JP2004010636A - Cooling medium composition - Google Patents

Cooling medium composition Download PDF

Info

Publication number
JP2004010636A
JP2004010636A JP2002162040A JP2002162040A JP2004010636A JP 2004010636 A JP2004010636 A JP 2004010636A JP 2002162040 A JP2002162040 A JP 2002162040A JP 2002162040 A JP2002162040 A JP 2002162040A JP 2004010636 A JP2004010636 A JP 2004010636A
Authority
JP
Japan
Prior art keywords
refrigerant
air conditioner
propane
isobutane
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002162040A
Other languages
Japanese (ja)
Inventor
Koichi Mizuno
水野 浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTS CORP KK
Original Assignee
MTS CORP KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTS CORP KK filed Critical MTS CORP KK
Priority to JP2002162040A priority Critical patent/JP2004010636A/en
Publication of JP2004010636A publication Critical patent/JP2004010636A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new cooling medium that does not comprise a chlorofluorocarbon component that destructs the ozonosphere, has chemical properties similar to those of the conventional cooling media, can substitute for cooling media for use in conventional cooling apparatuses such as an air conditioner, and, when used to substitute for such conventional cooling media, shows the same performances as the conventional cooling media. <P>SOLUTION: This cooling medium comprises isobutane and propane, wherein the mixing ratio of isobutane to propane is 1:1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、自動車等に取り付けられるエアーコンディショナーに充填される冷媒に関するものである。
【0002】
【従来の技術】
従来、自動車等に取り付けられるエアーコンディショナー(以下、エアコンという)の冷媒としては、R12(ジクロロジフルオロメタン)が多く用いられていた。この冷媒R12は、沸点が摂氏−29.8度であることからエアコンへの使用に好適なものであり、エアコンの機器への吸込温度が比較的高い場合にも、吐出温度がコンプレッサーのオイルスラッジを引き起こす程高いものとはならない。さらに、この冷媒R12は、コンプレッサーのオイルと相溶性が良く、冷媒回路中のオイルを圧縮機にまで引き戻す役割を果たす。
【0003】
【発明が解決しようとする課題】
しかしながら、上記R12は、所謂フロンガスの一種であり、エアコンの冷媒の交換などの際に大気中へ放出された場合にはオゾン層を破壊し、また、地球温暖化の原因ともなっており、近年冷媒R12の使用が規制されている(地球温暖化係数が、CO2を1とした場合に、R12では8500)。このため、これら規制される冷媒に替わる代替冷媒の研究がなされ、代替フロンと呼ばれるHFC−134a(テトラフルオロエタン)を主成分とする冷媒が開発され、多く用いられるようになっている。しかし、このHFC−134aは、従来から用いられている冷媒と比べ、沸点等に関しては従来の冷媒とほぼ同じ性質を有するものの、使用に際して冷却時に加圧する圧力を高くする必要がある。このため、このHFC−134aを冷媒として用いる場合には、このHFC−134aを冷媒として使用することを前提として設計された専用のエアコンを作成する必要がある。また、従来の冷媒R12を用いるエアコンにこの新たな冷媒HFC−134aを補充した場合にはエアコンの性能が十分に発揮されることが無く、エアコンの故障を招くこともある。さらに、HFC−134aは地球温暖化係数が非常に高く(上記の地球温暖化係数では1300)、地球環境保護の観点からは不適切なものである。また、この他にも代替冷媒としては、ノンフロンのR600a(イソブタン)等を単独で用いるハイドロカーボンガスも開発されてはいるが、これは冷蔵庫用の冷媒であり、エアコン等のように短時間で急冷却をする目的の機器での使用には不向きである。
【0004】
そこで、本発明は、上述した従来の冷媒が有する課題を解決するために提案されたものであって、オゾン層を破壊するフロンの成分を含まず、地球温暖化効果を有さず、従来の冷媒と同じような化学的性質を有して従来から使用されているエアコン等の冷房用機器の冷媒と入れ替えて使用することができ、かつ、従来から使用されているエアコン等の冷房用機器の冷媒と入れ替えて使用した場合にも従来と同じ性能を発揮することができる新規な冷媒を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明は、上記の課題を解決するために提案されたものであり、第1の発明(請求項1記載の発明)は、イソブタン及びプロパンを含有してなることを特徴とするものである。
【0006】
この第1の発明に係る冷媒は、冷蔵庫の冷媒に用いられているイソブタンと、工業用エアコンの冷媒に用いられているプロパンとを混合することにより得られるものであり、この冷媒は、オゾン層を破壊するフロンの成分を含まず、地球温暖化効果を有さず(上記の地球温暖化係数で3乃至5)、従来の冷媒と同じような化学的性質を有することから従来から使用されているエアコン等の冷房用機器の冷媒と入れ替えて使用することができる。
【0007】
また、第2の発明(請求項2記載の発明)は、前記第1の発明において、イソブタン及びプロパンとの混合率がそれぞれ1対1であることを特徴とするものである。
【0008】
この第2の発明によれば、第1の発明と同じ効果を有する上に、従来から使用されているエアコン等の冷房用の機器の冷媒と入れ替えて使用した場合にも従来と同じ性能を発揮するものとすることができる。
【0009】
【発明の実施の形態】
以下、本発明の一実施の形態に係る冷媒を、エアコンについて使用した場合を例に、図面を参照しながら詳細に説明する。
【0010】
このエアコンは、本発明に係るイソブタン及びプロパンを含有(混合比1対1)してなる冷媒を用いるものであって、図1に示す冷媒回路1を有してなるものである。圧縮機2の吐出側配管3は凝縮器4に接続され、凝縮器4は気液分離機5に接続されている。気液分離機5から出た液相配管6はキャピラリチューブ7に接続され、キャピラリチューブ7は中間熱交換器8に接続される。気液分離機5から出た気相配管9は中間熱交換器8中を通過してキャピラリチューブ10に接続され、キャピラリチューブ10は蒸発器11に接続される。中間熱交換器8から出た配管12と蒸発器11から出た配管13は接続点Pにて合流せられ、圧縮機2の吸込側配管14に接続される。この冷媒回路1内に充填される冷媒は、メタン(Methane)、カーボン ディオキサイド(Carbon dioxide)、エタン(Ethane)、プロパン(Propane)、イソブタン(Isobutane)、1−ブタン(1−Butene)、エヌ−ブタン(n−Butane)、シス−2−ブタン(cis−2−butene)、トランス−2−ブタン(trans−2−butene)、エヌ−ペンタン(n−Pentane)若しくはイソペンタン(Isopentane)からなるものであり、従来冷蔵庫に使用されているR600a(イソブタン(Isobutane)を主要構成要素とした冷媒)と、R290(プロパン(Propane)を主要構成要素とした冷媒)とを1:1の割合で混合したものである。
【0011】
このエアコンの冷媒回路1の動作は以下のようなものとなる。圧縮機2から吐出された高温高圧のガス状の冷媒混合物は、吐出側配管3を介して凝縮器4に流入して放熱し、この冷媒の多くは液化して気液分離器5に入る。この気液分離器5に入った冷媒の内、液化したものは液相配管6へ流れ、冷媒の内未だ気体のものは気相配管9へと分離される。液相配管6に流入した冷媒はキャピラリチューブ7にて減圧されて中間熱交換器8に流入し、この中間熱交換器8において蒸発する。一方、気相配管9に流入した冷媒は中間熱交換器8内を通過する過程で、そこで蒸発する冷媒に冷却されて凝縮し、キャピラリチューブ10で減圧されて蒸発器11に流入し、この蒸発器11内で蒸発して周囲を冷却する。中間熱交換器8から出た冷媒は配管12を通り、また、蒸発器11を出た冷媒は配管13を通り、接続点Pにて合流し、吸込側配管14を介して再び圧縮機2に帰還する。
【0012】
冷媒回路1中を循環する圧縮機2のオイルは、冷媒に溶け込んだ状態で圧縮機2に戻される。この時、圧縮機2のオイルには冷媒が溶ける性質を有するアルキルベンゼン系オイルを用いる。但し、冷媒はアルキルベンゼン系オイルにも少量しか溶けないため、冷媒回路1内に封入される冷媒混合物の組成を決定するに際しては、冷媒が圧縮機2のオイルに溶ける限界内で決定されなければならない。そして、上述した冷媒によれば、上記凝縮器4が破壊されることがなく、著しい冷却効果(沸点:摂氏−31.5度)を得ることができる。
【0013】
【発明の効果】
前述した本発明の実施の形態の説明からも明らかなように、本発明(請求項1記載の発明)によれば、オゾン層を破壊するフロンの成分を含まず、地球温暖化効果を有さず、従来の冷媒と同じような化学的性質を有することから従来から使用されているエアコン等の冷房用機器の冷媒と入れ替えて使用することができる。
【0014】
この第2の発明(請求項2記載の発明)によれば、上記第1の発明が奏する効果に加えて冷媒の沸点を著しく下げることができ、冷却効果を一層向上させることができる。
【図面の簡単な説明】
【図1】本発明の冷媒を用いたエアコンの冷媒回路を示す概念図である。
【符号の説明】
1  冷媒回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigerant charged in an air conditioner mounted on an automobile or the like.
[0002]
[Prior art]
Conventionally, R12 (dichlorodifluoromethane) has been widely used as a refrigerant for an air conditioner (hereinafter, referred to as an air conditioner) attached to an automobile or the like. Since the refrigerant R12 has a boiling point of −29.8 degrees Celsius, it is suitable for use in an air conditioner. Even when the suction temperature into the air conditioner equipment is relatively high, the discharge temperature of the refrigerant R12 is reduced by the oil sludge of the compressor. Is not high enough to cause Further, the refrigerant R12 has good compatibility with the oil of the compressor and plays a role of drawing the oil in the refrigerant circuit back to the compressor.
[0003]
[Problems to be solved by the invention]
However, the above R12 is a kind of so-called chlorofluorocarbon gas, and when it is released into the air at the time of exchanging a refrigerant for an air conditioner, etc., it destroys the ozone layer and causes global warming. The use of R12 is regulated (the global warming potential is 8500 for R12 when CO2 is 1). For this reason, research is being conducted on alternative refrigerants that can replace these regulated refrigerants, and refrigerants mainly composed of HFC-134a (tetrafluoroethane), called alternative chlorofluorocarbons, have been developed and are being widely used. However, although the HFC-134a has substantially the same properties as the conventional refrigerant with respect to the boiling point and the like as compared with the conventionally used refrigerant, it is necessary to increase the pressure applied during cooling when used. For this reason, when using this HFC-134a as a refrigerant, it is necessary to create a dedicated air conditioner designed on the assumption that this HFC-134a is used as a refrigerant. Further, when the new refrigerant HFC-134a is added to the air conditioner using the conventional refrigerant R12, the performance of the air conditioner is not sufficiently exhibited, and the air conditioner may be broken down. Furthermore, HFC-134a has a very high global warming potential (1300 in the above global warming potential), which is inappropriate from the viewpoint of global environmental protection. In addition, as an alternative refrigerant, a hydrocarbon gas using non-fluorocarbon R600a (isobutane) or the like alone has been developed. However, this is a refrigerant for a refrigerator, and is used in a short time like an air conditioner. It is not suitable for use in equipment for rapid cooling.
[0004]
Therefore, the present invention has been proposed to solve the problems of the conventional refrigerant described above, and does not include a component of chlorofluorocarbon which destroys the ozone layer, does not have a global warming effect, and has a conventional structure. It has the same chemical properties as a refrigerant and can be used in place of a refrigerant for a conventional cooling device such as an air conditioner, and can be used for a conventional cooling device such as an air conditioner. It is an object of the present invention to provide a novel refrigerant that can exhibit the same performance as a conventional refrigerant when used in place of a refrigerant.
[0005]
[Means for Solving the Problems]
The present invention has been proposed to solve the above problems, and the first invention (the invention described in claim 1) is characterized by containing isobutane and propane.
[0006]
The refrigerant according to the first invention is obtained by mixing isobutane used as a refrigerant of a refrigerator and propane used as a refrigerant of an industrial air conditioner. It has not been used since it does not contain chlorofluorocarbon, has no global warming effect (3 to 5 in the above global warming potential), and has the same chemical properties as conventional refrigerants. It can be used in place of a refrigerant for cooling equipment such as an air conditioner.
[0007]
The second invention (the invention described in claim 2) is characterized in that, in the first invention, the mixing ratio of isobutane and propane is 1: 1.
[0008]
According to this second invention, in addition to having the same effect as the first invention, the same performance as the conventional one is exhibited even when the refrigerant is used in place of the refrigerant of a cooling device such as an air conditioner which is conventionally used. You can do it.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a refrigerant according to an embodiment of the present invention will be described in detail with reference to the drawings, taking as an example a case where the refrigerant is used for an air conditioner.
[0010]
This air conditioner uses a refrigerant containing isobutane and propane according to the present invention (mixing ratio 1: 1), and has a refrigerant circuit 1 shown in FIG. The discharge side pipe 3 of the compressor 2 is connected to a condenser 4, and the condenser 4 is connected to a gas-liquid separator 5. The liquid phase pipe 6 coming out of the gas-liquid separator 5 is connected to a capillary tube 7, and the capillary tube 7 is connected to an intermediate heat exchanger 8. The gas-phase pipe 9 coming out of the gas-liquid separator 5 passes through the intermediate heat exchanger 8 and is connected to a capillary tube 10, and the capillary tube 10 is connected to an evaporator 11. The pipe 12 coming out of the intermediate heat exchanger 8 and the pipe 13 coming out of the evaporator 11 are joined at a connection point P and connected to the suction side pipe 14 of the compressor 2. The refrigerant filled in the refrigerant circuit 1 includes methane (Methane), carbon dioxide (Carbon dioxide), ethane (Ethane), propane (Propane), isobutane (Isobutane), 1-butane (1-Butene), and N -What consists of butane (n-Butane), cis-2-butane (cis-2-butene), trans-2-butane (trans-2-butene), N-pentane (n-Pentane) or isopentane (Isopentane) In the conventional refrigerator, R600a (a refrigerant mainly composed of Isobutane) and R290 (a refrigerant mainly composed of propane) were mixed at a ratio of 1: 1. Thing .
[0011]
The operation of the refrigerant circuit 1 of the air conditioner is as follows. The high-temperature and high-pressure gaseous refrigerant mixture discharged from the compressor 2 flows into the condenser 4 through the discharge-side pipe 3 and dissipates heat. Most of the refrigerant is liquefied and enters the gas-liquid separator 5. The liquefied refrigerant flowing into the gas-liquid separator 5 flows to the liquid-phase pipe 6, and the refrigerant that is still gaseous is separated into the gas-phase pipe 9. The refrigerant flowing into the liquid phase pipe 6 is decompressed by the capillary tube 7, flows into the intermediate heat exchanger 8, and evaporates in the intermediate heat exchanger 8. On the other hand, in the process of passing through the intermediate heat exchanger 8, the refrigerant flowing into the gas-phase pipe 9 is cooled by the refrigerant that evaporates there and condensed, decompressed by the capillary tube 10 and flows into the evaporator 11. The surroundings are cooled by evaporation in the vessel 11. The refrigerant flowing out of the intermediate heat exchanger 8 passes through the pipe 12, and the refrigerant flowing out of the evaporator 11 passes through the pipe 13, joins at the connection point P, and returns to the compressor 2 through the suction side pipe 14. Will return.
[0012]
The oil of the compressor 2 circulating in the refrigerant circuit 1 is returned to the compressor 2 while being dissolved in the refrigerant. At this time, an alkylbenzene-based oil having a property of dissolving the refrigerant is used as the oil of the compressor 2. However, since only a small amount of the refrigerant is soluble in the alkylbenzene oil, the composition of the refrigerant mixture sealed in the refrigerant circuit 1 must be determined within the limit at which the refrigerant is soluble in the oil of the compressor 2. . According to the above-mentioned refrigerant, the condenser 4 is not destroyed, and a remarkable cooling effect (boiling point: -31.5 degrees Celsius) can be obtained.
[0013]
【The invention's effect】
As is clear from the above description of the embodiment of the present invention, according to the present invention (the invention of claim 1), it does not include a component of chlorofluorocarbon which destroys the ozone layer and has a global warming effect. Instead, since it has the same chemical properties as conventional refrigerants, it can be used in place of conventional refrigerants for cooling equipment such as air conditioners.
[0014]
According to the second invention (the invention described in claim 2), in addition to the effects of the first invention, the boiling point of the refrigerant can be significantly reduced, and the cooling effect can be further improved.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a refrigerant circuit of an air conditioner using the refrigerant of the present invention.
[Explanation of symbols]
1 Refrigerant circuit

Claims (2)

イソブタン及びプロパンを含有してなることを特徴とする冷媒。A refrigerant comprising isobutane and propane. イソブタン及びプロパンとの混合率がそれぞれ1対1であることを特徴とする請求項1記載の冷媒。2. The refrigerant according to claim 1, wherein the mixing ratio of isobutane and propane is 1: 1.
JP2002162040A 2002-06-03 2002-06-03 Cooling medium composition Pending JP2004010636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002162040A JP2004010636A (en) 2002-06-03 2002-06-03 Cooling medium composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002162040A JP2004010636A (en) 2002-06-03 2002-06-03 Cooling medium composition

Publications (1)

Publication Number Publication Date
JP2004010636A true JP2004010636A (en) 2004-01-15

Family

ID=30430928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002162040A Pending JP2004010636A (en) 2002-06-03 2002-06-03 Cooling medium composition

Country Status (1)

Country Link
JP (1) JP2004010636A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081673A1 (en) * 2007-12-26 2009-07-02 E.R.D.Co., Ltd. Hydrocarbon mixture refrigerant, freezing/refrigerating or air-conditioning system, freezing/refrigerating or air-conditioning method, and process for producing freezing/refrigerating or air-conditioning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081673A1 (en) * 2007-12-26 2009-07-02 E.R.D.Co., Ltd. Hydrocarbon mixture refrigerant, freezing/refrigerating or air-conditioning system, freezing/refrigerating or air-conditioning method, and process for producing freezing/refrigerating or air-conditioning system
WO2009081672A1 (en) * 2007-12-26 2009-07-02 E.R.D.Co., Ltd. Hydrocarbon mixture refrigerant, freezing/refrigerating or air-conditioning system, freezing/refrigerating or air-conditioning method, and process for producing freezing/refrigerating or air-conditioning system

Similar Documents

Publication Publication Date Title
JP3208151B2 (en) Refrigeration equipment
US10113093B2 (en) Heat transfer fluids comprising difluoromethane, pentafluoroethane, tetrafluoropropene and optionally propane
WO2017122517A1 (en) Refrigeration cycle device and heat cycle system
KR100652080B1 (en) Refrigeration apparatus
WO1997015637A1 (en) Refrigerant
JP7226623B2 (en) Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
WO2017142072A1 (en) Heat cycle system and heat cycle method using same
WO2019039510A1 (en) 1-chloro-2,3,3-trifluoropropene-containing working medium for thermal cycling, composition for thermal cycling system, and thermal cycling system
JP3185434U (en) Refrigeration system
WO2019022139A1 (en) Azeotropic composition, working medium for heat cycle, and heat cycle system
WO2019022141A1 (en) Azeotrope or azeotropic composition, working medium for heat cycle, and heat cycle system
JPH0959609A (en) Mixed working fluid containing trifluoroiodomethane and refrigeration cycle equipment
JPH0925480A (en) Hydraulic fluid
WO1997029162A1 (en) Difluoromethane/hydrocarbon refrigerant mixture and refrigeration cycle plant using the same
JPH10130685A (en) Refrigerator
JP2004010636A (en) Cooling medium composition
EP3421903A1 (en) Heat exchange unit
JPH09221664A (en) Working fluid
JP3863831B2 (en) Refrigerant composition and refrigeration circuit using the refrigerant composition
JP2004035701A (en) Hydrocarbon composition used as refrigerant and detergent
WO2019022140A1 (en) Heat cycle system and heat cycle method using same
JPH11228945A (en) Refrigerant composition
JP2017138046A (en) Refrigeration device
JP2006038283A (en) Working fluid and refrigeration cycle using working fluid as refrigerant
JP2003056923A (en) Refrigerant circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610