JPS6117949A - Solid ph sensor - Google Patents

Solid ph sensor

Info

Publication number
JPS6117949A
JPS6117949A JP59138031A JP13803184A JPS6117949A JP S6117949 A JPS6117949 A JP S6117949A JP 59138031 A JP59138031 A JP 59138031A JP 13803184 A JP13803184 A JP 13803184A JP S6117949 A JPS6117949 A JP S6117949A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
sensor
measured
electric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59138031A
Other languages
Japanese (ja)
Inventor
Katsuo Ebara
江原 勝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59138031A priority Critical patent/JPS6117949A/en
Publication of JPS6117949A publication Critical patent/JPS6117949A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/302Electrodes, e.g. test electrodes; Half-cells pH sensitive, e.g. quinhydron, antimony or hydrogen electrodes

Abstract

PURPOSE:To make construction simple and manufacture easy and to make measurement with large output electric power by using electrodes consisting of different metals and detecting the electric current generated by bringing the two electrodes into contact with an aq. soln. to be measured in the form proportional to pH concn. CONSTITUTION:The electrode of the sensor is formed of the electrodes consisting of the different metals, for example, an Al electrode 1 and Zn electrode 2 and an insulator 3 for insulating both electrodes 1, 2. The current proportional to H<+> ion is generated together with a specified voltage in the circuit when the two electrodes 1, 2 are electrically coupled by bringing the liquid to be measured into contact with the electrodes 1, 2 to form a voltaic cell by the H<+> ion existing in the liquid. The output electric power in this case is read by a DC ammeter A and is measured. The electrode constitution is thus made simple and the manufacture is easy. The output electric power is increased and the measurement is made possible without using an amplifier circuit in some case.

Description

【発明の詳細な説明】 従来pHメーターのセンサはガラス電極が使用されてい
る。しかしガラス電極は0.025mm程度のガラス薄
膜を用いるためこわれやすい。
DETAILED DESCRIPTION OF THE INVENTION Conventionally, a glass electrode has been used in the sensor of a pH meter. However, since the glass electrode uses a glass thin film of about 0.025 mm, it is easily broken.

また使用するガラス組成によって感度、安定性が影響を
受は易いため製作が難しい(現在ではCorning社
製5i0272 、 Ca06 、 Na2O22%組
成のものが良好とされている)。加えてセ・ンサ部の洗
浄が必要とされ、特に工業用のpHセンサは洗浄機を取
りつげることによりそれに要する費用がかかる点及び3
0〜数100MΩの高抵抗の測定であるため、入力抵抗
の大きな増幅回路が必要となり2回路設計が容易ではな
いなどの欠点がある。
In addition, sensitivity and stability are easily affected by the glass composition used, making it difficult to manufacture (Currently, Corning's 5i0272, which has a composition of 2% Ca06 and Na2O2, is considered to be good). In addition, cleaning of the sensor part is required, and in particular, for industrial pH sensors, the cost of installing a cleaning machine is high, and 3.
Since it is a measurement of a high resistance of 0 to several 100 MΩ, it requires an amplifier circuit with a large input resistance, making it difficult to design two circuits.

従って最近では5olid 5tate  のpHセン
サの実用化への研究がさかんに行われている。
Therefore, in recent years, research has been actively conducted to put 5olid 5tate pH sensors into practical use.

その−例として半導体を利用したFET (電界効果型
トランジスタ)センサの実用化への試みがなされている
が、半導体は一般に温度により破戒されやすい欠点もあ
り、現在でも実用化されていない。また、高分子半透膜
を利用したセンサの開発も行われているが、原理はガラ
ス電極と同じである。
As an example of this, attempts have been made to put FET (field effect transistor) sensors into practical use using semiconductors, but semiconductors generally have the disadvantage of being easily damaged by temperature, so they have not been put into practical use to date. Sensors using semipermeable polymer membranes are also being developed, but the principle is the same as that of glass electrodes.

ここで開発されたpHセンサは、異種金属の電極を利用
した発電型のセンサで、従来の原理とは全く異なるもの
である。電極構成が簡単で従って製作も容易であり、出
力電流も大きく。
The pH sensor developed here is a power generation sensor that uses electrodes made of different metals, and is completely different from the conventional principle. The electrode structure is simple and therefore easy to manufacture, and the output current is large.

場合によっては全く増幅回路を使用せず直接に直流針に
接続するだけで測定が可能なことを大きな特徴とするも
のである。
A major feature of this method is that in some cases, measurements can be made by simply connecting directly to a DC needle without using any amplifier circuit.

図−1は、センサの電極構成である。(1)はA1電極
、(2)はZn電極、(3)は両電極を絶縁するための
絶縁体で、試作センサとしてエポキシ樹脂、アクリル(
PMMA )を用いた。
Figure 1 shows the electrode configuration of the sensor. (1) is the A1 electrode, (2) is the Zn electrode, and (3) is the insulator for insulating both electrodes.The prototype sensor was made of epoxy resin, acrylic (
PMMA) was used.

測定法は、被測定液体を両電極に接触させると液体中に
存在しているH イオンによりボルタの電池を形成し2
両電極間を電気的に結合させると、一定電圧と共にHイ
オンに比例した電流が回路に発生する。
In the measurement method, when the liquid to be measured is brought into contact with both electrodes, the H ions present in the liquid form a Voltaic battery.
When the two electrodes are electrically coupled, a constant voltage and a current proportional to the H ions are generated in the circuit.

この場合の出力電圧をEとすると2次式が成立つ。If the output voltage in this case is E, a quadratic equation is established.

E−一αRT−IJoy [H]  ・・・・・・・(
1)α:比例定数 R:気体定数 T:温度 つまり、−1oPU、H〕に比例する出力電圧が得られ
る。これを直流メーター(4)により読み取る。
E-1αRT-IJoy [H] ・・・・・・・(
1) α: Proportionality constant R: Gas constant T: Temperature, that is, -1oPU,H] An output voltage proportional to the temperature is obtained. This is read by a DC meter (4).

図−2は、試作センサによりpH濃度に比例する電流の
変化を実測したものである。
Figure 2 shows actual measurements of changes in current proportional to pH concentration using a prototype sensor.

各測定ごとに再現性ある測定をするためにはセンサヘッ
ドを洗浄し、常に清浄な電極面に保つ必要がある。その
ために、現在布で拭くか又は超音波洗浄機を用いて洗浄
している。
In order to perform reproducible measurements for each measurement, it is necessary to clean the sensor head and keep the electrode surface clean at all times. For this purpose, it is currently cleaned by wiping with a cloth or using an ultrasonic cleaner.

【図面の簡単な説明】[Brief explanation of drawings]

図−1は、試作した固体べ−・・−センサと検出法の構
成で、(1)はA1電極、(2)はZn電極。 (3)は電気的絶縁体でここではエポキシ樹脂を用いた
。A I)電rIt計で°あう。 図−2は、上述センサにより実測されたpHと電流値と
の関係図である。電流は通常のデジタル直流メーターに
より直読したものである。
Figure 1 shows the configuration of the prototype solid-state sensor and detection method, with (1) the A1 electrode and (2) the Zn electrode. (3) is an electrical insulator, and here epoxy resin is used. A I) Check with the electric meter. FIG. 2 is a diagram showing the relationship between pH and current value actually measured by the above-mentioned sensor. The current was directly read using an ordinary digital DC meter.

Claims (1)

【特許請求の範囲】[Claims] 異種金属として、Zn、AlもしくはCu、ステンレス
チールを電極に用い、その両電極間を被測定水溶液に接
触させることにより生じる電流を、ペーハー(pH)濃
度に比例したかたちで電気的にとらえて固体ペーハーセ
ンサ。
A dissimilar metal such as Zn, Al, Cu, or stainless steel is used as an electrode, and the current generated by contacting the aqueous solution to be measured between the two electrodes is electrically captured in a form proportional to the pH concentration. pH sensor.
JP59138031A 1984-07-05 1984-07-05 Solid ph sensor Pending JPS6117949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59138031A JPS6117949A (en) 1984-07-05 1984-07-05 Solid ph sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59138031A JPS6117949A (en) 1984-07-05 1984-07-05 Solid ph sensor

Publications (1)

Publication Number Publication Date
JPS6117949A true JPS6117949A (en) 1986-01-25

Family

ID=15212426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59138031A Pending JPS6117949A (en) 1984-07-05 1984-07-05 Solid ph sensor

Country Status (1)

Country Link
JP (1) JPS6117949A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397928B1 (en) * 2001-08-11 2003-09-13 재단법인 포항산업과학연구원 Micro pH sensor with insulation layer between electrodes
JP2010524512A (en) * 2007-02-01 2010-07-22 プロテウス バイオメディカル インコーポレイテッド Ingestible event marker system
JP2012047601A (en) * 2010-08-26 2012-03-08 Nippon Telegr & Teleph Corp <Ntt> Potential measuring tool and potential measurement method
US9603550B2 (en) 2008-07-08 2017-03-28 Proteus Digital Health, Inc. State characterization based on multi-variate data fusion techniques
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US9883819B2 (en) 2009-01-06 2018-02-06 Proteus Digital Health, Inc. Ingestion-related biofeedback and personalized medical therapy method and system
US9941931B2 (en) 2009-11-04 2018-04-10 Proteus Digital Health, Inc. System for supply chain management
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
US10187121B2 (en) 2016-07-22 2019-01-22 Proteus Digital Health, Inc. Electromagnetic sensing and detection of ingestible event markers
US10223905B2 (en) 2011-07-21 2019-03-05 Proteus Digital Health, Inc. Mobile device and system for detection and communication of information received from an ingestible device
US10238604B2 (en) 2006-10-25 2019-03-26 Proteus Digital Health, Inc. Controlled activation ingestible identifier
US10398161B2 (en) 2014-01-21 2019-09-03 Proteus Digital Heal Th, Inc. Masticable ingestible product and communication system therefor
US10517506B2 (en) 2007-05-24 2019-12-31 Proteus Digital Health, Inc. Low profile antenna for in body device
US10529044B2 (en) 2010-05-19 2020-01-07 Proteus Digital Health, Inc. Tracking and delivery confirmation of pharmaceutical products
US11744481B2 (en) 2013-03-15 2023-09-05 Otsuka Pharmaceutical Co., Ltd. System, apparatus and methods for data collection and assessing outcomes
US11928614B2 (en) 2006-05-02 2024-03-12 Otsuka Pharmaceutical Co., Ltd. Patient customized therapeutic regimens

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397928B1 (en) * 2001-08-11 2003-09-13 재단법인 포항산업과학연구원 Micro pH sensor with insulation layer between electrodes
US11928614B2 (en) 2006-05-02 2024-03-12 Otsuka Pharmaceutical Co., Ltd. Patient customized therapeutic regimens
US10238604B2 (en) 2006-10-25 2019-03-26 Proteus Digital Health, Inc. Controlled activation ingestible identifier
US11357730B2 (en) 2006-10-25 2022-06-14 Otsuka Pharmaceutical Co., Ltd. Controlled activation ingestible identifier
JP2010524512A (en) * 2007-02-01 2010-07-22 プロテウス バイオメディカル インコーポレイテッド Ingestible event marker system
US10441194B2 (en) 2007-02-01 2019-10-15 Proteus Digital Heal Th, Inc. Ingestible event marker systems
US10517506B2 (en) 2007-05-24 2019-12-31 Proteus Digital Health, Inc. Low profile antenna for in body device
US9603550B2 (en) 2008-07-08 2017-03-28 Proteus Digital Health, Inc. State characterization based on multi-variate data fusion techniques
US11217342B2 (en) 2008-07-08 2022-01-04 Otsuka Pharmaceutical Co., Ltd. Ingestible event marker data framework
US10682071B2 (en) 2008-07-08 2020-06-16 Proteus Digital Health, Inc. State characterization based on multi-variate data fusion techniques
US9883819B2 (en) 2009-01-06 2018-02-06 Proteus Digital Health, Inc. Ingestion-related biofeedback and personalized medical therapy method and system
US10305544B2 (en) 2009-11-04 2019-05-28 Proteus Digital Health, Inc. System for supply chain management
US9941931B2 (en) 2009-11-04 2018-04-10 Proteus Digital Health, Inc. System for supply chain management
US10529044B2 (en) 2010-05-19 2020-01-07 Proteus Digital Health, Inc. Tracking and delivery confirmation of pharmaceutical products
JP2012047601A (en) * 2010-08-26 2012-03-08 Nippon Telegr & Teleph Corp <Ntt> Potential measuring tool and potential measurement method
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US10223905B2 (en) 2011-07-21 2019-03-05 Proteus Digital Health, Inc. Mobile device and system for detection and communication of information received from an ingestible device
US11744481B2 (en) 2013-03-15 2023-09-05 Otsuka Pharmaceutical Co., Ltd. System, apparatus and methods for data collection and assessing outcomes
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
US10398161B2 (en) 2014-01-21 2019-09-03 Proteus Digital Heal Th, Inc. Masticable ingestible product and communication system therefor
US10187121B2 (en) 2016-07-22 2019-01-22 Proteus Digital Health, Inc. Electromagnetic sensing and detection of ingestible event markers
US10797758B2 (en) 2016-07-22 2020-10-06 Proteus Digital Health, Inc. Electromagnetic sensing and detection of ingestible event markers

Similar Documents

Publication Publication Date Title
JPS6117949A (en) Solid ph sensor
Bergveld Development of an ion-sensitive solid-state device for neurophysiological measurements
JPS6283649A (en) Blood-sugar measuring device
Comte et al. A field effect transistor as a solid-state reference electrode
JPS60128345A (en) Measuring device for ion concentration
JP4825976B2 (en) pH detector
TR200003304T2 (en) Mechanism and method for measuring conductivity, including compensation of probe contamination
US4360415A (en) Noise suppressing bypass for reference electrode
Gründler et al. The Technology of Hot‐Wire Electrochemistry
JP3771829B2 (en) Water quality sensor
JPS59206756A (en) Fet chemical sensor combined with reference electrode
CN100437106C (en) An electrochemical current measurement device applicable to capillary electrophoresis
JP4141098B2 (en) Gas sensor
CN219830933U (en) Electrochemical composite sensor
Van den Vlekkert Ion-sensitive field effect transistors
JPS60112266A (en) Specific gravity sensor for lead storage battery
JPH02128155A (en) Oxygen sensor
JP2007093540A (en) Device and method for measuring effective chlorine concentration
SU1420548A1 (en) Method of measuring specific resistance
RU2193861C2 (en) Transducer usable for polarographic study of cation composition of electrolytes
SU1290215A1 (en) Method of manufacturing hall transducer
SU379175A1 (en) Instrument for measuring the electrical conductivity of biological objects
JPH0711496B2 (en) Gas detection method
DE59302419D1 (en) Method for determining the state of charge of an electrochemical cell
SU696548A1 (en) Method of determining electrochemical resistor resistance