JP2003329639A - Nox gas detecting method and device therefor - Google Patents

Nox gas detecting method and device therefor

Info

Publication number
JP2003329639A
JP2003329639A JP2002134991A JP2002134991A JP2003329639A JP 2003329639 A JP2003329639 A JP 2003329639A JP 2002134991 A JP2002134991 A JP 2002134991A JP 2002134991 A JP2002134991 A JP 2002134991A JP 2003329639 A JP2003329639 A JP 2003329639A
Authority
JP
Japan
Prior art keywords
electrode
detection
pulse
nox gas
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002134991A
Other languages
Japanese (ja)
Other versions
JP4036676B2 (en
Inventor
Norio Miura
則雄 三浦
Noboru Yamazoe
▲昇▼ 山添
Manabu Tani
學 谷
Hozumi Nita
穂積 二田
Kazunari Kaneyasu
一成 兼安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GREEN BLUE KK
Figaro Engineering Inc
Japan Science and Technology Agency
Original Assignee
GREEN BLUE KK
Figaro Engineering Inc
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GREEN BLUE KK, Figaro Engineering Inc, Japan Science and Technology Corp filed Critical GREEN BLUE KK
Priority to JP2002134991A priority Critical patent/JP4036676B2/en
Publication of JP2003329639A publication Critical patent/JP2003329639A/en
Application granted granted Critical
Publication of JP4036676B2 publication Critical patent/JP4036676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make an NOX gas detecting method and a device therefor stably detectable NOX gas for a long period of time. <P>SOLUTION: A detection pole, a counter pole, and a reference pole are provided for an alkali metal ionic conductor, and nitrite salt of an alkali metal is added to the counter pole only. With the potential of the detection pole intermittently made to be operation potential on the order of -150 mV by means of pulses of a duty ratio of about 1/5 and 10 sec or less in width, the detection pole and the counter pole are connected to each other. During the other periods, the detection pole is disconnected from the counter pole or from the reference pole. NOX gas is detected from a current flowing through the counter pole/ detection pole during a latter half of a pulse. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の利用分野】この発明はアルカリ金属イオン導電
体を用いたNOxの検出に関し、特に用いるNOxセン
サの長期安定性の向上に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to detection of NOx using an alkali metal ion conductor, and more particularly to improvement of long-term stability of a NOx sensor used.

【0002】[0002]

【従来技術】発明者らは、NASICONなどのアルカ
リ金属イオン導電体を用いたNOxセンサの開発を行っ
てきた。このようなNOxセンサはppbレベルのNOx
を検出するもので、大気汚染のモニタリング用のネット
ワークを構築するために、あるいは交通公害を低減する
ために必要なものである。周知のようにNOはNO2に
触媒コンバータにより転換できるので、センサは少なく
ともNO2を検出できれば良く、またCO2やH2Oの干
渉を受けない必要がある。
2. Description of the Related Art The inventors have developed a NOx sensor using an alkali metal ion conductor such as NASICON. Such a NOx sensor is a ppb level NOx
It is necessary to build a network for monitoring air pollution or to reduce traffic pollution. As is well known, since NO can be converted into NO2 by a catalytic converter, the sensor needs to be able to detect at least NO2 and needs not to be interfered with by CO2 or H2O.

【0003】発明者らは、アルカリ金属イオン導電体に
検知極と参照極と対極とを設け、対極にのみアルカリ金
属亜硝酸塩などを添加し、参照極に対して検知極の電位
を負にしたNOxセンサを提案した(特開平11−27
1266号)。このセンサはH2OやCO2の干渉をほと
んど受けず、ppbオーダーのNO2を検出でき、電極反応
は例えば以下の通りである。 Na+NO2+e→NaNO2 (検知極) (1) NaNO2→Na+NO2+e (対極) (2) このセンサは150℃程度に加熱され、検知極にNO2
が触れるとNASICONからNaイオンが補給されて
NaNO2が生成し、これに応じて対極ではNaNO2が分
解し、対極のアルカリ金属亜硝酸塩が消耗する。この結
果、センサ出力は短期間で減少し、目標寿命の少なくと
も1ヶ月に達しなかった。
The inventors have provided a detection electrode, a reference electrode, and a counter electrode on an alkali metal ion conductor, and added an alkali metal nitrite or the like only to the counter electrode to make the potential of the detection electrode negative with respect to the reference electrode. Proposed NOx sensor (Japanese Patent Laid-Open No. 11-27)
1266). This sensor receives almost no interference of H2O and CO2 and can detect NO2 of ppb order, and the electrode reaction is as follows. Na + + NO2 + e → NaNO2 (detection electrode) (1) NaNO2 → Na + + NO2 + e (counter electrode) (2) This sensor is heated to about 150 ℃ and NO2 is applied to the detection electrode.
When is touched, Na ions are replenished from NASICON and NaNO2 is produced. In response to this, NaNO2 is decomposed at the counter electrode, and alkali metal nitrite at the counter electrode is consumed. As a result, the sensor output decreased in a short period of time and did not reach the target life of at least one month.

【0004】発明者らは、対極の活物質であるアルカリ
金属亜硝酸塩などの消耗を補うため、検知極を+対極を
−とする逆バイアス電圧を加えて、検知極に蓄積した金
属亜硝酸塩を分解し、検知極から対極へNaイオンを輸
送することを提案した(特開2001−194337
号)。ここでの着想は、センサに周期的に逆バイアス電
圧を加えてセンサを初期化し、検知極や対極の状態が初
期的な状態から変化しないようにすることにある。発明
者はその後、対極での金属亜硝酸塩などの消耗を許しな
がら、センサ寿命を延長することを検討して、この発明
に到った。
In order to compensate for the consumption of alkali metal nitrite, which is the active material of the counter electrode, the inventors applied a reverse bias voltage with the detection electrode as the + counter electrode, and the metal nitrite accumulated in the detection electrode was applied. It was proposed to decompose and transport Na ions from the detection electrode to the counter electrode (Japanese Patent Laid-Open No. 2001-194337).
issue). The idea here is to apply a reverse bias voltage to the sensor periodically to initialize the sensor so that the states of the detection electrode and the counter electrode do not change from the initial state. The inventor then arrived at the present invention by considering extending the sensor life while allowing the metal nitrite to be consumed on the counter electrode.

【0005】[0005]

【発明の課題】この発明の基本的課題は、NOxセンサ
の寿命を延長できる、新たな検出方法とその装置とを提
供することにある(請求項1〜8)。
SUMMARY OF THE INVENTION The basic object of the present invention is to provide a new detection method and device for extending the life of the NOx sensor (claims 1-8).

【0006】[0006]

【発明の構成】この発明のNOxガス検出方法は、アル
カリ金属イオン導電体に検知極と対極と参照極とを設け
て、対極にアルカリ金属の亜硝酸塩または硝酸塩を含有
させたセンサを用い、検知極に参照極に対して負の電位
を加えて、対極/検知極間の電流からNOxガスを検出
する方法において、前記負の電位を検知極に1/3以下
のデューテイ比でパルス的に印加し、パルス印加時の対
極/検知極間の電流からNOxガスを検出すると共に、
前記パルス印加時以外は、検知極を、参照極に対して等
電位にする、もしくは参照極との電気的接続を遮断する
ことを特徴とする(請求項1)。
The NOx gas detection method according to the present invention uses an alkali metal ion conductor provided with a detection electrode, a counter electrode and a reference electrode, and a counter electrode containing a nitrite or a nitrate of an alkali metal for detection. In a method of applying a negative potential to a reference electrode with respect to a reference electrode to detect NOx gas from a current between a counter electrode and a detection electrode, the negative potential is pulse-wise applied to the detection electrode at a duty ratio of 1/3 or less. Then, while detecting the NOx gas from the current between the counter electrode and the detection electrode when applying the pulse,
When the pulse is not applied, the detection electrode is made to have the same potential as the reference electrode, or the electrical connection with the reference electrode is cut off (claim 1).

【0007】好ましくは、前記パルスの印加時以外は、
検知極と参照極との電気的接続を遮断する(請求項
2)。特に好ましくは、パルス印加時以外は検知極を参
照極と対極の双方から電気的に遮断する。なおここで、
電気的に接続や電気的に遮断とは、センサの付帯回路で
電気的に接続あるいは遮断することを意味し、センサ内
のイオン導電体で接続されていることとは関係がない。
Preferably, except when the pulse is applied,
The electrical connection between the detection electrode and the reference electrode is cut off (claim 2). Particularly preferably, the detection electrode is electrically cut off from both the reference electrode and the counter electrode except when the pulse is applied. Here,
Electrically connecting or electrically disconnecting means electrically connecting or disconnecting in an accessory circuit of the sensor, and has nothing to do with being connected by an ionic conductor in the sensor.

【0008】好ましくは、前記パルス後半、特にパルス
の初期のセンサ電流(センサ出力)のピーク終了後、の
電流からNOxガスを検出する(請求項3)。特に好ま
しくは、前記センサを請求項1に記載の条件でエージン
グし、初期的な感度の低下が終了した後の安定域にセン
サを移行させて、NOxガスを検出する(請求項4)。
Preferably, the NOx gas is detected from the current of the latter half of the pulse, particularly after the end of the peak of the sensor current (sensor output) at the beginning of the pulse (claim 3). Particularly preferably, the sensor is aged under the conditions described in claim 1, the sensor is moved to a stable region after the initial reduction in sensitivity is completed, and NOx gas is detected (claim 4).

【0009】またこの発明のNOxガス検出装置は、ア
ルカリ金属イオン導電体に検知極と対極と参照極とを設
けて、対極にはアルカリ金属の亜硝酸塩または硝酸塩を
含有させたセンサを用い、検知極に参照極に対して負の
電位を加えて、対極/検知極間の電流からNOxガスを
検出する装置において、前記負の電位を検知極に1/3
以下のデューテイ比でパルス的に印加すると共に、前記
パルス印加時以外は、検知極を、参照極に対して等電位
にする、もしくは参照極との電気的接続を遮断するため
の、パルス駆動手段と、パルス印加時の対極/検知極間
の電流からNOxガスを検出するための電流検出手段と
を設けたことを特徴とする(請求項5)。
Further, the NOx gas detecting apparatus of the present invention is provided with a detection electrode, a counter electrode and a reference electrode on an alkali metal ion conductor, and a sensor containing an alkali metal nitrite or nitrate is used as the counter electrode for detection. In a device for detecting a NOx gas from a current between a counter electrode and a detection electrode by applying a negative potential to a reference electrode to the reference electrode, the negative potential is ⅓ to the detection electrode.
Pulse driving means for applying a pulse with the following duty ratio and for making the detection electrode equipotential with respect to the reference electrode or interrupting electrical connection with the reference electrode except when the pulse is applied. And a current detecting means for detecting the NOx gas from the current between the counter electrode and the detection electrode when the pulse is applied (claim 5).

【0010】好ましくは、パルス印加時以外は、検知極
を参照極から電気的に遮断し、特に好ましくはパルス印
加時以外は検知極を参照極と対極の双方から電気的に遮
断する。好ましくは、前記電流検出手段は、前記パルス
の後半での電流からNOxガスを検出するようにする
(請求項6)。好ましくは、前記センサは、請求項5に
記載の条件でエージングして、初期的な感度の低下が終
了した後の安定域にセンサを移行させたものである(請
求項7)。特に好ましくは、前記デューテイ比を1/4
〜1/20,パルス周期を30秒〜1分、パルス幅を3
秒〜10秒とする(請求項8)。
Preferably, the detection electrode is electrically cut off from the reference electrode except when the pulse is applied, and particularly preferably the detection electrode is electrically cut off from both the reference electrode and the counter electrode except when the pulse is applied. Preferably, the current detection means detects NOx gas from the current in the latter half of the pulse (claim 6). Preferably, the sensor is aged under the conditions described in claim 5 and is moved to a stable range after the initial reduction in sensitivity is completed (claim 7). Particularly preferably, the duty ratio is 1/4.
~ 1/20, pulse period 30 seconds ~ 1 minute, pulse width 3
Second to 10 seconds (claim 8).

【0011】[0011]

【発明の作用と効果】この発明のNOxガス検出方法や
その装置では、検知極と参照極を、常時は等電位に保ち
あるいは電気的に遮断し、1/3以下のデューテイ比で
パルス的に、参照極を基準として負の電位を検知極に加
えて、パルス印加時の対極/検知極間の電流からNOx
ガスを検出する。予想では、対極と検知極との間にはパ
ルス的に電流が流れるので、対極の活物質の消耗はデュ
ーテイ比に比例して減少し、これに応じてセンサの寿命
が延びるはずであった。しかし実際には、検知極と参照
極との間にパルス的に電位を加える(パルス駆動)と、
対極/検知極間の電流の値は検知極に連続的に電位を加
えている場合(連続駆動)とは異なり、パルス駆動で連
続駆動よりも高いNOx感度が得られ、このため大気中
の微量のNOxガスを検出する場合に、検出下限濃度を
低くできる。さらに検知極にパルス的に電位を加えて
も、センサの使用開始後例えば10日程度の間は、連続
的に検知極に電位を加えている場合と同様に感度が減少
した。しかし検知極にパルス的に電位を加えると、初期
の感度低下の後に、感度の安定域が発現した。感度の安
定期は例えば30日以上続くので、例えば安定域を用い
てNOxセンサの寿命を延ばすことができる(請求項
1,5)。
According to the NOx gas detecting method and apparatus of the present invention, the detection electrode and the reference electrode are always kept at the same potential or electrically cut off, and are pulsed at a duty ratio of 1/3 or less. , NOx is added to the detection electrode with reference to the reference electrode, and NOx is detected from the current between the counter electrode and the detection electrode during pulse application.
Detect gas. It was predicted that since a current flows in a pulsed manner between the counter electrode and the detection electrode, the consumption of the active material on the counter electrode should decrease in proportion to the duty ratio, and the sensor life should be extended accordingly. However, in reality, when a potential is applied in a pulsed manner between the detection electrode and the reference electrode (pulse drive),
The value of the current between the counter electrode and the detection electrode is different from when the potential is continuously applied to the detection electrode (continuous drive), and NOx sensitivity higher than that of continuous drive is obtained by pulse drive. When detecting NOx gas of, the lower limit of detection concentration can be lowered. Further, even if the electric potential was applied to the detection electrode in a pulsed manner, the sensitivity decreased for about 10 days after the start of use of the sensor, similarly to the case where the electric potential was continuously applied to the detection electrode. However, when a potential was applied to the detection electrode in a pulsed manner, a stable region of sensitivity appeared after the initial decrease in sensitivity. Since the stable period of sensitivity continues for 30 days or more, for example, the stable region can be used to extend the life of the NOx sensor (claims 1 and 5).

【0012】ここでパルス印加時以外は、検知極を参照
極から遮断すると、パルス印加時以外は検知極/対極間
にも電流は流れない(請求項2)。
When the detection electrode is cut off from the reference electrode except when the pulse is applied, no current flows between the detection electrode and the counter electrode except when the pulse is applied (claim 2).

【0013】検知極にパルスを加えた際の応答波形は2
つの部分に分かれ、前半にNOx濃度との相関が希薄な
センサ電流のピークがある。このピークを経過すると、
センサ電流はNOx濃度と直線的な関係になる。そこで
パルス後半の電流からNOxガスを検出すると、高い精
度でNOx濃度を検出できる(請求項3,6)。なおこ
のピークの立ち下がり側(ピーク後半)のセンサ電流の
時間微分の絶対値は、NOx濃度が高いほど小さい。従
ってこれからNOx濃度を検出することも可能であり、
パルス後半でのセンサ電流以外での検出が不可能なわけ
ではない。
The response waveform when a pulse is applied to the detection pole is 2
There is a peak of the sensor current, which is divided into two parts and has a weak correlation with the NOx concentration in the first half. After passing this peak,
The sensor current has a linear relationship with the NOx concentration. Therefore, if the NOx gas is detected from the current in the latter half of the pulse, the NOx concentration can be detected with high accuracy (claims 3 and 6). The absolute value of the time derivative of the sensor current on the trailing side of the peak (the latter half of the peak) is smaller as the NOx concentration is higher. Therefore, it is possible to detect the NOx concentration from this,
It is not impossible to detect other than the sensor current in the latter half of the pulse.

【0014】また検知極にパルス的に負の電位を加えな
がらセンサを使用しても、初期的なセンサ感度の低下
は、検知極に連続的に電位(バイアス電圧)を加えてい
る場合と大差はない。しかしパルス的に検知極を対極と
接続すると、その後センサ感度の安定域が生じる。そこ
で、初期的な感度の劣化が生じる期間の間センサをエー
ジングし、その後NOxの検出を開始すると、正確にN
Ox濃度を検出できる(請求項4,7)。
Further, even if the sensor is used while applying a negative potential in a pulsed manner to the detection electrode, the initial sensor sensitivity is largely different from the case where the potential (bias voltage) is continuously applied to the detection electrode. There is no. However, if the sensing electrode is connected to the counter electrode in a pulsed manner, then a stable region of sensor sensitivity will occur. Therefore, if the sensor is aged for a period in which initial sensitivity deterioration occurs, and then NOx detection is started, N
The Ox concentration can be detected (claims 4 and 7).

【0015】パルスの周期は例えば30秒〜1分毎にN
Ox濃度を検出したいとの点から30秒〜1分が好まし
い。次にパルスの間にセンサ電流のピークが終了し、正
確にNOx濃度を測定できるようにするため、パルス幅
は3秒〜10秒が好ましく、かつセンサの寿命を延ばす
ためにデューテイ比は1/4〜1/20が好ましい。こ
の条件は、実用的な検出間隔でセンサの寿命をなるべく
長くし、かつパルスオン時の初期的なピークの終了後の
センサ電流を取り出せるようにするためのものである
(請求項8)。
The pulse cycle is, for example, N every 30 seconds to 1 minute.
From the viewpoint of detecting the Ox concentration, 30 seconds to 1 minute is preferable. Next, during the pulse, the peak of the sensor current ends, so that the NOx concentration can be accurately measured, the pulse width is preferably 3 seconds to 10 seconds, and the duty ratio is 1 / to increase the life of the sensor. 4 to 1/20 is preferable. This condition is to extend the life of the sensor at a practical detection interval as much as possible and to extract the sensor current after the end of the initial peak at the time of pulse-on (claim 8).

【0016】[0016]

【実施例】図1〜図8を参照して、実施例のNOxガス
検出方法とNOxガス検出装置とを説明する。以下簡単
のため、NOxガスはNOxとし、NOは適宜のコンバ
ータによりNO2に変換して検出するものとして、NO2
の検出を説明する。
EXAMPLE A NOx gas detecting method and an NOx gas detecting apparatus of an example will be described with reference to FIGS. For simplicity, NOx gas will be referred to as NOx, and NO will be converted to NO2 by an appropriate converter and detected.
The detection of will be described.

【0017】図1のNOxガス検出装置2において、4
はNOxセンサで、6はアルミナなどの絶縁基板であ
り、8はPt膜や酸化ルテニウム膜等を用いたヒータ
で、10はヒータ電源である。ヒータ8によってNOx
センサ4は例えば150℃(一般的には100〜200
℃)に加熱される。
In the NOx gas detector 2 of FIG. 1, 4
Is an NOx sensor, 6 is an insulating substrate such as alumina, 8 is a heater using a Pt film or ruthenium oxide film, and 10 is a heater power supply. NOx by heater 8
The sensor 4 is, for example, 150 ° C. (generally 100 to 200
(° C).

【0018】12はNASICONなどのナトリウムイ
オン導電体で、リチウムイオン導電体でも良く、アルカ
リ金属イオンの導電体であればよい。14は検知極で、
ここでは金などの貴金属膜からなり、16は対極で、金
などの貴金属にNaNO2やNaNO3などのアルカリ金属
亜硝酸塩やアルカリ金属硝酸塩を添加した膜である。硝
酸塩や亜硝酸塩中のアルカリ金属の種類は、センサ4を
電流駆動するので、イオン導電体12で用いるアルカリ
金属イオンの種類と同じにすることが好ましく、アルカ
リ金属硝酸塩やアルカリ金属亜硝酸塩は、例えばその飽
和水溶液を対極16に滴下して添加する。18は参照極
で、同様に金などの貴金属膜からなる。20はガラスな
どを用いた封止部で、参照極18を被検出雰囲気(雰囲
気)から遮断するためのものであるが、封止部20は設
けなくてもよい。なおNOxセンサ4の構造自体は、発
明者等の特開2001−194337号や、特開平11
−271266号により公知である。また対極には耐湿
性の向上などの観点から、アルカリ土類金属亜硝酸塩な
どの第3成分を加えても良い。
Reference numeral 12 denotes a sodium ion conductor such as NASICON, which may be a lithium ion conductor or an alkali metal ion conductor. 14 is a detection pole,
Here, 16 is a noble metal film such as gold, and 16 is a counter electrode, which is a film in which an alkali metal nitrite or an alkali metal nitrate such as NaNO2 or NaNO3 is added to a noble metal such as gold. The type of the alkali metal in the nitrate or the nitrite is the same as the type of the alkali metal ion used in the ionic conductor 12 since the sensor 4 is driven by current, and the alkali metal nitrate or the alkali metal nitrite is, for example, The saturated aqueous solution is added dropwise to the counter electrode 16. Reference numeral 18 is a reference electrode, which is also made of a noble metal film such as gold. Reference numeral 20 denotes a sealing portion using glass or the like, which is for shielding the reference electrode 18 from the atmosphere (atmosphere) to be detected, but the sealing portion 20 may not be provided. The structure itself of the NOx sensor 4 is described in Japanese Patent Application Laid-Open No. 2001-194337 and Japanese Patent Application Laid-Open No. 11-194337.
It is known from US Pat. In addition, a third component such as an alkaline earth metal nitrite may be added to the counter electrode from the viewpoint of improving moisture resistance.

【0019】22は基準電源で、検知極14に対して、
パルス的に所定のデューテイ比で、参照極18を基準と
する電位で−100〜−200mV程度のバイアス電圧を
加えるためのものである。24はリレーで、スイッチの
例であり、低抵抗で電圧ロスが無視し得るものであれ
ば、半導体スイッチなどでも良い。リレー24が開く
と、検知極14は対極16や参照極18から電気的に遮
断され、リレー24が閉じると、検知極と対極間とが電
気的に接続されて、検知極は対極に対して所定の電位に
置かれる。26はオペアンプで、リレー24が閉じた際
に、検知極14の電位を参照極18に対して、−100
〜−200mV程度負に保つようにする。28は電流計
で、対極16に接続され、リレー24を閉じて検知極1
4にパルス的にバイアス電圧を加えた際に、パルス後半
の所定のタイミングでの電流値を出力する。なおオペア
ンプ26と基準電源22との間のリレー24を設ける代
わりに、電流計28と対極16との間にリレー25を設
けてもよく、あるいはリレー24,25の双方を設けて
もよい。またリレー24を設けず、基準電源22の代わ
りに、ファンクションジェネレータなどを設けても良
い。このようにすると、ファンクションジェネレータの
出力パルスで、検知極は参照極に対して負の電位に保た
れ、それ以外の期間は検知極は参照極と等電位に保たれ
るようになる。
Reference numeral 22 is a reference power source, and with respect to the detection electrode 14,
This is for applying a bias voltage of about −100 to −200 mV at a potential based on the reference electrode 18 at a predetermined duty ratio in a pulsed manner. Reference numeral 24 is a relay, which is an example of a switch, and may be a semiconductor switch or the like as long as it has low resistance and voltage loss can be ignored. When the relay 24 is opened, the detection electrode 14 is electrically cut off from the counter electrode 16 and the reference electrode 18. When the relay 24 is closed, the detection electrode and the counter electrode are electrically connected, and the detection electrode is opposite to the counter electrode. It is placed at a given potential. Reference numeral 26 denotes an operational amplifier which, when the relay 24 is closed, sets the potential of the detection electrode 14 to −100 with respect to the reference electrode 18.
Keep about -200 mV negative. An ammeter 28 is connected to the counter electrode 16 and closes the relay 24 to detect the detection electrode 1
When a bias voltage is applied to 4 in a pulsed manner, a current value at a predetermined timing in the latter half of the pulse is output. Instead of providing the relay 24 between the operational amplifier 26 and the reference power source 22, a relay 25 may be provided between the ammeter 28 and the counter electrode 16, or both the relays 24 and 25 may be provided. Further, a function generator or the like may be provided instead of the reference power source 22 without providing the relay 24. With this arrangement, the output pulse of the function generator keeps the detection pole at a negative potential with respect to the reference pole, and keeps the detection pole at the same potential as the reference pole during the other period.

【0020】30はパルス発生部で、30秒〜1分程度
の所定の周期でパルスを発生し、波形整形部32はこれ
を3秒〜10秒程度の所定幅の方形波パルスに整形し、
リレードライブ34でリレー24を駆動してオン/オフ
する。またリレードライブ34は、パルス後半の所定の
タイミング(パルス終了の直前や、パルス幅の後半1/
3の間の適宜のタイミング)で、電流計28に対してサ
ンプリング信号を送り、電流計28はこの時点での電流
値を出力する。濃度変換部36はこの電流値をNOx濃
度に変換する。実施例での電流値は、NOx濃度0での
オフセット電流と、NOx濃度に比例する電流との和で
定まるので、濃度変換部36はセンサ4毎のオフセット
電流の値と、測定した電流値からオフセット電流を除い
たものに乗算してNOx濃度に変換するための係数とを
記憶している。
Reference numeral 30 denotes a pulse generator which generates a pulse at a predetermined cycle of about 30 seconds to 1 minute, and a waveform shaping section 32 shapes this into a square wave pulse having a predetermined width of about 3 seconds to 10 seconds.
The relay drive 34 drives the relay 24 to turn it on / off. Further, the relay drive 34 has a predetermined timing in the latter half of the pulse (immediately before the end of the pulse or in the latter half of the pulse width 1 /
3), a sampling signal is sent to the ammeter 28, and the ammeter 28 outputs the current value at this point. The concentration converter 36 converts this current value into the NOx concentration. Since the current value in the embodiment is determined by the sum of the offset current at the NOx concentration of 0 and the current proportional to the NOx concentration, the concentration conversion unit 36 calculates the offset current value for each sensor 4 from the measured current value. A coefficient for multiplying a value excluding the offset current and converting the NOx concentration is stored.

【0021】実施例では、リレー24を所定のデューテ
イ比で間欠的にオンすることにより、その間のみ、検知
極14と参照極18との間に電位を加えると共に、検知
極14と対極16とを接続するようにしている。しかし
ながら検知極14と参照極18との間にバイアス電圧を
常時加えるようにし、検知極14と対極16との間の電
路を間欠的に接続して、他は遮断するようにしても良
い。
In the embodiment, the relay 24 is intermittently turned on at a predetermined duty ratio so that the electric potential is applied between the detection electrode 14 and the reference electrode 18 and the detection electrode 14 and the counter electrode 16 are connected only during that period. I am trying to connect. However, a bias voltage may be constantly applied between the detection electrode 14 and the reference electrode 18, the electric path between the detection electrode 14 and the counter electrode 16 may be intermittently connected, and the others may be cut off.

【0022】図2に、検知極に加えるバイアス電位とセ
ンサ出力を示す。検知極の電位は参照極を基準として示
し、例えば−100mV〜−200mV程度とし、周期Tで
センサを駆動し、そのうちリレー24をオンするオン時
間をT1、オフする時間をT2とすると、このデューテイ
比(T1/T)は1/3以下が好ましく、より好ましく
は1/4〜1/20とする。オン時間T1は好ましくは
3秒以上で10秒以下とし、より好ましくは5秒以上で
10秒以下とする。周期TはNOxの検出周期を定め
る、30秒以上1分以下が好ましく、例えば30秒また
は1分とする。
FIG. 2 shows the bias potential applied to the detection electrode and the sensor output. The potential of the detection electrode is shown with reference to the reference electrode, for example, about -100 mV to -200 mV. When the sensor is driven in a cycle T, the ON time for turning on the relay 24 is T1 and the off time is T2. The ratio (T1 / T) is preferably 1/3 or less, more preferably 1/4 to 1/20. The on-time T1 is preferably 3 seconds or more and 10 seconds or less, more preferably 5 seconds or more and 10 seconds or less. The cycle T determines the NOx detection cycle, and is preferably 30 seconds or more and 1 minute or less, and is, for example, 30 seconds or 1 minute.

【0023】実施例では図2(1)のように、検知極に電
位Eを方形波状のパルスで加えるが、検知極に加える電
位の波形は方形波には限らない。例えば図2(2)では、
最初の幅の広いパルスの間にパルス初期のピークを終了
させるようにして、これに例えば1〜5秒程度の間隔を
おいて第2の狭いパルスを加え、第2のパルスに同期し
てセンサ電流をサンプリングする。
In the embodiment, as shown in FIG. 2A, the electric potential E is applied to the detection electrode by a square wave pulse, but the waveform of the electric potential applied to the detection electrode is not limited to the square wave. For example, in Figure 2 (2),
The initial peak of the pulse is terminated during the first wide pulse, and a second narrow pulse is added thereto at an interval of, for example, about 1 to 5 seconds, and the sensor is synchronized with the second pulse. Sample the current.

【0024】図2(3)はセンサ出力を示し、実施例では
検知極から対極へと流れる電流がセンサ出力で、パルス
の前半での電流値はNOx濃度との相関が極めて弱く、
パルス後半で電流値とNOx濃度との直線性が得られる
ので、パルス後半の電流値をサンプリングする。また実
施例では、対極から検知極に移動したNaイオンを強制
的に対極に戻すのではなく、対極でのNaイオンの消費
を送らせることを目的とするので、パルスを加えない間
は検知極と対極間の電気的接続を遮断し、電流を0に強
制的に固定する。なおパルス後半との用語は、図2(2)
のようにパルスの波形が単純な方形波ではない場合、第
1のパルスも第2のパルスも全体としての1つのパルス
の一部と見なし、検知極に負の電位を加えているタイミ
ングで、かつ全体としてのパルスの内での後半の部分を
意味するものとする。
FIG. 2C shows the sensor output. In the embodiment, the current flowing from the detection electrode to the counter electrode is the sensor output, and the current value in the first half of the pulse has a very weak correlation with the NOx concentration.
Since the linearity between the current value and the NOx concentration is obtained in the latter half of the pulse, the current value in the latter half of the pulse is sampled. Further, in the embodiment, the purpose is not to forcibly return the Na ions that have moved from the counter electrode to the detection electrode to the counter electrode, but to send the consumption of Na ions at the counter electrode, so that the detection electrode is not applied while the pulse is not applied. The electrical connection between the counter electrode and the counter electrode is cut off, and the current is forcibly fixed to zero. The term latter half of the pulse is used in Fig. 2 (2).
When the waveform of the pulse is not a simple square wave as in, the first pulse and the second pulse are regarded as a part of one pulse as a whole, and at the timing of applying a negative potential to the detection electrode, Also, it means the latter half of the pulse as a whole.

【0025】図3,図4に、検知極にパルス的に−15
0mVのバイアス電圧を加えた際のセンサ出力を示す。以
下、対極にNaNO2を加えた際の結果を説明する。図
3,図4の波形は、1周期Tを38秒とし、パルス電圧
を印加する時間T1を8秒として、センサ温度を150
℃とし、検知極の参照極に対する電位を−150mVとし
た際のものである。またNO2濃度は約40ppbで、この
条件でセンサの使用を開始してから10日弱でのデータ
である。検知極にパルス的に−150mVのバイアス電圧
を加えると、センサ出力のピークが生じた後、ピークが
急速に減衰し、定常値に近づく領域が見える。そしてピ
ークがほぼ終了しセンサ電流の定常値に近づいた範囲
が、NOx濃度を測定可能な領域である。センサ温度を
図3の150℃から図4の200℃へと変更すると、ピ
ーク幅が急激に縮まり、より短いパルスでNOxを検出
できる。しかしセンサ温度を高めると、同じパルス幅の
場合、対極の活物質の消耗量が増加する。
In FIGS. 3 and 4, the detection electrode is pulsed by −15.
The sensor output when a bias voltage of 0 mV is applied is shown. The results of adding NaNO2 to the counter electrode will be described below. In the waveforms of FIGS. 3 and 4, the period T is 38 seconds, the time T1 for applying the pulse voltage is 8 seconds, and the sensor temperature is 150 seconds.
C. and the potential of the detection electrode with respect to the reference electrode is -150 mV. Further, the NO2 concentration is about 40 ppb, which is the data within 10 days after starting the use of the sensor under this condition. When a bias voltage of −150 mV is applied to the detection electrode in a pulsed manner, a peak of the sensor output is generated and then the peak is rapidly attenuated, and a region close to a steady value can be seen. Then, the range in which the peak almost ends and the sensor current approaches the steady value is the region where the NOx concentration can be measured. When the sensor temperature is changed from 150 ° C. in FIG. 3 to 200 ° C. in FIG. 4, the peak width is sharply reduced, and NOx can be detected with a shorter pulse. However, when the sensor temperature is increased, the consumption amount of the active material of the counter electrode is increased for the same pulse width.

【0026】図5に、センサ温度を150℃とし、38
秒周期で8秒間検知極に参照極に対して−150mVのバ
イアス電圧を加えて駆動した際の、センサの使用開始か
ら7日目の応答波形を示す。この応答波形は、通常のパ
ルス幅8秒を1周期分38秒に延長して測定したもので
ある。NO2 238ppbとNO2 2ppbとの電流値の差が
正味のセンサ出力であり、パルス印加直後のピークで
は、これらの差は小さく、ピークが終了して定常値へと
近づくにつれて、電流値の差が増加する。従ってサンプ
リングするセンサ出力はパルスの後半が好ましく、特に
センサ電流のピークがほぼ終了した後が好ましい。
In FIG. 5, the sensor temperature is set to 150 ° C.
7 shows a response waveform on the 7th day after the start of use of the sensor when a bias voltage of −150 mV was applied to the detection electrode with respect to the reference electrode for 8 seconds at a cycle of 2 seconds. This response waveform is measured by extending a normal pulse width of 8 seconds to one cycle of 38 seconds. The difference between the current values of NO2 238 ppb and NO2 2 ppb is the net sensor output. At the peak immediately after the pulse application, these differences are small, and the difference in the current values increases as the peak ends and approaches the steady value. To do. Therefore, the sensor output to be sampled is preferably in the latter half of the pulse, particularly after the peak of the sensor current is almost finished.

【0027】図6にセンサ温度を150℃とし、38秒
周期で8秒間検知極を参照極に対して−150mVとする
条件での、NO2濃度とセンサ出力との関係を示す。こ
れはセンサの使用開始5日目のデータで、10nA程度の
オフセット電流があり、センサ出力はNO2濃度と直線
的な関係にある。そこでセンサ毎に、オフセット電流値
とセンサ電流当たりのNO2濃度とを記憶すると、セン
サを交換しても、NOx濃度を求めることができる。
FIG. 6 shows the relationship between the NO2 concentration and the sensor output under the condition that the sensor temperature is 150 ° C. and the sensing electrode is −150 mV with respect to the reference electrode for 8 seconds in 38 second cycle. This is the data on the 5th day from the start of use of the sensor, and there is an offset current of about 10 nA, and the sensor output has a linear relationship with the NO2 concentration. Therefore, if the offset current value and the NO2 concentration per sensor current are stored for each sensor, the NOx concentration can be obtained even if the sensor is replaced.

【0028】図7にセンサ温度を150℃とし、検知極
と参照極との間に常時バイアス電圧を印加するようにし
た際の、検知極の電位に対するセンサ出力の関係を示
す。バイアス電圧の絶対値が大きいほどセンサ出力が大
きくなり、それに伴って対極の活物質の消耗が早まり、
またバイアス電圧が−100mVよりも0側ではセンサ出
力が小さくなるので、検知極の電位は参照極に対して−
100〜−200mVが好ましい。
FIG. 7 shows the relationship between the sensor output and the potential of the detection electrode when the sensor temperature is 150 ° C. and the bias voltage is constantly applied between the detection electrode and the reference electrode. The larger the absolute value of the bias voltage, the larger the sensor output, and the faster the consumption of the active material of the counter electrode, the faster.
In addition, since the sensor output becomes smaller when the bias voltage is 0 side than -100 mV, the potential of the detection electrode is-
100 to -200 mV is preferable.

【0029】図8に、41日間のセンサの経時データを
示す。縦軸は、エージングをしていないセンサの使用開
始、1日目を基準とする相対的なNO2感度を示し、こ
こではNO2 200ppbを検出対象としている。またセ
ンサ温度は150℃で、比較例では検知極の電位を常時
−150mVに保ち、実施例では38秒周期で8秒間検知
極に参照極に対してパルス的に−150mVの電位を加
え、このパルスの間対極を検知極に接続し、パルス印加
から5秒目の電流値をセンサ出力とした。
FIG. 8 shows the time-dependent data of the sensor for 41 days. The vertical axis represents the relative NO2 sensitivity based on the first day of use of the sensor that has not been aged and the first day as a reference. Here, NO2 of 200 ppb is the detection target. Further, the sensor temperature was 150 ° C., and in the comparative example, the potential of the detection electrode was constantly kept at −150 mV, and in the embodiment, a potential of −150 mV was applied to the detection electrode in a pulsed manner for 8 seconds in a 38 second cycle. The counter electrode was connected to the detection electrode during the pulse, and the current value 5 seconds after the pulse was applied was used as the sensor output.

【0030】1日目の感度は、実施例で0.4nA/ppb、
比較例で0.1nA/ppbである。パルス的に検知極にバイ
アス電位を加えると、パルス印加と連続印加とでセンサ
電流の値が異なり、センサの出力電流を決める機構がパ
ルス印加と連続印加とで異なることが分かる。
The sensitivity on the first day was 0.4 nA / ppb in the example,
In the comparative example, it is 0.1 nA / ppb. It can be seen that when a bias potential is applied to the detection electrode in a pulsed manner, the value of the sensor current differs between pulse application and continuous application, and the mechanism that determines the output current of the sensor differs between pulse application and continuous application.

【0031】使用開始から約10日間は、実施例でも比
較例でも同様に感度が低下する。しかし実施例では、使
用開始から10日程度経過すると、センサ感度は安定域
に達し、これ以降は少なくとも30日以上センサ感度は
安定であり、信頼性の高いNOxの検出ができる。これ
に対して比較例では、センサ出力の安定域は存在せず、
センサ感度は単調に減少する。そこでセンサを、パルス
駆動条件で、10日程度エージングした後、NOx濃度
の測定を開始すると、安定してNOx濃度を測定するこ
とができる。
For about 10 days from the start of use, the sensitivity is similarly lowered in both Examples and Comparative Examples. However, in the embodiment, the sensor sensitivity reaches the stable range after about 10 days from the start of use, and thereafter, the sensor sensitivity is stable for at least 30 days, and NOx with high reliability can be detected. On the other hand, in the comparative example, the stable range of the sensor output does not exist,
The sensor sensitivity decreases monotonically. Therefore, if the sensor is aged under pulse driving conditions for about 10 days and then the measurement of the NOx concentration is started, the NOx concentration can be stably measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例のNOxガス検出装置のブロック図FIG. 1 is a block diagram of a NOx gas detection device according to an embodiment.

【図2】 実施例での検知極電位とセンサ出力の波形
図で、(1)は実施例での検知極電位Eの波形を、(2)は変
形例での検知極電位の波形を、(3)は実施例でのセンサ
出力の波形を示す。
FIG. 2 is a waveform diagram of a detection pole potential and a sensor output in the embodiment, (1) shows a waveform of the detection pole potential E in the embodiment, and (2) shows a waveform of the detection pole potential in the modified example. (3) shows the waveform of the sensor output in the embodiment.

【図3】 センサ温度150℃,検知極電位−150
mVで、駆動周期を38秒、パルス印加時間を8秒とした
際の、センサ出力の波形を示す図
FIG. 3: Sensor temperature 150 ° C., detection pole potential −150
The figure shows the waveform of the sensor output when the drive cycle is 38 seconds and the pulse application time is 8 seconds in mV.

【図4】 センサ温度200℃,検知極電位−150
mVで、駆動周期を38秒、パルス印加時間を8秒とした
際の、センサ出力の波形を示す図
FIG. 4 shows a sensor temperature of 200 ° C. and a detection pole potential of −150.
The figure shows the waveform of the sensor output when the drive cycle is 38 seconds and the pulse application time is 8 seconds in mV.

【図5】 センサ温度150℃,検知極電位−150
mVで、駆動周期を38秒とした際の、NO2 2ppb中と
NO2 238ppb中とでのセンサ出力の波形を示す図
FIG. 5: Sensor temperature 150 ° C., detection pole potential −150
The figure shows the waveform of the sensor output in 2 ppb of NO2 and 238 ppb of NO2 when the driving cycle is 38 seconds in mV.

【図6】 センサ温度150℃,検知極電位−150
mV,駆動周期を38秒,パルス印加時間8秒での、セン
サ出力とNO2濃度との関係を示す図
FIG. 6: Sensor temperature 150 ° C., detection pole potential −150
mV, drive cycle 38 seconds, pulse application time 8 seconds, showing the relationship between sensor output and NO2 concentration

【図7】 センサ温度を150℃で、検知極電位を連
続的に加えた際の,検知極電位とセンサ出力との関係を
示す図
FIG. 7 is a diagram showing the relationship between the detection electrode potential and the sensor output when the detection electrode potential is continuously applied at a sensor temperature of 150 ° C.

【図8】 センサ温度150℃,検知極電位−150
mV,駆動周期を38秒,パルス印加時間8秒での、NO
2 200ppb中でのセンサ出力の経過を示す図
FIG. 8: Sensor temperature 150 ° C., detection pole potential −150
mV, drive cycle 38 seconds, pulse application time 8 seconds, NO
2 Diagram showing sensor output in 200 ppb

【符号の説明】 2 NOxガス検出装置 4 NOxセンサ 6 絶縁基板 8 ヒータ 10 ヒータ電源 12 Naイオン導電体 14 検知極 16 対極 18 参照極 20 封止部 22 基準電源 24,25 リレー 26 オペアンプ 28 電流計 30 パルス発生部 32 波形整形部 34 リレードライブ 36 濃度変換部[Explanation of symbols] 2 NOx gas detector 4 NOx sensor 6 insulating substrate 8 heater 10 Heater power supply 12 Na ion conductor 14 detection poles 16 opposite poles 18 reference pole 20 Sealing part 22 Reference power supply 24,25 relay 26 operational amplifier 28 ammeter 30 pulse generator 32 Wave shaping section 34 relay drive 36 Density converter

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000112439 フィガロ技研株式会社 大阪府箕面市船場西1丁目5番3号 (71)出願人 396020800 科学技術振興事業団 埼玉県川口市本町4丁目1番8号 (72)発明者 三浦 則雄 福岡県福岡市中央区平尾1−11−18−1402 (72)発明者 山添 ▲昇▼ 福岡県春日市松ヶ丘4−32 (72)発明者 谷 學 東京都大田区東糀谷5丁目4番11号 グリ ーンブルー株式会社内 (72)発明者 二田 穂積 東京都大田区東糀谷5丁目4番11号 グリ ーンブルー株式会社内 (72)発明者 兼安 一成 箕面市船場西1丁目5番3号 フィガロ技 研株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (71) Applicant 000112439             Figaro Giken Co., Ltd.             1-5-3 Senba Nishi, Minoh City, Osaka Prefecture (71) Applicant 396020800             Japan Science and Technology Agency             4-8 Hommachi, Kawaguchi City, Saitama Prefecture (72) Inventor Norio Miura             1-11-18-1402 Hirao, Chuo-ku, Fukuoka City, Fukuoka Prefecture (72) Inventor Yamazoe ▲ Noboru ▼             4-32 Matsugaoka, Kasuga City, Fukuoka Prefecture (72) Inventor Manabu Tani             5-4-11 Higashi-Kojiya, Ota-ku, Tokyo             Inside Blue Co., Ltd. (72) Inventor Hozumi Futa             5-4-11 Higashi-Kojiya, Ota-ku, Tokyo             Inside Blue Co., Ltd. (72) Inventor Kazuyasu Kaneyasu             1-5-3 Senba-nishi, Minoh-shi Figaro             Ken Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ金属イオン導電体に検知極と対
極と参照極とを設けて、対極にアルカリ金属の亜硝酸塩
または硝酸塩を含有させたセンサを用い、 検知極に参照極に対して負の電位を加えて、対極/検知
極間の電流からNOxガスを検出する方法において、 前記負の電位を検知極に1/3以下のデューテイ比でパ
ルス的に印加し、パルス印加時の対極/検知極間の電流
からNOxガスを検出すると共に、 前記パルス印加時以外は、検知極を、参照極に対して等
電位にする、もしくは参照極との電気的接続を遮断す
る、ことを特徴とする、NOxガス検出方法。
1. An alkali metal ionic conductor is provided with a detection electrode, a counter electrode and a reference electrode, and a sensor in which an alkali metal nitrite or nitrate is contained in the counter electrode is used, and the detection electrode is a negative electrode with respect to the reference electrode. In a method for detecting a NOx gas from a current between a counter electrode and a detection electrode by applying a potential, the negative potential is pulse-wise applied to the detection electrode at a duty ratio of 1/3 or less, and the counter electrode / detection at the time of pulse application The NOx gas is detected from the current between the electrodes, and the detection electrode is made to have the same potential as the reference electrode or the electrical connection with the reference electrode is cut off except when the pulse is applied. , NOx gas detection method.
【請求項2】 前記パルスの印加時以外は、検知極と参
照極との電気的接続を遮断するようにしたことを特徴と
する、請求項1のNOxガス検出方法。
2. The NOx gas detection method according to claim 1, wherein the electrical connection between the detection electrode and the reference electrode is interrupted except when the pulse is applied.
【請求項3】 前記パルス後半での電流からNOxガス
を検出することを特徴とする、請求項1または2のNO
xガス検出方法。
3. The NOx according to claim 1 or 2, wherein NOx gas is detected from the current in the latter half of the pulse.
x Gas detection method.
【請求項4】 前記センサを請求項1に記載の条件でエ
ージングし、初期的な感度の低下が終了した後の安定域
にセンサを移行させて、NOxガスを検出することを特
徴とする、請求項3のNOxガス検出方法。
4. The NOx gas is detected by aging the sensor under the conditions described in claim 1, moving the sensor to a stable region after the initial reduction in sensitivity is completed, and detecting NOx gas. The NOx gas detection method according to claim 3.
【請求項5】 アルカリ金属イオン導電体に検知極と対
極と参照極とを設けて、対極にはアルカリ金属の亜硝酸
塩または硝酸塩を含有させたセンサを用い、 検知極に参照極に対して負の電位を加えて、対極/検知
極間の電流からNOxガスを検出する装置において、 前記負の電位を検知極に1/3以下のデューテイ比でパ
ルス的に印加すると共に、前記パルス印加時以外は、検
知極を、参照極に対して等電位にする、もしくは参照極
との電気的接続を遮断するための、パルス駆動手段と、 パルス印加時の対極/検知極間の電流からNOxガスを
検出するための電流検出手段とを設けたことを特徴とす
る、NOxガス検出装置。
5. An alkali metal ionic conductor is provided with a detection electrode, a counter electrode and a reference electrode, and a sensor containing alkali metal nitrite or nitrate is used as the counter electrode, and the detection electrode is negative with respect to the reference electrode. In a device for detecting NOx gas from the current between the counter electrode and the detection electrode by applying a negative potential to the detection electrode in a pulsed manner at a duty ratio of 1/3 or less, and except when the pulse is applied. Is a pulse drive means for making the detection electrode equipotential with respect to the reference electrode or for interrupting the electrical connection with the reference electrode, and the NOx gas is generated from the current between the counter electrode and the detection electrode when the pulse is applied. An NOx gas detection device, characterized in that a current detection means for detection is provided.
【請求項6】 前記電流検出手段は、前記パルスの後半
での電流からNOxガスを検出するものであることを特
徴とする、請求項5のNOxガス検出装置。
6. The NOx gas detection device according to claim 5, wherein the current detection means detects NOx gas from the current in the latter half of the pulse.
【請求項7】 前記センサは、請求項5に記載の条件で
エージングして、初期的な感度の低下が終了した後の安
定域にセンサを移行させたものであることを特徴とす
る、請求項6のNOxガス検出装置。
7. The sensor is a sensor that is aged under the conditions described in claim 5 and is moved to a stable region after the initial reduction in sensitivity is completed. Item 6. A NOx gas detection device.
【請求項8】 前記デューテイ比を1/4〜1/20,
パルス周期を30秒〜1分、パルス幅を3秒〜10秒と
したことを特徴とする、請求項6または7のNOxガス
検出装置。
8. The duty ratio is 1/4 to 1/20,
The NOx gas detection device according to claim 6 or 7, wherein the pulse period is 30 seconds to 1 minute and the pulse width is 3 seconds to 10 seconds.
JP2002134991A 2002-05-10 2002-05-10 NOx gas detection method and apparatus Expired - Fee Related JP4036676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002134991A JP4036676B2 (en) 2002-05-10 2002-05-10 NOx gas detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002134991A JP4036676B2 (en) 2002-05-10 2002-05-10 NOx gas detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2003329639A true JP2003329639A (en) 2003-11-19
JP4036676B2 JP4036676B2 (en) 2008-01-23

Family

ID=29697432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134991A Expired - Fee Related JP4036676B2 (en) 2002-05-10 2002-05-10 NOx gas detection method and apparatus

Country Status (1)

Country Link
JP (1) JP4036676B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7165399B2 (en) * 2004-12-29 2007-01-23 Honeywell International Inc. Method and system for using a measure of fueling rate in the air side control of an engine
WO2018110520A1 (en) * 2016-12-15 2018-06-21 株式会社デンソー Gas concentration measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7165399B2 (en) * 2004-12-29 2007-01-23 Honeywell International Inc. Method and system for using a measure of fueling rate in the air side control of an engine
WO2018110520A1 (en) * 2016-12-15 2018-06-21 株式会社デンソー Gas concentration measurement device

Also Published As

Publication number Publication date
JP4036676B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
GB1496538A (en) Method and apparatus for operating a gas sensor
JP2000321238A (en) Gas sensor
MX2007003348A (en) Method and apparatus for conditioning a sensor for measuring oxidation reduction potential.
WO2003087802A3 (en) Electrochemical sensor system and sensing method
JP2010169527A (en) Method and apparatus for measuring frequency characteristic of internal impedance of fuel cell
JP2003329639A (en) Nox gas detecting method and device therefor
KR101981362B1 (en) Method and devices for operating a heatable exhaust sensor
CN112526066A (en) Gas concentration measuring device and method
JPH0426702B2 (en)
JP2000002686A (en) Conversion device for nitrogen oxides
JP3159358B2 (en) Electromagnetic flow meter
JP2004069465A (en) Gas detection method and device using adsorption combustion gas sensor
US9857239B2 (en) Temperature analysis with voltage-current time differential operation of electrochemical sensors
WO2003001195A1 (en) Monitoring of gas sensors
CN112469996A (en) Method for operating a gas sensor device and gas sensor device for determining information about air quality
JP4467022B2 (en) Gas sensor
JP7469447B1 (en) Gas detector and method of operating the gas detector
JP7469446B1 (en) Gas sensor and method of operating the same
JPH08201336A (en) Electrochemical gas sensor and driving method thereof
JP2772330B2 (en) Initial stabilization method of solid electrolyte type carbon dioxide sensor and solid electrolyte type carbon dioxide detection device
CN214252181U (en) Gas concentration measuring device
EP3770595B1 (en) Methods and systems for limiting water within a photoionization detector
JP4141098B2 (en) Gas sensor
JP4248126B2 (en) Gas detection method and apparatus
JPH10216558A (en) Pulse charged gas treating device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees