガス蓄積可能箇所の非凝縮性ガスを低圧側配管あるいは容器へ排出したものである。
【0022】
一方、本発明に係る非凝縮性ガスの蓄積燃焼防止システムは、上述した課題を解決するために、請求項16に記載したように、前記ベントラインは、ベント弁上流側に放射線測定器を、ベント弁下流側に触媒式再結合器をそれぞれ設け、前記ガス蓄積可能箇所の非凝縮性ガスを所定時間毎にベントして放射線測定器でガスサンプリングしながら触媒式再結合器で非凝縮性ガスの水素・酸素を燃焼反応で再結合処理させたものである。
【0023】
また、本発明に係る非凝縮性ガスの蓄積燃焼防止システムは、上述した課題を解決するために、請求項17に記載したように、母管に立てられた管台に安全弁を設け、この安全弁の入口ノズルあるいは管台頂部に排気ベント系を接続する一方、排気ベント系のベントラインに設けられたタイマ付きベント弁を所定時間毎に開放させるベント処理を行ない、管台内のガス蓄積可能箇所に滞留可能な非凝縮性ガスを所定時間毎にベントし低圧側配管あるいは容器に排出させるようにしたものである。
【0024】
さらに、本発明に係る非凝縮性ガスの蓄積燃焼防止システムは、上述した課題を解決するために、請求項18に記載したように、母管から分岐して立ち上がる枝管の頂部に非燃焼ガス注入システムを設け、この非燃焼ガス注入システムに備えられたタイマ付注入弁を所定時間毎に開放して枝管の頂部に非燃焼性ガスを注入し、非燃焼性ガスで枝管内のガス蓄積可能箇所に滞留可能な非凝縮性ガスを母管側にパージさせたものである。
【0025】
【発明の実施の形態】
本発明に係る非凝縮性ガスの蓄積燃焼防止システムの実施の形態について添付図面を参照して説明する。
【0026】
図1は、本発明に係る非凝縮性ガスの蓄積燃焼防止システムを備えた沸騰水型原子力プラント(BWRプラント)10の概略的な系統図を示す。
【0027】
BWRプラント10は、原子炉格納容器(PCV)11内に原子炉圧力容器(RPV)12を格納しており、原子炉格納容器11内は原子炉圧力容器12周りがドライウェル13として画成される。原子炉圧力容器12内には炉心14が格納されており、この炉心14は原子炉冷却水15に浸漬される。原子炉圧力容器12の下部には原子炉冷却水15を貯えた液相部が成形される一方、この液相部の上方には気相部16が形成される。
【0028】
原子炉圧力容器12内の原子炉冷却水15は、炉心14を通る際に、核反応によって発生する熱によって加熱され、蒸気化される。発生した蒸気は原子炉圧力容器12内で気水分離され、乾燥された後、主蒸気系17を通って蒸気タービン18に送られ、蒸気タービン18で仕事をし、発電機(図示せず)を駆動させる。主蒸気系17を構成する主蒸気管17aにはPCV11の上流側および下流側に主蒸気隔離弁19a,19bがそれぞれ設けられる。蒸気タービン18で仕事をし、膨張した蒸気は復水器(図示せず)で凝縮された後、原子炉復水・給水系を通ってRPV12内に再び還流される。
【0029】
また、BWRプラント10の原子炉圧力容器(RPV)12には原子炉圧力容器頂部ベント設備20が設けられており、このベント設備20は原子炉圧力容器(RPV)ベント系21と、原子炉圧力容器ヘッドスプレイ系(以下、RPVヘッドスプレイ系という。)22から分岐された分岐ベント系23とを備える。
【0030】
RPVベント系21は、原子炉圧力容器(RPV)12の頂部に接続される原子炉圧力容器(RPV)ベント配管25を有する。このRPVベント配管25はRPV12の頂部に形成されたRPVヘッドベントノズル26に接続される一方、途中に開閉弁として遠隔操作される電動弁27が設けられる。電動弁27の下流側は主蒸気管17aに原子炉格納容器11内の主蒸気隔離弁19aの上流側で接続される。
【0031】
また、分岐ベント系23は、原子炉圧力容器(RPV)ヘッドスプレイ配管28の逆止弁または注入弁30下流側から分岐されたベント分岐配管31を備える。このベント分岐配管31には遠隔操作弁としての電動弁(開閉弁)33が設けられ、電動弁33の下流側がRPVベント系21のRPVベント配管25に、電動弁27の上流側で接続される。ベント分岐配管31の分岐部は、逆止弁30下流側から立ち上がるように、RPVヘッドスプレイ配管28の頂部位置に設けられる。ベント分岐配管31の分岐部は逆止弁30にできるだけ近い位置に設けられる。
【0032】
さらに、RPVヘッドスプレイ系22は、RPVヘッドスプレイ配管28がRPV12の頂部に設けられた原子炉圧力容器ヘッドスプレイノズル(以下、RPVヘッドスプレイノズルという。)35に接続される。RPVヘッドスプレイ系22のRPVヘッドスプレイ配管28は原子炉隔離時冷却設備(以下、RCICという。)38の冷却水注入配管を兼ねるようにしてもよい。RCIC38は沸騰水型原子炉の停止時にRPV12の上部ドームの残圧を下げるために停止時冷却系の冷却水を利用してRPV12の気相部16を冷却する設備である。
【0033】
一方、RPVヘッドスプレイ系22のRPVヘッドスプレイ配管28には、逆止弁(注入弁)30および原子炉格納容器隔離弁(PCV隔離弁)39a,39bが途中に設けられる。PCV隔離弁39a,39bは原子炉格納容器11を介してその内側と外側にそれぞれ設置され、原子炉運転時には通常閉塞されている。
【0034】
ところで、原子炉圧力容器頂部ベント設備20を構成するRPVベント系21とRPVヘッドスプレイ系22を利用した分岐ベント系23とは協働作用して原子炉圧力容器12廻りで非凝縮性ガスのガス蓄積可能箇所40から非凝縮性ガスを導出し、主蒸気管17aに排出するようになっている。
【0035】
原子炉圧力容器(RPV)12の頂部にRPVベント系21とRPVヘッドスプレイ系22を利用した分岐ベント系23とを設け、協働作用をさせることで、原子力発電所の通常運転時に、RPV12内の頂部付近に蓄積する可能性のある箇所40の酸素ガス、水素ガスおよびKr,Xeの放射性希ガス等の非凝縮性ガスを主蒸気管17a側に円滑かつスムーズに排出することができ、RPV12の頂部付近廻りに非凝縮性ガスが蓄積するのを未然にかつ確実に防止している。
【0036】
なお、図1において、分岐ベント系23のベント分岐配管31を主蒸気管17aに直接接続するようにしてもよく、また、電動弁33の代りにオリフィスを設けたり、電動弁33の上流側にオリフィスを設けるようにしてもよい。
【0037】
ところで、原子炉圧力容器12内に発生した主蒸気を蒸気タービン18に案内する主蒸気系17には、主蒸気管17aから多数の分岐管43が分岐されている。例えば、原子炉隔離時冷却系、非常用安全弁系、タービンバイパス系等が分岐されている。分岐管43は主蒸気系17以外にも存在し、1つの原子力プラント当りの何百ラインも存在する。
【0038】
そして、分岐管43の中には、図2に示すように、主蒸気管等の母管44から分岐して立ち上がる行止まり枝管(分岐管)45が存在する。枝管45には仕切弁あるいは止め弁としての開閉弁46が設けられ、この開閉弁46により母管44および枝管45内を周囲から隔離している。
【0039】
母管44から分岐して立ち上がる行止まり枝管45内には、非凝縮性ガス47が蓄積する可能性のあるガス蓄積可能箇所50が形成される。このガス蓄積可能箇所50の枝管45には保温性能に優れた保温材51が装着され、非凝縮性ガスの蓄積燃焼防止システム52が構成される。保温材51は、ガス蓄積可能箇所50を周囲から断熱して保温するもので、断熱性能に優れた材料が用いられる。
【0040】
次に、BWRプラント10で発生した非凝縮性ガスの処理について説明する。
【0041】
BWRプラント10の運転により、原子炉圧力容器12内で中性子照射を受け、冷却水の分解により発生した水素ガス、酸素ガス等の非凝縮性ガスは、原子炉主蒸気とともに主蒸気系17を通って蒸気タービン18に送られる。蒸気タービン18に送られた主蒸気はここで仕事をして発電機(図示せず)を駆動させる一方、蒸気タービン18に主蒸気と共に送られた非凝縮性ガスは続いて復水器に案内され、この復水器から図示しない気体廃棄物処理系に送られて処理される。
【0042】
BWRプラント10の運転中には、図2に示される主蒸気管等の母管44内にも主蒸気が流される。図2の配管接続構造では、母管44から立ち上がる行止まり枝管45が接続されるために、母管44から分岐された枝管45内にも主蒸気の一部が流入する。枝管45内に流入した蒸気は冷却されて凝縮しようとする。
【0043】
しかし、図2に示された配管接続構造では、母管44から分岐される立上り枝管45に保温材51が装着され、枝管45のガス蓄積可能箇所50が保温材51で覆われる。このため、ガス蓄積可能箇所50は保温され、温度降下を生じさせることが少ない。
【0044】
したがって、ガス蓄積可能箇所50に流入した蒸気が凝縮して液化することがないので、ガス蓄積可能箇所50の蒸気凝縮量を大幅に減少させることができ、非凝縮性ガスの発生量を相対的に抑制することができる。このため、ガス蓄積可能箇所50に非凝縮性ガスが蓄積していくのを未然にかつ有効的に防止でき、非凝縮性ガスのガス蓄積による燃焼の発生を未然にしかも確実に防止でき、信頼性の高い非凝縮性ガスの蓄積燃焼防止システムを提供することができる。
【0045】
図3は、本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第2実施形態を示す図である。
【0046】
この実施形態に示された非凝縮性ガスの蓄積燃焼防止システム52Aは、分岐管としての枝管45に設けられる開閉弁55に改良を施したものである。
【0047】
非凝縮性ガスの蓄積燃焼防止システム52Aは、母管44から分岐して立ち上がる行止まり枝管45に開閉弁46を設け、この開閉弁46の弁上流側が、非凝縮性ガスの蓄積可能なガス蓄積可能箇所50として構成される。
【0048】
開閉弁46は弁ケーシング56内に収容される弁体57を備え、この弁体57の開閉を弁操作部58により弁棒59を介して行なうようになっている。
【0049】
開閉弁46の弁体57には、ベント孔60が設けられ、このベント孔60により、弁全閉時にも弁上流側と弁下流側を連通させることができる。すなわち、弁全閉時にも、ガス蓄積可能箇所50側の非凝縮性ガス47を開閉弁46の反対側空間11に常時通気させることができる。ベント孔60は、ガスが上方に蓄積される可能性が高いことから、ガス蓄積可能箇所50の頂部側で弁体57の上部に設けられる。
【0050】
図3に示された配管接続構造では、枝管45に設けられた開閉弁46の弁体57にベント孔60を設けたので、ガス蓄積可能箇所50へ非凝縮性ガスが蓄積されるのを未然かつ確実に防止できる。弁体57にベント孔60を設けることで、非凝縮性ガスをベント孔60を通して流れのある弁下流側の空間61に常時通気させることができる。
【0051】
したがって、行止まり枝管45のガス蓄積可能箇所50に可燃性の非凝縮性ガス47が蓄積することがなく、非凝縮性ガスによる蓄積燃焼を未然にかつ確実に防止でき、信頼性の高い非凝縮性ガスの蓄積燃焼防止システム52Aを提供できる。非凝縮性ガスによる蓄積燃焼を確実に防止できるので、原子力発電所内機器や配管の健全性を確保することができる。
【0052】
この場合、母管44から分岐された枝管(分岐管)45を図2に示された保温材51で覆うようにしてもよい。
【0053】
図4は、本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第3実施形態を示すものである。
【0054】
この実施形態に示された非凝縮性ガスの蓄積燃焼防止システム52Bは、母管44から分岐して立ち上がる行止まり枝管45のガス蓄積可能箇所50にベントライン63を接続したものである。ベントライン63はガスが上部に蓄積される可能性が高いことから、ガス蓄積可能箇所50の頂部側に設けられる。
【0055】
図4に示された非凝縮性ガスの蓄積燃焼防止システム52Bは、非凝縮性ガスが滞溜する可能性があるガス蓄積可能箇所50に、ベントライン63を接続し、このベントライン63の他側を滞溜部より低い圧力機器や配管、例えば復水器やサプレッションチャンバと接続することで、ガス蓄積可能箇所50に発生する非凝縮性ガス47を常時掃気させることができる。
【0056】
ガス蓄積可能箇所50に蓄積可能な非凝縮性ガス47を常時掃気させることで、非凝縮性ガス47のガス蓄積による燃焼を未然にかつ確実に防止できる。したがって、原子力発電所内機器や配管の健全性を確保することができる。
【0057】
図5は、本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第4実施形態を示すものである。
【0058】
この実施形態に示された非凝縮性ガスの蓄積燃焼防止システム52Cは、図4に示された蓄積燃焼防止システム52Bのベントライン63にオリフィス64を設けたものである。他の構成は、図4に示された非凝縮性ガスの蓄積燃焼防止システム52Bと異ならないので、同じ構成には同一符号を付して説明を省略する。
【0059】
図5に示された非凝縮性ガスの蓄積燃焼防止システム52Cにおいても、ベントライン63によりガス蓄積可能箇所50に滞溜可能な非凝縮性ガス47は常時掃気される。
【0060】
しかし、母管44に蒸気以外の流体を流す必要がある場合がある。この場合にも、ベントライン63を通して流体が流出することとなるが、オリフィス64を設けることでベントライン63を通して流出する流体を流量制限することができる。
【0061】
図6は、本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第5実施形態を示すものである。
【0062】
この実施形態に示された非凝縮性ガスの蓄積燃焼防止システム52Dは、非凝縮性ガスが滞留する可能性があるガス蓄積可能箇所50を加温設備あるいは冷却設備65により一定温度に保持するようにしたものである。
【0063】
図6に示された非凝縮性ガスの蓄積燃焼防止システム52Dは、図1に示された蓄積燃焼防止システム52の保温材51に代えて、加温設備あるいは冷却設備65を設けたものであり、他の構成および作用は図1に示された蓄積燃焼防止システム52と異ならないので、同じ符号を付して説明を省略する。
【0064】
図6に示された非凝縮性ガスの蓄積燃焼防止システム52Dは、ガス蓄積可能箇所50を加温設備あるいは冷却設備65で加熱あるいは冷却して一定温度に保持したものである。
【0065】
これにより、ガス蓄積可能箇所50の配管温度を一定に保つことで、ガス蓄積可能箇所50に非凝縮性ガスが蓄積しても、非凝縮性ガスの燃焼温度に近付けないように温度を調節制御できる。
【0066】
ガス蓄積可能箇所50の温度を、非凝縮性ガスの燃焼温度に近付かない所定温度に調節制御することで、非凝縮性ガスによる燃焼を防止でき、原子力発電所内機器や配管の健全性維持を図ることができる。
【0067】
図7は、本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第6実施形態を示すものである。
【0068】
この実施形態に示された非凝縮性ガスの蓄積燃焼防止システム52Eは、非凝縮性ガス47が滞溜する可能性があるガス蓄積可能箇所50に温度計66と圧力計67を設け、この温度計66および圧力計67でガス蓄積可能箇所50の温度および圧力を常時監視できるようにしたものである。
【0069】
この蓄積燃焼防止システム52Eは、流体配管である母管44から分岐して立ち上がる枝管45に駆動部68を有する開閉弁46を設け、この開閉弁46を温度計66および圧力計67で検出される温度および圧力如何によって開閉弁46を自動的に開操作できるようにしたものである。
【0070】
図7に示された非凝縮性ガスの蓄積燃焼防止システム52Eは、ガス蓄積可能箇所50、ひいては枝管45に設置された温度計66および圧力計67により、ガス蓄積可能箇所50の環境条件を監視し、ガス蓄積可能箇所50の環境条件が、非凝縮性ガスの燃焼条件に近付いた場合、開閉弁46を自動的に開放させ、ガス蓄積可能箇所50に堆積された可燃性の非凝縮性ガスを自動的に掃気できるようにしたものである。
【0071】
非凝縮性ガスの掃気が終了し、ガス蓄積可能箇所50の環境条件が非凝縮性ガス47の燃焼条件から離れた場合に自動的に閉塞されるようにセットされる。
【0072】
この非凝縮性ガスの蓄積燃焼防止システム52Eにおいても、ガス蓄積可能箇所50に所要量以上の非凝縮性ガス47の蓄積を確実に防止することができ、非凝縮性ガス47による蓄積燃焼を未然にしかも確実に防止して信頼性を向上させることができる。原子力発電所内機器や配管の健全性の維持を図ることができる。
【0073】
図8は、本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第7実施形態を示すものである。
【0074】
この実施形態に示された非凝縮性ガスの蓄積燃焼防止システム52Fは、非凝縮性ガスが蓄積する可能性のあるガス蓄積可能箇所50にバイメタル式トラップ69を取り付けた例を示すものであり、ガス蓄積可能箇所50のベントライン63入口にバイメタル式トラップ69を設置する以外は、図5に示された非凝縮性ガスの蓄積防止システム52Cと異ならないので、同じ構成には同一符号を付して説明を省略する。
【0075】
図8に示された非凝縮性ガスの蓄積燃焼防止システム52Fにおいては、非凝縮性ガス47が蓄積する可能性のあるガス蓄積可能箇所50のベントライン63入口部にバイメタル式トラップ69を設置し、バイメタル式トラップ69の取付部の温度が、非凝縮性ガス47の燃焼温度に近付いた場合、バイメタル式トラップ69を自動的に開放させ、非凝縮性ガス47をベントライン63を通じて掃気できるようにしたものである。
【0076】
ベントライン63を通しての非凝縮性ガスの掃気が終了し、ガス蓄積可能箇所50のバイメタル式トラップ69取付部の温度が、非凝縮性ガスの燃焼温度から離れると、バイメタル式トラップ69はベントライン63を自動的に閉塞されるようになっている。
【0077】
この場合にも、母管44から分岐された枝管(分岐管)45内のガス蓄積可能箇所50に所定量の非凝縮性ガスが蓄積されるのを有効的にかつ未然に防止でき、非凝縮性ガスによる蓄積燃焼を確実に防止できる。したがって、原子力発電所内機器や配管の健全性を保つことができる。
【0078】
図9は、本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第8実施形態を示すものである。
【0079】
この実施形態に示された非凝縮性ガスの蓄積燃焼防止システム52Gは、母管44から行止まり枝管(分岐管)45が立ち上がるように分岐しており、分岐された枝管45の先端部と母管44を連通管としての細管71で接続したものである。
【0080】
母管44から分岐された枝管45の先端部を細管71で母管44と接続することにより、細管71内に流れが生じ、枝管45内のガス蓄積可能箇所50へ非凝縮性ガスが滞溜するのを有効的に防止できる。連通管としての細管71は図9に示すように枝管45分岐部の上流側に接続しても、あるいは下流側に接続してもよい。細管71を複数本設け、図10に示すように母管44と接続してもよい。
【0081】
図9および図10に示された非凝縮性ガスの蓄積燃焼防止システム52Gにおいては、母管44から分岐された行止まり枝管45の先端部を細管71により母管44と接続したので、細管71内の流れを利用して、ガス蓄積可能箇所50に接続される非凝縮性ガスを放出したり、また、枝管45内に蒸気流を生じさせて非凝縮性ガスの蓄積を未然に防止することができる。
【0082】
この場合にも、非凝縮性ガスの蓄積燃焼防止システム52Gは、母管44から分岐された行止まり枝管45内に非凝縮性ガスが蓄積するのを未然にかつ確実に防止でき、非凝縮性ガスによるガス蓄積燃焼を未然にかつ確実に防止できる。
【0083】
図11は、本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第9実施形態を示すものである。
【0084】
この実施形態に示された非凝縮性ガスの蓄積燃焼防止システム52Hは、行止まり枝管45の先端部に接続される連通管としての細管71を母管44内部に突出させ、母管44内に挿入された細管44の先端開口を上流側に向けたものである。細管44の先端開口を下流側に向けてもよい。その他の構成は、図8に示される蓄積燃焼防止システム52Gと異ならないので、同じ符号を付して説明を省略する。
【0085】
図11に示された非凝縮性ガスの蓄積燃焼防止システム52Hにおいては、母管44内に挿入される細管71の先端開口を上流側(または下流側)に指向させることで、細管71内に蒸気流を積極的かつ強制的に案内することができるので、行止まり枝管45内に流体の流れを生じさせることができる。したがって、行止まり枝管45内に形成されるガス蓄積可能箇所50に流体の流れを惹起させることができ、枝管45内のガス蓄積可能箇所50に非凝縮性ガスが係留あるいは滞溜するのを有効的にかつ確実に防止できる。
【0086】
したがって、ガス着脱可能箇所50で非凝縮性ガスのガス蓄積による燃焼を確実にかつ未然に防止でき、原子力発電所内機器や配管の健全性を保つことができる。
【0087】
図12は、本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第10実施形態を示すものである。
【0088】
この実施形態に示された非凝縮性ガスの蓄積燃焼防止システム52Iは、母管44から分岐されて立ち上がる行止まり枝管(分岐管)45内に連通管としての細管71を設けた例である。細管71の一端は母管44内に入って上流側に向けて開口する一方、その他端は枝管45の先端部付近で開口している。
【0089】
図12に示された非凝縮性ガスの蓄積燃焼防止システム52Iによる非凝縮性ガスの蓄積燃焼防止原理は、図9に示された蓄積燃焼防止システム52Gと同様であり、その構成および作用も細管71の設置態様を除いて異ならないので同じ符号を付して説明を省略する。
【0090】
第10実施形態に示された非凝縮性ガスの蓄積燃焼防止システム52Iは、行止まり枝管45内に細管71を設けることにより、細管71自体は圧力バウンダリを構成しないので、薄肉化を図ることができる。
【0091】
図13は、本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第11実施形態を示すものである。
【0092】
この実施形態に示された非凝縮性ガスの蓄積燃焼防止システム52Jは、エルボ型あるいはL字状流体配管である母管44Aから行止まり枝管45が分岐され、分岐部が全体としてT字状あるいはY字状をなす例を示したものである。枝管45内には連通管としての細管71が備えられる。この細管71は母管44内に挿入され、その先端が上流側に向って開口する一方、細管の他端は枝管45の先端部付近で開口している。他の構成および作用は、図11に示された蓄積燃焼防止システム52Hと原理的に異ならず、同じである。
【0093】
第11実施形態の非凝縮性ガスの蓄積燃焼防止システム52Jは、図11に示された蓄積燃焼防止システム52Hとガス蓄積燃焼防止システム52Gと主蒸気流の流れを除いて原理的に異ならない。この場合にも、枝管45内のガス蓄積可能箇所50の非凝縮性ガスの蓄積による燃焼を未然にかつ確実に防止できる。
【0094】
図14は、本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第12実施形態を示すものである。
【0095】
この実施形態に示された非凝縮性ガスの蓄積燃焼防止システム52Kは、母管44から分岐して立ち上がる逆U字状の枝管45に安全弁を兼ねる開閉弁72を設ける一方、開閉弁72の下流側の枝管45に複数の換気孔73を設けた例である。
【0096】
開閉弁72の下流側のガス蓄積可能箇所50に微細な換気孔73を複数箇所設けることで、発生する非凝縮性ガスを外部に排出できるようにしたものである。
【0097】
図14に示された非凝縮性ガスの蓄積燃焼防止システム52Kでは、分岐された枝管45内に蒸気を流す場合、換気孔73から蒸気が漏洩する恐れがあることから、換気孔73からの蒸気リークが許容できる場合に適用される。
【0098】
図15は本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第13実施形態を示すものである。
【0099】
この実施形態に示された非凝縮性ガスの蓄積燃焼防止システム75は、例えば残留熱除去設備(RHR)の流体配管等の母管76から分岐して立ち上がる枝管77の端部に直列2段の止め弁78a,78bを設け、両止め弁78a,78bの間に排気ベント系を形成する細管のベントライン79を接続し、このベントライン79にベント弁80を設けて復水器あるいは原子炉建屋排気系81に接続して構成される。
【0100】
ベントライン79のベント弁80の上流側には温度・圧力計82や放射線測定器83が設置される。枝管77内は非凝縮性ガスが蓄積可能なガス蓄積可能箇所85を構成している。
【0101】
この非凝縮性ガスの蓄積燃焼防止システム75においては、母管76から分岐された枝管77に2つの止め弁78a,78bを設け、止め弁78a,78bからリークした流体をベントライン79にベントし、ベントライン79を通るリーク流体を放射線測定器83でガスサンプリングしながら、原子炉建屋内あるいは復水器やサプレッションチャンバへ排気するようにしたものであり、直列2段止め弁78a,78bによるシートリーク排気システムが構成される。
【0102】
ベントライン79でベントされるリーク流体をサンプリングガスサンプリング行なうことで、枝管77内の非凝縮ガスのガス蓄積の有無が判断される。例えばRHR系配管では、弁閉止されたベント弁80をタイマ84により間欠的に開放してベントされれば、枝管77内のガス蓄積可能箇所85に非凝縮性ガスが蓄積するのを有効的に防止できる。
【0103】
この非凝縮性ガスの蓄積燃焼防止システム75においても、枝管77内のガス蓄積可能箇所に可燃性の非凝縮性ガスが蓄積していくのを有効的に防止できるので、非凝縮性ガスによる蓄積燃焼を未然にしかも確実に防止できる。したがって、原子力発電所内機器や配管の健全性を保つことができる。
【0104】
図16は、本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第14実施形態を示すものである。
【0105】
この実施形態に示された非凝縮性ガスの蓄積燃焼防止システム90は可燃性非凝縮性ガスに定期的に着火させることにより、非凝縮性ガスの蓄積燃焼を防止するようにした強制着火による蓄積燃焼防止システムである。
【0106】
この蓄積燃焼防止システム90は、母管91から分岐して立ち上がる枝管(分岐管)92に開閉弁としての止め弁93を設ける一方、枝管92の頂部にウェルまたは細管94内に電気ヒータ95を収納する。電気ヒータ95は、タイマ96にてセットされたヒータ電源97により、所定時間毎、例えば1日毎に通電加熱される。
【0107】
この実施形態に示された非凝縮性ガスの蓄積燃焼防止システム90は、ヒータ電源97より所定時間毎に通電加熱され、枝管92内のガス蓄積可能箇所98に微量蓄積された非凝縮性ガス(水素・酸素)を着火させ、燃焼反応によって水素・酸素を再結合させたものである。枝管92のガス蓄積可能箇所98に微量蓄積される非凝縮性ガスを電気ヒータ95で着火させ、定期的に燃焼させることにより、ガス蓄積可能箇所98に所定量以上の非凝縮性ガスが蓄積するのを確実に防止できる。
【0108】
したがって、ガス蓄積可能箇所98に非凝縮性ガスが蓄積していき所要量以上にするのを確実に防止でき、蓄積した非凝縮性ガスによる蓄積燃焼を有効的かつ確実に防止できる。
【0109】
図17は、本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第15実施形態を示すものである。
【0110】
この実施形態に示された非凝縮性ガスの蓄積燃焼防止システム100は、母管101から分岐して立ち上がる枝管102の端部側に開閉弁としての止め弁103を設けるとともに、枝管102の頂部にベント孔104を介してベントライン105を接続し、このベントライン105を復水器または原子炉建屋排気系81に接続し、さらにベントライン105に温度圧力計106とタイマ107にて開閉させるベント弁108を設けたものであり、非凝縮性ガスの間欠ベントシステムを構成している。
【0111】
この非凝縮性ガスの蓄積燃焼防止システム100は、母管101から分岐された枝管102の頂部にベント孔104とベント弁108を設け、タイマ107に所定時間、例えば1日毎にベントして枝管102内のガス蓄積可能箇所109に貯溜される非凝縮性ガスを復水器あるいは原子炉建屋内に排出させるものである。
【0112】
ベント弁108を所定時間毎にベントさせて開閉することで、枝管102のガス蓄積可能箇所109に所定量以上の非凝縮性ガスが蓄積するのを確実に防止できる。したがって、ガス蓄積可能箇所109内で非凝縮性ガスの蓄積燃焼を未然にかつ確実に防止できる。
【0113】
図18は、本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第16実施形態を示すものである。
【0114】
この実施形態に示された非凝縮性ガスの蓄積燃焼防止システム110は、母管111から分岐して立ち上がる枝管112の端部側に開閉弁としての止め弁113を設けるとともに、枝管112の頂部に排気ベント系を構成するベントライン114を設ける。このベントライン114は途中にタイマ115駆動で所定時間毎に開閉駆動されるベント弁116を設けて低圧側配管あるいは容器117である復水器または原子炉建屋排気系に接続される。
【0115】
ベントライン114のベント弁116上流側には温度・圧力計118および放射線測定器119が設けられる一方、ベント弁115下流側に触媒式再結合器120が設けられる。
【0116】
この非凝縮性ガスの蓄積燃焼防止システム110は、タイマ115付ベント弁116の開操作により、枝管112内のガス蓄積可能箇所121を所定時間毎、例えば1日毎にベントし、ガス蓄積可能箇所121に滞留した非凝縮性ガスをベントライン114を通して低圧側容器または配管117に案内している。その際、ベントライン114に設けられた放射線測定器118でガスサンプリングする一方、触媒式再結合器120で触媒加熱作用を受けて非凝縮性ガスの水素・酸素は燃焼反応して再結合(蒸気化)せしめられる。
【0117】
したがって、枝管112内のガス蓄積可能箇所121は所定時間毎にベント処理され、滞留する非凝縮性ガスがベントライン114を通って低圧側容器あるいは配管117に排出され、ガス蓄積可能箇所121内に非凝縮性ガスが蓄積されることを未然に防止でき、ガス蓄積燃焼を有効的にかつ確実に防止できる。
【0118】
図19は、本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第17実施形態を示すものである。
【0119】
この実施形態に示された非凝縮性ガスの蓄積燃焼防止システム125は、例えば原子炉圧力容器ヘッドスプレイ系22に適用されたものである。上記蓄積燃焼防止システム125は、原子炉圧力容器(RPV)12の上鏡12aから立ち上がるヘッドスプレイ配管28が接続されており、この配管28に注入弁126が設けられる。
【0120】
ヘッドスプレイ配管28の注入弁126下流側にガス蓄積可能箇所127が形成され、上記配管28の頂部に排気ベント系を構成するベントライン128が接続される。ベントライン128は途中にタイマ129付ベント弁130が設けられて低圧側容器あるいは配管である復水器または原子炉建屋排気系131に接続される。ベントライン128の入口側にベント孔133あるいはオリフィスが設けられる一方、このベント孔133下流側に温度・圧力計134が設けられる。
【0121】
図19に示された非凝縮性ガスの蓄積燃焼防止システム125は、非凝縮性ガスが滞留する可能性があるガス蓄積可能箇所127にベントライン128を接続し、このベントライン128に設けたタイマ129付ベント弁130により所定時間毎、例えば1日毎にベント処理し、ガス蓄積可能箇所127に滞留される非凝縮性ガスをベントして低圧側容器・配管である復水器または原子炉建屋排気系131に排出させている。このため、ガス蓄積可能箇所127に非凝縮性ガスが蓄積することがなく、非凝縮性ガスの蓄積燃焼を有効的にかつ確実に防止できる。
【0122】
図19は、非凝縮性ガスの蓄積燃焼防止システム125をRPVヘッドスプレイ系22に適用した例を示したが、このRPVヘッドスプレイ系22に適用した場合、RPVヘッドスプレイ系22の作動時にはベントライン128に設けられたベント弁130は閉止される。また、この蓄積燃焼防止システム125はRPVヘッドスプレイ系22に限定されず、可燃性の非凝縮性ガスを取扱う容器に接続される配管系に適用することができる。
【0123】
図20は、本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第18実施形態を示すものである。
【0124】
この実施形態に示された非凝縮性ガスの蓄積燃焼防止システム135は、蒸気を流す流体配管である母管136に管台137を立て、この管台137に安全弁138を設け、安全弁138下流側を低圧側排気管139あるいは容器に接続する一方、安全弁138の入口ノズル138aあるいは管台頂部に排気ベント系140を設けたものである。
【0125】
排気接続ベント系140は、安全弁138の入口ノズル138aあるいは管台頂部に接続されるベントライン141を有する。このベントライン141は途中にタイマ143付きのベント弁144を備えて低圧側排気管139に接続される。ベントライン141には入口側にベント孔145あるいはオリフィスが設けられる一方、その下流側でベント弁144上流側に温度・圧力計146を有する。
【0126】
この非凝縮性ガスの蓄積燃焼防止システム135においては、安全弁138の管台137内が、非凝縮性ガスの滞留可能性があるガス蓄積可能箇所148として構成される。
【0127】
しかして、この蓄積燃焼防止システム135は、母管136に立てられた管台137に安全弁138を設け、この安全弁138の入口ノズル138aあるいは管台頂部に排気ベント系140を設け、この排気ベント系140のベントライン141に設けられたタイマ付ベント弁144を所要時間毎、例えば1日毎に開いてベント処理し、管台137内のガス蓄積可能箇所148に滞留している非凝縮性ガスを低圧側配管または容器、例えば復水器やサプレッションプールに排出させたので、管台137内に非凝縮性ガスが蓄積していくのを確実かつ未然に防止できる。
【0128】
したがって、原子力発電所内聴き配管の健全性を充分に維持することができる。
【0129】
図21は、本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第19実施形態を示すものである。
【0130】
この実施形態に示された非凝縮性ガスの蓄積燃焼防止システム150は、母管151から分岐して立ち上がる枝管(分岐管)152の端部に開閉弁としての止め弁153を備えるとともに、枝管152の頂部側に非燃焼ガス注入システム155を備えたものである。
【0131】
非燃焼ガス注入システム155は、非燃焼ガス供給源としての非燃焼ガスボンベ156を備え、このガスボンベ156が非燃焼ガス供給ライン157を介して枝管152の頂部に接続される。非燃焼ガスボンベ156には窒素やヘリウム等の不活性ガスあるいは水蒸気等の非燃焼性ガスが滞留されている。枝管152内には非凝縮性ガスの滞留可能性のあるガス蓄積可能箇所158が形成される。
【0132】
非燃焼ガス供給ライン157は途中に非燃焼性ガスのガス圧力を調整する圧力調整器160やタイマ161付きガス注入弁としてのベント弁162、温度・圧力計163が設けられる。タイマ161付きベント弁162により非燃焼ガス供給ライン157は所定時間毎、例えば1日毎に開いて非燃焼性ガスが枝管152内のガス蓄積可能箇所158に供給され、枝管152内に流れを生じさせてガス蓄積可能箇所158の非凝縮性ガスを母管151側にパージしている。
【0133】
この非凝縮性ガスの蓄積燃焼防止システム150は、非燃焼ガス注入システム155を所要時間毎に定期的に作動させることで、枝管152内のガス蓄積可能箇所158に滞留される非凝縮性ガスを、非燃焼性ガスでパージして母管151側に排出させるので、ガス蓄積可能箇所158に可燃性の非凝縮性ガスが蓄積するのを未然に防止できる。
【0134】
したがって、非凝縮性ガスの蓄積燃焼を未然に確実に防止することができ、原子力発電所内機器や配管の健全性を充分に維持することができる。
【0135】
なお、本発明の実施形態においては、非凝縮性ガスの蓄積燃焼防止システムをBWRプラントに適用した例を説明したが、本発明はBWRプラントのみでなく加圧水型原子力発電プラントの配管や容器の分岐立上り部に形成されるガス蓄積可能箇所に適用することができる。
【0136】
【発明の効果】
本発明に係る非凝縮性ガスの蓄積燃焼防止システムにおいては、ガス蓄積可能箇所における非凝縮性ガス量の発生を抑制し、発生する非凝縮性ガスをガス蓄積可能箇所の系外に排出でき、または発生した非凝縮性ガスを燃焼させない環境条件にセットできるので、非凝縮性ガスの蓄積燃焼を未然にかつ確実に防止でき、原子力発電所内機器・配管の健全性の維持を充分に図ることができ、信頼性を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る非凝縮性ガスの蓄積燃焼防止システムを備えたBWRプラントを概略的に示す系統図。
【図2】本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第1実施形態を示す図。
【図3】本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第2実施形態を示す図。
【図4】本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第3実施形態を示す図。
【図5】本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第4実施形態を示す図。
【図6】本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第5実施形態を示す図。
【図7】本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第6実施形態を示す図。
【図8】本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第7実施形態を示す図。
【図9】本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第8実施形態を示す図。
【図10】図9に示された非凝縮性ガスの蓄積燃焼防止システムの変形例を示す図。
【図11】本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第9実施形態を示す図。
【図12】本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第10実施形態を示す図。
【図13】本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第11実施形態を示す図。
【図14】本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第12実施形態を示す図。
【図15】本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第13実施形態を示す図。
【図16】本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第14実施形態を示す図。
【図17】本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第15実施形態を示す図。
【図18】本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第16実施形態を示す図。
【図19】本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第17実施形態を示す図。
【図20】本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第18実施形態を示す図。
【図21】本発明に係る非凝縮性ガスの蓄積燃焼防止システムの第19実施形態を示す図。
【図22】従来の母管から分岐して立ち上がる配管接続構造を示す図。
【符号の説明】
10 BWRプラント
11 原子炉格納容器(PCV)
12 原子炉圧力容器(RPV)
13 ドライウェル
14 炉心
15 原子炉冷却水(液相部)
16 気相部
17 主蒸気系
17a 主蒸気管
18 蒸気タービン
19a,19b 主蒸気隔離弁
20 原子炉圧力容器(RPV)ベント設備
21 原子炉圧力容器(RPV)ベント系
22 原子炉圧力容器(RPV)ヘッドスプレイ系
23 分岐ベント系
25 RPVベント配管
27,33 電動弁(遠隔操作弁)
28 RPVヘッドスプレイ配管
30 逆止弁
31 ベント分岐配管
38 原子炉隔離時冷却設備
39a,39b PCV隔離弁
40 ガス蓄積可能箇所
43 分岐管
44 母管
45 枝管
46 開閉弁
47 非凝縮性ガス
50 ガス蓄積可能箇所
51 保温材
52,52A〜52K 非凝縮性ガスの蓄積燃焼防止システム
56 弁ケーシング
57 弁体
58 弁操作部
59 弁棒
60 ベント孔
63 ベントライン
64 オリフィス
65 加温設備もしくは冷却設備
66 温度計
67 圧力計
68 駆動部
69 バイメタル式トラップ
71 細管(連通管)
72 開閉弁
73 換気孔
75 非凝縮性ガスの蓄積燃焼防止システム
76 母管
77 枝管
78a,78b 止め弁(開閉弁)
79 ベントライン
80 ベント弁
81 復水器あるいは原子炉建屋排気系
82 温度・圧力計
83 放射線測定器
85 ガス蓄積可能箇所
90 非凝縮性ガスの蓄積燃焼防止システム
91 母管
92 枝管(分岐管)
93 止め弁(開閉弁)
94 ウェルまたは細管
95 電気ヒータ
96 タイマ
97 ヒータ電源
98 ガス蓄積可能箇所
100 非凝縮性ガスの蓄積燃焼防止システム
101 母管
102 枝管
103 止め弁(開閉弁)
104 ベント孔
105 ベントライン
106 温度・圧力計
107 タイマ
108 ベント弁
109 ガス蓄積可能箇所
110 非凝縮性ガスの蓄積燃焼防止システム
111 母管
112 枝管
113 止め弁(開閉弁)
114 ベントライン
115 タイマ
116 ベント弁
117 低圧側配管あるいは容器
118 温度・圧力計
119 放射線測定器
120 触媒式再結合器
121 ガス蓄積可能箇所
125 非燃焼ガスの蓄積燃焼防止システム
126 注入弁
128 ベントライン
129 タイマ
130 ベント弁
131 復水器または原子炉建屋排気系
133 ベント孔
134 温度・圧力計
135 非凝縮性ガスの蓄積燃焼防止システム
136 母管
137 管台
138 安全弁
139 低圧側排気管あるいは容器
140 排気ベント系
141 ベントライン
143 タイマ
144 ベント弁
145 ベント孔
146 温度・圧力計
148 ガス蓄積可能箇所
150 非凝縮性ガスの蓄積燃焼防止システム
151 母管
152 枝管
153 止め弁
155 非燃焼ガス注入システム
156 非燃焼ガスボンベ(非燃焼ガス供給源)
157 非燃焼ガス供給ライン
158 ガス蓄積可能箇所
160 圧力調整器
161 タイマ
162 ベント弁
163 温度・圧力計

Claims (18)

  1. 非凝縮性ガスが滞留する可能性があるガス蓄積可能箇所に保温材を設け、この保温材でガス蓄積可能箇所の蒸気凝縮量を低下させて非凝縮性ガスの発生量を抑制するようにしたことを特徴とする非凝縮性ガスの蓄積燃焼防止システム。
  2. 非凝縮性ガスが滞留する可能性があるガス蓄積可能箇所に止め弁を設け、この止め弁の弁体にベント孔を形成して弁上流側と弁下流側とを連通させ、前記ガス蓄積可能箇所に非凝縮性ガスのガス蓄積を抑制するようにしたことを特徴とする非凝縮性ガスの蓄積燃焼防止システム。
  3. 非凝縮性ガスが滞留する可能性があるガス蓄積可能箇所にベントラインを接続し、このベントラインを通してガス蓄積可能箇所の非凝縮性ガスを常時掃気させるようにしたことを特徴とする非凝縮性ガスの蓄積燃焼防止システム。
  4. 前記ベントラインにオリフィスを設け、このオリフィスで流量制限しながら非凝縮性ガスを常時掃気させるようにした請求項3記載の非凝縮性ガスの蓄積燃焼防止システム。
  5. 前記ベントラインにバイメタル式トラップを設け、このバイメタル式トラップはガス蓄積可能箇所が非凝縮性ガス燃焼温度に近付いたとき、開いて非凝縮性ガスを掃気させるようにした請求項3または4記載の非凝縮性ガスの蓄積燃焼防止システム。
  6. 非凝縮性ガスが滞留する可能性があるガス蓄積可能箇所に加熱設備あるいは冷却設備を設け、この加熱設備あるいは冷却設備でガス蓄積可能箇所を非凝縮性ガス燃焼温度に近付けないように所定温度に保持するようにしたことを特徴とする非凝縮性ガスの蓄積燃焼防止システム。
  7. 非凝縮性ガスが滞留する可能性があるガス蓄積可能箇所に開閉弁を設け、この開閉弁の上流側に設けた温度計および圧力計で前記ガス蓄積可能箇所の温度および圧力を監視し、ガス蓄積可能箇所が前記非凝縮性ガスの燃焼温度に近付いたとき、前記開閉弁を開いて非凝縮性ガスを掃気させるようにしたことを特徴とする非凝縮性ガスの蓄積燃焼防止システム。
  8. 蒸気が流れる母管から分岐して立ち上がる行止まり枝管内にガス蓄積可能箇所を形成し、上記枝管と母管とを接続する連通管を設け、この連通管を母管内に開口させたことを特徴とする非凝縮性ガスの蓄積燃焼防止システム。
  9. 前記連通管は母管内に突出して開口し、この開口部が母管内の上流側および下流側の少なくとも一方に開口した請求項8記載の非凝縮性ガスの蓄積燃焼防止システム。
  10. 前記連通管は少なくとも枝管内に軸方向に沿って設けられた細管である請求項8または9記載の非凝縮性ガスの蓄積燃焼防止システム。
  11. 蒸気が流れる母管から立ち上がる逆U字状の枝管を設け、この枝管内の非凝縮性ガスが滞留する可能性のあるガス蓄積可能箇所に換気孔を形成し、この換気孔を通して非凝縮性ガスを外部に排出させたことを特徴とする非凝縮性ガスの蓄積燃焼防止システム。
  12. 母管から分岐した枝管の端部に直列2段の止め弁を設け、この止め弁間にリーク流体をベントするベントラインを設け、このベントラインはガスサンプリング部を介して低圧側配管または容器に接続したことを特徴とする非凝縮性ガスの蓄積燃焼防止システム。
  13. 母管から分岐した枝管の頂部にウェルまたは細管に収納された電気ヒータを設け、この電気ヒータにより枝管内のガス蓄積可能箇所を所定時間毎に通電加熱し、微量蓄積された非凝縮性ガスの水素または酸素を着火させ、燃焼反応で再結合させるようにしたことを特徴とする非凝縮性ガスの蓄積燃焼防止システム。
  14. 母管から分岐されて立ち上がる枝管あるいは容器内にガス蓄積可能箇所を形成する一方、上記枝管あるいは容器の頂部にベントラインを設け、このベントラインを低圧側配管あるいは容器に接続し、途中にベント弁を設けてガス蓄積可能箇所を所定時間毎にベント処理したことを特徴とする非凝縮性ガスの蓄積燃焼防止システム。
  15. 前記ベントラインはベント弁の上流側にベント孔あるいはオリフィスを設け、所定時間毎にベントしてガス蓄積可能箇所の非凝縮性ガスを低圧側配管あるいは容器へ排出した請求項14記載の非凝縮性ガスの蓄積燃焼防止システム。
  16. 前記ベントラインは、ベント弁上流側に放射線測定器を、ベント弁下流側に触媒式再結合器をそれぞれ設け、前記ガス蓄積可能箇所の非凝縮性ガスを所定時間毎にベントして放射線測定器でガスサンプリングしながら触媒式再結合器で非凝縮性ガスの水素・酸素を燃焼反応で再結合処理させた請求項14記載の非凝縮性ガスの蓄積燃焼防止システム。
  17. 母管に立てられた管台に安全弁を設け、この安全弁の入口ノズルあるいは管台頂部に排気ベント系を接続する一方、排気ベント系のベントラインに設けられたタイマ付きベント弁を所定時間毎に開放させるベント処理を行ない、管台内のガス蓄積可能箇所に滞留可能な非凝縮性ガスを所定時間毎にベントし低圧側配管あるいは容器に排出させるようにしたことを特徴とする非凝縮性ガスの蓄積燃焼防止システム。
  18. 母管から分岐して立ち上がる枝管の頂部に非燃焼ガス注入システムを設け、この非燃焼ガス注入システムに備えられたタイマ付注入弁を所定時間毎に開放して枝管の頂部に非燃焼性ガスを注入し、非燃焼性ガスで枝管内のガス蓄積可能箇所に滞留可能な非凝縮性ガスを母管側にパージさせたことを特徴とする非凝縮性ガスの蓄積燃焼防止システム。
JP2002161922A 2002-06-03 2002-06-03 非凝縮性ガスの蓄積燃焼防止システム Pending JP2004012145A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002161922A JP2004012145A (ja) 2002-06-03 2002-06-03 非凝縮性ガスの蓄積燃焼防止システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002161922A JP2004012145A (ja) 2002-06-03 2002-06-03 非凝縮性ガスの蓄積燃焼防止システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008034954A Division JP2008122419A (ja) 2008-02-15 2008-02-15 非凝縮性ガスの蓄積燃焼防止システム

Publications (1)

Publication Number Publication Date
JP2004012145A true JP2004012145A (ja) 2004-01-15

Family

ID=30430852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161922A Pending JP2004012145A (ja) 2002-06-03 2002-06-03 非凝縮性ガスの蓄積燃焼防止システム

Country Status (1)

Country Link
JP (1) JP2004012145A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192298A (ja) * 2008-02-13 2009-08-27 Toshiba Corp 非凝縮性ガス蓄積燃焼防止システム
JP2010266369A (ja) * 2009-05-15 2010-11-25 Toshiba Corp 原子炉圧力容器ヘッドスプレイシステム
JP2012509465A (ja) * 2008-11-17 2012-04-19 ニュースケール パワー インコーポレイテッド 蒸気発生器フローバイパスシステム
KR20200104215A (ko) * 2017-12-29 2020-09-03 조인트 스탁 컴퍼니 “아톰에네르고프로엑트” 방출 및 드레인 시스템이 있는 2중 회로 원자로 증기 발생 장치
JP7390233B2 (ja) 2020-03-30 2023-12-01 三菱重工業株式会社 ガス流動促進装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331784A (ja) * 1993-05-25 1994-12-02 Toshiba Corp 原子炉水位測定装置
JPH07270576A (ja) * 1994-03-29 1995-10-20 Toshiba Corp 原子炉水位測定装置
JPH0843574A (ja) * 1994-07-29 1996-02-16 Hitachi Ltd 原子炉格納容器ベント系制御方法及びその装置
JPH10122717A (ja) * 1996-10-15 1998-05-15 Tlv Co Ltd 熱交換ユニット
JP2000098075A (ja) * 1998-07-23 2000-04-07 Toshiba Corp 可燃性ガス除去装置
JP2000121004A (ja) * 1998-10-16 2000-04-28 Toshiba Corp 給水加熱器ドレン排出装置
JP2000292590A (ja) * 1999-04-02 2000-10-20 Toshiba Corp 凝縮性媒体流通プラントおよびその水質制御方法
JP2001215291A (ja) * 1999-11-24 2001-08-10 Toshiba Corp 原子炉格納容器内の圧力抑制装置
JP2001349983A (ja) * 2000-06-12 2001-12-21 Toshiba Corp 沸騰水型原子力発電プラントの運転方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331784A (ja) * 1993-05-25 1994-12-02 Toshiba Corp 原子炉水位測定装置
JPH07270576A (ja) * 1994-03-29 1995-10-20 Toshiba Corp 原子炉水位測定装置
JPH0843574A (ja) * 1994-07-29 1996-02-16 Hitachi Ltd 原子炉格納容器ベント系制御方法及びその装置
JPH10122717A (ja) * 1996-10-15 1998-05-15 Tlv Co Ltd 熱交換ユニット
JP2000098075A (ja) * 1998-07-23 2000-04-07 Toshiba Corp 可燃性ガス除去装置
JP2000121004A (ja) * 1998-10-16 2000-04-28 Toshiba Corp 給水加熱器ドレン排出装置
JP2000292590A (ja) * 1999-04-02 2000-10-20 Toshiba Corp 凝縮性媒体流通プラントおよびその水質制御方法
JP2001215291A (ja) * 1999-11-24 2001-08-10 Toshiba Corp 原子炉格納容器内の圧力抑制装置
JP2001349983A (ja) * 2000-06-12 2001-12-21 Toshiba Corp 沸騰水型原子力発電プラントの運転方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192298A (ja) * 2008-02-13 2009-08-27 Toshiba Corp 非凝縮性ガス蓄積燃焼防止システム
JP2012509465A (ja) * 2008-11-17 2012-04-19 ニュースケール パワー インコーポレイテッド 蒸気発生器フローバイパスシステム
US8824619B2 (en) 2008-11-17 2014-09-02 NuScale Powe, LLC Steam generator flow by-pass system
JP2010266369A (ja) * 2009-05-15 2010-11-25 Toshiba Corp 原子炉圧力容器ヘッドスプレイシステム
KR20200104215A (ko) * 2017-12-29 2020-09-03 조인트 스탁 컴퍼니 “아톰에네르고프로엑트” 방출 및 드레인 시스템이 있는 2중 회로 원자로 증기 발생 장치
JP2020531799A (ja) * 2017-12-29 2020-11-05 ジョイント ストック カンパニー アトムエネルゴプロエクトJoint Stock Company Atomenergoproekt パージ運転およびドレネージとの二重回路原子炉の蒸気発生装置
KR102527023B1 (ko) 2017-12-29 2023-04-28 조인트 스탁 컴퍼니 “아톰에네르고프로엑트” 블로다운 및 배수 시스템이 구비된 2중 회로 원자로 증기 발생 장치
JP7390233B2 (ja) 2020-03-30 2023-12-01 三菱重工業株式会社 ガス流動促進装置

Similar Documents

Publication Publication Date Title
EP0754904B1 (en) Cryogenic pump system
JP5911762B2 (ja) 原子力プラントおよび静的格納容器冷却系
KR100856501B1 (ko) 피동살수계통을 이용한 일체형원자로 안전설비
JP6340700B2 (ja) 核燃料と原子炉の緊急予備冷却システム及び方法
JP2004012145A (ja) 非凝縮性ガスの蓄積燃焼防止システム
US5596613A (en) Pressure suppression containment system for boiling water reactor
JP5058016B2 (ja) 非凝縮性ガス蓄積燃焼防止システム
JP2008122419A (ja) 非凝縮性ガスの蓄積燃焼防止システム
JP5295859B2 (ja) 原子炉圧力容器ヘッドスプレイシステム
CN104620324A (zh) 用于冷却剂丧失事故后缓解的封闭式火炬系统
JP4131914B2 (ja) 原子炉圧力容器頂部ベント設備
KR102576203B1 (ko) 암모니아 방출방지 및 제거장치
JP4434436B2 (ja) 沸騰水型原子力発電プラントの運転方法
Matejovic et al. VVER-440/V213 long-term containment pressurization during severe accident
KR930003059B1 (ko) 원자력발전소 격납건물 건전성 확보장치
JP4533670B2 (ja) 沸騰水型原子炉設備
JPH04109197A (ja) 加圧水型原子炉の炉心崩壊熱除去装置
JPH04348299A (ja) 原子炉プラント
KR20210122551A (ko) 증기 발생기 사고 대처 시스템
JP2003329794A (ja) 原子炉圧力容器頂部ベント設備
EP4047618A1 (en) Nuclear power plant
JP4086269B2 (ja) 原子力発電所の気体処理設備および気体処理方法
KR102448761B1 (ko) 원자로의 피동형 보호 계통
KR102576205B1 (ko) 암모니아 방출방지 및 제거장치
RU2108630C1 (ru) Энергетическая установка

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407