JP2004006929A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2004006929A
JP2004006929A JP2003191583A JP2003191583A JP2004006929A JP 2004006929 A JP2004006929 A JP 2004006929A JP 2003191583 A JP2003191583 A JP 2003191583A JP 2003191583 A JP2003191583 A JP 2003191583A JP 2004006929 A JP2004006929 A JP 2004006929A
Authority
JP
Japan
Prior art keywords
film
contact
constituent material
electrode
main constituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003191583A
Other languages
English (en)
Other versions
JP4622213B2 (ja
JP2004006929A5 (ja
Inventor
Tomio Iwasaki
岩▲崎▼ 富生
Hiroyuki Ota
太田 裕之
Isamu Asano
浅野 勇
Yuzuru Oji
大路 譲
Yoshitaka Nakamura
中村 吉孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003191583A priority Critical patent/JP4622213B2/ja
Publication of JP2004006929A publication Critical patent/JP2004006929A/ja
Publication of JP2004006929A5 publication Critical patent/JP2004006929A5/ja
Application granted granted Critical
Publication of JP4622213B2 publication Critical patent/JP4622213B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】信頼性の高い半導体装置を提供する。また、歩留りの高い半導体装置を提供する。また、導通不良を起こしにくい容量素子構造を有する半導体装置を提供する。
【解決手段】シリコン(Si)基板の一主面側に、導電性膜と、該導電性膜に接触する第一電極と、該第一電極に接触する高誘電率あるいは強誘電性の酸化物膜と、該酸化物膜に接触する第二電極が,この順序で形成されている情報蓄積用容量素子を備えた半導体装置において、酸素の拡散通路を狭める元素を前記導電性膜に含有させる。
【選択図】図1

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置およびその製造方法に関する。
【0002】
【従来の技術】
近年、半導体装置の微細化にともない、情報蓄積用容量素子の面積が減少し、容量の絶対値も減少する傾向にある。容量Cは、例えば平行平板電極構造の場合は、
C=ε・S/d
で決定される。ここで、εは誘電体の誘電率、Sは容量電極(以下、電極とも言う)の面積、dは誘電体の膜厚(電極間の距離)である。情報蓄積用容量素子に使用される電極の面積Sを増大することなく、容量を確保するためには、誘電率εの高い誘電体を使用するか、誘電体の膜厚dを薄くすることが必要である。現在、その膜厚は10nm程度まで薄膜化されており、64Mビット以上の高集積メモリにおいては、容量絶縁膜の薄膜化は限界に達しつつあるため、より誘電率εの高い容量絶縁膜材料の開発が進められ、64M〜256Mビットでは酸化タンタル(Ta)、1GビットのDRAMにおいては、例えば特開平9−186299号公報に記載されているようなチタン酸バリウムストロンチウム(BaSrTi:BST)等の使用が検討されている。また、不揮発性メモリとしては、同様に特開平10−189881号公報に記載されているようなチタン酸ジルコン酸鉛(PbZrTi:PZT)等の使用が検討されている。
【0003】
BSTやPZT等の酸化物は、高温処理を受けないと良好な特性を発揮しないことが知られているため、製造工程において約600℃以上の高温処理が必要となる。そこで、BSTやPZT等の酸化物に接触する容量電極材料としては、高温においても酸化されにくい材料を用いる必要がある。これは、容量電極が酸化されやすい材料である場合には、高温において電極と酸化物との接触界面で酸化還元反応が起こり、酸化物の特性が劣化してしまうためである。
【0004】
このような背景から、酸化されにくい容量電極材料として、例えばルテニウム(Ru)、や白金(Pt)等の貴金属材料やと酸化ルテニウム(Ru)等の導電性酸化物が検討されている。しかし、これらの容量電極材料がシリコン(Si)と直接接触すると、シリコン(Si)が容量電極の内部に拡散してしまうため、容量下部電極の下地には拡散を防止するためのバリア膜が必要となる。このバリア膜としては、例えば特開平9−186299号公報に記載されているように窒化チタン(Ti)等からなる導電性膜が用いられている。
【0005】
【発明が解決しようとする課題】
上述のように、BSTやPZT等の酸化物は、高温処理を受けないと良好な特性を発揮しないことが知られているが、1Gビット以上のDRAMに用いるためには、高温処理を酸素雰囲気中で受けないと十分な特性を発揮しないことがわかってきた。そこで、製造工程において、酸素雰囲気中での約600℃以上の高温処理が新たに必要となってきた。しかし、前記のように窒化チタン(Ti)等からなる導電性膜をバリア膜として用いた構造では、例えば特開平10−189881号公報やマテリアルズ・リサーチ・ソサイエティ会誌(Materials Research Society Bulletin)第21巻第6号(1996年6月発行)の55ページから58ページに記載されている内容からわかるように、BSTやPZT等の中の酸素原子と酸素雰囲気中の酸素原子が、約600℃以上の高温処理の際に容量下部電極を透過してバリア膜に到達し、バリア膜を酸化して導通不良を引き起こすという問題がある。
【0006】
また、これに近い問題として、ゲート電極が、多結晶シリコンと金属膜の間にバリア膜がはさまれた構造(低抵抗化を実現させるための、いわゆるポリメタルゲート構造)となっている場合、ゲート絶縁膜の特性を向上させるための熱処理の際に、バリア膜が酸化されてしまうという問題がある。
【0007】
本発明の目的は、信頼性の高い半導体装置を提供すること、歩留りの高い半導体装置を提供すること、導通不良を起こしにくい容量素子構造を有する半導体装置を提供すること、酸化を起こしにくいゲート構造を有する半導体装置を提供すること、等の課題のうち少なくとも一つを解決することにある。
【0008】
【課題を解決するための手段】
発明者らは、上記課題を解決するため鋭意研究を行い、導通不良の原因となるバリア膜の酸化は、バリア膜の結晶粒界および結晶粒内を酸素原子が拡散することによって進行することを見出した。したがって、導通不良を防止するためには、バリア膜における酸素原子の粒界拡散および粒内拡散を抑制すれば良いことを見出した。そして、発明者らは、バリア膜中の酸素の拡散通路を狭める添加元素をバリア膜に添加することによって、バリア膜における酸素原子の粒界拡散および粒内拡散を抑制できることを見出した。
【0009】
本願発明の課題は、例えば、半導体基板と、半導体基板の一主面側に形成された主構成材料が窒化チタンであり、少なくともシリコン、コバルト、ニッケル、ルテニウムからなる群から選ばれる一種類の添加元素を含有する導電性膜(以下、バリア層ともいう)と、導電性膜に接するように形成された第一電極(以下、容量下部電極ともいう)と、第一電極に接するように形成された高誘電率または強誘電性の酸化物膜と、酸化膜に接するように形成された第二電極(以下、容量上部電極ともいう)とを備えた半導体装置により解決される。
【0010】
このように構成すれば、バリア層における酸素原子の拡散係数を低くすることができるためバリア膜の酸化防止ができ、半導体装置の導通不良が防止できる。
【0011】
なお、主構成材料に対する添加元素の含有率は0.05at.% 以上18at.%以下であることが望ましい。
【0012】
また、本願発明の課題は、例えば、半導体基板と、前記半導体基板の一主面側に形成されたゲート絶縁膜と、このゲート絶縁膜の上部に形成されたゲート電極と、を備え、前記ゲート電極は前記ゲート絶縁膜に接するように形成された多結晶シリコン膜と、前記多結晶シリコン膜に接するように形成された主構成材料が窒化チタンであり、少なくともシリコン、コバルト、ニッケル、ルテニウムからなる群から選ばれる一種類の添加元素を含有したバリア膜と、前記バリア膜に接するように形成された金属膜とを備えた半導体装置により解決される。
【0013】
この構成によれば、酸化を起こしにくいゲート構造を有する半導体装置を提供することができる。
【0014】
また、本願発明の課題は、例えば、シリコン基板の一主面側に、導電性膜と、該導電性膜に接触する第一電極と、該第一電極に接触する高誘電率あるいは強誘電性の酸化物膜と、該酸化物膜に接触する第二電極を、この順に積層して形成する工程を含む半導体装置の製造方法であって、前記導電性膜の製造工程が、窒化チタンを成膜する工程と、シリコン、コバルト、ニッケル、ルテニウムからなる群から選ばれる一種類の膜を成膜する工程と、基板温度を200℃以上に上げる熱処理工程とがこの順に行われる工程を備えた半導体装置の製造方法により解決される。
【0015】
なお、ここで導電性膜の主構成金属元素とは、導電性膜に最も多く含まれる金属元素を意味する。また、主構成材料とは、最も多く含まれる材料を意味する。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図に示した実施例により詳細に説明する。
まず、本発明における第一の実施例であるDRAM(Dynamic Random Access Memory)メモリセルの断面構造を図1に示す。これは、図2に示した平面レイアウトの一例において、A−BあるいはC−Dで切断した断面図である。本実施例の半導体装置は、図1に示すように、シリコン基板1の主面のアクティブ領域に形成されたMOS(Metal Oxide Semiconductor)型のトランジスタ2と、その上部に配置された情報蓄積用容量素子3とを備えている。絶縁膜4は、素子間分離のための膜である。
【0017】
メモリセルのMOSトランジスタ2は、ゲ−ト電極5、ゲ−ト絶縁膜6および拡散層7で構成されている。ゲ−ト絶縁膜6は、例えばシリコン酸化膜、窒化珪素膜あるいは強誘電体膜あるいはこれらの積層構造からなる。また、ゲ−ト電極5は、例えば多結晶シリコン膜や金属薄膜、あるいは金属シリサイド膜あるいはこれらの積層構造からなる。前記ゲ−ト電極5の上部および側壁には例えばシリコン酸化膜からなる絶縁膜9が形成されている。メモリセル選択用MOSトランジスタの一方の拡散層7には、プラグ10を介してビット線11が接続されている。MOSトランジスタの上部全面には、例えばBPSG〔Boron−doped Phospho Silicate Glass〕膜やSOG(Spin On Glass)膜、あるいは化学気相蒸着法やスパッタ法で形成したシリコン酸化膜や窒化膜等からなる絶縁膜12が形成されている。
【0018】
MOSトランジスタを覆う絶縁膜12の上部には情報蓄積用容量素子3が形成されている、情報蓄積用容量素子3は、メモリセル選択用MOSトランジスタの他方の拡散層8に、例えば多結晶シリコンからなるプラグ13を介して接続されている。情報蓄積用容量素子3は、下層から順に、導電性のバリア膜14、容量下部電極15、高誘電率あるいは強誘電性を有する酸化物膜16、容量上部電極17を積層した構造で構成されている。この情報蓄積用容量素子23は絶縁膜1518で覆われている。
【0019】
ここで、バリア膜14は、少なくとも一種類の添加元素を含有し、該添加元素のうちの少なくとも一種が、バリア膜14における酸素原子の拡散通路を狭める作用を持つ。具体的には、バリア膜14の主構成材料が窒化チタン(Ti)である場合、このバリア膜14には、シリコン(Si)、コバルト(Co)、ニッケル(Ni)、ルテニウム(Ru)からなる群から選ばれる一種類の添加元素を含有させる。また、バリア膜14の主構成材料が窒化タングステン(W)である場合、このバリア膜14には、モリブデン(Mo)を添加元素として含有させる。また、バリア膜14の主構成材料がルテニウム(Ru)である場合、このバリア膜14には、シリコン(Si)、コバルト(Co)、ニッケル(Ni)からなる群から選ばれる一種類の添加元素を含有させる。
【0020】
以下、本実施例の効果について説明する。
従来の半導体装置においては、高誘電率あるいは強誘電性を有する酸化物膜16を形成する際あるいはこの後の熱処理の際に、酸素雰囲気中で約600℃以上の高温にさらされると、バリア膜14の酸化が進行し、導通不良を生じることが実験的に明らかになった。発明者らは、バリア膜14の酸化は、バリア膜14の結晶粒界および結晶粒内を酸素原子が拡散することによって進行することを見出した。そこで、発明者らは、酸素の粒界拡散および粒内拡散を抑制することによって酸化による導通不良は防止されることを見出した。また、発明者らは、バリア膜中の酸素原子の拡散通路を狭める添加元素をバリア膜に添加することによって、バリア膜における酸素原子の粒界拡散および粒内拡散を抑制できることを見出した。本実施例では、バリア膜14は、少なくとも一種類の添加元素を含有し、該添加元素のうちの少なくとも一種が、バリア膜14は、酸素原子の拡散通路を狭める添加元素を含有していることを特徴としているため、バリア膜14における酸素原子の粒界拡散および粒内拡散が抑制され、導通不良が防止される。これを詳しく説明するために、分子動力学シミュレーションにより、結晶粒界における酸素原子の拡散係数を計算した結果を以下に示す。分子動力学シミュレーションとは、例えばジャーナルオブアプライドフィジックス(Journal of Applied Physics)の第54巻(1983年発行)の4864ページから4878ページまでに記述されているように、原子間ポテンシャルを通して各原子に働く力を計算し、この力を基にニュートンの運動方程式を解くことによって各時刻における各原子の位置を算出する方法である。分子動力学シミュレーションにより拡散係数を計算する方法については、例えばフィジカルレビューB(Physical Review B)の第29巻(1984年発行)の5363ページから5371ページまでに記述されている。ここでは、温度を1000 Kに設定して結晶粒界および結晶粒内における酸素原子の拡散係数を計算した例を用いて説明する。なお、ここで説明する効果は、シミュレーション条件を変えても同様に説明することができる。
【0021】
本実施例では、上記の分子動力学法に電荷移動を取り入れて異種元素間の相互作用を計算することにより、以下の効果を明らかにすることができた。はじめに、バリア膜の主構成材料が窒化チタン(Ti)である場合について、結晶粒界における酸素原子の拡散係数に対する添加元素の影響を解析した結果について述べる。図3、図4は、添加元素として、シリコン(Si)、コバルト(Co)、ニッケル(Ni)、ルテニウム(Ru)を含有させた場合の、拡散係数の濃度依存性を解析した結果である。ここで、DGB0は添加元素を含有しない場合の粒界拡散係数を示す。DIN0は添加元素を含有しない場合の粒内拡散係数を示す。図3からわかるように、シリコン(Si)、コバルト(Co)、ニッケル(Ni)、ルテニウム(Ru)の添加濃度が0.05at.%以上になると拡散を抑制する効果が顕著となる。また、図4からわかるように、添加濃度が約18at.%以上になると拡散を抑制する効果が弱くなる。これは、添加元素があまり多くなると、主構成材料である窒化チタン(Ti)の結晶構造が乱されるので、酸素が拡散しやすくなるためである。
【0022】
次に、バリア膜の主構成材料が窒化タングステン(W)である場合について、結晶粒界における酸素原子の拡散係数に対する添加元素の影響を解析した結果について述べる。図5、図6は、添加元素として、モリブデン(Mo)を含有させた場合の、拡散係数の濃度依存性を解析した結果である。ここで、DGB0は添加元素を含有しない場合の粒界拡散係数を示す。DIN0は添加元素を含有しない場合の粒内拡散係数を示す。図5からわかるように、モリブデン(Mo)の添加濃度が0.05at.%以上になると拡散を抑制する効果が顕著となる。また、図6からわかるように、添加濃度が約18at.%以上になると拡散を抑制する効果が弱くなる。これは、添加元素があまり多くなると、主構成材料である窒化タングステン(W)の結晶構造が乱されるので、酸素が拡散しやすくなるためである。
【0023】
次に、バリア膜の主構成材料がルテニウム(Ru)である場合について、結晶粒界における酸素原子の拡散係数に対する添加元素の影響を解析した結果について述べる。図7、図8は、添加元素として、シリコン(Si)、コバルト(Co)、ニッケル(Ni)を含有させた場合の、拡散係数の濃度依存性を解析した結果である。ここで、DGB0は添加元素を含有しない場合の粒界拡散係数を示す。DIN0は添加元素を含有しない場合の粒内拡散係数を示す。図7からわかるように、シリコン(Si)、コバルト(Co)、ニッケル(Ni)の添加濃度が0.05at.%以上になると拡散を抑制する効果が顕著となる。また、図8からわかるように、添加濃度が約18at.%以上になると拡散を抑制する効果が弱くなる。これは、添加元素があまり多くなると、主構成材料であるルテニウム(Ru)の結晶構造が乱されるので、酸素が拡散しやすくなるためである。したがって、添加濃度は0.05at.%以上18at.%以下が好ましい。
【0024】
次に、本発明における第二の実施例であるDRAM(Dynamic Random Access Memory)メモリセルの断面構造を図9に示す。これも、図2に示した平面レイアウトの一例において、A−BあるいはC−Dで切断した断面図である。第二の実施例の第一の実施例との違いは、バリア膜14の下部にさらに別の導電性膜19が形成されている点である。特に、容量下部電極15の主構成材料がルテニウム(Ru)であり、バリア膜14の主構成材料が窒化チタン(Ti)である場合には、ルテニウム(Ru)と窒化チタン(Ti)の結晶構造を安定なものとするために、導電性膜19としてチタン(Ti)を用いることが好ましい。ルテニウム(Ru)と窒化チタン(Ti)の結晶構造を安定なものとすることによって、容量絶縁膜16の結晶構造が安定なものとなり、デバイス特性が向上する。また、導電性膜14aとプラグ13の間にはさらに一層以上の別の膜が存在していてもよい。
【0025】
次に、本発明における第三の実施例であるDRAM(Dynamic Random Access Memory)メモリセルの断面構造を図10に示す。これも、図2に示した平面レイアウトの一例において、A−BあるいはC−Dで切断した断面図である。第三の実施例の第一の実施例との違いは、プラグ13に接触して導電性膜20が形成されている点である。特に、プラグ13の主構成材料が窒化タングステン(W)である場合には、絶縁膜12との密着性を向上させるために、例えば窒化チタン(Ti)を主構成材料とする導電性膜20を形成することが好ましい。この場合、導電性膜20と絶縁膜12の間にはさらに一層以上の別の膜が存在していてもよい。
【0026】
次に、本発明における第四の実施例であるDRAM(Dynamic Random Access Memory)メモリセルの断面構造を図11に示す。これも、図2に示した平面レイアウトの一例において、A−BあるいはC−Dで切断した断面図である。第四の実施例の第一の実施例との主な違いは、ゲート電極5が、金属膜15a、バリア膜15b、多結晶シリコン膜15cの3層構造(すなわち、ポリメタルゲート構造)となっていることである。ここで、バリア膜15bの主構成材料が窒化チタン(Ti)である場合、このバリア膜15bには、シリコン(Si)、コバルト(Co)、ニッケル(Ni)、ルテニウム(Ru)からなる群から選ばれる一種類の添加元素を含有させる。また、バリア膜15bの主構成材料が窒化タングステン(W)である場合、このバリア膜14には、モリブデン(Mo)を添加元素として含有させる。また、バリア膜15bの主構成材料がルテニウム(Ru)である場合、このバリア膜15bには、シリコン(Si)、コバルト(Co)、ニッケル(Ni)からなる群から選ばれる一種類の添加元素を含有させる。これによって、バリア膜15bが酸化されにくくなるという効果が得られる。金属膜15aには、融点が高く、抵抗の低いタングステン(W)やモリブデン(Mo)が使用されることが多いので、この場合には、同種の元素からなる材料、すなわちモリブデン(Mo)を添加元素として含有した窒化タングステン(W)をバリア膜15bとして用いることが好ましい。酸化に強いルテニウム(Ru)が金属膜15aとして用いられる場合には、同種の元素からなる材料、すなわちルテニウム(Ru)にシリコン(Si)、コバルト(Co)、ニッケル(Ni)からなる群から選ばれる一種類の添加元素を含有させたものをバリア膜15bとして用いることが好ましい。
【0027】
これらの実施例においては、情報蓄積用容量素子3とシリコン基板1とがプラグ13を介して接続されている場合について示したが、情報蓄積用容量素子3とシリコン基板1とがとが直接接していてもよい。
【0028】
また、以上の実施例において、容量下部電極15の主構成材料がルテニウム(Ru)である場合、この容量下部電極15にシリコン(Si)、コバルト(Co)、ニッケル(Ni)からなる群から選ばれる一種類の添加元素を含有させると、容量下部電極15を酸素が透過しにくくなり、結果としてバリア膜14の酸化がより抑制しやすくなるという効果が得られる。また、以上の実施例において、容量下部電極15や容量上部電極16は、複数の膜から構成されていてもよい。
【0029】
また、以上の実施例において、添加元素を含有したバリア膜は、例えば2元スパッタ法、1元スパッタ法、化学気相蒸着法等で成膜できる。
なお、例えば2元スパッタ法を用いて成膜すれば、単元素のターゲットを使用でるのでターゲットの入手が容易であり、また添加元素の比率を変化させることも容易である。また、添加元素を含有したターゲットを用いて1元スパッタ法で成膜すれば、スパッタ時間が短縮でき、また、添加元素の比率を一定に保つことができる。さらに、混合ガスを用いた化学気相蒸着法で成膜すれば、絶縁膜に溝を形成してから溝を埋め込んでバリア膜を成膜する場合に、溝幅が狭くても埋め込み性が良い。
【0030】
また、より簡単に添加元素を含有させるには、主構成材料の膜を成膜した後、添加元素の膜を成膜し、基板温度を200℃以上に上げる熱処理を行うとよい。この場合、添加元素の膜は、熱処理後にエッチング等によって取り除くことが好ましい。
【0031】
また、以上の実施例において、バリア膜14の主構成材料が窒化チタン(Ti)である場合には、シリコン(Si)、コバルト(Co)、ニッケル(Ni)、ルテニウム(Ru)からなる群から選ばれる一種類の添加元素を含有させることが、バリア膜14の酸化を防止する上で有効であることを説明したが、バリア膜14とプラグ13の密着性を向上させるという付加的な効果を得るには添加元素としてシリコン(Si)を選択することが好ましい。これは、プラグ13はシリコンを主構成材料とする場合が多く、同種のシリコン元素をバリア膜14に添加するとプラグ13との結合が強くなるためである。また、バリア膜14の電気抵抗を劣化させないためには、添加元素として電気抵抗の低いコバルト(Co)またはニッケル(Ni)を選択することが好ましい。また、容量下部電極15との密着性を向上させるという付加的な効果を得るには添加元素としてルテニウム(Ru)を選択することが好ましい。これは、容量下部電極15はルテニウムを主構成材料とする場合が多く、同種のルテニウム元素をバリア膜14に添加すると容量下部電極15との結合が強くなるためである。
【0032】
また、以上の実施例において、バリア膜14の主構成材料がルテニウム(Ru)である場合には、シリコン(Si)、コバルト(Co)、ニッケル(Ni)からなる群から選ばれる一種類の添加元素を含有させることが、バリア膜14の酸化を防止する上で有効であることを説明したが、バリア膜14とプラグ13の密着性を向上させるという付加的な効果を得るには添加元素としてシリコン(Si)を選択することが好ましい。また、バリア膜14の電気抵抗を劣化させないためには、添加元素としてコバルト(Co)またはニッケル(Ni)を選択することが好ましい。
【0033】
【発明の効果】
本発明によれば、信頼性の高い半導体装置を提供すること、歩留りの高い半導体装置を提供すること、導通不良を起こしにくい容量素子構造を有する半導体装置を提供すること、酸化を起こしにくいゲート構造を有する半導体装置を提供すること、等のうち少なくとも一つを実現することができる。
【図面の簡単な説明】
【図1】本発明の第一の実施例に係る半導体装置の主要部の断面図である。
【図2】本発明の第一の実施例に係る半導体装置の平面レイアウトの一例を示す図である。
【図3】本発明の第一の実施例に係る窒化チタンをバリア膜の主構成材料として用いた場合の、拡散係数の添加濃度依存性を低濃度領域について示した図である。
【図4】本発明の第一の実施例に係る窒化チタンをバリア膜の主構成材料として用いた場合の、拡散係数の添加濃度依存性を高濃度領域について示した図である。
【図5】本発明の第一の実施例に係る窒化タングステンをバリア膜の主構成材料として用いた場合の、拡散係数の添加濃度依存性を低濃度領域について示した図である。
【図6】本発明の第一の実施例に係る窒化タングステンをバリア膜の主構成材料として用いた場合の、拡散係数の添加濃度依存性を高濃度領域について示した図である。
【図7】本発明の第一の実施例に係るルテニウムをバリア膜の主構成材料として用いた場合の、拡散係数の添加濃度依存性を低濃度領域について示した図である。
【図8】本発明の第一の実施例に係るルテニウムをバリア膜の主構成材料として用いた場合の、拡散係数の添加濃度依存性を高濃度領域について示した図である。
【図9】本発明の第二の実施例に係る半導体装置の主要部の断面図である。
【図10】本発明の第三の実施例に係る半導体装置の主要部の断面図である。
【図11】本発明の第四の実施例に係る半導体装置の主要部の断面図である。
【符号の説明】
1…シリコン基板、2…トランジスタ、3…情報蓄積用容量素子、4…素子分離膜、5…ゲート電極、6…ゲート絶縁膜、7、8…拡散層、9…絶縁膜、10…プラグ、11…ビット線、12…絶縁膜、13…プラグ、14…導電性膜、15…容量下部電極、16…容量絶縁膜、17…容量上部電極、18…絶縁膜、19…導電性膜、20…導電性膜。

Claims (12)

  1. 半導体基板と、
    前記半導体基板の一主面側に形成された主構成材料が窒化チタンであり、少なくともシリコン、コバルト、ニッケル、ルテニウムからなる群から選ばれる一種類の添加元素を含有する導電性膜と、
    前記導電性膜に接するように形成された第一電極と、
    前記第一電極に接するように形成された高誘電率または強誘電性の酸化物膜と、
    前記酸化膜に接するように形成された第二電極と
    を備えた半導体装置。
  2. 請求項1において、前記第一電極の主構成材料がルテニウムまたは酸化ルテニウムである半導体装置。
  3. 請求項1または2において、前記主構成材料に対する前記添加元素の含有率が0.05at.% 以上18at.%以下である半導体装置。
  4. シリコン基板と、
    前記シリコン基板の一主面側に形成された主構成材料が窒化チタンであり、少なくともシリコン、コバルト、ニッケル、ルテニウムからなる群から選ばれる一種類の添加元素を含有し、その含有量が前記主構成材料に対して0.05at.% 以上18at.%以下である導電性膜と、
    前記導電性膜に接するように形成された主構成材料がルテニウムまたは酸化ルテニウムである第一電極と、
    前記第一電極に接するように形成された主構成材料がチタン酸バリウムストロンチウムまたは酸化ルテニウムである酸化物膜と、
    前記酸化膜に接するように形成された第二電極と
    を備えた半導体装置。
  5. シリコン基板と、
    前記シリコン基板の一主面側に形成された主構成材料が窒化タングステンであり、モリブデンを添加元素として含有し、その含有量が前記主構成材料に対して0.05at.% 以上18at.%以下である導電性膜と、
    前記導電性膜に接するように形成された主構成材料がルテニウムまたは酸化ルテニウムである第一電極と、
    前記第一電極に接するように形成された主構成材料がチタン酸バリウムストロンチウムまたは酸化ルテニウムである酸化物膜と、
    前記酸化膜に接するように形成された第二電極と
    を備えた半導体装置。
  6. シリコン基板と、
    前記シリコン基板の一主面側に形成された主構成材料がルテニウムであり、少なくともシリコン、コバルト、ニッケル、からなる群から選ばれる一種類の添加元素を含有し、その含有量が前記主構成材料に対して0.05at.% 以上18at.%以下である導電性膜と、
    前記導電性膜に接するように形成された主構成材料がルテニウムまたは酸化ルテニウムである第一電極と、
    前記第一電極に接するように形成された主構成材料がチタン酸バリウムストロンチウムまたは酸化ルテニウムである酸化物膜と、
    前記酸化膜に接するように形成された第二電極と
    を備えた半導体装置。
  7. シリコン基板と、
    前記シリコン基板の一主面側に形成された主構成材料が窒化チタンであり、少なくともシリコン、コバルト、ニッケル、ルテニウムからなる群から選ばれる一種類の添加元素を含有し、その含有量が前記主構成材料に対して0.05at.% 以上18at.%以下である導電性膜と、
    前記導電性膜に接するように形成された主構成材料がルテニウムであり、少なくともシリコン、コバルト、ニッケルからなる群から選ばれる一種類の添加元素を含有し、その含有量が前記主構成材料に対して0.05at.% 以上18at.%以下である第一電極と、
    前記第一電極に接するように形成された主構成材料がチタン酸バリウムストロンチウムまたは酸化ルテニウムである酸化物膜と、
    前記酸化膜に接するように形成された第二電極と
    を備えた半導体装置。
  8. 半導体基板と、
    前記半導体基板の一主面側に形成されたゲート絶縁膜と、
    このゲート絶縁膜の上部に形成されたゲート電極と、を備え、前記ゲート電極は前記ゲート絶縁膜に接するように形成された多結晶シリコン膜と、
    前記多結晶シリコン膜に接するように形成された主構成材料が窒化チタンであり、少なくともシリコン、コバルト、ニッケル、ルテニウムからなる群から選ばれる一種類の添加元素を含有したバリア膜と、
    前記バリア膜に接するように形成された金属膜と
    を備えた半導体装置。
  9. 半導体基板と、
    前記半導体基板の一主面側に形成されたゲート絶縁膜と、
    このゲート絶縁膜の上部に形成されたゲート電極と、を備え、前記ゲート電極は前記ゲート絶縁膜に接するように形成された多結晶シリコン膜と、
    前記多結晶シリコン膜に接するように形成された主構成材料が窒化タングステンであり、添加元素としてモリブデンを含有したバリア膜と、
    前記バリア膜に接するように形成された主構成材料がタングステンまたはモリブデンである金属膜と
    を備えた半導体装置。
  10. 半導体基板と、
    前記半導体基板の一主面側に形成されたゲート絶縁膜と、
    このゲート絶縁膜の上部に形成されたゲート電極とを備え、前記ゲート電極は前記ゲート絶縁膜に接するように形成された多結晶シリコン膜と、
    前記多結晶シリコン膜に接するように形成された主構成材料がルテニウムであり、少なくともシリコン、コバルト、ニッケルからなる群から選ばれる一種類の添加元素を含有したバリア膜と、
    前記バリア膜に接するように形成された主構成材料がルテニウムである金属膜とを備えた半導体装置。
  11. 請求項9乃至10の何れかにおいて、前記主構成材料に対する前記添加元素の含有率が0.05at.% 以上18at.%以下である半導体装置。
  12. シリコン基板の一主面側に、導電性膜と、該導電性膜に接触する第一電極と、該第一電極に接触する高誘電率あるいは強誘電性の酸化物膜と、該酸化物膜に接触する第二電極を、この順に積層して形成する工程を含む半導体装置の製造方法であって、前記導電性膜の製造工程が、窒化チタンを成膜する工程と、シリコン、コバルト、ニッケル、ルテニウムからなる群から選ばれる一種類の膜を成膜する工程と、基板温度を200℃以上に上げる熱処理工程とがこの順に行われる工程を備えた半導体装置の製造方法。
JP2003191583A 2003-07-04 2003-07-04 半導体装置 Expired - Fee Related JP4622213B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003191583A JP4622213B2 (ja) 2003-07-04 2003-07-04 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003191583A JP4622213B2 (ja) 2003-07-04 2003-07-04 半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000077779A Division JP3468200B2 (ja) 2000-03-15 2000-03-15 半導体装置

Publications (3)

Publication Number Publication Date
JP2004006929A true JP2004006929A (ja) 2004-01-08
JP2004006929A5 JP2004006929A5 (ja) 2006-08-03
JP4622213B2 JP4622213B2 (ja) 2011-02-02

Family

ID=30438419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003191583A Expired - Fee Related JP4622213B2 (ja) 2003-07-04 2003-07-04 半導体装置

Country Status (1)

Country Link
JP (1) JP4622213B2 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08255768A (ja) * 1995-01-31 1996-10-01 Advanced Micro Devices Inc 半導体ウェハ上に窒化チタンおよびチタンシリサイドを形成する方法
JPH10223900A (ja) * 1996-12-03 1998-08-21 Toshiba Corp 半導体装置及び半導体装置の製造方法
JPH10242399A (ja) * 1997-02-27 1998-09-11 Samsung Electron Co Ltd 高誘電キャパシタ及びその製造方法
JPH10289885A (ja) * 1997-04-14 1998-10-27 Hitachi Ltd 半導体装置およびその製造方法
JPH10312977A (ja) * 1997-01-15 1998-11-24 Tongyang Cement Corp 酸化防止作用を有する白金膜を基板上に蒸着する方法と、その方法により製造された装置
JPH10321810A (ja) * 1997-05-22 1998-12-04 Hitachi Ltd 強誘電体メモリ
JPH11145407A (ja) * 1997-11-04 1999-05-28 Hitachi Ltd 半導体メモリ
JPH11243151A (ja) * 1997-12-23 1999-09-07 Texas Instr Inc <Ti> カプセル化された低抵抗ゲート構造体及びその製造方法
JPH11354732A (ja) * 1998-06-04 1999-12-24 Matsushita Electric Ind Co Ltd 薄膜キャパシタ及びその製造方法
JP2000040800A (ja) * 1998-07-24 2000-02-08 Sharp Corp 強誘電体記憶素子及びその製造方法
JP2000196083A (ja) * 1998-12-24 2000-07-14 Hyundai Electronics Ind Co Ltd 半導体素子のゲ―ト電極形成方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08255768A (ja) * 1995-01-31 1996-10-01 Advanced Micro Devices Inc 半導体ウェハ上に窒化チタンおよびチタンシリサイドを形成する方法
JPH10223900A (ja) * 1996-12-03 1998-08-21 Toshiba Corp 半導体装置及び半導体装置の製造方法
JPH10312977A (ja) * 1997-01-15 1998-11-24 Tongyang Cement Corp 酸化防止作用を有する白金膜を基板上に蒸着する方法と、その方法により製造された装置
JPH10242399A (ja) * 1997-02-27 1998-09-11 Samsung Electron Co Ltd 高誘電キャパシタ及びその製造方法
JPH10289885A (ja) * 1997-04-14 1998-10-27 Hitachi Ltd 半導体装置およびその製造方法
JPH10321810A (ja) * 1997-05-22 1998-12-04 Hitachi Ltd 強誘電体メモリ
JPH11145407A (ja) * 1997-11-04 1999-05-28 Hitachi Ltd 半導体メモリ
JPH11243151A (ja) * 1997-12-23 1999-09-07 Texas Instr Inc <Ti> カプセル化された低抵抗ゲート構造体及びその製造方法
JPH11354732A (ja) * 1998-06-04 1999-12-24 Matsushita Electric Ind Co Ltd 薄膜キャパシタ及びその製造方法
JP2000040800A (ja) * 1998-07-24 2000-02-08 Sharp Corp 強誘電体記憶素子及びその製造方法
JP2000196083A (ja) * 1998-12-24 2000-07-14 Hyundai Electronics Ind Co Ltd 半導体素子のゲ―ト電極形成方法

Also Published As

Publication number Publication date
JP4622213B2 (ja) 2011-02-02

Similar Documents

Publication Publication Date Title
US8741712B2 (en) Leakage reduction in DRAM MIM capacitors
US8847397B2 (en) High work function, manufacturable top electrode
US8569818B2 (en) Blocking layers for leakage current reduction in DRAM devices
US6908802B2 (en) Ferroelectric circuit element that can be fabricated at low temperatures and method for making the same
US8766346B1 (en) Methods to improve leakage of high K materials
US8450173B2 (en) Electrical components for microelectronic devices and methods of forming the same
JP2005217407A (ja) 半導体素子のキャパシタ、それを含むメモリ素子およびその製造方法
JP2005064522A (ja) 半導体装置のキャパシタおよびそれを備えるメモリ装置
JP4011813B2 (ja) 半導体装置及び半導体装置の製造方法
JP3732098B2 (ja) 半導体装置
TWI228798B (en) Barrier for capacitor over plug structures
JP3914681B2 (ja) 半導体装置およびその製造方法
US6833605B2 (en) Method of making a memory cell capacitor with Ta2O5 dielectric
US8853049B2 (en) Single-sided non-noble metal electrode hybrid MIM stack for DRAM devices
JP4622213B2 (ja) 半導体装置
JP3468200B2 (ja) 半導体装置
JP3756422B2 (ja) 半導体装置
JP2007311610A (ja) 半導体装置、及び、その製造方法
JP3752449B2 (ja) 半導体装置
JPH07273220A (ja) キャパシタ形成方法
JP2007035947A (ja) 半導体装置及びその製造方法
JP2002368130A (ja) 半導体装置および薄膜キャパシタ
JP2005057302A (ja) 半導体装置
JP2004103619A (ja) 半導体記憶装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees