JP4036676B2 - NOx gas detection method and apparatus - Google Patents

NOx gas detection method and apparatus Download PDF

Info

Publication number
JP4036676B2
JP4036676B2 JP2002134991A JP2002134991A JP4036676B2 JP 4036676 B2 JP4036676 B2 JP 4036676B2 JP 2002134991 A JP2002134991 A JP 2002134991A JP 2002134991 A JP2002134991 A JP 2002134991A JP 4036676 B2 JP4036676 B2 JP 4036676B2
Authority
JP
Japan
Prior art keywords
electrode
pulse
detection
sensor
nox gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002134991A
Other languages
Japanese (ja)
Other versions
JP2003329639A (en
Inventor
則雄 三浦
▲昇▼ 山添
學 谷
穂積 二田
一成 兼安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Figaro Engineering Inc
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc, Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Figaro Engineering Inc
Priority to JP2002134991A priority Critical patent/JP4036676B2/en
Publication of JP2003329639A publication Critical patent/JP2003329639A/en
Application granted granted Critical
Publication of JP4036676B2 publication Critical patent/JP4036676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の利用分野】
この発明はアルカリ金属イオン導電体を用いたNOxの検出に関し、特に用いるNOxセンサの長期安定性の向上に関する。
【0002】
【従来技術】
発明者らは、NASICONなどのアルカリ金属イオン導電体を用いたNOxセンサの開発を行ってきた。このようなNOxセンサはppbレベルのNOxを検出するもので、大気汚染のモニタリング用のネットワークを構築するために、あるいは交通公害を低減するために必要なものである。周知のようにNOはNO2に触媒コンバータにより転換できるので、センサは少なくともNO2を検出できれば良く、またCO2やH2Oの干渉を受けない必要がある。
【0003】
発明者らは、アルカリ金属イオン導電体に検知極と参照極と対極とを設け、対極にのみアルカリ金属亜硝酸塩などを添加し、参照極に対して検知極の電位を負にしたNOxセンサを提案した(特開平11−271266号)。このセンサはH2OやCO2の干渉をほとんど受けず、ppbオーダーのNO2を検出でき、電極反応は例えば以下の通りである。
Na+NO2+e→NaNO2 (検知極) (1)
NaNO2→Na+NO2+e (対極) (2)
このセンサは150℃程度に加熱され、検知極にNO2が触れるとNASICONからNaイオンが補給されてNaNO2が生成し、これに応じて対極ではNaNO2が分解し、対極のアルカリ金属亜硝酸塩が消耗する。この結果、センサ出力は短期間で減少し、目標寿命の少なくとも1ヶ月に達しなかった。
【0004】
発明者らは、対極の活物質であるアルカリ金属亜硝酸塩などの消耗を補うため、検知極を+対極を−とする逆バイアス電圧を加えて、検知極に蓄積した金属亜硝酸塩を分解し、検知極から対極へNaイオンを輸送することを提案した(特開2001−194337号)。ここでの着想は、センサに周期的に逆バイアス電圧を加えてセンサを初期化し、検知極や対極の状態が初期的な状態から変化しないようにすることにある。発明者はその後、対極での金属亜硝酸塩などの消耗を許しながら、センサ寿命を延長することを検討して、この発明に到った。
【0005】
【発明の課題】
この発明の基本的課題は、NOxセンサの寿命を延長できる、新たな検出方法とその装置とを提供することにある(請求項1〜6)。
【0006】
【発明の構成】
この発明のNOxガス検出方法は、アルカリ金属イオン導電体に検知極と対極と参照極とを設けて、対極にアルカリ金属の亜硝酸塩または硝酸塩を含有させたセンサを用い、検知極に参照極に対して負の電位を加えて、対極/検知極間の電流からNOxガスを検出する方法において、前記負の電位を検知極に、1/3以下のデューテイ比で、かつパルス幅3秒〜10秒、パルス周期30秒〜1分で、パルス的に印加し、初期的な感度の低下が終了し、センサ感度が安定域に達した後に、前記パルス印加時の対極/検知極間の電流からNOxガスを検出すると共に、前記パルス印加時以外は、検知極を、参照極に対して等電位にする、もしくは参照極との電気的接続を遮断することを特徴とする(請求項1)。
【0007】
好ましくは、前記パルスの印加時以外は、検知極と参照極との電気的接続を遮断する(請求項2)。特に好ましくは、パルス印加時以外は検知極を参照極と対極の双方から電気的に遮断する。なおここで、電気的に接続や電気的に遮断とは、センサの付帯回路で電気的に接続あるいは遮断することを意味し、センサ内のイオン導電体で接続されていることとは関係がない。
【0008】
好ましくは、前記パルスの後半1/3〜パルス終了直前での電流からNOxガスを検出する(請求項3)。
【0009】
またこの発明のNOxガス検出装置は、アルカリ金属イオン導電体に検知極と対極と参照極とを設けて、対極にはアルカリ金属の亜硝酸塩または硝酸塩を含有させたセンサを用い、検知極に参照極に対して負の電位を加えて、対極/検知極間の電流からNOxガスを検出する装置において、前記負の電位を検知極に、1/3以下のデューテイ比で、かつパルス幅3秒〜10秒、パルス周期30秒〜1分で、パルス的に印加すると共に、前記パルス印加時以外は、検知極を、参照極に対して等電位にする、もしくは参照極との電気的接続を遮断するための、パルス駆動手段と、初期的な感度の低下が終了し、センサ感度が安定域に達した後に、前記パルス印加時の対極/検知極間の電流からNOxガスを検出するための電流検出手段とを設けたことを特徴とする(請求項4)。
【0010】
好ましくは、パルス印加時以外は、検知極を参照極から電気的に遮断し、特に好ましくはパルス印加時以外は検知極を参照極と対極の双方から電気的に遮断する。
好ましくは、前記電流検出手段は、前記パルス後半1/3〜パルス終了直前のでの電流からNOxガスを検出するようにする(請求項5)。
特に好ましくは、前記デューテイ比を1/4〜1/20とする(請求項6)。
【0011】
【発明の作用と効果】
この発明のNOxガス検出方法やその装置では、検知極と参照極を、常時は等電位に保ちあるいは電気的に遮断し、1/3以下のデューテイ比でパルス的に、参照極を基準として負の電位を検知極に加えて、パルス印加時の対極/検知極間の電流からNOxガスを検出する。予想では、対極と検知極との間にはパルス的に電流が流れるので、対極の活物質の消耗はデューテイ比に比例して減少し、これに応じてセンサの寿命が延びるはずであった。しかし実際には、検知極と参照極との間にパルス的に電位を加える(パルス駆動)と、対極/検知極間の電流の値は検知極に連続的に電位を加えている場合(連続駆動)とは異なり、パルス駆動で連続駆動よりも高いNOx感度が得られ、このため大気中の微量のNOxガスを検出する場合に、検出下限濃度を低くできる。さらに検知極にパルス的に電位を加えても、センサの使用開始後例えば10日程度の間は、連続的に検知極に電位を加えている場合と同様に感度が減少した。しかし検知極にパルス的に電位を加えると、初期の感度低下の後に、感度の安定域が発現した。感度の安定期は例えば30日以上続くので、例えば安定域を用いてNOxセンサの寿命を延ばすことができる(請求項1,)。
【0012】
ここでパルス印加時以外は、検知極を参照極から遮断すると、パルス印加時以外は検知極/対極間にも電流は流れない(請求項2)。
【0013】
検知極にパルスを加えた際の応答波形は2つの部分に分かれ、前半にNOx濃度との相関が希薄なセンサ電流のピークがある。このピークを経過すると、センサ電流はNOx濃度と直線的な関係になる。そこでパルス後半の電流からNOxガスを検出すると、高い精度でNOx濃度を検出できる(請求項3,)。なおこのピークの立ち下がり側(ピーク後半)のセンサ電流の時間微分の絶対値は、NOx濃度が高いほど小さい。従ってこれからNOx濃度を検出することも可能であり、パルス後半でのセンサ電流以外での検出が不可能なわけではない。
【0014】
また検知極にパルス的に負の電位を加えながらセンサを使用しても、初期的なセンサ感度の低下は、検知極に連続的に電位(バイアス電圧)を加えている場合と大差はない。しかしパルス的に検知極を対極と接続すると、その後センサ感度の安定域が生じる。そこで、初期的な感度の劣化が生じる期間の間センサをエージングし、その後NOxの検出を開始すると、正確にNOx濃度を検出できる。
【0015】
パルスの周期は例えば30秒〜1分毎にNOx濃度を検出したいとの点から30秒〜1分とする。次にパルスの間にセンサ電流のピークが終了し、正確にNOx濃度を測定できるようにするため、パルス幅は3秒〜10秒とし、かつセンサの寿命を延ばすためにデューテイ比は1/4〜1/20が好ましい。この条件は、実用的な検出間隔でセンサの寿命をなるべく長くし、かつパルスオン時の初期的なピークの終了後のセンサ電流を取り出せるようにするためのものである。
【0016】
【実施例】
図1〜図8を参照して、実施例のNOxガス検出方法とNOxガス検出装置とを説明する。以下簡単のため、NOxガスはNOxとし、NOは適宜のコンバータによりNO2に変換して検出するものとして、NO2の検出を説明する。
【0017】
図1のNOxガス検出装置2において、4はNOxセンサで、6はアルミナなどの絶縁基板であり、8はPt膜や酸化ルテニウム膜等を用いたヒータで、10はヒータ電源である。ヒータ8によってNOxセンサ4は例えば150℃(一般的には100〜200℃)に加熱される。
【0018】
12はNASICONなどのナトリウムイオン導電体で、リチウムイオン導電体でも良く、アルカリ金属イオンの導電体であればよい。14は検知極で、ここでは金などの貴金属膜からなり、16は対極で、金などの貴金属にNaNO2やNaNO3などのアルカリ金属亜硝酸塩やアルカリ金属硝酸塩を添加した膜である。硝酸塩や亜硝酸塩中のアルカリ金属の種類は、センサ4を電流駆動するので、イオン導電体12で用いるアルカリ金属イオンの種類と同じにすることが好ましく、アルカリ金属硝酸塩やアルカリ金属亜硝酸塩は、例えばその飽和水溶液を対極16に滴下して添加する。18は参照極で、同様に金などの貴金属膜からなる。20はガラスなどを用いた封止部で、参照極18を被検出雰囲気(雰囲気)から遮断するためのものであるが、封止部20は設けなくてもよい。なおNOxセンサ4の構造自体は、発明者等の特開2001−194337号や、特開平11−271266号により公知である。また対極には耐湿性の向上などの観点から、アルカリ土類金属亜硝酸塩などの第3成分を加えても良い。
【0019】
22は基準電源で、検知極14に対して、パルス的に所定のデューテイ比で、参照極18を基準とする電位で−100〜−200mV程度のバイアス電圧を加えるためのものである。24はリレーで、スイッチの例であり、低抵抗で電圧ロスが無視し得るものであれば、半導体スイッチなどでも良い。リレー24が開くと、検知極14は対極16や参照極18から電気的に遮断され、リレー24が閉じると、検知極と対極間とが電気的に接続されて、検知極は対極に対して所定の電位に置かれる。26はオペアンプで、リレー24が閉じた際に、検知極14の電位を参照極18に対して、−100〜−200mV程度負に保つようにする。28は電流計で、対極16に接続され、リレー24を閉じて検知極14にパルス的にバイアス電圧を加えた際に、パルス後半の所定のタイミングでの電流値を出力する。なおオペアンプ26と基準電源22との間のリレー24を設ける代わりに、電流計28と対極16との間にリレー25を設けてもよく、あるいはリレー24,25の双方を設けてもよい。またリレー24を設けず、基準電源22の代わりに、ファンクションジェネレータなどを設けても良い。このようにすると、ファンクションジェネレータの出力パルスで、検知極は参照極に対して負の電位に保たれ、それ以外の期間は検知極は参照極と等電位に保たれるようになる。
【0020】
30はパルス発生部で、30秒〜1分程度の所定の周期でパルスを発生し、波形整形部32はこれを3秒〜10秒程度の所定幅の方形波パルスに整形し、リレードライブ34でリレー24を駆動してオン/オフする。またリレードライブ34は、パルス後半の所定のタイミング(パルス終了の直前や、パルス幅の後半1/3の間の適宜のタイミング)で、電流計28に対してサンプリング信号を送り、電流計28はこの時点での電流値を出力する。濃度変換部36はこの電流値をNOx濃度に変換する。実施例での電流値は、NOx濃度0でのオフセット電流と、NOx濃度に比例する電流との和で定まるので、濃度変換部36はセンサ4毎のオフセット電流の値と、測定した電流値からオフセット電流を除いたものに乗算してNOx濃度に変換するための係数とを記憶している。
【0021】
実施例では、リレー24を所定のデューテイ比で間欠的にオンすることにより、その間のみ、検知極14と参照極18との間に電位を加えると共に、検知極14と対極16とを接続するようにしている。しかしながら検知極14と参照極18との間にバイアス電圧を常時加えるようにし、検知極14と対極16との間の電路を間欠的に接続して、他は遮断するようにしても良い。
【0022】
図2に、検知極に加えるバイアス電位とセンサ出力を示す。検知極の電位は参照極を基準として示し、例えば−100mV〜−200mV程度とし、周期Tでセンサを駆動し、そのうちリレー24をオンするオン時間をT1、オフする時間をT2とすると、このデューテイ比(T1/T)は1/3以下が好ましく、より好ましくは1/4〜1/20とする。オン時間T1は好ましくは3秒以上で10秒以下とし、より好ましくは5秒以上で10秒以下とする。周期TはNOxの検出周期を定める、30秒以上1分以下が好ましく、例えば30秒または1分とする。
【0023】
実施例では図2(1)のように、検知極に電位Eを方形波状のパルスで加えるが、検知極に加える電位の波形は方形波には限らない。例えば図2(2)では、最初の幅の広いパルスの間にパルス初期のピークを終了させるようにして、これに例えば1〜5秒程度の間隔をおいて第2の狭いパルスを加え、第2のパルスに同期してセンサ電流をサンプリングする。
【0024】
図2(3)はセンサ出力を示し、実施例では検知極から対極へと流れる電流がセンサ出力で、パルスの前半での電流値はNOx濃度との相関が極めて弱く、パルス後半で電流値とNOx濃度との直線性が得られるので、パルス後半の電流値をサンプリングする。また実施例では、対極から検知極に移動したNaイオンを強制的に対極に戻すのではなく、対極でのNaイオンの消費を送らせることを目的とするので、パルスを加えない間は検知極と対極間の電気的接続を遮断し、電流を0に強制的に固定する。なおパルス後半との用語は、図2(2)のようにパルスの波形が単純な方形波ではない場合、第1のパルスも第2のパルスも全体としての1つのパルスの一部と見なし、検知極に負の電位を加えているタイミングで、かつ全体としてのパルスの内での後半の部分を意味するものとする。
【0025】
図3,図4に、検知極にパルス的に−150mVのバイアス電圧を加えた際のセンサ出力を示す。以下、対極にNaNO2を加えた際の結果を説明する。図3,図4の波形は、1周期Tを38秒とし、パルス電圧を印加する時間T1を8秒として、センサ温度を150℃とし、検知極の参照極に対する電位を−150mVとした際のものである。またNO2濃度は約40ppbで、この条件でセンサの使用を開始してから10日弱でのデータである。検知極にパルス的に−150mVのバイアス電圧を加えると、センサ出力のピークが生じた後、ピークが急速に減衰し、定常値に近づく領域が見える。そしてピークがほぼ終了しセンサ電流の定常値に近づいた範囲が、NOx濃度を測定可能な領域である。センサ温度を図3の150℃から図4の200℃へと変更すると、ピーク幅が急激に縮まり、より短いパルスでNOxを検出できる。しかしセンサ温度を高めると、同じパルス幅の場合、対極の活物質の消耗量が増加する。
【0026】
図5に、センサ温度を150℃とし、38秒周期で8秒間検知極に参照極に対して−150mVのバイアス電圧を加えて駆動した際の、センサの使用開始から7日目の応答波形を示す。この応答波形は、通常のパルス幅8秒を1周期分38秒に延長して測定したものである。NO2 238ppbとNO2 2ppbとの電流値の差が正味のセンサ出力であり、パルス印加直後のピークでは、これらの差は小さく、ピークが終了して定常値へと近づくにつれて、電流値の差が増加する。従ってサンプリングするセンサ出力はパルスの後半が好ましく、特にセンサ電流のピークがほぼ終了した後が好ましい。
【0027】
図6にセンサ温度を150℃とし、38秒周期で8秒間検知極を参照極に対して−150mVとする条件での、NO2濃度とセンサ出力との関係を示す。これはセンサの使用開始5日目のデータで、10nA程度のオフセット電流があり、センサ出力はNO2濃度と直線的な関係にある。そこでセンサ毎に、オフセット電流値とセンサ電流当たりのNO2濃度とを記憶すると、センサを交換しても、NOx濃度を求めることができる。
【0028】
図7にセンサ温度を150℃とし、検知極と参照極との間に常時バイアス電圧を印加するようにした際の、検知極の電位に対するセンサ出力の関係を示す。バイアス電圧の絶対値が大きいほどセンサ出力が大きくなり、それに伴って対極の活物質の消耗が早まり、またバイアス電圧が−100mVよりも0側ではセンサ出力が小さくなるので、検知極の電位は参照極に対して−100〜−200mVが好ましい。
【0029】
図8に、41日間のセンサの経時データを示す。縦軸は、エージングをしていないセンサの使用開始、1日目を基準とする相対的なNO2感度を示し、ここではNO2 200ppbを検出対象としている。またセンサ温度は150℃で、比較例では検知極の電位を常時−150mVに保ち、実施例では38秒周期で8秒間検知極に参照極に対してパルス的に−150mVの電位を加え、このパルスの間対極を検知極に接続し、パルス印加から5秒目の電流値をセンサ出力とした。
【0030】
1日目の感度は、実施例で0.4nA/ppb、比較例で0.1nA/ppbである。パルス的に検知極にバイアス電位を加えると、パルス印加と連続印加とでセンサ電流の値が異なり、センサの出力電流を決める機構がパルス印加と連続印加とで異なることが分かる。
【0031】
使用開始から約10日間は、実施例でも比較例でも同様に感度が低下する。しかし実施例では、使用開始から10日程度経過すると、センサ感度は安定域に達し、これ以降は少なくとも30日以上センサ感度は安定であり、信頼性の高いNOxの検出ができる。これに対して比較例では、センサ出力の安定域は存在せず、センサ感度は単調に減少する。そこでセンサを、パルス駆動条件で、10日程度エージングした後、NOx濃度の測定を開始すると、安定してNOx濃度を測定することができる。
【図面の簡単な説明】
【図1】 実施例のNOxガス検出装置のブロック図
【図2】 実施例での検知極電位とセンサ出力の波形図で、(1)は実施例での検知極電位Eの波形を、(2)は変形例での検知極電位の波形を、(3)は実施例でのセンサ出力の波形を示す。
【図3】 センサ温度150℃,検知極電位−150mVで、駆動周期を38秒、パルス印加時間を8秒とした際の、センサ出力の波形を示す図
【図4】 センサ温度200℃,検知極電位−150mVで、駆動周期を38秒、パルス印加時間を8秒とした際の、センサ出力の波形を示す図
【図5】 センサ温度150℃,検知極電位−150mVで、駆動周期を38秒とした際の、NO2 2ppb中とNO2 238ppb中とでのセンサ出力の波形を示す図
【図6】 センサ温度150℃,検知極電位−150mV,駆動周期を38秒,パルス印加時間8秒での、センサ出力とNO2濃度との関係を示す図
【図7】 センサ温度を150℃で、検知極電位を連続的に加えた際の,検知極電位とセンサ出力との関係を示す図
【図8】 センサ温度150℃,検知極電位−150mV,駆動周期を38秒,パルス印加時間8秒での、NO2 200ppb中でのセンサ出力の経過を示す図
【符号の説明】
2 NOxガス検出装置
4 NOxセンサ
6 絶縁基板
8 ヒータ
10 ヒータ電源
12 Naイオン導電体
14 検知極
16 対極
18 参照極
20 封止部
22 基準電源
24,25 リレー
26 オペアンプ
28 電流計
30 パルス発生部
32 波形整形部
34 リレードライブ
36 濃度変換部
[0001]
[Field of the Invention]
The present invention relates to NOx detection using an alkali metal ion conductor, and more particularly to improvement of long-term stability of a NOx sensor used.
[0002]
[Prior art]
The inventors have developed a NOx sensor using an alkali metal ion conductor such as NASICON. Such a NOx sensor detects ppb level NOx, and is necessary for building a network for monitoring air pollution or reducing traffic pollution. As is well known, since NO can be converted to NO2 by a catalytic converter, the sensor only needs to be able to detect at least NO2 and is not required to be interfered by CO2 or H2O.
[0003]
The inventors have provided a NOx sensor in which a detection electrode, a reference electrode, and a counter electrode are provided on an alkali metal ion conductor, alkali metal nitrite is added only to the counter electrode, and the potential of the detection electrode is made negative with respect to the reference electrode. Proposed (Japanese Patent Laid-Open No. 11-271266). This sensor is hardly affected by H 2 O or CO 2 and can detect ppb order NO 2. The electrode reaction is as follows, for example.
Na + + NO 2 + e → Na NO 2 (Detection electrode) (1)
NaNO2 → Na + + NO2 + e (Counter electrode) (2)
This sensor is heated to about 150 ° C., and when NO2 touches the detection electrode, NaION is replenished from NASICON to produce NaNO2, and accordingly, NaNO2 is decomposed at the counter electrode and the alkali metal nitrite of the counter electrode is consumed. . As a result, the sensor output decreased in a short period and did not reach at least one month of the target life.
[0004]
In order to compensate consumption of the alkali metal nitrite which is the active material of the counter electrode, the inventors applied a reverse bias voltage with the detection electrode as a positive electrode and a negative electrode to decompose the metal nitrite accumulated in the detection electrode, It has been proposed to transport Na ions from the detection electrode to the counter electrode (Japanese Patent Laid-Open No. 2001-194337). The idea here is to apply a reverse bias voltage to the sensor periodically to initialize the sensor so that the states of the detection electrode and the counter electrode do not change from the initial state. The inventor then considered extending the sensor life while allowing consumption of metal nitrite and the like at the counter electrode, and arrived at the present invention.
[0005]
[Problems of the Invention]
A basic object of the present invention is to provide a new detection method and apparatus capable of extending the life of a NOx sensor (claims 1 to 6 ).
[0006]
[Structure of the invention]
In the NOx gas detection method of the present invention, a detection electrode, a counter electrode, and a reference electrode are provided on an alkali metal ion conductor, a sensor in which alkali metal nitrite or nitrate is contained in the counter electrode, and the detection electrode is used as a reference electrode. In the method of detecting a NOx gas from the current between the counter electrode and the detection electrode by applying a negative potential to the detection electrode, the negative potential is applied to the detection electrode with a duty ratio of 1/3 or less and a pulse width of 3 seconds to 10 seconds. Second, with a pulse period of 30 seconds to 1 minute , applied in a pulse manner. After the initial reduction in sensitivity has been completed and the sensor sensitivity has reached a stable range, from the current between the counter electrode and the detection electrode at the time of pulse application. The NOx gas is detected, and the detection electrode is made equipotential with respect to the reference electrode or the electrical connection with the reference electrode is interrupted except when the pulse is applied (Claim 1).
[0007]
Preferably, the electrical connection between the detection electrode and the reference electrode is interrupted except when the pulse is applied. Particularly preferably, the detection electrode is electrically disconnected from both the reference electrode and the counter electrode except when a pulse is applied. Here, “electrically connected” or “electrically disconnected” means electrically connected or disconnected by an auxiliary circuit of the sensor, and is not related to being connected by an ionic conductor in the sensor. .
[0008]
Preferably, NOx gas is detected from the current in the last half 1/3 of the pulse and immediately before the end of the pulse .
[0009]
Further, the NOx gas detection device of the present invention is provided with a detection electrode, a counter electrode, and a reference electrode on an alkali metal ion conductor, and a sensor containing alkali metal nitrite or nitrate is used as the counter electrode, and the detection electrode is referred to. In an apparatus for detecting NOx gas from a current between the counter electrode and the sensing electrode by applying a negative potential to the electrode, the negative potential is applied to the detection electrode with a duty ratio of 1/3 or less and a pulse width of 3 seconds. 10 seconds, pulse period 30 seconds to 1 minute , and applied in a pulsed manner, and the detection electrode is equipotential with respect to the reference electrode, or is electrically connected to the reference electrode, except during the pulse application. The pulse driving means for cutting off and the initial sensitivity decrease are completed, and after the sensor sensitivity reaches a stable range, NOx gas is detected from the current between the counter electrode and the detection electrode when the pulse is applied. With current detection means It characterized the door (claim 4).
[0010]
Preferably, the detection electrode is electrically disconnected from the reference electrode except when the pulse is applied, and particularly preferably, the detection electrode is electrically disconnected from both the reference electrode and the counter electrode except when the pulse is applied.
Preferably, the current detection means detects NOx gas from the current in the last half of the pulse 1/3 to immediately before the end of the pulse (claim 5).
Particularly preferably, the duty ratio is 1 / 4-1 / 20 (claim 6).
[0011]
[Operation and effect of the invention]
In the NOx gas detection method and apparatus of the present invention, the detection electrode and the reference electrode are always kept at the same potential or electrically cut off, and the pulse is negative with respect to the reference electrode as a reference at a duty ratio of 1/3 or less. The NOx gas is detected from the current between the counter electrode and the detection electrode when a pulse is applied. In anticipation, since a pulsed current flows between the counter electrode and the detection electrode, the consumption of the active material of the counter electrode should decrease in proportion to the duty ratio, and the lifetime of the sensor should be increased accordingly. However, in reality, when a potential is applied in a pulsed manner between the detection electrode and the reference electrode (pulse drive), the current value between the counter electrode and the detection electrode is continuously applied to the detection electrode (continuous) Unlike the driving), the NOx sensitivity higher than the continuous driving can be obtained by the pulse driving, and therefore the lower detection limit concentration can be lowered when detecting a small amount of NOx gas in the atmosphere. Further, even when a potential was applied in a pulsed manner to the detection electrode, the sensitivity decreased, for example, for about 10 days after the start of use of the sensor, as in the case where the potential was continuously applied to the detection electrode. However, when a potential was applied in a pulsed manner to the detection electrode, a stable range of sensitivity appeared after the initial sensitivity drop. Since the sensitivity stabilization period lasts, for example, 30 days or more, the life of the NOx sensor can be extended by using, for example, a stable region (claims 1, 4 ).
[0012]
Here, when the detection electrode is cut off from the reference electrode except when the pulse is applied, no current flows between the detection electrode and the counter electrode except when the pulse is applied.
[0013]
The response waveform when a pulse is applied to the detection pole is divided into two parts, and there is a peak of sensor current that has a weak correlation with the NOx concentration in the first half. When this peak elapses, the sensor current has a linear relationship with the NOx concentration. Therefore, when NOx gas is detected from the current in the latter half of the pulse, the NOx concentration can be detected with high accuracy (Claims 3 and 5 ). The absolute value of the time derivative of the sensor current on the falling side (second half of the peak) of this peak is smaller as the NOx concentration is higher. Therefore, it is possible to detect the NOx concentration from this, and it is not impossible to detect other than the sensor current in the second half of the pulse.
[0014]
Even if the sensor is used while applying a negative potential in a pulsed manner to the detection electrode, the initial decrease in sensor sensitivity is not much different from the case where a potential (bias voltage) is continuously applied to the detection electrode. However, if the detection electrode is connected to the counter electrode in a pulsed manner, a stable range of sensor sensitivity occurs thereafter. Therefore, the NOx concentration can be accurately detected by aging the sensor during a period in which the initial sensitivity deterioration occurs and then starting detection of NOx .
[0015]
The pulse period is, for example, 30 seconds to 1 minute from the point that the NOx concentration is to be detected every 30 seconds to 1 minute . Next, the peak of the sensor current is terminated during the pulse, so that the NOx concentration can be measured accurately, the pulse width is set to 3 seconds to 10 seconds , and the duty ratio is set to 1/4 to extend the life of the sensor. ~ 1/20 is preferred. This condition is to make the sensor life as long as possible at a practical detection interval and to take out the sensor current after the end of the initial peak at the time of pulse-on .
[0016]
【Example】
With reference to FIGS. 1-8, the NOx gas detection method and NOx gas detection apparatus of an Example are demonstrated. Hereinafter, for the sake of simplicity, the detection of NO2 will be described assuming that NOx gas is NOx, and NO is detected by being converted to NO2 by an appropriate converter.
[0017]
In the NOx gas detection device 2 of FIG. 1, 4 is a NOx sensor, 6 is an insulating substrate such as alumina, 8 is a heater using a Pt film, a ruthenium oxide film or the like, and 10 is a heater power source. The NOx sensor 4 is heated to, for example, 150 ° C. (generally 100 to 200 ° C.) by the heater 8.
[0018]
Reference numeral 12 denotes a sodium ion conductor such as NASICON, which may be a lithium ion conductor or an alkali metal ion conductor. Reference numeral 14 denotes a detection electrode, which is made of a noble metal film such as gold. Reference numeral 16 denotes a counter electrode, which is a film obtained by adding an alkali metal nitrite such as NaNO2 or NaNO3 or an alkali metal nitrate to a noble metal such as gold. The type of alkali metal in the nitrate or nitrite is preferably the same as the type of alkali metal ion used in the ionic conductor 12 because the sensor 4 is driven by current. The alkali metal nitrate or alkali metal nitrite is, for example, The saturated aqueous solution is added dropwise to the counter electrode 16. Reference numeral 18 denotes a reference electrode, which is similarly made of a noble metal film such as gold. Reference numeral 20 denotes a sealing portion made of glass or the like, which is used for shielding the reference electrode 18 from the atmosphere to be detected (atmosphere), but the sealing portion 20 may not be provided. The structure of the NOx sensor 4 is known by Japanese Patent Laid-Open Nos. 2001-194337 and 11-271266 by the inventors. A third component such as alkaline earth metal nitrite may be added to the counter electrode from the viewpoint of improving moisture resistance.
[0019]
A reference power source 22 applies a bias voltage of about −100 to −200 mV to the detection electrode 14 at a potential based on the reference electrode 18 with a predetermined duty ratio in a pulse manner. Reference numeral 24 denotes a relay, which is an example of a switch, and may be a semiconductor switch or the like as long as the voltage loss is negligible with a low resistance. When the relay 24 is opened, the detection electrode 14 is electrically disconnected from the counter electrode 16 and the reference electrode 18, and when the relay 24 is closed, the detection electrode and the counter electrode are electrically connected, and the detection electrode is connected to the counter electrode. It is placed at a predetermined potential. An operational amplifier 26 keeps the potential of the detection electrode 14 negative with respect to the reference electrode 18 by about −100 to −200 mV when the relay 24 is closed. An ammeter 28 is connected to the counter electrode 16 and outputs a current value at a predetermined timing in the latter half of the pulse when the relay 24 is closed and a bias voltage is applied to the detection electrode 14 in a pulsed manner. Instead of providing the relay 24 between the operational amplifier 26 and the reference power source 22, a relay 25 may be provided between the ammeter 28 and the counter electrode 16, or both of the relays 24 and 25 may be provided. Also, a function generator or the like may be provided instead of the reference power supply 22 without providing the relay 24. In this way, the output pulse of the function generator keeps the detection pole at a negative potential with respect to the reference pole, and the detection pole is kept at the same potential as the reference pole during other periods.
[0020]
A pulse generator 30 generates a pulse at a predetermined cycle of about 30 seconds to 1 minute, and a waveform shaping unit 32 shapes the pulse into a square wave pulse with a predetermined width of about 3 seconds to 10 seconds. To drive the relay 24 to turn it on / off. The relay drive 34 sends a sampling signal to the ammeter 28 at a predetermined timing in the latter half of the pulse (immediately before the end of the pulse or in the latter half 1/3 of the pulse width). The current value at this point is output. The concentration converter 36 converts this current value into a NOx concentration. Since the current value in the embodiment is determined by the sum of the offset current at the NOx concentration of 0 and the current proportional to the NOx concentration, the concentration converter 36 calculates the offset current value for each sensor 4 and the measured current value. A coefficient for multiplying the value excluding the offset current and converting it to the NOx concentration is stored.
[0021]
In the embodiment, by intermittently turning on the relay 24 at a predetermined duty ratio, a potential is applied between the detection electrode 14 and the reference electrode 18 only during that period, and the detection electrode 14 and the counter electrode 16 are connected. I have to. However, a bias voltage may be constantly applied between the detection electrode 14 and the reference electrode 18, the electric circuit between the detection electrode 14 and the counter electrode 16 may be intermittently connected, and the others may be cut off.
[0022]
FIG. 2 shows the bias potential applied to the detection electrode and the sensor output. The potential of the detection electrode is indicated with reference to the reference electrode, for example, about −100 mV to −200 mV, the sensor is driven with a period T, and when the ON time for turning on the relay 24 is T1, and the OFF time is T2, this duty The ratio (T1 / T) is preferably 1/3 or less, more preferably 1/4 to 1/20. The on-time T1 is preferably 3 seconds or longer and 10 seconds or shorter, more preferably 5 seconds or longer and 10 seconds or shorter. The period T determines the NOx detection period and is preferably 30 seconds or more and 1 minute or less, for example, 30 seconds or 1 minute.
[0023]
In the embodiment, as shown in FIG. 2 (1), the potential E is applied to the detection pole by a square wave pulse, but the waveform of the potential applied to the detection pole is not limited to the square wave. For example, in FIG. 2 (2), the initial peak of the pulse is terminated during the first wide pulse, and the second narrow pulse is added to this at intervals of about 1 to 5 seconds, for example. The sensor current is sampled in synchronization with the second pulse.
[0024]
Fig. 2 (3) shows the sensor output. In the example, the current flowing from the detection electrode to the counter electrode is the sensor output, and the current value in the first half of the pulse is very weakly correlated with the NOx concentration. Since linearity with the NOx concentration is obtained, the current value in the latter half of the pulse is sampled. Further, in the embodiment, the purpose is not to forcibly return the Na ions that have moved from the counter electrode to the detection electrode but to send the consumption of Na ions at the counter electrode, so that the detection electrode can be used while the pulse is not applied. And the electrical connection between the counter electrode and the current is forcibly fixed to zero. Note that the term “second half of the pulse” means that if the pulse waveform is not a simple square wave as shown in FIG. 2 (2), the first pulse and the second pulse are regarded as a part of one pulse as a whole. It means the timing of applying a negative potential to the detection pole and the latter half of the pulse as a whole.
[0025]
3 and 4 show sensor outputs when a bias voltage of -150 mV is applied to the detection pole in a pulsed manner. Hereinafter, the results when NaNO2 is added to the counter electrode will be described. The waveforms in FIGS. 3 and 4 are obtained when the period T is 38 seconds, the pulse voltage application time T1 is 8 seconds, the sensor temperature is 150 ° C., and the potential of the detection electrode with respect to the reference electrode is −150 mV. Is. Further, the NO2 concentration is about 40 ppb, and the data is about 10 days after the start of use of the sensor under these conditions. When a bias voltage of −150 mV is applied to the detection pole in a pulsed manner, after the peak of the sensor output occurs, the peak is rapidly attenuated, and a region approaching a steady value can be seen. The range where the peak is almost finished and approaches the steady value of the sensor current is a region where the NOx concentration can be measured. When the sensor temperature is changed from 150 ° C. in FIG. 3 to 200 ° C. in FIG. 4, the peak width is rapidly reduced, and NOx can be detected with a shorter pulse. However, when the sensor temperature is increased, the consumption amount of the active material of the counter electrode increases in the case of the same pulse width.
[0026]
FIG. 5 shows the response waveform on the seventh day from the start of use of the sensor when the sensor temperature is 150 ° C. and the detection electrode is driven by applying a bias voltage of −150 mV to the reference electrode for 8 seconds in a cycle of 38 seconds. Show. This response waveform is measured by extending a normal pulse width of 8 seconds to 38 seconds for one period. The difference between the current values of NO2 238ppb and NO2 2ppb is the net sensor output, and these differences are small at the peak immediately after the pulse application, and the difference in current value increases as the peak ends and approaches the steady value. To do. Therefore, the sensor output to be sampled is preferably in the second half of the pulse, and particularly preferably after the peak of the sensor current is almost finished.
[0027]
FIG. 6 shows the relationship between the NO2 concentration and the sensor output under the condition that the sensor temperature is 150 ° C. and the detection electrode is set to −150 mV with respect to the reference electrode for 8 seconds in a cycle of 38 seconds. This is data on the fifth day of use of the sensor, and there is an offset current of about 10 nA, and the sensor output has a linear relationship with the NO2 concentration. Therefore, if the offset current value and the NO2 concentration per sensor current are stored for each sensor, the NOx concentration can be obtained even if the sensor is replaced.
[0028]
FIG. 7 shows the relationship of the sensor output with respect to the potential of the detection electrode when the sensor temperature is 150 ° C. and the bias voltage is always applied between the detection electrode and the reference electrode. As the absolute value of the bias voltage increases, the sensor output increases, and accordingly, the consumption of the active material of the counter electrode is accelerated, and the sensor output decreases when the bias voltage is 0 side from −100 mV. -100 to -200 mV is preferred with respect to the pole.
[0029]
FIG. 8 shows the time-lapse data of the sensor for 41 days. The vertical axis shows the relative NO2 sensitivity relative to the start of use of the sensor that has not been aged, and the first day as a reference. Here, NO2 200 ppb is the detection target. The sensor temperature is 150 ° C., and in the comparative example, the potential of the detection electrode is always kept at −150 mV, and in the embodiment, a potential of −150 mV is applied to the detection electrode in a pulse of 38 seconds for 8 seconds with respect to the reference electrode. The counter electrode was connected to the detection electrode during the pulse, and the current value at 5 seconds from the pulse application was used as the sensor output.
[0030]
The sensitivity on the first day is 0.4 nA / ppb in the example and 0.1 nA / ppb in the comparative example. It can be seen that when a bias potential is applied to the detection electrode in a pulsed manner, the value of the sensor current differs between pulse application and continuous application, and the mechanism for determining the output current of the sensor differs between pulse application and continuous application.
[0031]
For about 10 days from the start of use, the sensitivity similarly decreases in both the example and the comparative example. However, in the embodiment, after about 10 days from the start of use, the sensor sensitivity reaches a stable range, and thereafter, the sensor sensitivity is stable for at least 30 days or more, and highly reliable NOx can be detected. On the other hand, in the comparative example, there is no stable range of the sensor output, and the sensor sensitivity decreases monotonously. Therefore, when the sensor is aged for about 10 days under pulse driving conditions and then the measurement of the NOx concentration is started, the NOx concentration can be stably measured.
[Brief description of the drawings]
FIG. 1 is a block diagram of a NOx gas detection device of an embodiment. FIG. 2 is a waveform diagram of a detection electrode potential and a sensor output in the embodiment. (1) is a waveform of a detection electrode potential E in the embodiment. 2) shows the waveform of the detected pole potential in the modified example, and (3) shows the waveform of the sensor output in the example.
FIG. 3 is a diagram showing the waveform of the sensor output when the sensor temperature is 150 ° C., the detection potential is −150 mV, the drive cycle is 38 seconds, and the pulse application time is 8 seconds. FIG. FIG. 5 is a diagram showing the waveform of the sensor output when the drive potential is 38 seconds and the pulse application time is 8 seconds at a polar potential of −150 mV. FIG. 5 is a sensor temperature of 150 ° C., a detected polar potential of −150 mV, and a drive cycle of 38 Fig. 6 shows sensor output waveforms in NO2 2ppb and NO2 238ppb when the second is set. Fig. 6 Sensor temperature 150 ° C, detection pole potential -150mV, drive cycle 38 seconds, pulse application time 8 seconds Fig. 7 shows the relationship between the sensor output and NO2 concentration. Fig. 7 shows the relationship between the detected electrode potential and the sensor output when the sensor temperature is 150 ° C and the detected electrode potential is continuously applied. 8] Sensor temperature 150 ° C, detection potential -15 Diagram showing sensor output progress in NO2 200ppb at 0mV, drive cycle 38 seconds, pulse application time 8 seconds.
2 NOx gas detection device 4 NOx sensor 6 Insulating substrate 8 Heater 10 Heater power supply 12 Na ion conductor 14 Detection electrode 16 Counter electrode 18 Reference electrode 20 Sealing unit 22 Reference power supply 24, 25 Relay 26 Operational amplifier 28 Ammeter 30 Pulse generation unit 32 Waveform shaping unit 34 Relay drive 36 Concentration conversion unit

Claims (6)

アルカリ金属イオン導電体に検知極と対極と参照極とを設けて、対極にアルカリ金属の亜硝酸塩または硝酸塩を含有させたセンサを用い、
検知極に参照極に対して負の電位を加えて、対極/検知極間の電流からNOxガスを検出する方法において、
前記負の電位を検知極に、1/3以下のデューテイ比で、かつパルス幅3秒〜10秒、パルス周期30秒〜1分で、パルス的に印加し、
初期的な感度の低下が終了し、センサ感度が安定域に達した後に、前記パルス印加時の対極/検知極間の電流からNOxガスを検出すると共に、
前記パルス印加時以外は、検知極を、参照極に対して等電位にする、もしくは参照極との電気的接続を遮断する、ことを特徴とする、NOxガス検出方法。
Using a sensor in which a detection electrode, a counter electrode, and a reference electrode are provided on an alkali metal ion conductor and an alkali metal nitrite or nitrate is contained in the counter electrode,
In the method of detecting NOx gas from the current between the counter electrode and the sensing electrode by applying a negative potential to the sensing electrode with respect to the reference electrode,
Applying the negative potential to the detection electrode in a pulse manner with a duty ratio of 1/3 or less, a pulse width of 3 seconds to 10 seconds, and a pulse period of 30 seconds to 1 minute ,
After the initial decrease in sensitivity is reached and the sensor sensitivity reaches a stable range, NOx gas is detected from the current between the counter electrode and the detection electrode when the pulse is applied,
The NOx gas detection method, wherein the detection electrode is equipotential with respect to the reference electrode or the electrical connection with the reference electrode is interrupted except when the pulse is applied.
前記パルスの印加時以外は、検知極と参照極との電気的接続を遮断するようにしたことを特徴とする、請求項1のNOxガス検出方法。  2. The NOx gas detection method according to claim 1, wherein electrical connection between the detection electrode and the reference electrode is interrupted except when the pulse is applied. 前記パルスの後半1/3〜パルス終了直前での電流からNOxガスを検出することを特徴とする、請求項1または2のNOxガス検出方法。  3. The NOx gas detection method according to claim 1, wherein NOx gas is detected from a current in the first half of the pulse and immediately before the end of the pulse. アルカリ金属イオン導電体に検知極と対極と参照極とを設けて、対極にはアルカリ金属の亜硝酸塩または硝酸塩を含有させたセンサを用い、
検知極に参照極に対して負の電位を加えて、対極/検知極間の電流からNOxガスを検出する装置において、
前記負の電位を検知極に、1/3以下のデューテイ比で、かつパルス幅3秒〜10秒、パルス周期30秒〜1分で、パルス的に印加すると共に、前記パルス印加時以外は、検知極を、参照極に対して等電位にする、もしくは参照極との電気的接続を遮断するための、パルス駆動手段と、
初期的な感度の低下が終了し、センサ感度が安定域に達した後に、前記パルス印加時の対極/検知極間の電流からNOxガスを検出するための電流検出手段とを設けたことを特徴とする、NOxガス検出装置。
A sensing electrode, a counter electrode, and a reference electrode are provided on an alkali metal ion conductor, and a sensor containing alkali metal nitrite or nitrate is used for the counter electrode,
In a device for detecting NOx gas from a current between the counter electrode and the detection electrode by applying a negative potential to the detection electrode with respect to the reference electrode,
The negative potential is applied to the detection electrode in a pulse manner with a duty ratio of 1/3 or less, a pulse width of 3 seconds to 10 seconds, and a pulse period of 30 seconds to 1 minute . A pulse driving means for making the detection electrode equipotential with respect to the reference electrode or interrupting the electrical connection with the reference electrode;
And a current detecting means for detecting NOx gas from the current between the counter electrode and the sensing electrode at the time of applying the pulse after the initial decrease in sensitivity is completed and the sensor sensitivity reaches a stable range. NOx gas detection device.
前記電流検出手段は、前記パルスの後半1/3〜パルス終了直前での電流からNOxガスを検出するものであることを特徴とする、請求項4のNOxガス検出装置。  5. The NOx gas detection apparatus according to claim 4, wherein the current detection means detects NOx gas from a current in the last 1/3 of the pulse and immediately before the end of the pulse. 前記デューテイ比を1/4〜1/20としたことを特徴とする、請求項4または5のNOxガス検出装置。Characterized in that said duty ratio is set to 1 / 4~1 / 20, NOx gas detecting device according to claim 4 or 5.
JP2002134991A 2002-05-10 2002-05-10 NOx gas detection method and apparatus Expired - Fee Related JP4036676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002134991A JP4036676B2 (en) 2002-05-10 2002-05-10 NOx gas detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002134991A JP4036676B2 (en) 2002-05-10 2002-05-10 NOx gas detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2003329639A JP2003329639A (en) 2003-11-19
JP4036676B2 true JP4036676B2 (en) 2008-01-23

Family

ID=29697432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134991A Expired - Fee Related JP4036676B2 (en) 2002-05-10 2002-05-10 NOx gas detection method and apparatus

Country Status (1)

Country Link
JP (1) JP4036676B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7165399B2 (en) * 2004-12-29 2007-01-23 Honeywell International Inc. Method and system for using a measure of fueling rate in the air side control of an engine
JP2018096900A (en) * 2016-12-15 2018-06-21 株式会社デンソー Gas concentration measurement device

Also Published As

Publication number Publication date
JP2003329639A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
CN106858724B (en) The temperature control equipment of electronic smoke absorber
MY126044A (en) Sample detection to initiate timing of an electrochemical assay
BR9915977A (en) Electrochemical noise method and measurement system to determine the corrosion rate of an electrically conductive article
JPS60128345A (en) Measuring device for ion concentration
WO1998036270A3 (en) High sensitivity multiple waveform voltammetric method and instrument
MX2007003348A (en) Method and apparatus for conditioning a sensor for measuring oxidation reduction potential.
EP1566361A4 (en) Ion eluting unit and device loaded with same
CA2327745A1 (en) Apparatus and method for conductivity measurement including probe contamination compensation
WO2003087802A3 (en) Electrochemical sensor system and sensing method
JP4036676B2 (en) NOx gas detection method and apparatus
JPS6117949A (en) Solid ph sensor
KR101981362B1 (en) Method and devices for operating a heatable exhaust sensor
JPH11183436A (en) Gas sensor and its control
EP1189055B1 (en) Gas detector-alarm employing hot-wire gas sensor and method of detection
JPH0426702B2 (en)
EP1410006B1 (en) Monitoring of gas sensors
JP2000002686A (en) Conversion device for nitrogen oxides
WO2003001195A1 (en) Monitoring of gas sensors
JP3159358B2 (en) Electromagnetic flow meter
WO2001069204A3 (en) Methods of investigating corrosion
JPH08201336A (en) Electrochemical gas sensor and driving method thereof
RU2069861C1 (en) Method of current conductive structure polarization potential measurement
JP2000310611A (en) Solid-electrolyte carbon dioxide gas sensor and method for measuring carbon dioxide gas
JPH10216558A (en) Pulse charged gas treating device
US11460432B1 (en) Extended life electrode measurement method and apparatus

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees