JP2004006516A - Inductor element and multi-layer substrate incorporating the same - Google Patents

Inductor element and multi-layer substrate incorporating the same Download PDF

Info

Publication number
JP2004006516A
JP2004006516A JP2002159937A JP2002159937A JP2004006516A JP 2004006516 A JP2004006516 A JP 2004006516A JP 2002159937 A JP2002159937 A JP 2002159937A JP 2002159937 A JP2002159937 A JP 2002159937A JP 2004006516 A JP2004006516 A JP 2004006516A
Authority
JP
Japan
Prior art keywords
inductor element
layer
inductance
coil
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002159937A
Other languages
Japanese (ja)
Inventor
Takayuki Fukada
深田 隆之
Hidekatsu Sekine
関根 秀克
Masahisa Tonegawa
利根川 雅久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2002159937A priority Critical patent/JP2004006516A/en
Publication of JP2004006516A publication Critical patent/JP2004006516A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inductor element whose fine adjustment of inductance can be performed readily and accurately and further to provide a multi-layer substrate incorporating the same. <P>SOLUTION: The inductor element is provided with linear adjustment regions 91a, 91b, 91c, 91d, 91e, 91f, 91g and 91h between adjacent spiral coils 81b and then the fine adjustment of the inductance is performed by cutting these linear regions with laser machining or the like. The inductance of each spiral coil is set slightly lower than the preset value when the adjustment regions are provided, so that the desired value of the inductance can be obtained while the adjustment regions are cut. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、インダクタンス調整可能なインダクタ素子及びインダクタ素子を内蔵した多層回路板に関する。
【0002】
【従来の技術】
従来のインダクタ素子及びインダクタ素子が内蔵された多層回路板について説明する。
ここで言う多層回路板とはプリント配線板及びインターポーザー基板を総称して用いており、インターポーザー基板はICチップや半導体素子とプリント配線板との仲立ちをするもので、BGA基板、MCM基板、SCM基板等が含まれる。
従来、多層回路板上もしくは多層回路坂内にパターンを描いてコイルを形成する場合、配線コイル層を2層もしくはそれ以上の層に分割し、各層の配線コイルをビア接続してソレノイドコイルを形成する方法と、配線コイル層に1層でうず巻きを描き、うず巻き型のプリントソレノイドコイルを形成する方法がある。
【0003】
上記うず巻き型のプリントソレノイドコイルに関しては、うず巻き型コイルの隣り合う配線コイル間を短絡することにより、インダクタンスの微調整を行う方法がU.S.Patent5461353号公報に記載されているだけで、うず巻き型のプリントソレノイドコイルに関するインダクタンスの微調整の方法について言及したものがない。
【0004】
【発明が解決しようとする課題】
本発明は、インダクタンスの微調整を手軽に、正確に行うことができるインダクタ素子及びそれを内蔵した多層回路板を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明に於いて上記課題を達成するために、まず請求項1においては、うず巻き型コイルを有するインダクタ素子であって、前記うず巻き型コイルの隣り合う配線コイル間にインダクタンス調整用の調整領域を設け、前記調整領域を加工することによりインダクタンスの微調整ができるようにしたことを特徴とするインダクタ素子としたものである。
【0006】
また、請求項2においては、少なくとも請求項1記載のインダクタ素子を備えていることを特徴とする多層回路板としたものである。
【0007】
【発明の実施の形態】
以下本発明の実施の形態につき説明する。
請求項1に係る本発明のインダクタ素子は、インダクタ素子のうず巻き型コイルの隣り合う配線コイル間にインダクタンス調整用の調整領域を設け、この調整領域を加工することによりインダクタンスの微調整ができるようにしたものである。
図1(a)〜(c)に、請求項1に係る本発明のインダクタ素子のうず巻き型コイルの一実施例を示す。
図2(a)〜(c)にに、請求項1に係る本発明のインダクタ素子のうず巻き型コイルの他の実施例を示す。
請求項1に係る本発明のインダクタ素子は、図1(a)〜(c)に示すように、うず巻き型コイルの隣り合う配線コイル間に線状もしくは面状の調整領域を設けたもので、この線状もしくは面状の調整領域をレーザー加工等により加工することによりインダクタンスの微調整を行うようにしたものである。
うず巻き型コイルのインダクタンスは、調整領域を設けた段階で、設定値よりも若干低めになるようにしておき、調整領域を切断加工していく段階で所望のインダクタンスが得られるようにする。
また、うず巻き型コイルの形状は、円形が一般的であるが、正方形、三角形など多重巻き型であれば特に限定されるものではない。
【0008】
うず巻き型コイルの具体的な形状は、図1(a)に示すように、うず巻き型コイルの最外周の隣り合う配線コイル81b間に線状の調整領域91a、91b及び91cと、最外周の一つ内側の隣り合う配線コイル81b間に線状の調整領域91hとを設けてうず巻き型コイル10aを形成したもので、図1(b)に示すように、うず巻き型コイルの最外周の隣り合う配線コイル81b間に線状の調整領域91a、91b、91c、91d及び91eを設けてうず巻き型コイル10bを形成したもので、図1(c)に示すように、うず巻き型コイルの最外周の隣り合う配線コイル81b間に線状の調整領域91a、91b、91c、91d、91e、91f及び91gを設けてうず巻き型コイル10cを形成したもので、この線状の調整領域91a、91b、91c、91d、91e、91f、91g及び91hをレーザー加工等で切断加工することにより、所望のインダクタンスを得るようにしたものである。図1(a)に示すうず巻き型コイル10aは、図1(b)及び(c)に示すうず巻き型コイル10b及び10cに比べるとインダクタンスの調整幅が大きくできるようになっている。
この線状の調整領域は、うず巻き型コイルのいずれの場所にも配置可能で、インダクタンス値、調整幅等により適宜配置する。
【0009】
うず巻き型コイルの具体的な別の形状は、図2(a)に示すように、うず巻き型コイルの最外周の隣り合う配線コイル81b間に面状の調整領域92aと、最外周の一つ内側の隣り合う配線コイル11間に面状の調整領域92dとを設けてうず巻き型コイル10dを形成したもので、図2(b)に示すように、うず巻き型コイルの最外周の隣り合う配線コイル81b間に面状の調整領域92bを設けてうず巻き型コイル10eを形成したもので、図2(c)に示すように、うず巻き型コイルの最外周の隣り合う配線コイル81b間に面状の調整領域92cを設けてうず巻き型コイル10fを形成したもので、この面状の調整領域91a、91b、91c及び91dをレーザー加工等で加工することにより、所望のインダクタンスが得られるようになっている。図2(a)に示すうず巻き型コイル10dは、図2(b)及び(c)に示すうず巻き型コイル10e及び10fに比べるとインダクタンスの調整幅が大きくできるようになっている。
この面状の調整領域は、レーザー加工等で面状の領域を加工していくため、線状の調整領域を切断加工するのに比べてさらに細かいインダクタンス調整が行えるようになる。
また、この面状の調整領域は、渦巻き型コイルのいずれの場所にも配置可能で、インダクタンス値、調整幅等により適宜配置する。
【0010】
請求項2に係る多層回路板の一実施例を図3に示す。
請求項2に係る本発明の多層回路板は、図3に示すように、絶縁基材11の両面に第1配線層21a及び第1配線層21b、第2配線層41c及び第2配線層41d、第3配線層84c及び第3配線層82dが形成された6層の多層回路板の最上層にキャパシタ素子60及びインダクタ素子80を形成したものである。上記多層回路板の例では、インダクタ素子80は最上層に形成されているため、インダクタンスの調整はインダクタ素子80の作製時にもできるが、多層回路板作成後にも調整できる。
【0011】
以下、請求項2に係る本発明の多層回路板の製造方法について説明する。
その多層回路板の製造方法の一例を図4(a)〜(e)、図5(f)〜(i)及び図6(j)に示す。
まず、不織布ガラスにエポキシ樹脂を含浸させた絶縁基材11の両面に第1配線層21a及び第1配線層21bを公知のフォトエッチングプロセスで形成する(図4(a)参照)。
次に、絶縁基材11及び第1配線層21a、第1配線層21b上に樹脂フィルム等を貼付して絶縁層31を形成する(図4(b)参照)。
次に、絶縁層31の所定位置にレーザー加工等によりビア用孔32を形成する(図4(c)参照)。
【0012】
次に、絶縁層31上及びビア用孔32内に無電解銅めっき等にて薄膜導体層(特に図示せず)を形成し、薄膜導体層をカソードにして電解銅めっきを行い、所定厚の導体層41及びフィルドビア42を形成する(図4(d)参照)。
次に、導体層41をパターニング処理して、キャパシタ用下部電極41a、第2配線層41b及び第2配線層41cを形成する(図4(e)参照)。
【0013】
次に、キャパシタ用下部電極41a、第2配線層41b及び第2配線層41c上に樹脂溶液を塗布するか、絶縁フィルムを貼着する等の方法で絶縁層51を形成する(図5(f)参照)。
【0014】
次に、絶縁層51の所定位置をレーザー加工等にて穴明け加工して、キャパシタ用下部電極41a上の絶縁層51に開口部52を、第2配線層41c及び第2配線層41d上の絶縁層51にビア用孔53を形成する工程(図5(g)参照)。
【0015】
次に、開口部52に誘電材を混入した樹脂溶液をスクリーン印刷、またはディスペンサー等で埋め込み、乾燥硬化、平坦化処理を行って誘電体層61を形成する(図5(h)参照)。
【0016】
次に、誘電体層61上、絶縁層51上及びビア用孔54内に無電解銅めっきにて薄膜導体層(特に図示せず)を形成し、薄膜導体層上に感光層を形成し、露光、現像等の一連のパターニング処理を行ってレジストパターン54を形成する。さらに、薄膜導体層をカソードにして電解銅めっきを行い、薄膜導体層上に所定厚の導体層81及びフィルドビア82を形成する(図5(i)参照)。
【0017】
次に、レジストパターン54を専用の剥離液で剥離し、レジストパターン下部にあった薄膜導体層を過硫酸アンモニウム水溶液でソフトエッチングして、キャパシタ用上部電極81aを形成してキャパシタ素子60を、うず巻き型コイルの最外周の隣り合う配線コイル81b間に線状もしくは面状の調整領域を形成し、線状もしくは面状の調整領域をレーザー加工等により切断加工してインダクタンス調整を行ってインダクタ素子80を、第3配線層81c及び第3配線層81dをそれぞれ形成し、キャパシタ素子60及びインダクタ素子80が形成された6層の多層回路板100を得る(図6(j)参照)。
ここで、インダクタ素子80のうず巻き型コイルの中心部はフィルドビア82にて第2配線層41bとビア接続されている。
【0018】
【実施例】
以下、実施例により本発明を詳細に説明する。
まず、不織布ガラスにエポキシ樹脂を含浸させた絶縁基材11の両面に18μmの銅箔を貼り合わせた銅張り積層板を用い、パターニング処理して第1配線層21a及び21bを形成し、プリプレグフィルムを貼り合わせて40μm厚の絶縁層31を形成し、絶縁層31の所定位置にレーザー加工にてビア用孔32を形成した(図4(a)〜(c)参照)。
【0019】
次に、絶縁層31上及びビア用孔32内に無電解銅めっきにて薄膜導体層を形成し、薄膜導体層をカソードにして電解銅めっきを行い、15μm厚の導体層41及びフィルドビア42を形成し、導体層41をパターニング処理して、キャパシタ用下部電極41a、第2配線層41b及び第2配線層41cを形成した(図4(d)〜(e)参照)。
【0020】
次に、キャパシタ用下部電極41a、第2配線層41b及び第2配線層41c上に低誘電率エポキシ系フィルムを貼り合わせて40μm厚の絶縁層51を形成した(図5(f)参照)。
【0021】
次に、絶縁層51の所定位置をレーザー加工にて穴明け加工して、キャパシタ用下部電極41a上の絶縁層51に開口部52を、第2配線層41c及び第2配線層41d上の絶縁層51にビア用孔53を形成した(図5(g)参照)。
【0022】
次に、開口部52にチタン酸バリウム粉をエポキシ系樹脂に高充填させた樹脂ペーストをディスペンサーで埋め込み、乾燥硬化、表面研磨を行って40μm厚の誘電体層61を形成した(図5(h)参照)。
【0023】
誘電体層61上、絶縁層51上及びビア用孔53内に無電解銅めっきにて薄膜導体層を形成し、薄膜導体層上に感光層を形成し、露光、現像等の一連のパターニング処理を行ってレジストパターン54を形成した。さらに、薄膜導体層をカソードにして電解銅めっきを行い、20μm厚の導体層81及びフィルドビア82を形成した(図5(i)参照)。
ここで、インダクタ素子のうず巻きコイルの形成に当たっては、図1(a)ののうず巻きコイル10aを使用した、
【0024】
次に、レジストパターン54を専用の剥離液で剥離し、レジストパターン下部にあった薄膜導体層を過硫酸アンモニウム水溶液でソフトエッチングして、キャパシタ用上部電極81aを形成してインダクタ素子60を、うず巻き型コイルの最外周の隣り合う配線コイル181b間に線状の調整領域91a、91b、91c、91hを形成し、線状の調整領域91a、91b、91c、91hをUV−YAGレーザーにて切断加工してインダクタンス調整を行ってインダクタ素子80を、第3配線層81c及び第3配線層81dをそれぞれ形成し、絶縁基材11の両面に3層の配線層、キャパシタ素子60及びインダクタ素子80が形成された多層回路板100を得た(図6(j)参照)。
【0025】
【発明の効果】
本発明のインダクタ素子は、うず巻き型コイルの隣り合う配線コイル間にインダクタンス調整用の調整領域を設けているので、この調整領域を加工することによりインダクタンスの微調整を正確に行うことができる。
本発明のインダクタ素子を組み込んだ多層回路板は、インダクタ素子のインダクタンス微調整が多層回路板になった状態でもできるため、多層回路板の設計自由度を持たせることができる。
【図面の簡単な説明】
【図1】(a)〜(c)は、請求項1に係る本発明のインダクタ素子のうず巻き型コイルの一実施例を示す模式平面図である。
【図2】(a)〜(c)は、請求項1に係る本発明のインダクタ素子のうず巻き型コイルの他の実施例を示す模式平面図である。
【図3】請求項2に係る本発明の多層回路板の一実施例を示す模式部分構成断面図である。
【図4】(a)〜(e)は、請求項2に係る本発明の多層回路板の製造方法における工程の一部を示す模式部分構成断面図である。
【図5】(f)〜(i)は、請求項2に係る本発明の多層回路板の製造方法における工程の一部を示す模式部分構成断面図である。
【図6】(j)は、請求項2に係る本発明の多層回路板の製造方法における工程の一部を示す模式部分構成断面図である。
【符号の説明】
10a、10b、10c、10d、10e、10f……うず巻き型コイル
11……絶縁基材
21a、21b……第1配線層
31、51……絶縁層
32、53……ビア用孔
41、81……導体層
41a……キャパシタ用下部電極
41b、41c……第2配線層
42、82……フィルドビア
52……開口部
54……レジストパターン
60……キャパシタ素子
61……誘電体層
80……インダクタ素子
81a……キャパシタ用上部電極
81b……配線コイル
81c、81d……第3配線層
91a、91b、91c、91d、91e、91f、91g、91h……線状の調整領域
92a、92b、92c、92d……面状の調整領域
100……多層回路板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an inductor element having adjustable inductance and a multilayer circuit board having the inductor element incorporated therein.
[0002]
[Prior art]
A conventional inductor element and a multilayer circuit board having the inductor element built therein will be described.
The term “multilayer circuit board” as used herein generally refers to a printed wiring board and an interposer board. The interposer board mediates between an IC chip or a semiconductor element and the printed wiring board, and includes a BGA board, an MCM board, An SCM substrate or the like is included.
Conventionally, when forming a coil by drawing a pattern on a multilayer circuit board or in a multilayer circuit slope, a wiring coil layer is divided into two or more layers, and a wiring coil of each layer is connected by via connection to form a solenoid coil. There is a method and a method of forming a spiral in a single layer on the wiring coil layer to form a spiral wound print solenoid coil.
[0003]
Regarding the spiral wound print solenoid coil, a method of finely adjusting the inductance by short-circuiting between adjacent wiring coils of the spiral wound coil is disclosed in U.S. Pat. S. Nothing is described in Patent No. 5,461,353, but a method of finely adjusting the inductance of the spirally wound print solenoid coil.
[0004]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION It is an object of the present invention to provide an inductor element capable of easily and precisely adjusting an inductance and a multilayer circuit board having the inductor element incorporated therein.
[0005]
[Means for Solving the Problems]
In order to achieve the above object in the present invention, first, in claim 1, an inductor element having a spiral wound coil, wherein an adjusting area for adjusting inductance is provided between wiring coils adjacent to the spiral wound coil. In addition, the inductance element can be finely adjusted by processing the adjustment region.
[0006]
According to a second aspect of the present invention, there is provided a multilayer circuit board including at least the inductor element according to the first aspect.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
In the inductor element according to the first aspect of the present invention, an adjustment area for adjusting inductance is provided between adjacent wiring coils of the spiral coil of the inductor element, and fine adjustment of inductance can be performed by processing the adjustment area. It was done.
FIGS. 1A to 1C show an embodiment of the spiral wound coil of the inductor element according to the present invention.
2A to 2C show another embodiment of the spiral wound coil of the inductor element according to the first aspect of the present invention.
As shown in FIGS. 1A to 1C, the inductor element according to the first aspect of the present invention has a linear or planar adjustment region provided between adjacent wiring coils of a spiral coil. Fine adjustment of the inductance is performed by processing the linear or planar adjustment region by laser processing or the like.
The inductance of the spiral coil is set to be slightly lower than the set value at the stage where the adjustment region is provided, and a desired inductance can be obtained at the stage of cutting the adjustment region.
The shape of the spiral coil is generally circular, but is not particularly limited as long as it is a multiple winding type such as a square or a triangle.
[0008]
As shown in FIG. 1A, the specific shape of the spiral wound coil is such that linear adjustment regions 91a, 91b, and 91c are formed between adjacent wiring coils 81b on the outermost periphery of the spiral wound coil, and one of the outermost circumferential portions is formed. The spiral-shaped coil 10a is formed by providing a linear adjustment region 91h between adjacent wiring coils 81b on the inner side, and as shown in FIG. 1B, the outermost adjacent wiring of the spiral-wound coil is formed. The spiral coil 10b is formed by providing linear adjustment regions 91a, 91b, 91c, 91d, and 91e between the coils 81b. As shown in FIG. 1C, the spiral coil 10b is adjacent to the outermost periphery of the spiral coil. The spiral-shaped coil 10c is formed by providing linear adjustment regions 91a, 91b, 91c, 91d, 91e, 91f and 91g between the wiring coils 81b. a, 91b, 91c, 91d, 91e, 91f, by cutting by laser machining or the like 91g and 91h, is obtained so as to obtain a desired inductance. The spiral wound coil 10a shown in FIG. 1A has a larger inductance adjustment width than the spiral wound coils 10b and 10c shown in FIGS. 1B and 1C.
The linear adjustment region can be arranged at any place of the spiral coil, and is appropriately arranged according to the inductance value, the adjustment width, and the like.
[0009]
As shown in FIG. 2A, another specific shape of the spiral wound coil is, as shown in FIG. 2A, a planar adjustment region 92a between adjacent wiring coils 81b on the outermost periphery of the spiral wound coil, and one inside of the outermost periphery. The spiral coil 10d is formed by providing a planar adjustment region 92d between adjacent wiring coils 11 of FIG. 2, and as shown in FIG. 2B, the outermost adjacent wiring coil 81b of the spiral coil is formed. The spiral-shaped coil 10e is formed by providing a planar adjustment region 92b between them, and as shown in FIG. 2C, the planar-shaped adjustment region is provided between adjacent wiring coils 81b on the outermost periphery of the spiral coil. A spiral coil 10f is formed by providing a coil 92f, and a desired inductance can be obtained by processing the planar adjustment regions 91a, 91b, 91c and 91d by laser processing or the like. It has become. The spiral coil 10d shown in FIG. 2A has a larger inductance adjustment width than the spiral coils 10e and 10f shown in FIGS. 2B and 2C.
Since the planar adjustment region is formed by processing the planar region by laser processing or the like, finer inductance adjustment can be performed as compared to cutting the linear adjustment region.
Further, this planar adjustment region can be arranged at any place of the spiral coil, and is appropriately arranged according to the inductance value, the adjustment width and the like.
[0010]
One embodiment of the multilayer circuit board according to claim 2 is shown in FIG.
As shown in FIG. 3, the multilayer circuit board according to the second aspect of the present invention has a first wiring layer 21a, a first wiring layer 21b, a second wiring layer 41c, and a second wiring layer 41d on both surfaces of an insulating base material 11. The capacitor element 60 and the inductor element 80 are formed on the uppermost layer of a six-layer multilayer circuit board on which the third wiring layer 84c and the third wiring layer 82d are formed. In the example of the multilayer circuit board, since the inductor element 80 is formed in the uppermost layer, the inductance can be adjusted when the inductor element 80 is manufactured, but can be adjusted after the multilayer circuit board is manufactured.
[0011]
Hereinafter, a method for manufacturing a multilayer circuit board of the present invention according to claim 2 will be described.
4A to 4E, 5F to 5I, and 6J show an example of a method for manufacturing the multilayer circuit board.
First, a first wiring layer 21a and a first wiring layer 21b are formed on both surfaces of an insulating base material 11 in which nonwoven glass is impregnated with an epoxy resin by a known photoetching process (see FIG. 4A).
Next, a resin film or the like is attached on the insulating base material 11, the first wiring layer 21a, and the first wiring layer 21b to form the insulating layer 31 (see FIG. 4B).
Next, via holes 32 are formed at predetermined positions of the insulating layer 31 by laser processing or the like (see FIG. 4C).
[0012]
Next, a thin-film conductor layer (not particularly shown) is formed on the insulating layer 31 and in the via hole 32 by electroless copper plating or the like, electrolytic copper plating is performed using the thin-film conductor layer as a cathode, and a predetermined thickness is formed. The conductor layer 41 and the filled via 42 are formed (see FIG. 4D).
Next, the conductor layer 41 is patterned to form the capacitor lower electrode 41a, the second wiring layer 41b, and the second wiring layer 41c (see FIG. 4E).
[0013]
Next, an insulating layer 51 is formed on the capacitor lower electrode 41a, the second wiring layer 41b, and the second wiring layer 41c by applying a resin solution or attaching an insulating film (FIG. 5 (f) )reference).
[0014]
Next, a predetermined position of the insulating layer 51 is drilled by laser processing or the like, so that an opening 52 is formed in the insulating layer 51 on the capacitor lower electrode 41a and on the second wiring layer 41c and the second wiring layer 41d. A step of forming a via hole 53 in the insulating layer 51 (see FIG. 5G).
[0015]
Next, a resin solution mixed with a dielectric material is embedded in the opening 52 by screen printing or a dispenser or the like, and is dried, cured, and planarized to form a dielectric layer 61 (see FIG. 5H).
[0016]
Next, a thin film conductor layer (not particularly shown) is formed by electroless copper plating on the dielectric layer 61, the insulation layer 51, and in the via hole 54, and a photosensitive layer is formed on the thin film conductor layer. A series of patterning processes such as exposure and development are performed to form a resist pattern 54. Further, electrolytic copper plating is performed using the thin film conductor layer as a cathode to form a conductor layer 81 and a filled via 82 having a predetermined thickness on the thin film conductor layer (see FIG. 5 (i)).
[0017]
Next, the resist pattern 54 is stripped with a dedicated stripper, and the thin film conductor layer under the resist pattern is soft-etched with an aqueous solution of ammonium persulfate to form a capacitor upper electrode 81a. A linear or planar adjustment region is formed between adjacent wiring coils 81b on the outermost periphery of the coil, and the linear or planar adjustment region is cut by laser processing or the like to perform inductance adjustment, thereby forming the inductor element 80. Then, a third wiring layer 81c and a third wiring layer 81d are respectively formed to obtain a six-layer multilayer circuit board 100 on which the capacitor element 60 and the inductor element 80 are formed (see FIG. 6 (j)).
Here, the center of the spiral coil of the inductor element 80 is connected to the second wiring layer 41b via the filled via 82.
[0018]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
First, using a copper-clad laminate in which 18 μm copper foil is bonded to both sides of an insulating base material 11 in which non-woven glass is impregnated with an epoxy resin, patterning is performed to form first wiring layers 21 a and 21 b, To form an insulating layer 31 having a thickness of 40 μm, and a via hole 32 was formed at a predetermined position of the insulating layer 31 by laser processing (see FIGS. 4A to 4C).
[0019]
Next, a thin film conductor layer is formed on the insulating layer 31 and in the via hole 32 by electroless copper plating, and electrolytic copper plating is performed using the thin film conductor layer as a cathode to form a 15 μm thick conductor layer 41 and a filled via 42. Then, the conductor layer 41 was patterned to form a capacitor lower electrode 41a, a second wiring layer 41b, and a second wiring layer 41c (see FIGS. 4D to 4E).
[0020]
Next, a 40 μm thick insulating layer 51 was formed by bonding a low dielectric constant epoxy-based film on the capacitor lower electrode 41a, the second wiring layer 41b, and the second wiring layer 41c (see FIG. 5F).
[0021]
Next, a predetermined position of the insulating layer 51 is drilled by laser processing so that an opening 52 is formed in the insulating layer 51 on the capacitor lower electrode 41a and the insulating layer 51 on the second wiring layer 41c and the second wiring layer 41d. Via holes 53 were formed in the layer 51 (see FIG. 5G).
[0022]
Next, a resin paste in which barium titanate powder was highly filled with an epoxy resin was embedded in the opening 52 with a dispenser, dried and cured, and the surface was polished to form a dielectric layer 61 having a thickness of 40 μm (FIG. 5 (h)). )reference).
[0023]
A thin film conductor layer is formed by electroless copper plating on the dielectric layer 61, the insulation layer 51 and the via hole 53, a photosensitive layer is formed on the thin film conductor layer, and a series of patterning processes such as exposure and development are performed. Was performed to form a resist pattern 54. Further, electrolytic copper plating was performed using the thin film conductor layer as a cathode to form a conductor layer 81 and a filled via 82 having a thickness of 20 μm (see FIG. 5 (i)).
Here, in forming the spiral coil of the inductor element, the spiral coil 10a of FIG.
[0024]
Next, the resist pattern 54 is stripped with a dedicated stripper, and the thin film conductor layer under the resist pattern is soft-etched with an aqueous solution of ammonium persulfate to form a capacitor upper electrode 81a. Linear adjustment regions 91a, 91b, 91c, and 91h are formed between adjacent wiring coils 181b on the outermost periphery of the coil, and the linear adjustment regions 91a, 91b, 91c, and 91h are cut by a UV-YAG laser. Inductance adjustment is performed to form the inductor element 80, the third wiring layer 81c and the third wiring layer 81d, respectively, and the three wiring layers, the capacitor element 60, and the inductor element 80 are formed on both surfaces of the insulating base material 11. A multilayer circuit board 100 was obtained (see FIG. 6 (j)).
[0025]
【The invention's effect】
In the inductor element of the present invention, since the adjustment region for adjusting the inductance is provided between the wiring coils adjacent to the spiral coil, fine adjustment of the inductance can be accurately performed by processing the adjustment region.
Since the multilayer circuit board incorporating the inductor element of the present invention can perform the fine adjustment of the inductance of the inductor element even in the state of the multilayer circuit board, it is possible to have a degree of freedom in designing the multilayer circuit board.
[Brief description of the drawings]
1 (a) to 1 (c) are schematic plan views showing one embodiment of a spiral coil of an inductor element according to the first aspect of the present invention.
FIGS. 2A to 2C are schematic plan views showing another embodiment of the spiral wound coil of the inductor element according to the first aspect of the present invention.
FIG. 3 is a schematic partial configuration sectional view showing one embodiment of the multilayer circuit board of the present invention according to claim 2;
4 (a) to 4 (e) are schematic partial sectional views showing a part of the steps in the method for manufacturing a multilayer circuit board according to the second aspect of the present invention.
5 (f) to 5 (i) are schematic partial sectional views showing a part of the steps in the method for manufacturing a multilayer circuit board according to the second aspect of the present invention.
FIG. 6 (j) is a schematic partial sectional view showing a part of the steps in the method for manufacturing a multilayer circuit board according to the second aspect of the present invention.
[Explanation of symbols]
10a, 10b, 10c, 10d, 10e, 10f ... spiral coil 11 ... insulating bases 21a, 21b ... first wiring layers 31, 51 ... insulating layers 32, 53 ... via holes 41, 81 ... ... Conductor layer 41a... Capacitor lower electrodes 41b and 41c... Second wiring layers 42 and 82... Filled via 52... Opening 54... Resist pattern 60... Capacitor element 61. Element 81a Capacitor upper electrode 81b Wiring coils 81c, 81d Third wiring layers 91a, 91b, 91c, 91d, 91e, 91f, 91g, 91h ... Linear adjustment regions 92a, 92b, 92c, 92d: planar adjustment area 100: multilayer circuit board

Claims (2)

うず巻き型コイルを有するインダクタ素子であって、前記うず巻き型コイルの隣り合う配線コイル間にインダクタンス調整用の調整領域を設け、前記調整領域を加工することによりインダクタンスの微調整ができるようにしたことを特徴とするインダクタ素子。An inductor element having a spiral wound coil, wherein an adjustment region for inductance adjustment is provided between wiring coils adjacent to the spiral coil, and fine adjustment of inductance can be performed by processing the adjustment region. Characteristic inductor element. 少なくとも請求項1記載のインダクタ素子を備えていることを特徴とする多層回路板。A multilayer circuit board comprising at least the inductor element according to claim 1.
JP2002159937A 2002-05-31 2002-05-31 Inductor element and multi-layer substrate incorporating the same Pending JP2004006516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002159937A JP2004006516A (en) 2002-05-31 2002-05-31 Inductor element and multi-layer substrate incorporating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002159937A JP2004006516A (en) 2002-05-31 2002-05-31 Inductor element and multi-layer substrate incorporating the same

Publications (1)

Publication Number Publication Date
JP2004006516A true JP2004006516A (en) 2004-01-08

Family

ID=30429514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002159937A Pending JP2004006516A (en) 2002-05-31 2002-05-31 Inductor element and multi-layer substrate incorporating the same

Country Status (1)

Country Link
JP (1) JP2004006516A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347431A (en) * 2004-06-02 2005-12-15 Ricoh Co Ltd Semiconductor integrated circuit and its internal circuitry layout method
CN115966547A (en) * 2021-09-17 2023-04-14 上海玻芯成微电子科技有限公司 Inductor and chip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347431A (en) * 2004-06-02 2005-12-15 Ricoh Co Ltd Semiconductor integrated circuit and its internal circuitry layout method
JP4584629B2 (en) * 2004-06-02 2010-11-24 株式会社リコー Semiconductor integrated circuit and internal circuit layout method thereof
CN115966547A (en) * 2021-09-17 2023-04-14 上海玻芯成微电子科技有限公司 Inductor and chip
CN115966547B (en) * 2021-09-17 2023-12-08 上海玻芯成微电子科技有限公司 Inductor and chip

Similar Documents

Publication Publication Date Title
US6542379B1 (en) Circuitry with integrated passive components and method for producing
US7676921B2 (en) Method of manufacturing printed circuit board including embedded capacitors
US7679925B2 (en) Method for fabricating wiring board provided with passive element, and wiring board provided with passive element
KR101862409B1 (en) Chip inductor and method for manufacturing chip inductor
WO2003034494A1 (en) Module component
KR20160111153A (en) Inductor and method of maufacturing the same
JP4394999B2 (en) Passive element built-in wiring board and manufacturing method thereof
JP3436525B2 (en) Multilayer substrate, electronic component, and method of manufacturing multilayer substrate
JP2005347286A (en) Multilayered substrate with built-in coil, semiconductor chip, and manufacturing method thereof
US7573721B2 (en) Embedded passive device structure and manufacturing method thereof
JP2004006516A (en) Inductor element and multi-layer substrate incorporating the same
JP2004127966A (en) Inductive element and its manufacturing method
JP2006054208A (en) Variable inductance element, multilayer substrate incorporating variable inductance element, semiconductor chip and chip type variable inductance element
JP2005347782A (en) Lc parallel resonance circuit, multilayer substrate incorporating lc parallel resonance circuit, and their manufacturing process
JP4515477B2 (en) Method for manufacturing wiring board with passive element
US20090021887A1 (en) Multi-layer capacitor and wiring board having a built-in capacitor
JP4385729B2 (en) Capacitor element built-in multilayer circuit board and manufacturing method thereof
JP2004193319A (en) Wiring circuit board with built-in toroidal coil and its manufacturing method
JP4529614B2 (en) Method for manufacturing printed wiring board
JP2004014559A (en) Circuit board, multilayered circuit board, and method of manufacturing the same
JP2005347781A (en) Lc parallel resonance circuit, multilayer substrate incorporating lc parallel resonance circuit, and their manufacturing process
JP2004241512A (en) Conductive pattern of printed wiring board and print wiring board
JP2004228397A (en) Manufacturing method of multilayer printed wiring board incorporating stacked chip capacitor
JP2005072229A (en) Multilayer printed-wiring board incorporating capacitor element
JP2003324019A (en) Inductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603