WO2018110520A1 - Gas concentration measurement device - Google Patents

Gas concentration measurement device Download PDF

Info

Publication number
WO2018110520A1
WO2018110520A1 PCT/JP2017/044460 JP2017044460W WO2018110520A1 WO 2018110520 A1 WO2018110520 A1 WO 2018110520A1 JP 2017044460 W JP2017044460 W JP 2017044460W WO 2018110520 A1 WO2018110520 A1 WO 2018110520A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas concentration
cathode
measurement
concentration measuring
Prior art date
Application number
PCT/JP2017/044460
Other languages
French (fr)
Japanese (ja)
Inventor
寛 北川
鈴木 洋介
平松 秀彦
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018110520A1 publication Critical patent/WO2018110520A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present disclosure relates to a gas concentration measurement device that detects the concentration of a specific gas contained in a measurement gas.
  • a gas sensor that uses a lithium ion conductive electrolyte is known as a gas sensor for measuring a specific gas concentration in a measurement gas (see, for example, Patent Document 1).
  • This gas sensor is configured to measure the carbon dioxide gas concentration by measuring the electromotive force utilizing the fact that an electromotive force is generated between a pair of electrodes provided in the electrolyte in accordance with the carbon dioxide gas concentration.
  • the gas sensor described in Patent Document 1 has low measurement accuracy in the high concentration region, and the electromotive force generated between the electrodes is likely to shift in the presence of the impurity gas.
  • This disclosure aims to improve measurement accuracy in a gas concentration measurement apparatus using an electrolyte having alkali metal ion conductivity.
  • a gas concentration measurement device includes an anode capable of storing and releasing alkali metal ions, and a cathode that generates a reaction product by reacting alkali metal ions with a specific gas included in a measurement gas.
  • a gas that measures the concentration of a specific gas based on the value of the current that flows between the anode and the cathode when a voltage is applied to the cathode, and an electrolyte that is interposed between the anode and the cathode and can conduct alkali metal ions A concentration measuring unit.
  • the oxygen concentration is higher than that of an electromotive force sensor that measures the gas concentration based on the electromotive force. Even if it exists, it becomes possible to detect with high precision.
  • FIG. 2 is a configuration diagram showing an example of a case where a temperature adjustment device is included in the gas concentration measurement device of the first embodiment.
  • the gas concentration measuring apparatus 1 is configured to measure a specific gas concentration contained in a measurement gas.
  • the gas concentration measuring apparatus 1 of this embodiment measures the concentration of oxygen as a specific gas.
  • the gas concentration measuring apparatus 1 of this embodiment includes a sensor unit 10 and a gas concentration measuring unit 16.
  • the sensor unit 10 includes a cathode 11, an anode 12, and a solid electrolyte layer 13.
  • the gas concentration measuring apparatus 1 of the present embodiment is configured as a laminated body in which a cathode 11, an anode 12, and a solid electrolyte layer 13 are laminated.
  • the cathode 11 is disposed on one surface side of the solid electrolyte layer 13, and the anode 12 is disposed on the other surface side of the solid electrolyte layer 13.
  • the cathode 11 has a positive electrode material made of metal or metal oxide.
  • the positive electrode material has a catalytic function for promoting a reaction (that is, a reduction reaction) of oxygen that is a positive electrode active material.
  • oxygen of the positive electrode active material oxygen (oxygen contained in the atmosphere) existing around the gas concentration measuring device 1 (particularly the cathode 11) is used.
  • the cathode 11 of this embodiment includes a Ti electrode 11a and a Pt electrode 11b.
  • the Ti electrode 11a is configured as a porous body
  • the Pt electrode 11b is configured as a comb-shaped electrode.
  • the porous Ti body constituting the Ti electrode 11a has a porosity of 80%.
  • the Ti electrode 11a and the Pt electrode 11b are stacked.
  • the Pt electrode 11b is disposed so as to be in contact with the solid electrolyte layer 13, and the Ti electrode 11a is disposed so as to be in contact with the Pt electrode 11b.
  • the anode 12 has a negative electrode material including a negative electrode active material capable of occluding and releasing alkali metal ions.
  • alkali metal ions include lithium ions and sodium ions.
  • lithium ions are used as alkali metal ions.
  • the negative electrode active material is selected from the group consisting of metallic lithium, a lithium alloy, a metal material capable of occluding and releasing lithium, an alloy material capable of occluding and releasing lithium, and a compound capable of occluding and releasing lithium.
  • metallic lithium is used as the anode 12.
  • the solid electrolyte layer 13 is interposed between the cathode 11 and the anode 12 and is made of a solid electrolyte capable of conducting lithium ions.
  • the solid electrolyte constituting the solid electrolyte layer 13 is preferably made of a material that has no electron conductivity and high lithium ion conductivity.
  • the solid electrolyte layer 13 functions as a transmission path through which lithium ions move between the cathode 11 and the anode 12.
  • the solid electrolyte layer 13 may be a single layer or a plurality of layers.
  • the solid electrolyte layer 13 of the present embodiment is a laminate of two layers, a first electrolyte layer 13a and a second electrolyte layer 13b.
  • the first electrolyte layer 13a is provided on the cathode 11 side
  • the second electrolyte layer 13b is provided on the anode 12 side.
  • LATP Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3
  • Li—Al—Ti—P—O-based NASICON type oxide is used.
  • an electrolyte made of PEO (polyethylene oxide) and LiTFSI (lithium bistrifluoromethanesulfonimide: Li (CF 3 SO 2 ) 2 N) is used.
  • the second electrolyte layer 13b is provided to prevent LATP constituting the first electrolyte layer 13a from reacting with the metal Li constituting the anode 12.
  • the cathode 11 is covered with a seal portion 14.
  • the seal part 14 may be made of resin or alumina as long as it can block the measurement gas.
  • the seal portion 14 is formed with an opening portion 14a through which the measurement gas can pass.
  • a diffusion layer 15 for limiting the diffusion of the measurement gas to the surface of the cathode 11 is provided in the opening 14a of the seal portion 14.
  • the diffusion layer 15 for example, a porous body of alumina can be used.
  • the gas concentration measuring unit 16 is configured to detect the oxygen concentration based on a current value when a constant voltage is applied to the sensor unit 10.
  • the gas concentration measurement unit 16 includes a power supply unit, a current measurement unit, and a calculation unit.
  • the power supply unit applies a voltage to the cathode 11 and the anode 12.
  • the current measuring unit measures a current value flowing between the cathode 11 and the anode 12 when a voltage is applied by the power supply unit.
  • the computing unit computes the oxygen concentration based on the current value measured by the current measuring unit.
  • the following reaction proceeds at the cathode 11 and the anode 12.
  • the constant voltage applied to the sensor unit 10 is 2.9 V or less.
  • Anode side Li ⁇ Li + + e ⁇ Cathode side: 2Li + + O 2 + 2e ⁇ ⁇ Li 2 O 2 [When refreshing] Anode side: Li + + e ⁇ ⁇ Li Cathode side: Li 2 O 2 ⁇ 2Li + + O 2 + 2e ⁇ When measuring the gas concentration, lithium ions are generated at the anode 12, and the lithium ions move to the cathode 11 side through the electrolyte layer 13. At the cathode 11, lithium ions react with oxygen in the air, and Li 2 O 2 is mainly deposited as a reaction product.
  • the reaction product is decomposed at the cathode 11 to generate lithium ions and oxygen.
  • Lithium ions pass through the electrolyte layer 13 and move to the anode 12 side to become lithium metal.
  • the gas concentration measurement device 1 can perform the gas concentration measurement again.
  • the gas concentration measurement and the refresh are repeatedly performed every predetermined time.
  • the gas concentration measuring apparatus 1 of the present embodiment is configured as a limiting current type sensor.
  • FIG. 2 shows the relationship between the current value when a constant voltage is applied to the sensor unit 10 and the oxygen concentration in the measurement gas.
  • FIG. 2 shows the relationship between the current value of the sensor unit 10 and the oxygen concentration when the temperature of the sensor unit 10 is 70 ° C. and the dew point temperature is 60 ° C.
  • the current value of the sensor unit 10 at the time of measuring the gas concentration is proportional to the oxygen concentration in the air, and the current value increases as the oxygen concentration increases. Therefore, the oxygen concentration in the air can be measured by measuring the current value with the gas concentration measuring unit 16 applying a constant voltage to the sensor unit 10. As shown in FIG. 2, the gas concentration measuring apparatus 1 according to the present embodiment can measure a high concentration oxygen concentration on the order of%.
  • the relationship between the current value of the sensor unit 10 and the oxygen concentration shown in FIG. 2 differs depending on the temperature of the sensor unit 10 and the humidity of the measurement gas. For this reason, the gas concentration measurement part 16 should just be provided with the relationship between the electric current value of the sensor part 10, and oxygen concentration as a map for every temperature of the sensor part 10, and humidity of measurement gas. In addition, in this indication, humidity shall mean relative humidity.
  • the surface ion conductive layer formed on the surface of the reaction product (mainly Li 2 O 2 ) generated at the cathode 11 by gas concentration measurement will be described.
  • a gas containing water in the vapor phase is in contact with the surface of the reaction product generated at the cathode 11. For this reason, on the surface of the reaction product, a part of lithium contained in the reaction product is bonded to the hydroxy group of the water molecule, and LiOH is generated.
  • LiOH is a water-soluble substance, and absorbs moisture in the presence of vapor phase water to form a lithium hydroxide layer. As a result, a surface ion conductive layer composed of a lithium hydroxide layer is formed on the surface of the reaction product.
  • the surface ion conductive layer forms a lithium ion conductive layer in the reaction field of the cathode 11.
  • the conductivity in the sensor unit 10 can be improved. Further, it is possible to suppress the occurrence of an overvoltage in which the voltage greatly increases when the sensor unit 10 performs refresh after the gas concentration measurement. For this reason, it is possible to stably measure and refresh the gas concentration.
  • the magnitude of the ionic conductivity of the surface ion conductive layer varies based on the amount of moisture in the gas phase (that is, humidity) contained in the measurement gas. Specifically, the surface ion conductive layer expands when the humidity of the measurement gas is high, and the surface ion conductive layer contracts when the humidity of the measurement gas is low.
  • the reaction product may be reduced and the surface ion conductive layer may flow out.
  • the surface ion conductive layer is excessively reduced, appropriate ion conductivity cannot be secured, and gas concentration measurement by the sensor unit 10 may not be performed.
  • the humidity of the measurement gas can be adjusted by humidifying or dehumidifying the measurement gas by the humidity adjusting device 21.
  • the humidity of the measurement gas can be adjusted by adjusting the temperature of the sensor unit 10 with the temperature adjustment device 22.
  • a heating device such as a heater may be provided.
  • the humidity adjusting device 21 and the temperature adjusting device 22 correspond to a humidity adjusting unit that adjusts the humidity of the measurement gas. Note that only one or both of the humidity adjusting device 21 and the temperature adjusting device 22 may be provided as the humidity adjusting unit.
  • the amount of water vapor contained in the measurement gas is made smaller than the amount of saturated water vapor at the temperature of the sensor unit 10.
  • LiOH saturated vapor pressure the saturated vapor pressure
  • the surface ion conductive layer Is in an equilibrium state. That is, if the water vapor partial pressure of the measurement gas is higher than the LiOH saturated vapor pressure, the surface ion conductive layer expands, and if the water vapor partial pressure of the measurement gas is lower than the LiOH saturated vapor pressure, the surface ion conductive layer shrinks.
  • FIG. 3 shows changes in saturated water vapor pressure (P1) and LiOH saturated vapor pressure (P2) accompanying temperature change, and humidity (relative humidity RH) corresponding to LiOH saturated vapor pressure.
  • P1 and LiOH saturated vapor pressure (P2) accompanying temperature change
  • RH relative humidity
  • the LiOH saturated vapor pressure is lower than the saturated water vapor pressure due to the vapor pressure drop caused by the aqueous solution. Moreover, since the solubility of lithium hydroxide increases at a high temperature, the difference between the saturated water vapor pressure and the LiOH saturated vapor pressure increases.
  • the humidity corresponding to the LiOH saturated vapor pressure is around 84%, although it varies depending on the temperature. For this reason, the surface ion conductive layer can be brought into an equilibrium state by controlling the humidity of the measurement gas at the apparatus temperature to be around 84%.
  • the water vapor pressure of the measurement gas is preferably 100% or less of the LiOH saturated vapor pressure. That is, the relationship of 1 ⁇ (water vapor pressure of measurement gas) / (LiOH saturated vapor pressure) ⁇ 0.4 may be satisfied.
  • an electrolyte having lithium ion conductivity is used as the electrolyte membrane 13 sandwiched between the cathode 11 and the anode 12, and measurement is performed based on a current value when a constant voltage is applied.
  • the oxygen concentration in the gas is measured.
  • the gas concentration detection accuracy based on the current value can be improved.
  • the water vapor pressure of the measurement gas is 40 to 100% of the LiOH saturated vapor pressure.
  • a lithium ion conductive solid electrolyte is used as the electrolyte membrane 13 sandwiched between the cathode 11 and the anode 12, and the gas concentration measuring device 1 can be operated at a relatively low temperature.
  • the gas concentration measuring apparatus 2 of the second embodiment is configured as a bipolar gas sensor having a plurality of cathodes.
  • the second embodiment two cathodes 11 and 17 are provided.
  • One anode 12 and one electrolyte layer 13 are provided, as in the first embodiment.
  • the two cathodes 11 and 17 are provided on the surface of the electrolyte layer 13, respectively. These cathodes 11 and 17 have the same structure, and include Ti electrodes 11a and 17a and Pt electrodes 11b and 17b, respectively.
  • the first cathode 11 and the second cathode 17 are each covered with a seal portion 14.
  • a first opening 14 a is formed corresponding to the first cathode 11
  • a second opening 14 b is formed corresponding to the second cathode 17.
  • a first diffusion layer 15 is provided in the first opening 14a
  • a second diffusion layer 18 is provided in the second opening 14b.
  • the gas concentration measuring unit 16 reverses the current flow in the first cathode 11 and the second cathode 17. For this reason, refreshing can be performed on the other cathodes 11 and 17 while the gas concentration measurement is performed on one of the cathodes 11 and 17.
  • the gas concentration measurement unit 16 switches the gas concentration measurement and the refresh at different timings using the two cathodes 11 and 17. That is, the gas concentration measurement unit 16 switches the current flow between the two cathodes 11 and 17 at different timings.
  • the gas concentration measurement unit 16 alternately performs gas concentration measurement and refresh switching at the cathodes 11 and 17. Thereby, the gas concentration measurement by the 1st cathode 11 and the gas concentration measurement by the 2nd cathode 17 can be performed alternately, and a gas concentration measurement can be performed continuously.
  • the timing at which the current flow is switched from the refresh to the gas concentration measurement at the other cathode 11, 17 is set earlier than the timing at which the current flow is switched from the gas concentration measurement to the refresh at the one cathode 11, 17.
  • the gas concentration measurement can be continuously performed by alternately measuring the gas concentration with the plurality of cathodes 11 and 17.
  • the gas concentration is measured alternately by the two cathodes 11 and 17, but three or more cathodes may be provided and the gas concentration may be measured in order.
  • the oxygen concentration measuring apparatuses 1 and 2 of each of the above embodiments the oxygen concentration is measured.
  • oxygen is included by controlling the voltage applied to the sensor unit 10.
  • a plurality of types of gas concentrations may be measured.
  • lithium ions can react with various gases when measuring the gas concentration.
  • Li 2 O 2 In reaction (a), lithium ions react mainly with carbon dioxide, and in reactions (a) and (c), lithium ions react mainly with oxygen.
  • At least one of the reactions (a) to (c) proceeds. Specifically, the reaction by voltage of 3.65V reaction by a (vs.Li + / Li) or less (A) proceeds, and less 3.2V (vs.Li + / Li) voltage (I) proceeds, and the reaction (c) proceeds by setting the voltage to 2.9 V (vs. Li + / Li) or less.
  • the reaction between lithium ions and carbon dioxide is the main component, and the carbon dioxide concentration can be measured.
  • the voltage applied to the sensor unit 10 is set to 3.2 V or less, the reaction between lithium ions and oxygen is mainly performed, and the oxygen concentration can be measured. In this way, by controlling the voltage applied to the sensor unit 10, it is possible to measure a plurality of types of gas concentrations.
  • the concentration of a plurality of gases including oxygen may be measured by differentiating a plurality of cathode electrode materials.
  • the Pt electrode is inert to carbon dioxide and the Ru electrode is active to carbon dioxide.
  • a Pt electrode is provided on one cathode and a Ru electrode is provided on the other cathode.
  • the oxygen concentration can be measured using the Pt electrode, and the oxygen concentration and carbon dioxide concentration can be measured using the Ru electrode.
  • the carbon dioxide concentration can be obtained by subtracting the measured gas concentration value (that is, oxygen concentration) of the Pt electrode from the measured gas concentration value of the Ru electrode (that is, the total value of oxygen concentration and carbon dioxide concentration).
  • the gas concentration measuring devices 1 and 2 are configured as limit current type sensors.
  • the present invention is not limited to this, and a transient that measures the gas concentration based on a change in the current value when a voltage is applied.
  • You may comprise as an electric current type sensor.
  • the transient current type sensor the gas concentration can be measured immediately after the voltage application is started when the gas concentration is measured.
  • the gas concentration measuring device 2 of the second embodiment is a transient current type sensor, as shown in FIG. 6, the current flows from the gas concentration measurement to the refresh at one of the cathodes 11 and 17.
  • the timing for switching and the timing for switching the current flow from refresh to gas concentration measurement at the other cathodes 11 and 17 may be made simultaneously.

Abstract

This gas concentration measurement device is provided with: an anode (12) which is capable of storing and releasing alkali metal ions; a cathode (11) at which the alkali metal ions and a specific gas contained in a measurement gas are reacted with each other, thereby producing a reaction product; an electrolyte (13) which is interposed between the anode and the cathode and is capable of conducting the alkali metal ions; and a gas concentration measurement unit (16) which determines the concentration of the specific gas in accordance with the current value at the time when a voltage is applied to the cathode.

Description

ガス濃度測定装置Gas concentration measuring device 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年12月15日に出願された日本出願番号2016-243130号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-243130 filed on December 15, 2016, the contents of which are incorporated herein by reference.
 本開示は、測定ガス中に含まれる特定ガスの濃度を検出するガス濃度測定装置に関する。 The present disclosure relates to a gas concentration measurement device that detects the concentration of a specific gas contained in a measurement gas.
 従来より、測定ガス中の特定ガス濃度を測定するガスセンサとして、リチウムイオン伝導性電解質を用いるものが知られている(例えば、特許文献1参照)。このガスセンサでは、炭酸ガス濃度に応じて電解質に設けられた一対の電極間に起電力が生じることを利用し、この起電力を測定することにより炭酸ガス濃度を測定するように構成されている。 Conventionally, a gas sensor that uses a lithium ion conductive electrolyte is known as a gas sensor for measuring a specific gas concentration in a measurement gas (see, for example, Patent Document 1). This gas sensor is configured to measure the carbon dioxide gas concentration by measuring the electromotive force utilizing the fact that an electromotive force is generated between a pair of electrodes provided in the electrolyte in accordance with the carbon dioxide gas concentration.
特開2000-34134号公報JP 2000-34134 A
 しかしながら、上記特許文献1に記載のガスセンサは、高濃度領域での測定精度が低く、さらに不純物ガスの存在下で電極間に生じる起電力がずれやすい。 However, the gas sensor described in Patent Document 1 has low measurement accuracy in the high concentration region, and the electromotive force generated between the electrodes is likely to shift in the presence of the impurity gas.
 本開示は、アルカリ金属イオン伝導性を有する電解質を用いたガス濃度測定装置において、測定精度を向上させることを目的とする。 This disclosure aims to improve measurement accuracy in a gas concentration measurement apparatus using an electrolyte having alkali metal ion conductivity.
 本開示の一態様によれば、ガス濃度測定装置は、アルカリ金属イオンを貯蔵および放出可能なアノードと、アルカリ金属イオンと測定ガスに含まれる特定ガスとが反応して反応生成物が生成するカソードと、アノードとカソードの間に介在し、アルカリ金属イオンを伝導可能な電解質と、カソードに電圧を印加した際のアノードとカソードとの間に流れる電流値に基づいて特定ガスの濃度を測定するガス濃度測定部と、を備える。 According to an aspect of the present disclosure, a gas concentration measurement device includes an anode capable of storing and releasing alkali metal ions, and a cathode that generates a reaction product by reacting alkali metal ions with a specific gas included in a measurement gas. A gas that measures the concentration of a specific gas based on the value of the current that flows between the anode and the cathode when a voltage is applied to the cathode, and an electrolyte that is interposed between the anode and the cathode and can conduct alkali metal ions A concentration measuring unit.
 例えば、アルカリイオン伝導性を有する電解質を用いたガス濃度測定装置を電流式センサとして構成した場合、起電力に基づいてガス濃度を測定する起電力式センサに比較して、酸素濃度が高濃度であっても精度よく検出することが可能となる。 For example, when a gas concentration measurement device using an electrolyte having alkali ion conductivity is configured as a current sensor, the oxygen concentration is higher than that of an electromotive force sensor that measures the gas concentration based on the electromotive force. Even if it exists, it becomes possible to detect with high precision.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
第1実施形態のガス濃度測定装置の構成を示す図である。 センサ部の電流値と測定ガス中の酸素濃度との関係を示す図である。 水と水酸化リチウム飽和水溶液の飽和蒸気圧を示す図である。 第2実施形態のガス濃度測定装置の構成を示す図である。 第2実施形態の第1、第2カソードの電流値の変化を示す図である。 他の実施形態の第1、第2カソードの電流値の変化を示す図である。 第1実施形態のガス濃度測定装置において、湿度調整装置を有する場合の一例を示す構成図である。 第1実施形態のガス濃度測定装置において、温度調整装置を有する場合の一例を示す構成図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
It is a figure which shows the structure of the gas concentration measuring apparatus of 1st Embodiment. It is a figure which shows the relationship between the electric current value of a sensor part, and the oxygen concentration in measurement gas. It is a figure which shows the saturated vapor pressure of water and lithium hydroxide saturated aqueous solution. It is a figure which shows the structure of the gas concentration measuring apparatus of 2nd Embodiment. It is a figure which shows the change of the electric current value of the 1st, 2nd cathode of 2nd Embodiment. It is a figure which shows the change of the electric current value of the 1st, 2nd cathode of other embodiment. In the gas concentration measuring apparatus of 1st Embodiment, it is a block diagram which shows an example in case it has a humidity control apparatus. FIG. 2 is a configuration diagram showing an example of a case where a temperature adjustment device is included in the gas concentration measurement device of the first embodiment.
 (第1実施形態)
 以下、本開示を適用した第1実施形態のガス濃度測定装置1を図面を用いて説明する。ガス濃度測定装置1は、測定ガス中に含まれる特定ガス濃度を測定するように構成されている。本実施形態のガス濃度測定装置1は、特定ガスとして酸素の濃度を測定する。
(First embodiment)
Hereinafter, a gas concentration measuring apparatus 1 according to a first embodiment to which the present disclosure is applied will be described with reference to the drawings. The gas concentration measuring apparatus 1 is configured to measure a specific gas concentration contained in a measurement gas. The gas concentration measuring apparatus 1 of this embodiment measures the concentration of oxygen as a specific gas.
 図1に示すように、本実施形態のガス濃度測定装置1は、センサ部10とガス濃度測定部16を備えている。 As shown in FIG. 1, the gas concentration measuring apparatus 1 of this embodiment includes a sensor unit 10 and a gas concentration measuring unit 16.
 センサ部10は、カソード11、アノード12、固体電解質層13を備えている。本実施形態のガス濃度測定装置1は、カソード11、アノード12、固体電解質層13が積層した積層体として構成されている。固体電解質層13の一面側にカソード11が配置され、固体電解質層13の他面側にアノード12が配置されている。 The sensor unit 10 includes a cathode 11, an anode 12, and a solid electrolyte layer 13. The gas concentration measuring apparatus 1 of the present embodiment is configured as a laminated body in which a cathode 11, an anode 12, and a solid electrolyte layer 13 are laminated. The cathode 11 is disposed on one surface side of the solid electrolyte layer 13, and the anode 12 is disposed on the other surface side of the solid electrolyte layer 13.
 カソード11は、金属あるいは金属酸化物等からなる正極材料を有する。正極材料は、正極活物質である酸素の反応(すなわち、還元反応)を促進する触媒機能を備えている。正極活物質の酸素は、ガス濃度測定装置1(特にカソード11)の周囲に存在する酸素(雰囲気に含まれる酸素)が用いられる。 The cathode 11 has a positive electrode material made of metal or metal oxide. The positive electrode material has a catalytic function for promoting a reaction (that is, a reduction reaction) of oxygen that is a positive electrode active material. As the oxygen of the positive electrode active material, oxygen (oxygen contained in the atmosphere) existing around the gas concentration measuring device 1 (particularly the cathode 11) is used.
 本実施形態のカソード11は、Ti電極11aとPt電極11bとを備えている。Ti電極11aは多孔質体として構成され、Pt電極11bは櫛形電極として構成されている。Ti電極11aを構成するTi多孔質体は、空隙率を80%としている。Ti電極11aとPt電極11bは積層して設けられている。Pt電極11bは固体電解質層13と接するように配置され、Ti電極11aはPt電極11bに接するように配置されている。 The cathode 11 of this embodiment includes a Ti electrode 11a and a Pt electrode 11b. The Ti electrode 11a is configured as a porous body, and the Pt electrode 11b is configured as a comb-shaped electrode. The porous Ti body constituting the Ti electrode 11a has a porosity of 80%. The Ti electrode 11a and the Pt electrode 11b are stacked. The Pt electrode 11b is disposed so as to be in contact with the solid electrolyte layer 13, and the Ti electrode 11a is disposed so as to be in contact with the Pt electrode 11b.
 アノード12は、アルカリ金属イオンを吸蔵放出可能な負極活物質を含む負極材料を有する。アルカリ金属イオンとしては、リチウムイオン、ナトリウムイオンを例示できる。本実施形態では、アルカリ金属イオンとしてリチウムイオンを用いている。 The anode 12 has a negative electrode material including a negative electrode active material capable of occluding and releasing alkali metal ions. Examples of alkali metal ions include lithium ions and sodium ions. In the present embodiment, lithium ions are used as alkali metal ions.
 負極活物質は、金属リチウム、リチウム合金、リチウムの吸蔵と放出が可能な金属材料、リチウムの吸蔵と放出が可能な合金材料、及びリチウムの吸蔵と放出が可能な化合物からなる群から選択される1種又は2種以上の材料である。本実施形態では、アノード12として金属リチウムを用いている。 The negative electrode active material is selected from the group consisting of metallic lithium, a lithium alloy, a metal material capable of occluding and releasing lithium, an alloy material capable of occluding and releasing lithium, and a compound capable of occluding and releasing lithium. One or more materials. In this embodiment, metallic lithium is used as the anode 12.
 固体電解質層13は、カソード11及びアノード12の間に介在し、リチウムイオンを伝導可能な固体電解質からなる。固体電解質層13を構成する固体電解質は、電子の伝導性がなく、リチウムイオンの伝導性が高い材料を用いることが好ましい。固体電解質層13は、リチウムイオンがカソード11とアノード12との間を移動する伝達経路として機能する。固体電解質層13は、単層でもよく、複数層でもよい。 The solid electrolyte layer 13 is interposed between the cathode 11 and the anode 12 and is made of a solid electrolyte capable of conducting lithium ions. The solid electrolyte constituting the solid electrolyte layer 13 is preferably made of a material that has no electron conductivity and high lithium ion conductivity. The solid electrolyte layer 13 functions as a transmission path through which lithium ions move between the cathode 11 and the anode 12. The solid electrolyte layer 13 may be a single layer or a plurality of layers.
 本実施形態の固体電解質層13は、第1電解質層13aと第2電解質層13bの2層が積層されている。第1電解質層13aがカソード11側に設けられ、第2電解質層13bがアノード12側に設けられている。 The solid electrolyte layer 13 of the present embodiment is a laminate of two layers, a first electrolyte layer 13a and a second electrolyte layer 13b. The first electrolyte layer 13a is provided on the cathode 11 side, and the second electrolyte layer 13b is provided on the anode 12 side.
 第1電解質層13aとしては、Li-Al-Ti-P-O系NASICON型酸化物であるLATP(Li1.3Al0.3Ti1.7(PO43)を用いている。第2電解質層13bとしては、PEO(ポリエチレンオキシド)およびLiTFSI(リチウムビストリフルオロメタンスルホンイミド:Li(CF3SO22N)からなる電解質を用いている。第2電解質層13bは、第1電解質層13aを構成するLATPがアノード12を構成する金属Liと反応するのを防ぐために設けられている。 As the first electrolyte layer 13a, LATP (Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 ), which is a Li—Al—Ti—P—O-based NASICON type oxide, is used. As the second electrolyte layer 13b, an electrolyte made of PEO (polyethylene oxide) and LiTFSI (lithium bistrifluoromethanesulfonimide: Li (CF 3 SO 2 ) 2 N) is used. The second electrolyte layer 13b is provided to prevent LATP constituting the first electrolyte layer 13a from reacting with the metal Li constituting the anode 12.
 図1に示すように、カソード11はシール部14によって覆われている。シール部14は、測定ガスを遮断できればよく、樹脂やアルミナを用いることができる。シール部14には、測定ガスが通過可能な開口部14aが形成されている。 As shown in FIG. 1, the cathode 11 is covered with a seal portion 14. The seal part 14 may be made of resin or alumina as long as it can block the measurement gas. The seal portion 14 is formed with an opening portion 14a through which the measurement gas can pass.
 シール部14の開口部14aには、カソード11表面への測定ガスの拡散を制限するための拡散層15が設けられている。拡散層15としては、例えばアルミナの多孔質体を用いることができる。 A diffusion layer 15 for limiting the diffusion of the measurement gas to the surface of the cathode 11 is provided in the opening 14a of the seal portion 14. As the diffusion layer 15, for example, a porous body of alumina can be used.
 ガス濃度測定部16は、センサ部10に一定電圧を印加した際の電流値に基づいて酸素濃度を検出するように構成されている。ガス濃度測定部16は、電源部、電流測定部、演算部を含んでいる。電源部は、カソード11とアノード12に電圧を印加するものである。電流測定部は、電源部で電圧を印加した際のカソード11とアノード12との間に流れる電流値を測定する。演算部は、電流測定部で測定した電流値に基づいて酸素濃度を演算する。 The gas concentration measuring unit 16 is configured to detect the oxygen concentration based on a current value when a constant voltage is applied to the sensor unit 10. The gas concentration measurement unit 16 includes a power supply unit, a current measurement unit, and a calculation unit. The power supply unit applies a voltage to the cathode 11 and the anode 12. The current measuring unit measures a current value flowing between the cathode 11 and the anode 12 when a voltage is applied by the power supply unit. The computing unit computes the oxygen concentration based on the current value measured by the current measuring unit.
 本実施形態のガス濃度測定装置1は、カソード11およびアノード12において以下の反応が進む。なお、本実施形態では、センサ部10に印加する一定電圧を2.9V以下としている。 In the gas concentration measuring apparatus 1 of the present embodiment, the following reaction proceeds at the cathode 11 and the anode 12. In the present embodiment, the constant voltage applied to the sensor unit 10 is 2.9 V or less.
 [ガス濃度測定時]
 アノード側:Li→Li++e-
 カソード側:2Li++O2+2e-→Li22
 [リフレッシュ時]
 アノード側:Li++e-→Li
 カソード側:Li22→2Li++O2+2e-
 ガス濃度測定時には、アノード12でリチウムイオンが生成し、リチウムイオンは電解質層13を通過してカソード11側に移動する。カソード11では、リチウムイオンが空気中の酸素と反応し、反応生成物として主にLi22が析出する。
[When measuring gas concentration]
Anode side: Li → Li + + e
Cathode side: 2Li + + O 2 + 2e → Li 2 O 2
[When refreshing]
Anode side: Li + + e → Li
Cathode side: Li 2 O 2 → 2Li + + O 2 + 2e
When measuring the gas concentration, lithium ions are generated at the anode 12, and the lithium ions move to the cathode 11 side through the electrolyte layer 13. At the cathode 11, lithium ions react with oxygen in the air, and Li 2 O 2 is mainly deposited as a reaction product.
 ガス濃度測定を継続すると、リチウム原子が反応生成物としてカソード11側に偏在し、ガス濃度測定ができなくなる。このため、定期的に電流の流れる方向を切り替えるリフレッシュを行う必要がある。 When the gas concentration measurement is continued, lithium atoms are unevenly distributed on the cathode 11 side as reaction products, and the gas concentration measurement cannot be performed. For this reason, it is necessary to periodically refresh the direction in which the current flows.
 リフレッシュ時には、カソード11では、反応生成物が分解してリチウムイオンと酸素が生成する。リチウムイオンは、電解質層13を通過してアノード12側に移動してリチウム金属となる。 At the time of refresh, the reaction product is decomposed at the cathode 11 to generate lithium ions and oxygen. Lithium ions pass through the electrolyte layer 13 and move to the anode 12 side to become lithium metal.
 リフレッシュを所定時間行うことで、ガス濃度測定装置1で再度ガス濃度測定を行うことが可能となる。本実施形態のガス濃度測定装置1では、ガス濃度測定およびリフレッシュが所定時間毎に繰り返し行われる。 By performing the refresh for a predetermined time, the gas concentration measurement device 1 can perform the gas concentration measurement again. In the gas concentration measuring apparatus 1 of the present embodiment, the gas concentration measurement and the refresh are repeatedly performed every predetermined time.
 ガス濃度測定時には、拡散層15によってアノード11に供給される酸素量が制限されているので、電圧を増加しても電流が一定値(つまり、限界電流)になる飽和現象が現れる。限界電流は測定ガス中の酸素濃度に比例するため、センサ部10に一定電圧を印加した場合の電流値から酸素濃度を検出することができる。つまり、本実施形態のガス濃度測定装置1は、限界電流式のセンサとして構成されている。 When measuring the gas concentration, since the amount of oxygen supplied to the anode 11 is limited by the diffusion layer 15, a saturation phenomenon appears in which the current becomes a constant value (that is, the limit current) even if the voltage is increased. Since the limit current is proportional to the oxygen concentration in the measurement gas, the oxygen concentration can be detected from the current value when a constant voltage is applied to the sensor unit 10. That is, the gas concentration measuring apparatus 1 of the present embodiment is configured as a limiting current type sensor.
 図2は、センサ部10に一定電圧を印加した場合の電流値と測定ガス中の酸素濃度との関係を示している。図2は、センサ部10の温度が70℃、露点温度が60℃の場合のセンサ部10の電流値と酸素濃度との関係を示している。 FIG. 2 shows the relationship between the current value when a constant voltage is applied to the sensor unit 10 and the oxygen concentration in the measurement gas. FIG. 2 shows the relationship between the current value of the sensor unit 10 and the oxygen concentration when the temperature of the sensor unit 10 is 70 ° C. and the dew point temperature is 60 ° C.
 図2に示すように、ガス濃度測定時におけるセンサ部10の電流値は空気中の酸素濃度に比例しており、酸素濃度が高くなるほど電流値が大きくなっている。このため、ガス濃度測定部16でセンサ部10に一定電圧を印加した状態で電流値を測定することで、空気中の酸素濃度を測定することができる。図2に示すように、本実施形態のガス濃度測定装置1では、%オーダーの高濃度の酸素濃度を測定可能となっている。 As shown in FIG. 2, the current value of the sensor unit 10 at the time of measuring the gas concentration is proportional to the oxygen concentration in the air, and the current value increases as the oxygen concentration increases. Therefore, the oxygen concentration in the air can be measured by measuring the current value with the gas concentration measuring unit 16 applying a constant voltage to the sensor unit 10. As shown in FIG. 2, the gas concentration measuring apparatus 1 according to the present embodiment can measure a high concentration oxygen concentration on the order of%.
 図2に示すセンサ部10の電流値と酸素濃度との関係は、センサ部10の温度および測定ガスの湿度によって異なる。このため、ガス濃度測定部16は、センサ部10の温度および測定ガスの湿度毎に、センサ部10の電流値と酸素濃度との関係をマップとして備えていればよい。なお、本開示において、湿度は相対湿度を意味するものとする。 The relationship between the current value of the sensor unit 10 and the oxygen concentration shown in FIG. 2 differs depending on the temperature of the sensor unit 10 and the humidity of the measurement gas. For this reason, the gas concentration measurement part 16 should just be provided with the relationship between the electric current value of the sensor part 10, and oxygen concentration as a map for every temperature of the sensor part 10, and humidity of measurement gas. In addition, in this indication, humidity shall mean relative humidity.
 ここで、ガス濃度測定によってカソード11に生成する反応生成物(主にLi22)の表面に形成される表面イオン伝導層について説明する。カソード11に生成した反応生成物の表面には、気相の水を含んだガスが接する。このため、反応生成物の表面では、反応生成物に含まれるリチウムの一部が水分子のヒドロキシ基と結合し、LiOHが生成する。 Here, the surface ion conductive layer formed on the surface of the reaction product (mainly Li 2 O 2 ) generated at the cathode 11 by gas concentration measurement will be described. A gas containing water in the vapor phase is in contact with the surface of the reaction product generated at the cathode 11. For this reason, on the surface of the reaction product, a part of lithium contained in the reaction product is bonded to the hydroxy group of the water molecule, and LiOH is generated.
 LiOHは水溶性物質であり、気相の水の存在下で吸湿して水酸化リチウム層が形成される。この結果、反応生成物の表面には、水酸化リチウム層からなる表面イオン伝導層が生成する。 LiOH is a water-soluble substance, and absorbs moisture in the presence of vapor phase water to form a lithium hydroxide layer. As a result, a surface ion conductive layer composed of a lithium hydroxide layer is formed on the surface of the reaction product.
 この表面イオン伝導層によって、カソード11の反応場にリチウムイオン伝導層が形成される。この結果、センサ部10における導電性を向上させることができる。また、センサ部10でガス濃度測定後のリフレッシュを行う際に電圧が大きく上昇する過電圧の発生を抑制できる。このため、安定的にガス濃度測定およびリフレッシュを行うことが可能となる。 The surface ion conductive layer forms a lithium ion conductive layer in the reaction field of the cathode 11. As a result, the conductivity in the sensor unit 10 can be improved. Further, it is possible to suppress the occurrence of an overvoltage in which the voltage greatly increases when the sensor unit 10 performs refresh after the gas concentration measurement. For this reason, it is possible to stably measure and refresh the gas concentration.
 表面イオン伝導層のイオン伝導度の大きさは、測定ガスに含まれる気相の水分量(つまり、湿度)に基づいて変動する。具体的には、測定ガスの湿度が高いと表面イオン伝導層が拡大し、測定ガスの湿度が低いと表面イオン伝導層が縮小する。 The magnitude of the ionic conductivity of the surface ion conductive layer varies based on the amount of moisture in the gas phase (that is, humidity) contained in the measurement gas. Specifically, the surface ion conductive layer expands when the humidity of the measurement gas is high, and the surface ion conductive layer contracts when the humidity of the measurement gas is low.
 表面イオン伝導層が拡大しすぎると、反応生成物が縮小するとともに、表面イオン伝導層が流出するおそれがある。また、表面イオン伝導層が縮小しすぎると、適切なイオン伝導度を確保できず、センサ部10によるガス濃度測定を実施できなくおそれがある。 If the surface ion conductive layer is enlarged too much, the reaction product may be reduced and the surface ion conductive layer may flow out. In addition, if the surface ion conductive layer is excessively reduced, appropriate ion conductivity cannot be secured, and gas concentration measurement by the sensor unit 10 may not be performed.
 このため、センサ部10のガス濃度測定およびリフレッシュが行われる動作時には、測定ガスの湿度を適切に調整し、表面イオン伝導層を適正に維持する必要がある。例えば、図7Aに示すように、湿度調整装置21によって測定ガスを加湿あるいは除湿することで測定ガスの湿度を調整することができる。あるいは図7Bに示すように、温度調整装置22によりセンサ部10の温度を調整することで測定ガスの湿度を調整することができる。温度調整装置22の一例として、ヒータなどの加熱装置を設けてもよい。これらの場合、湿度調整装置21や温度調整装置22が、測定ガスの湿度を調整する湿度調整部に相当する。なお、湿度調整部として、湿度調整装置21および温度調整装置22の一方のみ、または、適宜両方を備えていてもよい。 For this reason, when the gas concentration measurement and refresh of the sensor unit 10 are performed, it is necessary to appropriately adjust the humidity of the measurement gas and properly maintain the surface ion conductive layer. For example, as shown in FIG. 7A, the humidity of the measurement gas can be adjusted by humidifying or dehumidifying the measurement gas by the humidity adjusting device 21. Alternatively, as shown in FIG. 7B, the humidity of the measurement gas can be adjusted by adjusting the temperature of the sensor unit 10 with the temperature adjustment device 22. As an example of the temperature adjustment device 22, a heating device such as a heater may be provided. In these cases, the humidity adjusting device 21 and the temperature adjusting device 22 correspond to a humidity adjusting unit that adjusts the humidity of the measurement gas. Note that only one or both of the humidity adjusting device 21 and the temperature adjusting device 22 may be provided as the humidity adjusting unit.
 測定ガスに含まれる気相の水がカソード11の表面で結露すると、表面イオン伝導層が過大になり、反応生成物が完全に溶解して溶け出してしまうおそれがある。このため、本実施形態では、測定ガスに含まれる水蒸気量が、センサ部10の温度における飽和水蒸気量より少なくなるようにしている。 When vapor phase water contained in the measurement gas is condensed on the surface of the cathode 11, the surface ion conductive layer becomes excessive, and the reaction product may be completely dissolved and dissolved. For this reason, in this embodiment, the amount of water vapor contained in the measurement gas is made smaller than the amount of saturated water vapor at the temperature of the sensor unit 10.
 測定ガスの水蒸気分圧と、表面イオン伝導層を構成する水酸化リチウム層が飽和水溶液化した場合の飽和蒸気圧(以下、「LiOH飽和蒸気圧」という)が等しい場合には、表面イオン伝導層が平衡状態となる。つまり、測定ガスの水蒸気分圧がLiOH飽和蒸気圧より高いと、表面イオン伝導層が拡大し、測定ガスの水蒸気分圧がLiOH飽和蒸気圧より低いと、表面イオン伝導層が縮小する。 When the water vapor partial pressure of the measurement gas is equal to the saturated vapor pressure (hereinafter referred to as “LiOH saturated vapor pressure”) when the lithium hydroxide layer constituting the surface ion conductive layer is made into a saturated aqueous solution, the surface ion conductive layer Is in an equilibrium state. That is, if the water vapor partial pressure of the measurement gas is higher than the LiOH saturated vapor pressure, the surface ion conductive layer expands, and if the water vapor partial pressure of the measurement gas is lower than the LiOH saturated vapor pressure, the surface ion conductive layer shrinks.
 図3は、温度変化に伴う飽和水蒸気圧(P1)およびLiOH飽和蒸気圧(P2)の変化と、LiOH飽和蒸気圧に対応する湿度(相対湿度RH)を示している。図3に示すように、温度変化に応じて飽和水蒸気圧およびLiOH飽和蒸気圧は変化し、温度上昇に伴って飽和水蒸気圧およびLiOH飽和蒸気圧は高くなる。 FIG. 3 shows changes in saturated water vapor pressure (P1) and LiOH saturated vapor pressure (P2) accompanying temperature change, and humidity (relative humidity RH) corresponding to LiOH saturated vapor pressure. As shown in FIG. 3, the saturated water vapor pressure and the LiOH saturated vapor pressure change according to the temperature change, and the saturated water vapor pressure and the LiOH saturated vapor pressure increase as the temperature rises.
 LiOH飽和蒸気圧は、水溶液による蒸気圧降下で、飽和水蒸気圧よりも低くなっている。また、高温になると、水酸化リチウムの溶解度が大きくなるので、飽和水蒸気圧とLiOH飽和蒸気圧との差が大きくなっている。 The LiOH saturated vapor pressure is lower than the saturated water vapor pressure due to the vapor pressure drop caused by the aqueous solution. Moreover, since the solubility of lithium hydroxide increases at a high temperature, the difference between the saturated water vapor pressure and the LiOH saturated vapor pressure increases.
 飽和水蒸気圧は湿度100%であるので、飽和水蒸気圧に対するLiOH飽和蒸気圧の割合が、LiOH飽和蒸気圧に対応する湿度(%)となる。図3に示すように、温度によって変動するが、LiOH飽和蒸気圧に対応する湿度は84%前後となっている。このため、装置温度での測定ガスの湿度が84%付近になるように制御することで、表面イオン伝導層を平衡状態とすることができる。 Since the saturated water vapor pressure is 100% humidity, the ratio of the LiOH saturated vapor pressure to the saturated water vapor pressure is the humidity (%) corresponding to the LiOH saturated vapor pressure. As shown in FIG. 3, the humidity corresponding to the LiOH saturated vapor pressure is around 84%, although it varies depending on the temperature. For this reason, the surface ion conductive layer can be brought into an equilibrium state by controlling the humidity of the measurement gas at the apparatus temperature to be around 84%.
 測定ガスの湿度が低すぎると、表面イオン伝導層が縮小しすぎるため、測定ガスの水蒸気圧をLiOH飽和蒸気圧の40%以上とすることが望ましい。また、測定ガスの湿度が高すぎると、表面イオン伝導層が拡大しすぎるため、測定ガスの水蒸気圧をLiOH飽和蒸気圧の100%以下とすることが望ましい。つまり、1≧(測定ガスの水蒸気圧)/(LiOH飽和蒸気圧)≧0.4の関係が成り立つようにすればよい。 If the humidity of the measurement gas is too low, the surface ion conductive layer will shrink too much, so it is desirable that the water vapor pressure of the measurement gas be 40% or more of the LiOH saturated vapor pressure. In addition, if the humidity of the measurement gas is too high, the surface ion conductive layer becomes too large. Therefore, the water vapor pressure of the measurement gas is preferably 100% or less of the LiOH saturated vapor pressure. That is, the relationship of 1 ≧ (water vapor pressure of measurement gas) / (LiOH saturated vapor pressure) ≧ 0.4 may be satisfied.
 以上説明した本実施形態のガス濃度測定装置1では、カソード11とアノード12に挟まれた電解質膜13としてリチウムイオン伝導性を有する電解質を用い、一定電圧を印加した場合の電流値に基づいて測定ガス中の酸素濃度を測定している。このようにリチウムイオン伝導性を有する電解質を用いたガス濃度測定装置1を電流式センサとして構成することで、起電力に基づいてガス濃度を測定する起電力式センサに比較して、酸素濃度が高濃度であっても精度よく検出すること可能となる。 In the gas concentration measuring apparatus 1 according to the present embodiment described above, an electrolyte having lithium ion conductivity is used as the electrolyte membrane 13 sandwiched between the cathode 11 and the anode 12, and measurement is performed based on a current value when a constant voltage is applied. The oxygen concentration in the gas is measured. By configuring the gas concentration measuring device 1 using an electrolyte having lithium ion conductivity as a current type sensor in this way, the oxygen concentration is lower than that of an electromotive force type sensor that measures the gas concentration based on the electromotive force. It becomes possible to detect with high accuracy even at a high concentration.
 また、本実施形態では、カソード11として、比表面積が大きいTi多孔質体を用いているので、電流値に基づくガス濃度の検出精度を向上させることができる。 In the present embodiment, since the Ti porous body having a large specific surface area is used as the cathode 11, the gas concentration detection accuracy based on the current value can be improved.
 また、本実施形態では、測定ガスの水蒸気圧がLiOH飽和蒸気圧の40~100%となるようにしている。これにより、カソード11に生成した反応生成物の表面にリチウムイオン伝導層を形成することができ、電流値に基づくガス濃度の検出精度を向上させることができる。 In this embodiment, the water vapor pressure of the measurement gas is 40 to 100% of the LiOH saturated vapor pressure. Thereby, a lithium ion conductive layer can be formed on the surface of the reaction product produced on the cathode 11, and the detection accuracy of the gas concentration based on the current value can be improved.
 また、本実施形態では、カソード11とアノード12に挟まれた電解質膜13としてリチウムイオン伝導性の固体電解質を用いており、ガス濃度測定装置1を比較的低温で作動させることができる。 Further, in this embodiment, a lithium ion conductive solid electrolyte is used as the electrolyte membrane 13 sandwiched between the cathode 11 and the anode 12, and the gas concentration measuring device 1 can be operated at a relatively low temperature.
 (第2実施形態)
 次に、本開示の第2実施形態について説明する。本第2実施形態では、上記第1実施形態と同様の部分については説明を省略し、異なる部分についてのみ説明する。
(Second Embodiment)
Next, a second embodiment of the present disclosure will be described. In the second embodiment, description of the same parts as in the first embodiment will be omitted, and only different parts will be described.
 図4に示すように、本第2実施形態のガス濃度測定装置2は、カソードを複数備えた2極式のガスセンサとして構成されている。本第2実施形態では、2つのカソード11、17が設けられている。アノード12および電解質層13は、上記第1実施形態と同様、それぞれ1つずつ設けられている。 As shown in FIG. 4, the gas concentration measuring apparatus 2 of the second embodiment is configured as a bipolar gas sensor having a plurality of cathodes. In the second embodiment, two cathodes 11 and 17 are provided. One anode 12 and one electrolyte layer 13 are provided, as in the first embodiment.
 2つのカソード11、17は、それぞれ電解質層13の表面上に設けられている。これらのカソード11、17は同一構造となっており、それぞれTi電極11a、17aとPt電極11b、17bを備えている。 The two cathodes 11 and 17 are provided on the surface of the electrolyte layer 13, respectively. These cathodes 11 and 17 have the same structure, and include Ti electrodes 11a and 17a and Pt electrodes 11b and 17b, respectively.
 第1カソード11および第2カソード17は、それぞれシール部14によって覆われている。シール部14には、第1カソード11に対応して第1開口部14aが形成され、第2カソード17に対応して第2開口部14bが形成されている。第1開口部14aには、第1拡散層15が設けられ、第2開口部14bには、第2拡散層18が設けられている。 The first cathode 11 and the second cathode 17 are each covered with a seal portion 14. In the seal portion 14, a first opening 14 a is formed corresponding to the first cathode 11, and a second opening 14 b is formed corresponding to the second cathode 17. A first diffusion layer 15 is provided in the first opening 14a, and a second diffusion layer 18 is provided in the second opening 14b.
 ガス濃度測定部16は、第1カソード11および第2カソード17では電流の流れを逆にしている。このため、一方のカソード11、17でガス濃度測定を行っているときに、他方のカソード11、17ではリフレッシュを行うことができる。 The gas concentration measuring unit 16 reverses the current flow in the first cathode 11 and the second cathode 17. For this reason, refreshing can be performed on the other cathodes 11 and 17 while the gas concentration measurement is performed on one of the cathodes 11 and 17.
 本第2実施形態では、ガス濃度測定部16は、2つのカソード11、17でガス濃度測定およびリフレッシュを異なるタイミングで切り替えるようにしている。つまり、ガス濃度測定部16は、2つのカソード11、17で電流の流れを異なるタイミングで切り替えるようにしている。 In the second embodiment, the gas concentration measurement unit 16 switches the gas concentration measurement and the refresh at different timings using the two cathodes 11 and 17. That is, the gas concentration measurement unit 16 switches the current flow between the two cathodes 11 and 17 at different timings.
 図5に示すように、本第2実施形態では、ガス濃度測定部16によって、各カソード11、17におけるガス濃度測定およびリフレッシュの切り替えを交互に行っている。これにより、第1カソード11によるガス濃度測定と、第2カソード17によるガス濃度測定を交互に行うことができ、ガス濃度測定を連続的に行うことができる。 As shown in FIG. 5, in the second embodiment, the gas concentration measurement unit 16 alternately performs gas concentration measurement and refresh switching at the cathodes 11 and 17. Thereby, the gas concentration measurement by the 1st cathode 11 and the gas concentration measurement by the 2nd cathode 17 can be performed alternately, and a gas concentration measurement can be performed continuously.
 限界電流式のセンサでは、ガス濃度測定時に電圧を印加開始してから電流値が一定になるまで、つまりガス濃度を測定可能になるまでに若干の時間を要する。このため、一方のカソード11、17でガス濃度測定からリフレッシュに電流の流れを切り替えるタイミングよりも、他方のカソード11、17でリフレッシュからガス濃度測定に電流の流れを切り替えるタイミングを早くしている。 In the limit current type sensor, it takes some time until the current value becomes constant after the start of voltage application during gas concentration measurement, that is, until the gas concentration can be measured. For this reason, the timing at which the current flow is switched from the refresh to the gas concentration measurement at the other cathode 11, 17 is set earlier than the timing at which the current flow is switched from the gas concentration measurement to the refresh at the one cathode 11, 17.
 以上説明した本第2実施形態によれば、複数のカソード11、17で交互にガス濃度測定を行うことで、ガス濃度測定を連続的に行うことができる。なお、本第2実施形態では、2つのカソード11、17で交互にガス濃度測定するように構成したが、3つ以上のカソードを設け、順番にガス濃度測定を行うようにしてもよい。 According to the second embodiment described above, the gas concentration measurement can be continuously performed by alternately measuring the gas concentration with the plurality of cathodes 11 and 17. In the second embodiment, the gas concentration is measured alternately by the two cathodes 11 and 17, but three or more cathodes may be provided and the gas concentration may be measured in order.
 (他の実施形態)
 本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。例えば、本開示の趣旨を逸脱しない範囲で、以下のように種々変更可能である。
(Other embodiments)
Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure. For example, various modifications can be made as follows without departing from the spirit of the present disclosure.
 (1)上記各実施形態のガス濃度測定装置1、2では、酸素濃度を測定するように構成したが、以下説明するように、センサ部10への印加電圧を制御することで、酸素を含む複数種類のガス濃度を測定するようにしてもよい。 (1) In the gas concentration measuring apparatuses 1 and 2 of each of the above embodiments, the oxygen concentration is measured. However, as described below, oxygen is included by controlling the voltage applied to the sensor unit 10. A plurality of types of gas concentrations may be measured.
 ガス濃度測定装置1、2では、ガス濃度測定時にリチウムイオンは様々なガスと反応可能である。リチウムイオンとガスの反応には、例えば(ア)4Li++O2+2CO2+4e-→2Li2CO3、(イ)4Li++O2+2H2O+4e-→4LiOH、(ウ)2Li++O2+2e-→Li22がある。反応(ア)では、リチウムイオンと主に二酸化炭素が反応し、反応(イ)、(ウ)ではリチウムイオンと主に酸素が反応する。 In the gas concentration measuring apparatuses 1 and 2, lithium ions can react with various gases when measuring the gas concentration. For example, (a) 4Li + + O 2 + 2CO 2 + 4e → 2Li 2 CO 3 , (a) 4Li + + O 2 + 2H 2 O + 4e → 4LiOH, (c) 2Li + + O 2 + 2e → There is Li 2 O 2 . In reaction (a), lithium ions react mainly with carbon dioxide, and in reactions (a) and (c), lithium ions react mainly with oxygen.
 センサ部10への印加電圧によって、反応(ア)~(ウ)の少なくともいずれかが進行する。具体的には、電圧を3.65V(vs.Li+/Li)以下とすることで反応(ア)が進行し、電圧を3.2V(vs.Li+/Li)以下とすることで反応(イ)が進行し、電圧を2.9V(vs.Li+/Li)以下とすることで反応(ウ)が進行する。 Depending on the voltage applied to the sensor unit 10, at least one of the reactions (a) to (c) proceeds. Specifically, the reaction by voltage of 3.65V reaction by a (vs.Li + / Li) or less (A) proceeds, and less 3.2V (vs.Li + / Li) voltage (I) proceeds, and the reaction (c) proceeds by setting the voltage to 2.9 V (vs. Li + / Li) or less.
 このため、センサ部10への印加電圧を3.65~3.2Vとすることで、リチウムイオンと二酸化炭素の反応が主体となり、二酸化炭素濃度を測定することができる。また、センサ部10への印加電圧を3.2V以下とすることで、リチウムイオンと酸素の反応が主体となり、酸素濃度を測定することができる。このように、センサ部10への印加電圧を制御することで、複数種類のガス濃度を測定することが可能となる。 For this reason, by setting the voltage applied to the sensor unit 10 to 3.65 to 3.2 V, the reaction between lithium ions and carbon dioxide is the main component, and the carbon dioxide concentration can be measured. In addition, by setting the voltage applied to the sensor unit 10 to 3.2 V or less, the reaction between lithium ions and oxygen is mainly performed, and the oxygen concentration can be measured. In this way, by controlling the voltage applied to the sensor unit 10, it is possible to measure a plurality of types of gas concentrations.
 (2)また、複数のカソードの電極材料をそれぞれ異ならせることで、酸素を含む複数種類のガス濃度を測定するようにしてもよい。例えば、Pt電極は二酸化炭素に対して不活性であり、Ru電極は二酸化炭素に対して活性である。このため、上記第2実施形態のガス濃度測定装置2のように2つのカソードが設けられた構成において、一方のカソードにPt電極を設け、他方のカソードにRu電極を設ける。そして、測定ガス中に酸素と二酸化炭素が含まれている場合に、Pt電極を用いて酸素濃度を測定することができ、Ru電極を用いて酸素濃度と二酸化炭素濃度を測定することができる。また、Ru電極のガス濃度測定値(すなわち、酸素濃度と二酸化炭素濃度の合計値)からPt電極のガス濃度測定値(すなわち、酸素濃度)を減ずることで、二酸化炭素濃度を得ることができる。 (2) Alternatively, the concentration of a plurality of gases including oxygen may be measured by differentiating a plurality of cathode electrode materials. For example, the Pt electrode is inert to carbon dioxide and the Ru electrode is active to carbon dioxide. For this reason, in a configuration in which two cathodes are provided as in the gas concentration measuring apparatus 2 of the second embodiment, a Pt electrode is provided on one cathode and a Ru electrode is provided on the other cathode. When oxygen and carbon dioxide are contained in the measurement gas, the oxygen concentration can be measured using the Pt electrode, and the oxygen concentration and carbon dioxide concentration can be measured using the Ru electrode. Further, the carbon dioxide concentration can be obtained by subtracting the measured gas concentration value (that is, oxygen concentration) of the Pt electrode from the measured gas concentration value of the Ru electrode (that is, the total value of oxygen concentration and carbon dioxide concentration).
 (3)上記実施形態では、ガス濃度測定装置1、2を限界電流式のセンサとして構成したが、これに限らず、電圧を印加した際の電流値の変化に基づいてガス濃度を測定する過渡電流式のセンサとして構成してもよい。過渡電流式のセンサでは、ガス濃度測定時に電圧を印加開始してから直ちにガス濃度を測定可能になる。 (3) In the above-described embodiment, the gas concentration measuring devices 1 and 2 are configured as limit current type sensors. However, the present invention is not limited to this, and a transient that measures the gas concentration based on a change in the current value when a voltage is applied. You may comprise as an electric current type sensor. In the transient current type sensor, the gas concentration can be measured immediately after the voltage application is started when the gas concentration is measured.
 このため、上記第2実施形態のガス濃度測定装置2を過渡電流式のセンサとした場合には、図6に示すように、一方のカソード11、17でガス濃度測定からリフレッシュに電流の流れを切り替えるタイミングと、他方のカソード11、17でリフレッシュからガス濃度測定に電流の流れを切り替えるタイミングを同時にすればよい。

 
Therefore, when the gas concentration measuring device 2 of the second embodiment is a transient current type sensor, as shown in FIG. 6, the current flows from the gas concentration measurement to the refresh at one of the cathodes 11 and 17. The timing for switching and the timing for switching the current flow from refresh to gas concentration measurement at the other cathodes 11 and 17 may be made simultaneously.

Claims (7)

  1.  アルカリ金属イオンを貯蔵および放出可能なアノード(12)と、
     前記アルカリ金属イオンと測定ガスに含まれる特定ガスとが反応して反応生成物が生成するカソード(11)と、
     前記アノードと前記カソードの間に介在し、前記アルカリ金属イオンを伝導可能な電解質(13)と、
     前記カソードに電圧を印加した際に前記カソードと前記アノードとの間に流れる電流値に基づいて前記特定ガスの濃度を測定するガス濃度測定部(16)と、を備えるガス濃度測定装置。
    An anode (12) capable of storing and releasing alkali metal ions;
    A cathode (11) in which a reaction product is produced by a reaction between the alkali metal ion and a specific gas contained in the measurement gas;
    An electrolyte (13) interposed between the anode and the cathode and capable of conducting the alkali metal ions;
    A gas concentration measuring device comprising: a gas concentration measuring unit (16) that measures the concentration of the specific gas based on a current value flowing between the cathode and the anode when a voltage is applied to the cathode.
  2.  前記アルカリ金属イオンはリチウムイオンである請求項1に記載のガス濃度測定装置。 The gas concentration measuring device according to claim 1, wherein the alkali metal ion is lithium ion.
  3.  前記特定ガスは酸素である請求項1または2に記載のガス濃度測定装置。 The gas concentration measuring device according to claim 1 or 2, wherein the specific gas is oxygen.
  4.  前記カソードは複数設けられ、
     前記ガス濃度測定部は、前記複数のカソードのうちいずれかのカソードで前記反応生成物の生成が行われているときに、他のカソードで前記反応生成物の分解が行われるよう電流の流れを切り替え可能に構成されている請求項1ないし3のいずれか1つに記載のガス濃度測定装置。
    A plurality of the cathodes are provided,
    The gas concentration measurement unit may flow a current so that the reaction product is decomposed at another cathode when the reaction product is generated at any one of the plurality of cathodes. The gas concentration measuring device according to any one of claims 1 to 3, wherein the gas concentration measuring device is configured to be switchable.
  5.  前記特定ガスは複数種類のガスを含んでおり、
     前記ガス濃度測定部は、前記カソードに異なる電圧を印加した際のそれぞれの前記電流値に基づいて前記複数種類の特定ガスのそれぞれの濃度を測定する請求項1ないし4のいずれか1つに記載のガス濃度測定装置。
    The specific gas includes a plurality of types of gas,
    5. The gas concentration measurement unit according to claim 1, wherein the gas concentration measurement unit measures the concentrations of the plurality of types of specific gases based on the current values when different voltages are applied to the cathode. Gas concentration measuring device.
  6.  前記特定ガスは複数種類のガスを含んでおり、
     前記カソードは複数設けられ、前記複数のカソードはそれぞれ電極材料が異なっており、
     前記複数のカソードでは、異なる種類の前記特定ガスと前記アルカリ金属イオンとが反応し、
     前記ガス濃度測定部は、前記複数のカソードに電圧を印加した際のそれぞれの前記電流値に基づいて、それぞれの前記カソードで異なる種類の前記特定ガスの濃度を測定する請求項1ないし4のいずれか1つに記載のガス濃度測定装置。
    The specific gas includes a plurality of types of gas,
    A plurality of the cathodes are provided, and the plurality of cathodes have different electrode materials,
    In the plurality of cathodes, the different types of the specific gas and the alkali metal ions react,
    5. The gas concentration measuring unit measures a concentration of a different kind of the specific gas at each cathode based on each current value when a voltage is applied to the plurality of cathodes. 6. The gas concentration measuring device according to claim 1.
  7.  前記カソードの表面では前記反応生成物に基づく水溶性物質が生成可能であり、
     さらに、前記測定ガスの水蒸気圧が、前記水溶性物質の飽和蒸気圧の40%以上となるよう測定ガスの湿度を調整する湿度調整部(21,22)を有する請求項1ないし6のいずれか1つに記載のガス濃度測定装置。

     
    A water-soluble substance based on the reaction product can be generated on the surface of the cathode,
    Furthermore, it has a humidity adjustment part (21, 22) which adjusts the humidity of measurement gas so that the water vapor pressure of said measurement gas may be 40% or more of the saturated vapor pressure of said water-soluble substance. The gas concentration measuring apparatus according to one.

PCT/JP2017/044460 2016-12-15 2017-12-12 Gas concentration measurement device WO2018110520A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016243130A JP2018096900A (en) 2016-12-15 2016-12-15 Gas concentration measurement device
JP2016-243130 2016-12-15

Publications (1)

Publication Number Publication Date
WO2018110520A1 true WO2018110520A1 (en) 2018-06-21

Family

ID=62558831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044460 WO2018110520A1 (en) 2016-12-15 2017-12-12 Gas concentration measurement device

Country Status (2)

Country Link
JP (1) JP2018096900A (en)
WO (1) WO2018110520A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070089A (en) * 1972-11-24 1975-06-11
JPH05506716A (en) * 1990-04-26 1993-09-30 ハルトマン ウント ブラウン アクチエンゲゼルシヤフト Method for measuring gas concentration in gas mixture using solid electrolyte and gas sensor for measuring gas concentration
JPH10318978A (en) * 1997-05-19 1998-12-04 Tokyo Gas Co Ltd Device for measuring concentration of odorant
JP2003172722A (en) * 2001-12-07 2003-06-20 New Cosmos Electric Corp Electrochemical nitrogen oxide sensor
JP2003329639A (en) * 2002-05-10 2003-11-19 Norio Miura Nox gas detecting method and device therefor
JP2005127928A (en) * 2003-10-24 2005-05-19 Dkk Toa Corp Controlled potential electrolysis type gas measuring instrument

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070089A (en) * 1972-11-24 1975-06-11
JPH05506716A (en) * 1990-04-26 1993-09-30 ハルトマン ウント ブラウン アクチエンゲゼルシヤフト Method for measuring gas concentration in gas mixture using solid electrolyte and gas sensor for measuring gas concentration
JPH10318978A (en) * 1997-05-19 1998-12-04 Tokyo Gas Co Ltd Device for measuring concentration of odorant
JP2003172722A (en) * 2001-12-07 2003-06-20 New Cosmos Electric Corp Electrochemical nitrogen oxide sensor
JP2003329639A (en) * 2002-05-10 2003-11-19 Norio Miura Nox gas detecting method and device therefor
JP2005127928A (en) * 2003-10-24 2005-05-19 Dkk Toa Corp Controlled potential electrolysis type gas measuring instrument

Also Published As

Publication number Publication date
JP2018096900A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
WO1998012550A1 (en) Gas sensor
US9939404B2 (en) CO sensor having electromotive force response
US20130180854A1 (en) Correction coefficient setting method of gas concentration detection apparatus, gas concentration detection apparatus and gas sensor
JP2001155752A (en) Fuel cell controller
JPS5943348A (en) Air/fuel ratio sensor
WO2018110520A1 (en) Gas concentration measurement device
JP2014523092A (en) Air-breathing fuel cell and battery stack causing oxygen oxidation by oxygen
JP2013171701A (en) Fuel cell diagnosis device, fuel cell system, and fuel cell diagnosis method
JP2014078412A (en) Fuel battery system
JP2006278246A (en) Control method of fuel cell stack
JP5145292B2 (en) Air-fuel ratio sensor and air-fuel ratio measurement method
EP4092790A1 (en) Fuel cell system and control method for fuel cell system
JP6720846B2 (en) Electrochemical device system
WO2011145150A1 (en) Hydrogen gas sensor
JP2726769B2 (en) Air conditioning element and air conditioning container device
US11408873B2 (en) Gas sensor system
JP5337058B2 (en) CO sensor sensitivity improvement method and CO sensor
JP2918990B2 (en) Gas sensor
JP2008103133A (en) Fuel cell
JP2002286258A (en) Humidity adjustment apparatus
JPH10332631A (en) Humidity detection method, humidity control method, and humidity adjusting device
JP4263117B2 (en) Carbon dioxide detector
JP5350670B2 (en) Control device for water vapor sensor for fuel cell, water vapor sensor for fuel cell, and fuel cell system
JP2014026923A (en) Fuel cell system and starting method of fuel cell system
JPS62273443A (en) Moisture sensor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881787

Country of ref document: EP

Kind code of ref document: A1