JP2006038283A - Working fluid and refrigeration cycle using working fluid as refrigerant - Google Patents

Working fluid and refrigeration cycle using working fluid as refrigerant Download PDF

Info

Publication number
JP2006038283A
JP2006038283A JP2004215803A JP2004215803A JP2006038283A JP 2006038283 A JP2006038283 A JP 2006038283A JP 2004215803 A JP2004215803 A JP 2004215803A JP 2004215803 A JP2004215803 A JP 2004215803A JP 2006038283 A JP2006038283 A JP 2006038283A
Authority
JP
Japan
Prior art keywords
working fluid
refrigeration cycle
refrigerant
carbon dioxide
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004215803A
Other languages
Japanese (ja)
Inventor
Kunio Nagahama
邦夫 長浜
Masami Negishi
正美 根岸
Shunji Komatsu
俊二 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2004215803A priority Critical patent/JP2006038283A/en
Publication of JP2006038283A publication Critical patent/JP2006038283A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Abstract

<P>PROBLEM TO BE SOLVED: To provide the working fluid of high stability, high safety and high compression efficiency, and to provide a refrigeration cycle using the working fluid as the refrigerant and being easily designed and controlled. <P>SOLUTION: This working fluid is composed of a mixture including carbon dioxide and hydrocarbon of over 10 mol%, and this refrigeration cycle uses the working fluid as the refrigerant. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、二酸化炭素と炭化水素との混合物からなる作動流体および該作動流体を用いた冷凍サイクルに関する。   The present invention relates to a working fluid composed of a mixture of carbon dioxide and hydrocarbons and a refrigeration cycle using the working fluid.

近年、代替フロンとして、二酸化炭素およびアンモニア、プロパン等の炭化水素の使用が進められている。現在、いわゆる自然系冷媒としては二酸化炭素(CO2)、炭化水素等が実用化されている。二酸化炭素は、低濃度では無害であり、不燃性で安価でしかも安定である。このため、作動流体(たとえば、冷媒)としての望ましい特性を備えている。しかし、二酸化炭素の臨界温度は304K(31℃)、臨界圧力は73.8barであるため、二酸化炭素を冷媒に用いる冷凍サイクルを臨界状態において運転する場合には、高圧側圧力が100bar以上に達する。このため、耐圧性やシール性確保のため冷凍サイクルの設計や運転時の制御が困難になるおそれがある。つまり、冷媒が超臨界状態にされる冷凍サイクルにおいては、高温、高圧に耐え得る配管やシール材を設ける必要がある。しかし、この場合、装置のコストアップは避け難い。したがって、冷凍サイクルは、冷媒が臨界温度、臨界圧力にならない状態のサイクル(以下、通常の冷凍サイクルという。)に構成されることが好ましいが、反面、冷凍サイクルにおける冷凍効率を高めるには、臨界状態に近い状態での運転が好ましい。また、冷凍運転時においては二酸化炭素の圧縮効率は良好とは言えない。 In recent years, carbon dioxide and hydrocarbons such as ammonia and propane have been used as alternative chlorofluorocarbons. At present, carbon dioxide (CO 2 ), hydrocarbons, and the like are put into practical use as so-called natural refrigerants. Carbon dioxide is harmless at low concentrations, is nonflammable, inexpensive and stable. For this reason, it has desirable characteristics as a working fluid (for example, a refrigerant). However, since the critical temperature of carbon dioxide is 304 K (31 ° C.) and the critical pressure is 73.8 bar, when operating a refrigeration cycle using carbon dioxide as a refrigerant in the critical state, the high-pressure side pressure reaches 100 bar or more. . For this reason, in order to ensure pressure resistance and sealing performance, there is a possibility that the design of the refrigeration cycle and control during operation may become difficult. That is, in the refrigeration cycle in which the refrigerant is in a supercritical state, it is necessary to provide piping and a sealing material that can withstand high temperatures and high pressures. However, in this case, it is difficult to avoid an increase in the cost of the apparatus. Therefore, the refrigeration cycle is preferably configured as a cycle in which the refrigerant does not reach critical temperature and pressure (hereinafter referred to as a normal refrigeration cycle). However, in order to increase the refrigeration efficiency in the refrigeration cycle, Operation in a state close to the state is preferable. Moreover, it cannot be said that the compression efficiency of carbon dioxide is good during the freezing operation.

一方、炭化水素は可燃性ではあるが、冷凍サイクルの冷媒に用いられる場合においても、該冷凍サイクルの高圧側圧力は20bar程度に抑制でき、冷凍サイクルの設計や制御を容易化できる。また、冷凍運転時においては炭化水素の圧縮効率は良好である。   On the other hand, although hydrocarbon is flammable, even when used as a refrigerant in the refrigeration cycle, the high-pressure side pressure of the refrigeration cycle can be suppressed to about 20 bar, and the design and control of the refrigeration cycle can be facilitated. Also, the compression efficiency of hydrocarbons is good during refrigeration operation.

このため、二酸化炭素と炭化水素の混合物を作動媒体とし、両者の長所を活かしつつ、互いの短所を補い合った作動流体を用いた冷凍サイクルの提案もなされている(たとえば、特許文献1、2)。   For this reason, the proposal of the refrigerating cycle using the working fluid which made the working medium the mixture of a carbon dioxide and a hydrocarbon, and compensated each other's weakness is also made | formed (for example, patent documents 1 and 2). .

しかし、二酸化炭素と炭化水素の長所を活かしつつ、互いの短所を補い合い、しかも、広範な外気温度において通常の冷凍サイクルを構成可能な作動流体を得るには、両者の混合比に伴い変化する臨界温度、臨界圧力を十分に考慮する必要がある。
特開2002−235072号公報 特開2003−279181号公報
However, to make use of the advantages of carbon dioxide and hydrocarbons, to make up for each other's disadvantages, and to obtain a working fluid that can constitute a normal refrigeration cycle at a wide range of outside temperatures, the criticality that changes with the mixing ratio of both is obtained. It is necessary to fully consider the temperature and critical pressure.
JP 2002-235072 A JP 2003-279181 A

そこで本発明の課題は、作動流体としての二酸化炭素と炭化水素の長所を活かしつつ、しかも互いの短所を補い合った優れた作動流体、即ち、安定で安全でしかも圧縮効率も良好な作動流体を提供するとともに、該作動流体を使用することにより広範な外気条件等において、通常の冷凍サイクルを構成可能でサイクルの設計、制御も容易な冷凍サイクルを提供することにある。   Therefore, an object of the present invention is to provide an excellent working fluid that makes use of the advantages of carbon dioxide and hydrocarbons as the working fluid and compensates for each other's disadvantages, that is, a working fluid that is stable, safe, and has good compression efficiency. In addition, an object of the present invention is to provide a refrigeration cycle in which a normal refrigeration cycle can be configured and a cycle can be easily designed and controlled by using the working fluid in a wide range of outside air conditions.

上記課題を解決するために、本発明に係る作動流体は、二酸化炭素と、10モル%を超える炭化水素とを含有する混合物からなることを特徴とするものからなる。   In order to solve the above-mentioned problems, the working fluid according to the present invention comprises a mixture containing carbon dioxide and hydrocarbons exceeding 10 mol%.

上記作動流体の臨界温度は60℃以上であることが好ましい。作動流体の臨界温度を60℃以上にすれば、広範な外気温度において、通常の冷凍サイクルを構成できる。   The critical temperature of the working fluid is preferably 60 ° C. or higher. If the critical temperature of the working fluid is set to 60 ° C. or higher, a normal refrigeration cycle can be configured in a wide range of outside air temperatures.

上記炭化水素の含有量は10モル%以上であることが好ましい。10モル%未満の場合、臨界温度の上昇効果が十分に期待できず、通常の冷凍サイクルを構成できる範囲が狭められ冷凍サイクルの設計、制御の容易化を達成できなくなるおそれがある。一方、炭化水素が30モル%を超えると作動媒体としての不燃性を十分に確保できなくなるおそれがある。また、30モル%を超えると冷媒の臨界圧力が急激に低下し始め通常の冷凍サイクルを構成できる範囲が狭められるので、炭化水素の含有量は10モル%以上、30モル%以下であることが好ましい。   The hydrocarbon content is preferably 10 mol% or more. If it is less than 10 mol%, the effect of raising the critical temperature cannot be sufficiently expected, and the range in which a normal refrigeration cycle can be constructed is narrowed, and it may not be possible to achieve easy refrigeration cycle design and control. On the other hand, if the hydrocarbon content exceeds 30 mol%, there is a risk that the non-flammability as the working medium cannot be sufficiently secured. Further, if it exceeds 30 mol%, the critical pressure of the refrigerant starts to drop sharply and the range in which a normal refrigeration cycle can be constructed is narrowed. Therefore, the hydrocarbon content may be 10 mol% or more and 30 mol% or less. preferable.

上記炭化水素は上記目的を達成可能なものであれば、とくに限定されるものではないが好ましくはプロパン、ブタン、イソブタン等を挙げることができる。   The hydrocarbon is not particularly limited as long as it can achieve the above object, and preferred examples include propane, butane, and isobutane.

また、上記課題を解決するために、本発明に係る冷凍サイクルは、特許請求の範囲の請求項1ないし3のいずれかに記載された作動流体を冷媒に使用するものからなる。   Moreover, in order to solve the said subject, the refrigerating cycle which concerns on this invention consists of what uses the working fluid as described in any one of Claim 1 thru | or 3 of a claim for a refrigerant | coolant.

上述のように冷凍サイクルは、作動流体の臨界温度、臨界圧力以下で作動されることが好ましい。二酸化炭素と炭化水素とを混合すれば、二酸化炭素のみの場合に比べ臨界温度を上昇させつつ、臨界圧力をある程度高圧に維持できるので、広範な外気温度範囲で冷媒を臨界状態にしない通常の冷凍サイクルを構成できる。したがって、冷凍サイクルの設計、制御の容易化を達成できる。   As described above, the refrigeration cycle is preferably operated at a critical temperature and a critical pressure of the working fluid. By mixing carbon dioxide and hydrocarbons, the critical temperature can be maintained at a high pressure while raising the critical temperature compared to the case of carbon dioxide alone. A cycle can be configured. Therefore, the design and control of the refrigeration cycle can be facilitated.

また、二酸化炭素と炭化水素のような沸点の異なる混合物を冷媒に使用する場合には、冷凍サイクルを、複数の蒸発器を有する2元冷凍サイクルに構成することが好ましい。このように、複数の蒸発器を設ければ、いずれか一方の蒸発器により主に二酸化炭素が気化され、他方の蒸発器により炭化水素が気化されるので、冷媒全体を効率よく気化することができる。ただし、二酸化炭素の沸点に近い沸点を有する炭化水素を使用する場合には、一つの蒸発器のみを有する通常の冷凍サイクルに構成しても差し支えない。   When a mixture having different boiling points such as carbon dioxide and hydrocarbon is used as the refrigerant, the refrigeration cycle is preferably configured as a two-way refrigeration cycle having a plurality of evaporators. As described above, if a plurality of evaporators are provided, carbon dioxide is mainly vaporized by one of the evaporators, and hydrocarbons are vaporized by the other evaporator, so that the entire refrigerant can be efficiently vaporized. it can. However, when a hydrocarbon having a boiling point close to that of carbon dioxide is used, a normal refrigeration cycle having only one evaporator may be used.

上記のような本発明に係る作動流体は、二酸化炭素と炭化水素の長所を活かしつつ、しかも互いの短所を補い合った作動流体、即ち、安定で安全でしかも圧縮効率も良好な作動流体を実現できる。また、該作動流体を使用すれば、広範な外気温度条件下において通常の冷凍サイクルを構成できるので、サイクルの設計、制御も容易な冷凍サイクルを提供できる。   The working fluid according to the present invention as described above can realize a working fluid that makes use of the advantages of carbon dioxide and hydrocarbons and compensates for each other's disadvantages, that is, a working fluid that is stable, safe, and has good compression efficiency. . Further, when the working fluid is used, a normal refrigeration cycle can be configured under a wide range of outside air temperature conditions, so that a refrigeration cycle that is easy to design and control the cycle can be provided.

以下に、本発明に係る作動流体および該作動流体を使用した冷凍サイクルについて、図面を参照しながら説明する。
図1は、本発明に係る作動流体が使用される冷凍サイクルを示している。図1において、1は冷凍サイクルを示している。冷凍サイクル1は、コンプレッサ2とコンデンサ3と第1蒸発器4と第2蒸発器5とを有するサイクルに形成されている。
Hereinafter, a working fluid according to the present invention and a refrigeration cycle using the working fluid will be described with reference to the drawings.
FIG. 1 shows a refrigeration cycle in which a working fluid according to the present invention is used. In FIG. 1, 1 indicates a refrigeration cycle. The refrigeration cycle 1 is formed in a cycle having a compressor 2, a condenser 3, a first evaporator 4 and a second evaporator 5.

第1蒸発器4の入口側には第1膨張弁6が設けられている。また、第1蒸発器4の出口側には絞り弁8が設けられている。一方、第2蒸発器5の入口側には第2膨張弁7が設けられている。   A first expansion valve 6 is provided on the inlet side of the first evaporator 4. A throttle valve 8 is provided on the outlet side of the first evaporator 4. On the other hand, a second expansion valve 7 is provided on the inlet side of the second evaporator 5.

本実施態様においては、冷媒としての作動媒体は互いに沸点が異なる二酸化炭素と炭化水素との混合物からなっているが、このように2つの蒸発器4、5を設けることにより、一方の蒸発器においては主に二酸化炭素が蒸発され、他方の蒸発器においては主に炭化水素が蒸発されるようになっている。したがって、冷媒を効率よく確実に気化させることができる。   In the present embodiment, the working medium as the refrigerant is composed of a mixture of carbon dioxide and hydrocarbons having different boiling points. By providing two evaporators 4 and 5 in this way, Carbon dioxide is mainly evaporated, and hydrocarbons are mainly evaporated in the other evaporator. Therefore, the refrigerant can be efficiently and reliably vaporized.

本実施態様において用いられる冷媒としての作動媒体は、二酸化炭素と炭化水素との混合物からなっている。図3は各炭化水素の含有量(モル%)に対する臨界温度の変化を、図4は各炭化水素の含有量(モル%)に対する臨界圧力の変化を示したものである。なお、この結果を表1に示す。また、図5は各炭化水素の含有量(モル%)に対する気相状態の圧力の変化を、図6は各炭化水素の含有量(モル%)に対する液相状態の圧力の変化を示している。   The working medium as a refrigerant used in this embodiment is composed of a mixture of carbon dioxide and hydrocarbon. FIG. 3 shows the change in critical temperature with respect to the content (mol%) of each hydrocarbon, and FIG. 4 shows the change in critical pressure with respect to the content (mol%) of each hydrocarbon. The results are shown in Table 1. FIG. 5 shows the change in pressure in the gas phase with respect to the content (mol%) of each hydrocarbon, and FIG. 6 shows the change in pressure in the liquid phase with respect to the content (mol%) of each hydrocarbon. .

図3から分かるように、冷媒の臨界温度を上昇させるにはブタン、イソブタンが有効である。しかし、図4に示すようにブタン、イソブタンの含有量が30%を超えると臨界圧力が低下し始めるため、通常の冷凍サイクルを構成できる条件範囲が狭小化するおそれがある。したがって、ブタン、イソブタンの含有量は30%程度に止めることが好ましい。   As can be seen from FIG. 3, butane and isobutane are effective in raising the critical temperature of the refrigerant. However, as shown in FIG. 4, when the content of butane and isobutane exceeds 30%, the critical pressure starts to decrease, so that the condition range in which a normal refrigeration cycle can be configured may be narrowed. Therefore, the content of butane and isobutane is preferably limited to about 30%.

表1に示すように、略純粋な二酸化炭素の場合、臨界温度は304K(31℃)、臨界圧力は73.8barである。しかし、ブタンの含有量を10モル%にすると臨界温度は318K(45℃)、臨界圧力は65barになる。ところで、一般的に、冷媒の凝縮温度は外気温度+15℃である。したがって、日本国内の夏期の外気温度を約30℃と想定すれば冷媒の凝縮温度を45℃に設定でき、盛夏期においても略通常の冷凍サイクルを構成できる。このときのサイクルの運転状態を図2に示す。   As shown in Table 1, in the case of substantially pure carbon dioxide, the critical temperature is 304 K (31 ° C.), and the critical pressure is 73.8 bar. However, when the butane content is 10 mol%, the critical temperature becomes 318 K (45 ° C.) and the critical pressure becomes 65 bar. By the way, the refrigerant condensing temperature is generally the outside air temperature + 15 ° C. Therefore, assuming that the outside air temperature in summer in Japan is about 30 ° C., the condensation temperature of the refrigerant can be set to 45 ° C., and a substantially normal refrigeration cycle can be configured even in the mid summer. The operating state of the cycle at this time is shown in FIG.

また、図5、図6から分かるように、同一圧力においては各炭化水素は液相がリッチになっている。したがって、コンデンサ3における凝縮温度(外気温度)が高い場合であっても、冷媒を十分に液化することができる。   Further, as can be seen from FIGS. 5 and 6, each hydrocarbon has a rich liquid phase at the same pressure. Therefore, even when the condensation temperature (outside air temperature) in the capacitor 3 is high, the refrigerant can be sufficiently liquefied.

本実施態様においては、冷媒としての作動媒体は互いに沸点が異なる二酸化炭素と炭化水素との混合物からなっている。このため、図1に示したように、冷凍サイクル1には、2つの蒸発器4、5が設けられている。2つの蒸発器4、5を設けることにより、一方の蒸発器においては主に二酸化炭素が蒸発され、他方の蒸発器においては主に炭化水素が蒸発されるようになっている。ただし、二酸化炭素の沸点と近い沸点を有する炭化水素を使用する場合においては、蒸発器は一つであってもよい。   In this embodiment, the working medium as the refrigerant is composed of a mixture of carbon dioxide and hydrocarbons having different boiling points. For this reason, as shown in FIG. 1, the refrigeration cycle 1 is provided with two evaporators 4 and 5. By providing the two evaporators 4 and 5, carbon dioxide is mainly evaporated in one evaporator, and hydrocarbons are mainly evaporated in the other evaporator. However, when using a hydrocarbon having a boiling point close to that of carbon dioxide, the number of evaporators may be one.

Figure 2006038283
Figure 2006038283

本発明に係る作動流体は、たとえば、車両用空調装置、ショーケース、自動販売機等の冷凍サイクルの冷媒に利用できる。また、本発明に係る冷凍サイクルは、とくに車両用空調装置なかでも自動車用空調装置の冷凍サイクルに好適である。   The working fluid according to the present invention can be used, for example, as a refrigerant for a refrigeration cycle of a vehicle air conditioner, a showcase, a vending machine, or the like. The refrigerating cycle according to the present invention is particularly suitable for a refrigerating cycle of an automotive air conditioner among vehicle air conditioners.

本発明に係る冷凍サイクルの概略構成図である。It is a schematic block diagram of the refrigerating cycle which concerns on this invention. 図1の冷凍サイクルの圧力−エンタルピー線図である。It is a pressure-enthalpy diagram of the refrigerating cycle of FIG. 図1の冷凍サイクルの冷媒の炭化水素の含有率と臨界温度との関係を示す関係図である。FIG. 2 is a relationship diagram illustrating a relationship between a hydrocarbon content of a refrigerant in the refrigeration cycle of FIG. 1 and a critical temperature. 図1の冷凍サイクルの冷媒の炭化水素の含有率と臨界圧力との関係を示す関係図である。FIG. 2 is a relationship diagram illustrating a relationship between a hydrocarbon content of a refrigerant in the refrigeration cycle of FIG. 1 and a critical pressure. 図1の冷凍サイクルの冷媒が気相状態にある場合の、炭化水素の含有率と圧力との関係を示す関係図である。FIG. 2 is a relationship diagram illustrating a relationship between a hydrocarbon content and pressure when the refrigerant in the refrigeration cycle in FIG. 1 is in a gas phase state. 図1の冷凍サイクルの冷媒が液相状態にある場合の、炭化水素の含有率と圧力との関係を示す関係図である。FIG. 2 is a relationship diagram illustrating a relationship between a hydrocarbon content and a pressure when a refrigerant in the refrigeration cycle in FIG. 1 is in a liquid phase state.

符号の説明Explanation of symbols

1 冷凍サイクル
2 コンプレッサ
3 コンデンサ
4 第1蒸発器
5 第2蒸発器
6 第1膨張弁
7 第2膨張弁
8 絞り弁

DESCRIPTION OF SYMBOLS 1 Refrigeration cycle 2 Compressor 3 Condenser 4 1st evaporator 5 2nd evaporator 6 1st expansion valve 7 2nd expansion valve 8 Throttle valve

Claims (5)

二酸化炭素と、10モル%を超える炭化水素とを含有する混合物からなることを特徴とする作動流体。   A working fluid comprising a mixture containing carbon dioxide and more than 10 mol% hydrocarbon. 臨界温度が60℃以上である、請求項1の作動流体。   The working fluid according to claim 1, wherein the critical temperature is 60 ° C. or higher. 前記炭化水素がプロパン、ブタン、イソブタンのいずれかである、請求項1または2の作動流体。   The working fluid according to claim 1 or 2, wherein the hydrocarbon is propane, butane, or isobutane. 前記炭化水素の含有量が10モル%以上30モル%以下である、請求項1ないし3のいずれかに記載の作動流体。   The working fluid according to any one of claims 1 to 3, wherein the hydrocarbon content is 10 mol% or more and 30 mol% or less. 請求項1ないし5のいずれかに記載の作動流体を冷媒に使用する冷凍サイクル。

A refrigeration cycle using the working fluid according to any one of claims 1 to 5 as a refrigerant.

JP2004215803A 2004-07-23 2004-07-23 Working fluid and refrigeration cycle using working fluid as refrigerant Pending JP2006038283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004215803A JP2006038283A (en) 2004-07-23 2004-07-23 Working fluid and refrigeration cycle using working fluid as refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004215803A JP2006038283A (en) 2004-07-23 2004-07-23 Working fluid and refrigeration cycle using working fluid as refrigerant

Publications (1)

Publication Number Publication Date
JP2006038283A true JP2006038283A (en) 2006-02-09

Family

ID=35903461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004215803A Pending JP2006038283A (en) 2004-07-23 2004-07-23 Working fluid and refrigeration cycle using working fluid as refrigerant

Country Status (1)

Country Link
JP (1) JP2006038283A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2922557A1 (en) * 2007-10-19 2009-04-24 Denis Jean Christian Chretien Freeze mixture, useful for cooling frozen foods, water released from air conditioned circuit or air released from a vehicle, comprises carbonic gas and third body comprising carbonic gas content
JP2009121725A (en) * 2007-11-13 2009-06-04 Sanyo Electric Co Ltd Refrigerating device and multistage refrigerating device
JP2015215111A (en) * 2014-05-09 2015-12-03 パナソニックIpマネジメント株式会社 Heat pump device
JP2017020675A (en) * 2015-07-08 2017-01-26 三菱電機株式会社 Refrigeration cycle device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2922557A1 (en) * 2007-10-19 2009-04-24 Denis Jean Christian Chretien Freeze mixture, useful for cooling frozen foods, water released from air conditioned circuit or air released from a vehicle, comprises carbonic gas and third body comprising carbonic gas content
WO2009090331A3 (en) * 2007-10-19 2009-12-03 Denis Jean Christian Chretien Coolant composition and associated cooling cycle for air conditioning and deep freezing
JP2009121725A (en) * 2007-11-13 2009-06-04 Sanyo Electric Co Ltd Refrigerating device and multistage refrigerating device
JP2015215111A (en) * 2014-05-09 2015-12-03 パナソニックIpマネジメント株式会社 Heat pump device
JP2017020675A (en) * 2015-07-08 2017-01-26 三菱電機株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP5132772B2 (en) Non-azeotropic refrigerant mixture and refrigeration cycle equipment
EP2818530B1 (en) Refrigeration cycle utilizing a mixed inert component refrigerant
WO2017122517A1 (en) Refrigeration cycle device and heat cycle system
WO2014030236A1 (en) Refrigeration device
JP2006292229A (en) Co2 refrigeration cycle device and supercritical refrigeration operation method therefor
JP2004279014A (en) Co2 refrigerating cycle
JP3934140B2 (en) Non-azeotropic refrigerant
CN109971433A (en) A kind of Diversity refrigerant
JP2008164288A (en) Refrigerating device
JP2007263488A (en) Refrigerating device
JP2009121725A (en) Refrigerating device and multistage refrigerating device
JP2011116822A (en) Mixed refrigerant and mixed refrigerant circulation system
JP2006038283A (en) Working fluid and refrigeration cycle using working fluid as refrigerant
JP2007263487A (en) Refrigerating device
JP2007085729A (en) Refrigerator system using non-azeotropic refrigerant
JP2008267732A (en) Air-conditioning device
CN113801635A (en) Binary near-azeotropic refrigerant mixture for new energy automobile heat pump
JP2002168536A (en) Air conditioner
KR101129722B1 (en) Refrigerating and cooling system provided with overheat protection heat exchanger using carbon dioxide refrigerant
JP5009530B2 (en) Non-azeotropic refrigerant for ultra-low temperature
JP4282378B2 (en) 1-unit refrigeration equipment
JP2012236884A (en) Mixed refrigerant and air conditioner using the same
US20220325158A1 (en) Non-azeotropic mixed refrigerant and refrigerating apparatus using non-azeotropic mixed refrigerant
JP2017138046A (en) Refrigeration device
CN101161757A (en) Environment-friendly type azeotropic coolant adaptated for single-stage compression refrigeration system