JP2003507728A - 振動形回転角レートセンサのためのバイアス電圧を発生する装置 - Google Patents

振動形回転角レートセンサのためのバイアス電圧を発生する装置

Info

Publication number
JP2003507728A
JP2003507728A JP2001519142A JP2001519142A JP2003507728A JP 2003507728 A JP2003507728 A JP 2003507728A JP 2001519142 A JP2001519142 A JP 2001519142A JP 2001519142 A JP2001519142 A JP 2001519142A JP 2003507728 A JP2003507728 A JP 2003507728A
Authority
JP
Japan
Prior art keywords
signal
bias voltage
rotation angle
angle rate
rate sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001519142A
Other languages
English (en)
Inventor
フンク カールステン
ノイル ラインハルト
ローレンツ グンナー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2003507728A publication Critical patent/JP2003507728A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5726Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5705Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis
    • G01C19/5712Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis the devices involving a micromechanical structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Gyroscopes (AREA)

Abstract

(57)【要約】 本発明は、回転角レートセンサの電極のためのバイアス電圧を発生する装置に関する。回転角レート信号および直交信号の評価により適応形直交補償器を用いることで制御信号が形成され、これはバイアス電圧発生装置によりバイアス電圧に変換される。そしてこのバイアス電圧は、サイズモ質量体または回転角レートセンサの質量体の下に配置された電極装置へ供給される。これによりセンサ構造体を、出力側に現れる直交信号が最低限に抑えられるよう傾けることができる。本発明による別の特徴によれば、バイアス電圧発生装置により形成されたバイアス電圧が帯域幅調整回路の出力信号に依存して、検出運動の振幅周波数特性が所望の帯域幅をもつように変えられる。

Description

【発明の詳細な説明】
【0001】 従来の技術 本発明は、請求項1の上位概念に記載の特徴を備えた、回転運動または直線運
動しながら振動する回転角レートセンサのためのバイアス電圧を発生する装置に
関する。
【0002】 コリオリの効果を利用した回転角レートセンサないしはヨーレートセンサは、
自動車における車両ダイナミクス制御のためのシステムとの関連で知られており
、本出願人によりマイクロマシニング型回転角レートセンサとして市販されてい
る。回転角レートセンサは1つまたは複数のサイズモ質量体ないしは慣性質量体
を有しており、これは電子回路において発せられた電圧により励振されて機械的
に振動するようになる。これは1つまたは複数の加速度センサに作用し、そのセ
ンサは系が回転したとき、振動中の質量体に作用を及ぼすコリオリ加速度を測定
する。励振信号と加速度信号から、評価回路によって系の回転角レートを求める
ことができる。
【0003】 恣意的に形成される付加的な加速度をセンサに作用させるため、1つまたは複
数の加速度センサに与えられる付加的な電気的テスト信号を形成することができ
る。これによりたとえば、加速度センサや後置接続された評価回路の特性に関す
る情報を得ることができる。したがって、エラー殊に系統的エラーないしは系統
誤差を検出することもできる。このことは格別に重要である。それというのも、
コリオリの効果を評価する回転角レートセンサは系統誤差をもっているからであ
り、それが測定信号に及ぼす作用を評価手法の適切な選択により最小限に抑えな
ければならないからである。
【0004】 DE 199 10 415 には、第1の発振器を第2の発振器と整合調整する装置が示さ
れている。この場合、第1の発振器の応答特性を求めるため、第2の発振器の振
動に関して対称的に周波数および位相のずらされた2つの信号が用いられる。そ
して応答特性の差に依存して、第1の発振器が第2の発振器に関して整合調整さ
れる。振幅補正のため、出力信号と応答特性の和とから商が形成される。この方
法および装置は殊に、回転角レートセンサにおいて使用することができる。これ
により、コリオリ力に対する評価条件を安定化させることができるようになる。
また、温度変動や老化作用に対しても自動的に追従制御することができ、その際
、制御回路によって両方の発振器の振動が相互に整合される。公知の方法によれ
ば、検出モードを発振器周波数からできるかぎり遠くに離す必要がなくなる。
【0005】 DE-A-196 53 021 によれば、殊にコリオリ加速度つまりは回転角レートに対す
る尺度である回転角レートを回転角レートセンサによって求める装置が公知であ
る。この回転角レートセンサの出力信号は、パルス幅変調された信号またはシグ
マデルタ信号である。これはディジタル評価回路へ供給され、この回路は減算器
、乗算器および移相器を有している。移相器には搬送波信号が供給され、この信
号により回転角レートセンサが励振されて振動するようになる。この場合、ディ
ジタル移相器は搬送波信号をコリオリ加速度成分と同相にし、それに属する信号
が乗算器へ供給される。そして乗算器の出力信号はD/A変換器およびローパス
フィルタを介して出力側へ導かれ、そこから所望の回転角レート信号を取り出す
ことができる。
【0006】 発明の利点 回転運動または直線運動しながら振動する回転角レートセンサのためのバイア
ス電圧を発生する本発明による装置によりもたらされる利点とは、回転角レート
信号検出に悪影響を及ぼす可能性のある直交信号の発生が、電極装置のために適
切なバイアス電圧信号を形成することにより回避され、もしくは少なくとも最低
限に抑えられることである。このようなバイアス電圧信号に基づき、たとえばデ
ィスク状に構成されている回転角レートセンサに作用を及ぼす静電力が現れる。
これによって、直交信号が最小化されるよう回転角レートセンサが傾けられる。
回転角レートセンサを所望の方向に傾斜させるには、各検出電極間に電位差を設
定することで十分である。このことは直交補償器からの2つの出力信号UQ1
およびUQ2 を与えることにより行うことができ、その際にこれらの出力信号
は電極に与えられたバイアス電圧に作用を及ぼす。有利には直交信号を補償する
ため、回転運動をする回転角レートセンサであればセンサ構造体のもとに配置さ
れた4つの電極に、直線運動をする回転角レートセンサであればそれらのうち少
なくとも2つの電極に、適切なバイアス電圧が印加される。
【0007】 本発明による装置の別の利点は、測定分解能が改善されること、および直交成
分が適応形で抑圧されることから老化および温度に対する依存性や調整の必要性
が回避されることである。
【0008】 従属請求項には本発明の別の利点が示されている。
【0009】 図面 次に、図面に描かれている実施例に基づき本発明について詳しく説明する。
【0010】 図1は、回転運動しながら振動する回転角レートセンサの基本原理を説明する
図である。
【0011】 図2は、サイズモ質量体における電極構造を描いた図である。
【0012】 図3は、回転運動しながら振動する回転角レートセンサのためのバイアス電圧
発生装置のブロック回路図である。
【0013】 図4は、検出運動の振幅周波数特性を示すダイアグラムである。
【0014】 実施例の説明 図1には、回転運動をしながら振動する回転角レートセンサの基本原理を説明
するための図が描かれている。ディスク状の構造体が、チップ表面に対し垂直な
軸zを中心にした振動状態におかれる。角運動量保存則に基づき、この構造体は
外部からもたらされたy軸を中心とする回転速度(回転角レートないしはヨーレ
ート)に対して反応し、その際、駆動運動軸zおよび回転角レート軸yに対して
垂直な軸xを中心にしてディスク状構造体を傾ける回転トルクを伴う。x軸を中
心にしたこの検出運動は、この構造体下方の基板上に設けられた電極によって、
容量の変化を介して静電的に検出される。図2にはその配置構成が示されており
、これによればセンサのサイズモ質量体Mのもとで電極構造体Eが示されている
【0015】 得られた測定信号は容量電圧変換器へ供給され、そこにおいて測定すべき回転
角レートと乗算された駆動運動の回転速度に対応する信号が発生する。通信技術
的にみれば、搬送波のない両側波帯振幅変調である。そして後続の信号処理によ
り、同期復調およびローパスフィルタリングを行うことで所望の回転角レート信
号が得られる。
【0016】 ところが実際の回転角レートセンサであると検出容量に関して、駆動運動の回
転速度と同相の検出運動の励起に対応し回転角レートに比例する前述の信号だけ
でなく、駆動運動の振幅もしくは加速度と同相で検出運動を励起する信号も発生
する。これは測定すべき回転角レートとは無関係に存在し、回転角レート信号の
評価に悪影響を及ぼす妨害信号である。したがってたとえば、達成可能な測定分
解能が劣化する。このような妨害信号は測定信号に対し90゜位相がずれている
。したがってこれは電気的なベクトル図において測定信号に対し垂直であり、そ
れゆえ直交信号と称する。
【0017】 直交信号の発生する理由は基本的に、マイクロマシニング型センサ素子の製造
時に発生する欠陥である。
【0018】 本発明によれば、上述の直交信号がセンサ機構においてすでに補償される。こ
の目的で、ディジタル適応形アルゴリズムを利用して適切なやり方でディスク状
のセンサ構造体に対し作用が及ぼされ、それによって直交信号がまずは現れない
ようにするかまたは少なくとも最小限に抑えられるようにする。このようにする
ことで有利には、信号評価に対し直交信号が及ぼす前述の不所望な影響も避けら
れる。
【0019】 このような信号評価によって、容量電圧変換器から到来する振幅変調され回転
角レートに比例する信号が様々な妨害信号から抽出される。妨害信号はたとえば
メカニズムやエレクトロニクスのノイズかもしれないが、妨害加速度によって引
き起こされる可能性もある。これらの理由や感度上昇の理由から有利であるのは
、検出運動にあたり検出軸を中心とした機械的な構造体の共振を利用することで
ある。
【0020】 しかし本出願人のDRS−MN2のような機械的な構造の場合、駆動共振と検
出共振は必ずしも重なり合っておらず、しかも製造公差によって分散している。
このため、検出共振周波数を駆動検出周波数に合わせて強制する検出共振コント
ロールが必要とされる。このような共振コントローラは、先に挙げた DE 199 10
415 に記載されている。
【0021】 その際に生じる問題点は、検出運動における共振上昇の帯域幅である。DRS
−MM2のような構造の場合、この帯域幅は検出共振の相応のQに起因して数H
zにすぎない。したがって回転角レート測定の帯域幅もやはり数Hzとなる。こ
れは仕様において一般的に要求される50〜100Hzに比べてあまりにも小さ
すぎる。たしかに、構造体を取り囲むガス圧力を高め、つまりは共振上昇が適合
した帯域幅をもつようになるまで、共振を弱めることはできよう。しかしながら
それと同時に機械的なノイズも増大し、また、駆動共振が弱められ、その結果、
測定分解能が低下するし、所要駆動電圧が大きくなってしまう。これと同時に、
測定感度の温度依存性も増大してしまう。これらの作用はすべて非常に望ましく
ないものである。
【0022】 ところが、検出共振を適切に抑圧する同じ効果は電子的な帯域幅調整によって
も達成することができる。同時にこれにより、検出運動つまりはセンサ感度の共
振上昇の温度依存性に関する利点も得られる。
【0023】 図3には、回転運動しながら振動する回転角レートセンサのためのバイアス電
圧発生装置のブロック回路図が示されている。これを同じ目的で直線的に振動す
る回転角レートセンサにも使用することができる。
【0024】 回転角レートセンサ1により形成され回路点P およびP に加わる測定信
号有利には容量測定信号は、容量電圧変換器2へ供給される。この変換器はその
出力側から信号UΔC を送出し、この信号は測定すべき回転角レートと乗算さ
れた駆動運動の回転速度に相応する。さらにこの信号は適応形位相補償器3、帯
域幅調整回路4および共振コントローラ5へ供給される。
【0025】 適応形位相補償器3のもつ役割は、テスト信号発生器6において形成され回転
角レートセンサを励振して振動させる信号U を、容量電圧変換器2の出力信
号中に含まれているコリオリ加速度成分と同相にすることである。このことはた
とえば、本出願人による先に挙げた特許出願 196 53 021 に記載されているよう
にして行われる。LMS(最小二乗平均 least-mean-square)アルゴリズムに従
って求められる位相補償器3の出力信号U が同期復調器7へ供給される。こ
れにはさらに復調搬送波信号UTq およびUTr が供給され、これはやはり適
応形位相補償器においてテスト信号発生器6の信号U および容量電圧変換器
2の出力信号UΔC の評価により得られる。
【0026】 同期復調器7において、信号U および復調搬送波UTq およびUTr
ら乗算ならびにそれに続くローパスフィルタリングにより、望ましい回転角レー
ト信号U および直交信号U が求められる。
【0027】 適応形位相補償器3において求められた復調搬送波信号UTq およびUTr
も供給される適応形直交補償器8により、回転角レート信号U および直交信
号U から制御信号UQ1 およびUQ2 が求められ、これはバイアス電圧発
生装置9に供給される。これらの制御信号UQ1 およびUQ2 はディジタル適
応形アルゴリズムに即して、回転角レートセンサの検出電極に直流電圧レベルを
印加するために用いられる。これは発生した直交信号U が最小化されるまで
、もしくは完全に消失するまで、適応形アルゴリズムによって変えられる。この
目的で様々なアルゴリズムを使用することができ、たとえば最急降下法による最
適化アルゴリズムを使用することができる。
【0028】 このような方法の場合、小さい電圧変動が交互にUQ1 およびUQ2 を介し
て電極に与えられ、それに対する直交信号の反応が評価される。直交が低下した
場合、別の同種の電圧変化が出力信号に与えられる。直交が上昇したときには、
逆の極性の電圧変化が与えられる。これと同時に、電圧変化の大きさが残留する
直交の値に従い整合される。このようにして直交が最低限に抑えられ、理想的に
はそれが完全に消失する。
【0029】 バイアス電圧発生装置9には既述の制御電圧UQ1 およびUQ2 のほか、別
の入力信号U,U およびU も供給される。
【0030】 この信号U はテスト信号発生器6において生成される。このテスト信号発
生器はたとえば100Hzの周波数f を使用し、そこからf +f およ
びf −f 付近の周波数成分をもつテスト信号U を生成する。ここでf
は振動体の固有周波数を表す。このテスト信号は、バイアス電圧発生装置9
を介して回転角レートセンサ1に到達し、また、直接(すでに説明したように)
適応形位相補償器3へも到達する。さらに信号U はその個別成分のかたちで
も共振コントローラ5へ供給される。
【0031】 共振コントローラ5は信号U のそれらの個別成分および容量電圧変換器2
の出力信号UΔC を用いて制御電圧U を求め、これは共振コントローラ5の
出力側から送出され、バイアス電圧発生装置9へ供給される。
【0032】 この種の共振コントローラの実例は、本出願人による先に挙げた DE 199 10 4
15 に示されている。求められた制御電圧U は、共通のバイアス電圧として4
つの電極すべてに供給される。これによりセンサ素子の検出運動における有効な
ばねの剛性は、センサ素子の動作周波数と検出運動の共振周波数が一致するまで
低減される。このような共振コントローラを使用することの利点は、検出モード
を発振器周波数からできるかぎり遠ざけるようにする必要がもはやないことであ
る。共振上昇によって引き起こされる振幅誤差はもはや発生しない。それという
のも、定常化状態が持続的な共振コントロールにより安定されて保持されるから
である。
【0033】 帯域幅調整回路4において信号U が形成され、この回路の入力側には容量
電圧変換器2の出力信号UΔC が供給される。したがってセンサ素子の検出運
動における電子的な帯域幅調整のために、帯域幅調整回路の出力信号U とバ
イアス電圧発生装置を介してセンサ素子へ信号UΔC が適切にフィードバック
される。この目的で一種のポジションコントローラが用いられ、これは90゜だ
け位相のずらされた成分を有する。そのためにたとえばDT コントローラ、
PDT1コントローラ、PIDT コントローラなどが対象となる。しかしこ
れらのコントローラは一般的なポジションコントローラのようには駆動されない
。なぜならばそれらによって、検出運動の伝達関数が不適切に変えられてしまう
からである。一般的なポジションコントローラとは異なりこのコントローラは制
御ループの帰還分岐中に配置され、きちんと定められた比較的小さいループゲイ
ンだけが設定される。そしてこのループゲインは、検出運動における共振の所望
の帯域幅が生じるよう、共振極をs平面において仮想の軸から離す。
【0034】 図4には、帯域幅調整を行わなかった場合(破線)と行った場合(実線)の検
出運動の振幅周波数特性が示されている。この場合、振幅特性は周波数0のとき
の利得に関連づけられている。また、検出運動の理論的な減衰定数はD=0.0
1とし、動作周波数はたとえば2kHzである。ここではDT コントローラ
を使用した。センサ素子の検出共振における本来のQが大きければ大きいほど、
帯域幅調整により維持されるQつまりはセンサ全体の帯域幅ならびに測定感度は
、温度や老化やガス圧力によるセンサ素子の本来のQの変化とは無関係になる。
【0035】 このような電子帯域幅調整を行うことのさらに別の利点は、製造公差や老化や
温度によるセンサ素子の検出運動のQの変動が抑圧されることである。さらにこ
のような電子帯域幅調整は、たとえばガス圧力によるような機械的なQ調整より
も簡単に実現できる。また、センサ全体の測定感度に関する温度依存性も非常に
小さくなっている。
【0036】 バイアス電圧発生回路9はそこに供給される信号を利用して、回転角レートセ
ンサのサイズモ質量体の下に配置された4つの電極のために4つのバイアス電圧
、U、U、U を発生する。これは次式に従って行われる: U =U +UQ1 +U +U =−U −UQ1−U +U =UQ2 +U =−UQ2 +U また、BITE信号もその個所に供給することができる。2つの電極だけを使
う直線的に振動する回転角レートセンサであれば、電圧U とU だけを使用
する。
【0037】 容量電圧変換器10を介して回転角レートセンサ1から導出された入力信号が
供給される振幅安定化回路11によって出力信号が形成され、その出力信号に基
づきセンサは前述の図1に示されているz軸を中心として一定の振幅をもつ回転
振動状態におかれる。この出力信号の形成は、振幅制御を伴う振動回路によって
行われる。これによってセンサ素子は、z軸を中心とした固有周波数f で振
動するようになる。
【図面の簡単な説明】
【図1】 回転運動しながら振動する回転角レートセンサの基本原理を説明する図である
【図2】 サイズモ質量体における電極構造を描いた図である。
【図3】 回転運動しながら振動する回転角レートセンサのためのバイアス電圧発生装置
のブロック回路図である。
【図4】 検出運動の振幅周波数特性を示すダイアグラムである。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 グンナー ローレンツ ドイツ連邦共和国 ゲアリンゲン フェゾ ウラー シュトラーセ 38 Fターム(参考) 2F029 AA02 AC04 AD02 AD08 2F105 AA02 BB01 BB09 CC08 CD03 CD06 CD11

Claims (14)

    【特許請求の範囲】
  1. 【請求項1】 回転運動または直線運動しながら振動する回転角レートセン
    サのためのバイアス電圧を発生する装置であって、 該回転角レートセンサの出力側から少なくとも1つの測定信号が取り出され、
    該信号から回転角レートセンサに接続された評価回路により回転角レート信号が
    求められ、前記回転角レートセンサは少なくとも2つの電極を備えた電極装置を
    有しており、該電極はバイアス電圧発生装置と接続されている、 回転角レートセンサのためのバイアス電圧を発生する装置において、 適応形直交補償器(8)が設けられており、該補償器の入力側は評価回路(2
    ,3,7)と接続されており、出力側はバイアス電圧発生装置(9)と接続され
    ていることを特徴とする、 回転角レートセンサのためのバイアス電圧を発生する装置。
  2. 【請求項2】 前記測定信号は容量測定信号であり、前記評価回路は容量/
    電圧変換器(2)である、請求項1記載の装置。
  3. 【請求項3】 前記評価回路は適応形位相補償器(3)と同期復調器(7)
    を有する、請求項1または2記載の装置。
  4. 【請求項4】 前記適応形位相補償器(3)は、位相のずらされた測定信号
    (U)と復調搬送波信号(UTq,UTr)のための出力側を有する、請求項
    1から3のいずれか1項記載の装置。
  5. 【請求項5】 復調搬送波信号は前記適応形直交補償器(8)へ供給される
    、請求項4記載の装置。
  6. 【請求項6】 前記同期復調器(7)は、適応形位相補償器(3)の出力信
    号のための入力端子と2つの出力側を有しており、該出力側のうち第1の出力側
    からは回転角レート信号(U)が取り出され、該出力側のうち第2の出力側か
    らは直交信号(U)が取り出される、請求項4または5記載の装置。
  7. 【請求項7】 前記適応形直交補償器(8)は、回転角レート信号(U
    のための入力側と直交信号(U)のための入力側を有する、請求項6記載の装
    置。
  8. 【請求項8】 前記適応形直交補償器(8)はその入力信号からディジタル
    適応形アルゴリズムを用いて、バイアス電圧発生装置(9)のための少なくとも
    2つの制御信号(UQ1,UQ2)を発生する、請求項7記載の装置。
  9. 【請求項9】 前記適応形直交補償器(8)は少なくとも2つの出力側を有
    しており、該出力側から前記適応形直交補償器(8)はバイアス電圧発生装置(
    9)のための種々の制御信号(UQ1,UQ2)を送出する、請求項8記載の装
    置。
  10. 【請求項10】 共振コントローラ(5)が設けられており、該共振コント
    ローラの出力側はバイアス電圧発生装置(9)と接続されており、該共振コント
    ローラは共振コントロール信号(U)の形成に用いられる、請求項1から9の
    いずれか1項記載の装置。
  11. 【請求項11】 前記容量電圧変換器(2)の出力信号は帯域幅調整回路(
    4)へ供給され、該帯域幅調整回路の出力側はバイアス電圧発生装置(9)と接
    続されており、該帯域幅調整回路は帯域幅調整用制御信号(U)を発生するた
    めに設けられている、請求項1から10のいずれか1項記載の装置。
  12. 【請求項12】 前記帯域幅調整回路(4)は、90゜位相のずらされた成
    分をもつポジションコントローラを有しており、該ポジションコントローラは制
    御ループの帰還分岐中に配置されている、請求項11記載の装置。
  13. 【請求項13】 前記ポジションコントローラのループゲインは、検出運動
    の所定の帯域幅もしくは共振のQが達成されるよう設定されている、請求項12
    記載の装置。
  14. 【請求項14】 前記電極装置は2つもしくは4つの電極を有しており、前
    記バイアス電圧発生装置は式 U =U +UQ1 +U +U =−U −UQ1−U +U =UQ2 +U =−UQ2 +U に従い形成され、2つの電極のときには電圧U およびU が用いられ、こ
    こでU はテスト信号発生器(6)により形成されたテスト信号であり、U
    は共振コントローラ(5)の出力信号であり、U は帯域幅調整回路(4)の
    出力信号であり、UQ1 およびUQ2 は適応形直交補償器(8)の出力信号で
    ある、請求項13記載の装置。
JP2001519142A 1999-08-24 2000-08-19 振動形回転角レートセンサのためのバイアス電圧を発生する装置 Withdrawn JP2003507728A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19939998.0 1999-08-24
DE19939998A DE19939998A1 (de) 1999-08-24 1999-08-24 Vorrichtung zur Vorspannungserzeugung für einen schwingenden Drehratensensor
PCT/DE2000/002829 WO2001014831A1 (de) 1999-08-24 2000-08-19 Vorrichtung zur vorspannungserzeugung für einen schwingenden drehratensensor

Publications (1)

Publication Number Publication Date
JP2003507728A true JP2003507728A (ja) 2003-02-25

Family

ID=7919359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001519142A Withdrawn JP2003507728A (ja) 1999-08-24 2000-08-19 振動形回転角レートセンサのためのバイアス電圧を発生する装置

Country Status (5)

Country Link
US (1) US6553833B1 (ja)
EP (1) EP1123484B1 (ja)
JP (1) JP2003507728A (ja)
DE (2) DE19939998A1 (ja)
WO (1) WO2001014831A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120008532A (ko) * 2009-04-30 2012-01-30 콘티넨탈 테베스 아게 운트 코. 오하게 미소기계 회전 레이트 센서의 정밀 측정 동작을 위한 방법

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6619121B1 (en) 2001-07-25 2003-09-16 Northrop Grumman Corporation Phase insensitive quadrature nulling method and apparatus for coriolis angular rate sensors
US6854315B2 (en) 2002-04-22 2005-02-15 Northrop Grumman Corporation Quadrature compensation technique for vibrating gyroscopes
DE10248733B4 (de) 2002-10-18 2004-10-28 Litef Gmbh Verfahren zur elektronischen Abstimmung der Ausleseschwingungsfrequenz eines Corioliskreisels
DE10248736B4 (de) 2002-10-18 2005-02-03 Litef Gmbh Verfahren zur Ermittlung eines Nullpunktfehlers eines Corioliskreisels
DE10248735B4 (de) * 2002-10-18 2004-10-28 Litef Gmbh Verfahren zur elektronischen Abstimmung der Ausleseschwingungsfrequenz eines Corioliskreisels
DE10248734B4 (de) 2002-10-18 2004-10-28 Litef Gmbh Verfahren zur elektronischen Abstimmung der Ausleseschwingungsfrequenz eines Corioliskreisels
DE10317159B4 (de) 2003-04-14 2007-10-11 Litef Gmbh Verfahren zur Kompensation eines Nullpunktfehlers in einem Corioliskreisel
DE10317158B4 (de) * 2003-04-14 2007-05-10 Litef Gmbh Verfahren zur Ermittlung eines Nullpunktfehlers in einem Corioliskreisel
DE10320725A1 (de) 2003-05-08 2004-11-25 Robert Bosch Gmbh Mikromechanischer Bewegungssensor
DE10321962B4 (de) * 2003-05-15 2005-08-18 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Verfahren und Vorrichtung zum Simulieren einer Drehrate und Verwendung von simulierten Drehraten zur initialen Kalibrierung von Drehratensensoren oder zur In-Betrieb-Nachkalibrierung von Drehratensensoren
US20050268716A1 (en) * 2004-06-08 2005-12-08 Honeywell International Inc. Built in test for mems vibratory type inertial sensors
DE102004064066B4 (de) * 2004-06-09 2011-06-09 Fendt, Günter Verfahren zur Auswertung eines Drehratensignals eines Multifunktionsdrehratensensors
US7100446B1 (en) * 2004-07-20 2006-09-05 The Regents Of The University Of California Distributed-mass micromachined gyroscopes operated with drive-mode bandwidth enhancement
US20070106132A1 (en) * 2004-09-28 2007-05-10 Elhag Sammy I Monitoring device, method and system
DE102004058183A1 (de) * 2004-12-02 2006-06-08 Robert Bosch Gmbh Messfühler mit Selbsttest
DE102005004775A1 (de) * 2005-02-01 2006-08-10 Robert Bosch Gmbh Sensor mit Selbsttest
US7669475B2 (en) * 2006-09-28 2010-03-02 Rosemount Aerospace Inc. System and method for measuring rotational movement about an axis
EP1962054B1 (en) * 2007-02-13 2011-07-20 STMicroelectronics Srl Microelectromechanical gyroscope with open loop reading device and control method of a microelectromechanical gyroscope
EP2023082B1 (en) * 2007-07-05 2010-09-08 STMicroelectronics Srl Micro-electro-mechanical gyroscope with open-loop reading device and control method thereof
DE102008043256A1 (de) * 2008-10-29 2010-05-06 Robert Bosch Gmbh Verfahren zum Betrieb einer Sensoranordnung und Sensoranordnung
DE102009000475B4 (de) * 2009-01-29 2023-07-27 Robert Bosch Gmbh Verfahren zur Quadraturkompensation
DE102009000743B4 (de) * 2009-02-10 2024-01-18 Robert Bosch Gmbh Vibrationskompensation für Drehratensensoren
US8151641B2 (en) * 2009-05-21 2012-04-10 Analog Devices, Inc. Mode-matching apparatus and method for micromachined inertial sensors
US8266961B2 (en) 2009-08-04 2012-09-18 Analog Devices, Inc. Inertial sensors with reduced sensitivity to quadrature errors and micromachining inaccuracies
US8783103B2 (en) * 2009-08-21 2014-07-22 Analog Devices, Inc. Offset detection and compensation for micromachined inertial sensors
US8701459B2 (en) * 2009-10-20 2014-04-22 Analog Devices, Inc. Apparatus and method for calibrating MEMS inertial sensors
EP2527788A1 (en) 2011-05-26 2012-11-28 Maxim Integrated Products, Inc. Quadrature error compensation
DE102011089813A1 (de) * 2011-12-23 2013-06-27 Continental Teves Ag & Co. Ohg Frequenzgeberanordnung
US9212908B2 (en) 2012-04-26 2015-12-15 Analog Devices, Inc. MEMS gyroscopes with reduced errors
DE102013208244A1 (de) 2013-05-06 2014-11-06 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Drehratensensors
DE102013208822A1 (de) 2013-05-14 2014-11-20 Robert Bosch Gmbh Verfahren zum Betrieb eines Drehratensensors
DE102013215587A1 (de) * 2013-08-07 2015-02-12 Robert Bosch Gmbh Verfahren und Vorrichtung zum Einstellen des Dynamikbereichs eines Drehratensensors
GB2534562B (en) * 2015-01-26 2017-11-29 Atlantic Inertial Systems Ltd Gyroscope loop filter
US9869552B2 (en) * 2015-03-20 2018-01-16 Analog Devices, Inc. Gyroscope that compensates for fluctuations in sensitivity
GB2547415A (en) * 2016-02-09 2017-08-23 Atlantic Inertial Systems Ltd Inertial sensors
IT201700031177A1 (it) 2017-03-21 2018-09-21 St Microelectronics Srl Demodulatore compensato per segnali modulati in fase e quadratura, giroscopio mems includente il medesimo e metodo di demodulazione
IT201700031167A1 (it) * 2017-03-21 2018-09-21 St Microelectronics Srl Demodulatore per segnali modulati in fase e quadratura, giroscopio mems includente il medesimo e metodo di demodulazione
JP7024566B2 (ja) * 2018-04-06 2022-02-24 株式会社デンソー 振動型ジャイロスコープ
US11125560B2 (en) * 2019-07-30 2021-09-21 Invensense, Inc. Robust method for tuning of gyroscope demodulation phase
US11668585B2 (en) * 2021-08-27 2023-06-06 Stmicroelectronics S.R.L. Method for correcting gyroscope demodulation phase drift

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951508A (en) 1983-10-31 1990-08-28 General Motors Corporation Vibratory rotation sensor
GB8716047D0 (en) * 1987-07-08 1987-08-12 Thorn Emi Electronics Ltd Rate sensor
AT393416B (de) * 1989-04-27 1991-10-25 Avl Verbrennungskraft Messtech Messverfahren zur bestimmung bzw. ueberwachung von mechanischen und/oder physikalischen groessen
US5481914A (en) 1994-03-28 1996-01-09 The Charles Stark Draper Laboratory, Inc. Electronics for coriolis force and other sensors
US5691472A (en) * 1995-05-30 1997-11-25 Alliedsignal, Inc. Non-gimballed angular rate sensor
US5796002A (en) * 1995-06-07 1998-08-18 Bei-Systron Donner Rotation rate sensor with optical sensing device
US5992233A (en) 1996-05-31 1999-11-30 The Regents Of The University Of California Micromachined Z-axis vibratory rate gyroscope
DE19653021A1 (de) 1996-12-19 1998-06-25 Bosch Gmbh Robert Vorrichtung zur Ermittlung einer Drehrate
DE19739903A1 (de) * 1997-09-11 1999-04-01 Bosch Gmbh Robert Sensorvorrichtung
DE19910415B4 (de) 1999-03-10 2010-12-09 Robert Bosch Gmbh Verfahren und Vorrichtung zum Abstimmen eines ersten Oszillators mit einem zweiten Oszillator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120008532A (ko) * 2009-04-30 2012-01-30 콘티넨탈 테베스 아게 운트 코. 오하게 미소기계 회전 레이트 센서의 정밀 측정 동작을 위한 방법
KR101649392B1 (ko) * 2009-04-30 2016-08-19 콘티넨탈 테베스 아게 운트 코. 오하게 미소기계 회전 레이트 센서의 정밀 측정 동작을 위한 방법

Also Published As

Publication number Publication date
EP1123484B1 (de) 2005-11-30
US6553833B1 (en) 2003-04-29
WO2001014831A1 (de) 2001-03-01
DE19939998A1 (de) 2001-03-01
DE50011749D1 (de) 2006-01-05
EP1123484A1 (de) 2001-08-16

Similar Documents

Publication Publication Date Title
JP2003507728A (ja) 振動形回転角レートセンサのためのバイアス電圧を発生する装置
US6718823B2 (en) Pulse width modulation drive signal for a MEMS gyroscope
JP2667970B2 (ja) ミクロ機械加工されたセンサーの補償のための方法及び装置
US5806364A (en) Vibration-type angular velocity detector having sensorless temperature compensation
US8042393B2 (en) Arrangement for measuring a rate of rotation using a vibration sensor
KR100592985B1 (ko) 진동형 각속도 센서
KR101889991B1 (ko) 미소-기계적 자이로스코프의 쿼드러쳐 및 공진 주파수의 디커플링된 제어를 위한 방법
CN102348956B (zh) 双轴旋转速率传感器
JP3894587B2 (ja) 回転速度を感知するためのマイクロマシン化された速度センサシステム、および寄生駆動電圧を最小にする方法
KR101018958B1 (ko) 회전 속도 센서
JP2000304550A (ja) 第1の発振器を第2の発振器に整合マッチングするための方法及び装置並びにヨーレート−センサ
US7779688B2 (en) Vibration gyro sensor
JP2005527783A (ja) 電子整列および同調を有するマイクロジャイロスコープ
US8794047B2 (en) Method for the precise measuring operation of a micromechanical rotation rate sensor
US20030200785A1 (en) Passive temperature compensation technique for MEMS devices
JPH10221083A (ja) 振動型ジャイロ装置
US20020100322A1 (en) Vibrating gyroscope and temperature-drift adjusting method therefor
JP2000009475A (ja) 角速度検出装置
JP2000028364A (ja) 角速度センサ装置及びその駆動方法
US11274925B2 (en) Readout circuit for a MEMS gyroscope and method for operating such a readout circuit
JP2548679B2 (ja) 振動ジャイロスコープ
JP4650990B2 (ja) センサ非依存性の振動振幅制御部
JPH09105637A (ja) 振動ジャイロ
JPH0791957A (ja) 圧電振動ジャイロ
JP7115733B2 (ja) 積分型ジャイロ装置および積分型ジャイロ装置の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070817

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100208