JP2003305741A - Manufacturing method for laminated structure - Google Patents
Manufacturing method for laminated structureInfo
- Publication number
- JP2003305741A JP2003305741A JP2002112147A JP2002112147A JP2003305741A JP 2003305741 A JP2003305741 A JP 2003305741A JP 2002112147 A JP2002112147 A JP 2002112147A JP 2002112147 A JP2002112147 A JP 2002112147A JP 2003305741 A JP2003305741 A JP 2003305741A
- Authority
- JP
- Japan
- Prior art keywords
- laminated structure
- resin
- temperature
- prepreg
- core material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、積層構造体の製造
方法に関する。TECHNICAL FIELD The present invention relates to a method for manufacturing a laminated structure.
【0002】[0002]
【従来の技術】自動車や列車などの移動手段の胴体部に
ついては、近年、ますます軽量化が要求されている。こ
のような要求に対して、移動手段の胴体部の材料として
は、アルミ合金から繊維強化複合材料(以下、FRPと
略記する)へ移行する傾向がみられる。特に補強繊維が
高強度、高弾性な炭素繊維を用いた炭素繊維強化複合材
料(以下、CFRPと略記する)を使用することが多く
なっている。このように、移動手段の胴体部の材料とし
てFRPを使用する場合、剛性、強度を保持したまま軽
量化を達成する為に、FRPをスキン材とし、コア材と
一体化した積層(サンドイッチ)構造体として使用する
ことが多く、特開平11−20685号公報には、新幹
線の先頭車両として積層構造体をオートクレーブ成形方
法により製造する方法が開示されている。オートクレー
ブで加圧して成形すると、成形品の強度に大きな影響を
与える原因の一つであるボイドが小さくなり、高強度の
成形品を得ることができる。そのため、成形品の強度を
考慮する場合、通常、オートクレーブ成形法で成形す
る。2. Description of the Related Art In recent years, the weight of the body of transportation means such as automobiles and trains has been increasingly required. In response to such a demand, as a material of the body portion of the moving means, there is a tendency to shift from an aluminum alloy to a fiber reinforced composite material (hereinafter abbreviated as FRP). In particular, a carbon fiber reinforced composite material (hereinafter abbreviated as CFRP) using a carbon fiber having high strength and high elasticity as a reinforcing fiber is often used. Thus, when FRP is used as the material of the body of the moving means, in order to achieve weight reduction while maintaining rigidity and strength, FRP is used as a skin material and a laminated (sandwich) structure integrated with the core material. It is often used as a body, and Japanese Patent Application Laid-Open No. 11-20685 discloses a method for manufacturing a laminated structure as a leading vehicle of a Shinkansen by an autoclave molding method. Molding by pressurizing in an autoclave reduces voids, which is one of the factors that greatly affect the strength of the molded product, and a molded product with high strength can be obtained. Therefore, when considering the strength of the molded product, it is usually molded by the autoclave molding method.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、オート
クレーブで加圧して成形すると、コア材にも圧が加わ
り、コア材が圧縮変形した状態で成形され圧縮ひずみが
生じる。この圧縮ひずみは、成形品の中で常に回復しよ
うとする応力を発している。一般的には、この圧縮ひず
みを回復しようとする応力をスキン材が封じ込める形で
一体化されており、全く問題とはならないのであるが、
高速で移動するような乗り物の胴体部においては、振動
疲労によって徐々にスキン材が応力の影響を受け、コア
材とスキン材とが剥がれてしまう現象がみられた。特
に、列車などにおいては、トンネルを通過する際に、最
後部の車両には引圧が加わる。車両の形状にもよるが、
高速であればあるほどこの引圧は大きくなる。したがっ
て、トンネルの通過の際に、最後部の車両の積層構造体
においては、圧縮されたコア材がそのひずみを回復させ
ようとする応力に、更に外側から引っ張る力が加わり、
スキン材を引き剥がそうとする非常に大きな力が加わ
る。しかも振動を受けながら、このような応力が加わる
のである。これらの応力が長年積み重ねられることによ
り、疲労的な破壊へと進展し、スキン材の剥離が起こる
可能性がある。したがって、本発明は、スキン材の剥離
強度に優れた積層構造体の製造方法を提供することを目
的とする。However, when pressure molding is performed in an autoclave, pressure is also applied to the core material, and the core material is molded in a compressed and deformed state, resulting in compressive strain. This compressive strain gives a stress that is constantly trying to recover in the molded product. Generally, the stress that tries to recover this compressive strain is integrated in a way that the skin material can contain it, so there is no problem at all,
In the body part of a vehicle that moves at high speed, the skin material was gradually affected by stress due to vibration fatigue, and the core material and the skin material were separated from each other. Particularly, in trains and the like, when passing through a tunnel, a drawing pressure is applied to the rearmost vehicle. Depending on the shape of the vehicle,
The higher the speed, the greater this pulling pressure. Therefore, at the time of passing through the tunnel, in the laminated structure of the vehicle at the rearmost part, the stress that the compressed core material tries to recover the strain is further applied with a force pulling from the outside,
A very large force is applied to peel off the skin material. Moreover, such stress is applied while receiving vibration. Accumulation of these stresses for many years may lead to fatigue-like fracture and peeling of the skin material. Therefore, an object of the present invention is to provide a method for manufacturing a laminated structure having excellent peel strength of a skin material.
【0004】[0004]
【課題を解決するための手段】本発明の積層構造体の製
造方法は、コア材をプリプレグで挟んで大気圧下で一体
成形することを特徴とする。また、上記積層構造体が移
動手段の胴体部に用いられることが好ましい。また、上
記積層構造体が少なくとも瞬間時速100km/時間以
上を有する移動手段の胴体部に用いられることが好まし
い。また、上記移動手段の胴体部が、列車の先頭構体で
あることが好ましい。また、上記コア材が発泡樹脂であ
ることが好ましい。また、上記プリプレグの少なくとも
片面には樹脂が存在しないことが好ましい。また、上記
プリプレグの補強材が織物であることが好ましい。ま
た、上記積層構造体の製造方法は、コア材をプリプレグ
で挟んで一体成形する際の成形温度を150℃以下とす
るが好ましい。また、上記積層構造体の製造方法は、コ
ア材をプリプレグで挟んで一体成形する前に、50℃以
上、且つ成形温度より低い温度で10分以上保持した
後、成形温度まで昇温して成形することが好ましい。ま
た、上記積層構造体の製造方法は、成形温度より20℃
低い温度から成形温度まで昇温する昇温速度が、1℃/
分以下であることが好ましい。The method for manufacturing a laminated structure of the present invention is characterized in that a core material is sandwiched between prepregs and integrally molded under atmospheric pressure. Further, it is preferable that the above-mentioned laminated structure is used for the body portion of the moving means. Further, it is preferable that the laminated structure is used for the body portion of the moving means having at least an instantaneous velocity of 100 km / hour or more. Further, it is preferable that the body portion of the moving means is the leading structure of the train. Further, it is preferable that the core material is a foamed resin. Further, it is preferable that no resin is present on at least one surface of the prepreg. Further, it is preferable that the reinforcing material of the prepreg is a woven fabric. Further, in the method for producing a laminated structure, it is preferable that the molding temperature when the core material is sandwiched between the prepregs and integrally molded is 150 ° C. or less. In addition, the above-mentioned method for producing a laminated structure is such that, before the core material is sandwiched between prepregs and integrally molded, the core material is held at a temperature of 50 ° C. or higher and lower than the molding temperature for 10 minutes or more, and then heated to the molding temperature for molding. Preferably. In addition, the manufacturing method of the laminated structure is 20 ° C. higher than the molding temperature.
The rate of temperature increase from a low temperature to the molding temperature is 1 ° C /
It is preferably not more than minutes.
【0005】[0005]
【発明の実施の形態】本発明は、コア材をプリプレグか
ら形成されるスキン材で挟んだ積層構造体の製造方法で
あって、優れた剥離強度を有する積層構造体を得ること
ができる。以下、積層構造体の構成について説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a method for producing a laminated structure in which a core material is sandwiched between skin materials formed of prepreg, and a laminated structure having excellent peel strength can be obtained. Hereinafter, the structure of the laminated structure will be described.
【0006】上記コア材としては、特に制限はなく、発
泡樹脂やハニカム構造体などを用いることができ、発泡
樹脂としては、ポリ塩化ビニルやポリエーテルイミド製
の発泡樹脂を例示することができる。具体的には、ロハ
セル(ROHM社製)、R63(AIREX社製)、R
82(AIREX社製)、C70(AIREX社製)、
C71(AIREX社製)、C51(AIREX社製)
等が挙げられる。また、ハニカム構造体としては、ノー
メックス(HEXCEL社製)や、一般的なアルミハニ
カム等が挙げられる。厚み方向の弾性率が高く、オート
クレーブで成形した場合に大きなひずみが残存してしま
う発泡樹脂製のコア材であっても、成形の際に大きな圧
縮ひずみを加えない本発明の積層構造体の製造方法によ
れば、好適に用いることができる。また、厚み方向の弾
性率が低いコア材を用いた場合でも、スキン材が剥離し
にくい良好な積層構造体を得ることができる。The core material is not particularly limited, and a foamed resin or a honeycomb structure can be used. Examples of the foamed resin include polyvinyl chloride and polyetherimide foamed resin. Specifically, Rohacell (manufactured by ROHM), R63 (manufactured by AIREX), R
82 (manufactured by AIREX), C70 (manufactured by AIREX),
C71 (made by AIREX), C51 (made by AIREX)
Etc. Examples of the honeycomb structure include Nomex (manufactured by HEXCEL) and general aluminum honeycomb. High elastic modulus in the thickness direction, even if a core material made of a foamed resin in which a large strain remains when molded in an autoclave, production of a laminated structure of the present invention that does not apply a large compressive strain during molding According to the method, it can be preferably used. Further, even when a core material having a low elastic modulus in the thickness direction is used, it is possible to obtain a good laminated structure in which the skin material is less likely to peel off.
【0007】上記スキン材としては、熱硬化性樹脂をマ
トリックス樹脂とするプリプレグが用いられる。尚、一
般にプリプレグとは、補強材に予め樹脂が含浸されたも
のを示すが、本明細書においては広義に解釈し、外観上
全く樹脂が含浸していないような状態であっても、樹脂
と補強材が一体化しているようなものはプリプレグと呼
ぶ。As the skin material, a prepreg containing a thermosetting resin as a matrix resin is used. In general, the term prepreg refers to a material in which a reinforcing material is impregnated with a resin in advance. However, in the present specification, it is interpreted in a broad sense, and even if the appearance is not impregnated with a resin, The one in which the reinforcing material is integrated is called a prepreg.
【0008】プリプレグのマトリックス樹脂としては特
に制限はなく、エポキシ樹脂、フェノール樹脂、ビスマ
レイミド樹脂、シアネートエステル樹脂、BT樹脂、不
飽和ポリエステル樹脂、ビニルエステル樹脂などの熱硬
化性樹脂が用いられるが、物性と取り扱い性のバランス
に優れるエポキシ樹脂が好適に用いられる。また、難燃
性であることが好ましい。The matrix resin of the prepreg is not particularly limited, and thermosetting resins such as epoxy resin, phenol resin, bismaleimide resin, cyanate ester resin, BT resin, unsaturated polyester resin and vinyl ester resin are used. Epoxy resin having an excellent balance of physical properties and handleability is preferably used. Further, it is preferably flame-retardant.
【0009】プリプレグの補強材としては特に制限はな
く、炭素繊維、ガラス繊維、アラミド繊維、PBO繊
維、スチール繊維、ポリエチレン繊維等を用いることが
できるが、これらの中でも、炭素繊維は高強度、高弾性
のため好適に用いられる。また、ガラス繊維はコストパ
フォーマンスに優れるため好適に用いられる。The reinforcing material of the prepreg is not particularly limited, and carbon fiber, glass fiber, aramid fiber, PBO fiber, steel fiber, polyethylene fiber and the like can be used. Among them, carbon fiber has high strength and high strength. It is preferably used because of its elasticity. Further, glass fiber is preferably used because it is excellent in cost performance.
【0010】また、本発明の積層構造体の製造に使用さ
れるプリプレグは、少なくとも片面には樹脂が存在しな
いことが好ましい。後段で詳しく説明するが、本発明の
積層構造体の製造方法は、コア材をプリプレグで挟ん
で、それを大気圧下で成形するので、両面に樹脂面を有
するプリプレグでは、コア材とプリプレグを積層した時
のエアーが成形中に抜けずに、成形後においても層間な
どにエアーがボイドとして残りやすい。そのため、例え
ば、片面にのみ樹脂面を有するプリプレグや、樹脂面を
補強材で挟み込んだような少なくとも片面には樹脂が存
在しないプリプレグが好ましい。The prepreg used for producing the laminated structure of the present invention preferably has no resin on at least one surface. As will be described in detail later, in the method for manufacturing a laminated structure of the present invention, a core material is sandwiched between prepregs and molded under atmospheric pressure, so in a prepreg having resin surfaces on both sides, the core material and the prepregs are Air during lamination does not escape during molding, and air tends to remain as voids between layers even after molding. Therefore, for example, a prepreg having a resin surface only on one surface, or a prepreg having no resin on at least one surface such as sandwiching the resin surface with a reinforcing material is preferable.
【0011】また、上述したように、少なくとも片面に
は樹脂が存在しないプリプレグを用いる場合には、プリ
プレグの補強材は織物であることが好ましい。補強材が
織物であれば、プリプレグの少なくとも片面に樹脂が存
在しなくても、その面の補強材がバラバラになってしま
うことを防ぐことができる。織物の形態としては特に制
限はなく、平織、綾織、朱子織、バスケット織等の通常
の織物から、一方向に引き揃えられた補強繊維をばらけ
ないようにつなぎとめたUD織物のようなものでも良い
し、不織布のようなものでもよい。即ち、樹脂が存在し
ない面では、バインダーとして働く樹脂がないので、そ
の代わりに補強材をつなぎとめておく工夫があればよ
い。また、コア材がハニカム構造体の場合には、プリプ
レグは自己接着性を有することが好ましい。Further, as described above, when a prepreg having no resin on at least one side is used, the reinforcing material of the prepreg is preferably a woven fabric. If the reinforcing material is a woven fabric, it is possible to prevent the reinforcing material on the surface of the prepreg from falling apart even if the resin does not exist on at least one surface of the prepreg. The form of the woven fabric is not particularly limited, and it may be a normal woven fabric such as a plain weave, a twill weave, a satin weave, or a basket weave, or a UD fabric in which reinforcing fibers aligned in one direction are tied together so as not to come apart. It may be a non-woven fabric or the like. That is, since there is no resin that functions as a binder on the surface where no resin is present, it may be necessary to devise a means to retain the reinforcing material instead. When the core material is a honeycomb structure, the prepreg preferably has self-adhesiveness.
【0012】以下、本発明の実施形態に係る積層構造体
の製造方法について順次説明するが、本発明はこれに限
定されるものではない。スキン材を形成するプリプレグ
は、例えば、エポキシ樹脂を離型紙上に均一に塗工した
樹脂面上に、炭素繊維を貼り付けて作製する。このと
き、上述したように、補強材である炭素繊維にエポキシ
樹脂を積極的に含浸させるのではなく、炭素繊維に対し
て樹脂面とは反対側の面に樹脂を存在させない状態、即
ち、少なくとも片面には樹脂が存在しないようにプリプ
レグを作製することが好ましい。Hereinafter, the method for manufacturing a laminated structure according to the embodiment of the present invention will be sequentially described, but the present invention is not limited thereto. The prepreg that forms the skin material is manufactured by, for example, pasting carbon fiber on a resin surface obtained by uniformly coating an epoxy resin on release paper. At this time, as described above, the carbon fiber as the reinforcing material is not actively impregnated with the epoxy resin, but the resin is not present on the surface opposite to the resin surface with respect to the carbon fiber, that is, at least It is preferable to manufacture the prepreg so that the resin does not exist on one surface.
【0013】上記のように作製されたプリプレグを成形
型に配置する。このときのプリプレグの積層構成(内層
構成)に特に制限はないが、補強繊維の繊維方向が多方
向になるようにプリプレグを積層すると、強度の方向性
が小さくなり好ましい。このように積層したプリプレグ
上にコア材を置き、更に、その上にプリプレグを積層す
る。なお、このときのプリプレグの積層構成(外層構
成)についても、上記内層構成と同様に、特に制限はな
いが、補強繊維の繊維方向が多方向になるようにプリプ
レグを積層することが好ましい。The prepreg manufactured as described above is placed in a molding die. The laminated structure (inner layer structure) of the prepreg at this time is not particularly limited, but it is preferable to laminate the prepreg so that the fiber directions of the reinforcing fibers are multi-directional because the directionality of strength becomes small. The core material is placed on the prepreg thus laminated, and the prepreg is further laminated thereon. The laminated structure (outer layer structure) of the prepreg at this time is not particularly limited, as in the above-mentioned inner layer structure, but it is preferable to stack the prepreg so that the fiber directions of the reinforcing fibers are multidirectional.
【0014】上述したように、プリプレグとコア材を積
層した後、それをナイロン製のフィルムなどでバギング
し、真空ポンプなどで内部を真空に引き、かかる圧力が
大気圧となった状態で成形する(真空バグ成形、オーブ
ン成形)。このように、外からは積極的な力を加えない
成形方法によって、コア材に余分な圧縮ひずみが加わら
ないので、スキン材に対する大きな応力(剥離力)が生
じることもなく、その結果、高い剥離強度を有した積層
構造体を得ることができる。As described above, after the prepreg and the core material are laminated, the prepreg and the core material are bagged with a nylon film or the like, the interior is evacuated by a vacuum pump or the like, and molding is performed in a state where the applied pressure is atmospheric pressure. (Vacuum bug molding, oven molding). In this way, by the molding method that does not apply positive force from the outside, extra compressive strain is not applied to the core material, so that large stress (peeling force) on the skin material does not occur, resulting in high peeling. A laminated structure having strength can be obtained.
【0015】また、コア材をプリプレグで挟んで一体成
形する際の成形温度を150℃以下とすることが好まし
い。成形温度が150℃を超えると、成形時にコア材が
柔らかくなり、大気圧下における成形でも圧縮変形が大
きくなってしまう。また、より好ましくは100℃以下
であり、更に好ましくは80℃以下である。Further, it is preferable that the molding temperature when the core material is sandwiched between the prepregs and integrally molded is 150 ° C. or less. When the molding temperature exceeds 150 ° C., the core material becomes soft during molding, and the compression deformation increases even in molding under atmospheric pressure. Further, it is more preferably 100 ° C or lower, and further preferably 80 ° C or lower.
【0016】また、コア材をプリプレグで挟んで一体成
形する前に、50℃以上、且つ成形温度より低い温度で
10分以上保持した後、成形温度まで温度を上げて成形
することが好ましい。上述したように、本発明の積層構
造体の製造方法において、少なくとも片面には樹脂が存
在しないプリプレグを使用することが好ましいが、その
場合、樹脂が移動する前に硬化してしまうと、樹脂が移
動しきれなかった部分がボイドとして残ってしまうので
好ましくない。このような状態を避ける為には、成形温
度より低い温度で10分以上保持することが好ましい。
その際、保持する温度が50℃以上であれば樹脂の流動
が良好であるので好ましく、より好ましくは70℃以上
である。また、保持する時間は10分以上とすることが
好ましいが、20分以上の場合には樹脂が十分に流動で
きるので更に好ましく、30分以上の場合には特に好ま
しい。Before the core material is sandwiched between prepregs and integrally molded, it is preferable to hold the core material at a temperature of 50 ° C. or higher and lower than the molding temperature for 10 minutes or more, and then raise the temperature to the molding temperature for molding. As described above, in the method for producing a laminated structure of the present invention, it is preferable to use a prepreg having no resin on at least one surface, but in that case, when the resin is cured before moving, the resin is It is not preferable because the part that could not be moved remains as a void. In order to avoid such a state, it is preferable to hold at a temperature lower than the molding temperature for 10 minutes or more.
At that time, if the holding temperature is 50 ° C. or higher, the resin flow is good, which is preferable, and more preferably 70 ° C. or higher. The holding time is preferably 10 minutes or more, but more preferably 20 minutes or more because the resin can sufficiently flow, and particularly preferably 30 minutes or more.
【0017】また、成形温度より20℃低い温度から成
形温度までの昇温速度が平均で1℃/分以下であること
が好ましい。成形温度に近づいてくると、樹脂の粘度が
下がるが、一方では樹脂は反応し始めるため、樹脂の粘
度が上がる現象も同時に起こる。昇温速度が速いと、樹
脂の反応による粘度向上よりも、温度上昇による粘度低
下効果のほうが大きくなり、いわゆる樹脂フローという
現象が起きる。上述したように、樹脂が移動する前に硬
化してしまっては樹脂が移動しきれなかった部分がボイ
ドとして残ってしまうので、ある程度の樹脂フローは必
要であるが、樹脂フローが大きすぎると、成形品の厚み
斑や樹脂枯れ、設計通りのVf(補強繊維の体積分率)
が得られない等の不具合が起こる。成形温度より20℃
低い温度から成形温度までの昇温速度が平均で1℃以下
の場合には、反応による粘度上昇と、温度上昇による粘
度低下とのバランスが良く、積層構造体(成形品)は非
常にきれいな仕上がりとなる。そのため、成形温度より
20℃低い温度から成形温度までの昇温速度が、1℃/
分以下であることが好ましく、平均で0.6℃/分以下
の場合には、更にきれいな仕上がりの積層構造体を得る
ことができる。Further, it is preferable that the rate of temperature increase from a temperature 20 ° C. lower than the molding temperature to the molding temperature is 1 ° C./min or less on average. When the temperature approaches the molding temperature, the viscosity of the resin decreases, but on the other hand, the resin begins to react, so that the viscosity of the resin also increases. When the heating rate is high, the viscosity decreasing effect due to the temperature increase becomes larger than the viscosity improving due to the reaction of the resin, and a phenomenon called resin flow occurs. As described above, the resin is hardened before moving, and the portion where the resin could not be moved remains as a void, so some resin flow is necessary, but if the resin flow is too large, Uneven thickness of molded product, resin withering, Vf as designed (volume fraction of reinforcing fiber)
There is a problem such as not being able to obtain. 20 ℃ from molding temperature
When the rate of temperature increase from a low temperature to the molding temperature is 1 ° C or less on average, the viscosity increase due to the reaction and the viscosity decrease due to the temperature increase are well balanced, and the laminated structure (molded product) has a very clean finish. Becomes Therefore, the rate of temperature rise from the temperature 20 ° C lower than the molding temperature to the molding temperature is 1 ° C /
It is preferably not more than minutes, and when it is not more than 0.6 ° C./minute on average, it is possible to obtain a laminated structure having a more beautiful finish.
【0018】上記積層構造体は、例えば、自動車、列
車、飛行機、船、ジェットコースター等の移動手段の胴
体部に用いられることが好ましく、より好ましくは瞬間
速度100km/時間以上を有する移動手段の胴体部、
更に好ましくは瞬間速度150km/時間以上を有する
移動手段の胴体部、特に好ましくは瞬間速度200km
/時間以上を有する移動手段の胴体部である。上述した
ように、本発明の製造方法によって得られる積層構造体
は、高い剥離強度を有するため、振動を伴い、高速で移
動する移動手段の胴体部に用いられることにより、非常
に良好な効果を発揮することができる。The above laminated structure is preferably used for a body of a moving means such as an automobile, a train, an airplane, a ship, a roller coaster, and more preferably, a body of a moving means having an instantaneous velocity of 100 km / hour or more. Department,
More preferably, the body portion of the moving means having an instantaneous speed of 150 km / hour or more, particularly preferably an instantaneous speed of 200 km.
/ Body of the transportation means having more than one hour. As described above, since the laminated structure obtained by the manufacturing method of the present invention has a high peel strength, it has a very good effect by being used in the body part of the moving means that moves at high speed with vibration. Can be demonstrated.
【0019】上記移動手段の胴体部が、列車の先頭構体
であることが好ましい。列車がトンネルを通過する際、
列車の後方車両の先頭構体は、振動に加え、非常に大き
なスキン材を引き剥がそうとする力(引圧)が加わる。
本発明の積層構造体の製造方法によれば、上記のような
非常に厳しい条件下においても、スキン材を引き剥がそ
うとする力に対して耐性が強い積層構造体を得ることが
できる。It is preferable that the body portion of the moving means is the leading structure of the train. As the train goes through the tunnel,
In addition to vibration, the front structure of the train's rear vehicle is subjected to a force (pulling force) to peel off a very large skin material.
According to the method for manufacturing a laminated structure of the present invention, it is possible to obtain a laminated structure having high resistance to the force of peeling off the skin material even under the extremely severe conditions as described above.
【0020】[0020]
【実施例】〈鉄道車両の先頭構体モデルの製造〉
(実施例1)エピコート828(ジャパンエポキシレジ
ン社製)40質量部、エピコート1001(ジャパンエ
ポキシレジン社製)40質量部、エピクロンN740
(大日本インキ化学工業社製)20質量部、DICY7
(ジャパンエポキシレジン社製)5質量部、DCMU9
9(保土ヶ谷化学社製)5質量部を均一に混合したエポ
キシ樹脂を離型紙に均一に塗工し、その樹脂面に炭素繊
維(「クロスTRK510」、三菱レイヨン社製)を貼
り付けた。ただし、炭素繊維に樹脂を積極的には含浸さ
せず、貼り付けた程度で、炭素繊維の樹脂面を貼り付け
た反対側の面には樹脂が存在しない状態であった。樹脂
の含有量は、プリプレグ全質量に対して35質量%とし
た。EXAMPLES <Manufacturing of Leading Body Model of Railway Vehicle> (Example 1) 40 parts by mass of Epicoat 828 (manufactured by Japan Epoxy Resins Co., Ltd.), 40 parts by mass of Epicoat 1001 (manufactured by Japan Epoxy Resins Co., Ltd.), Epicron N740
(Manufactured by Dainippon Ink and Chemicals, Inc.) 20 parts by mass, DICY7
(Made by Japan Epoxy Resin Co., Ltd.) 5 parts by mass, DCMU9
Epoxy resin obtained by uniformly mixing 5 parts by mass of 9 (manufactured by Hodogaya Chemical Co., Ltd.) was uniformly applied to release paper, and carbon fiber (“Cross TRK510”, manufactured by Mitsubishi Rayon Co., Ltd.) was attached to the resin surface. However, the carbon fiber was not impregnated with the resin positively, and was adhered to the extent that the resin was not present on the surface opposite to the surface on which the resin surface of the carbon fiber was adhered. The content of the resin was 35% by mass with respect to the total mass of the prepreg.
【0021】上記のようにして作製したプリプレグを用
いて、図1(a)及び(b)に示す鉄道車両の先頭構体
モデルを製造した。まず、樹脂製の成形型に、スキン材
を形成するプリプレグを積層し、その上にコア材(「ロ
ハセル51IG」、Rohm社製、密度;52kg/m
3、50mm厚み板)を置き、更にプリプレグを積層し
た。ここでスキン材を形成するプリプレグの積層構成
は、内、外層とも[−45°/0°/45°/90°/
90°/45°/0°/−45°]の8プライとした。
これをナイロン製のフィルムで覆い(バギング)、その
内部を真空に引いた。次いで、これをオーブンに入れて
大気圧下で成形した。このときのオーブン内の温度は、
図2に示すように、30分間で室温から80℃まで昇温
して80℃で30分間保持した後、60分間で成形温度
の130℃まで昇温して、130℃、90分間で成形を
終了した。また、成形温度より20℃低い温度から成形
温度まで昇温する昇温速度は0.83℃/分であった。
得られた積層構造体(成形品)の外観は、ピンホールも
なく、非常にきれいなものであった。Using the prepreg manufactured as described above, a leading structure model of a railway vehicle shown in FIGS. 1 (a) and 1 (b) was manufactured. First, a prepreg for forming a skin material is laminated on a resin mold, and a core material (“ROHACEL 51IG”, manufactured by Rohm Co., density; 52 kg / m)
3 , 50 mm thick plate) was placed and further prepreg was laminated. Here, the laminated structure of the prepreg that forms the skin material is [-45 ° / 0 ° / 45 ° / 90 ° /
90 ° / 45 ° / 0 ° / −45 °].
This was covered with a nylon film (bagging), and the inside was evacuated. Then, it was placed in an oven and molded under atmospheric pressure. The temperature in the oven at this time is
As shown in FIG. 2, after the temperature was raised from room temperature to 80 ° C. in 30 minutes and kept at 80 ° C. for 30 minutes, the temperature was raised to 130 ° C. which is the molding temperature in 60 minutes, and the molding was performed in 130 ° C. for 90 minutes. finished. The rate of temperature increase from the temperature 20 ° C lower than the molding temperature to the molding temperature was 0.83 ° C / min.
The appearance of the obtained laminated structure (molded product) was very clean without pinholes.
【0022】(実施例2)プリプレグのマトリックス樹
脂として、難燃エポキシ系マトリックス樹脂#610
(三菱レイヨン社製)を用いた以外は、実施例1と同様
にして積層構造体(成形品)を得た。得られた成形品の
外観は、ピンホールもなく、非常にきれいなものであっ
た。(Example 2) Flame-retardant epoxy matrix resin # 610 was used as the matrix resin for the prepreg.
A laminated structure (molded product) was obtained in the same manner as in Example 1 except that (manufactured by Mitsubishi Rayon Co., Ltd.) was used. The appearance of the obtained molded product was very clean without pinholes.
【0023】(比較例)成形をオートクレーブ(圧力3
000kPa)を用いて実施した以外は、実施例1と同
様にして積層構造体(成形品)を得た。得られた積層構
造体(成形品)の外観は、ピンホールもなく、非常にき
れいなものであった。(Comparative Example) Molding was carried out in an autoclave (pressure 3).
A laminated structure (molded product) was obtained in the same manner as in Example 1 except that the operation was performed at a pressure of 000 kPa). The appearance of the obtained laminated structure (molded product) was very clean without pinholes.
【0024】〈剥離強度の評価方法(1)〉上記実施例
1、2及び比較例で得られた積層構造体(成形品)に対
して、以下のような評価試験を行った。成形品を振幅1
cm、1Hzで上下に100000回振動させた後、成
形品内部におけるスキン材の剥離の様子をハンディータ
イプの超音波探傷機(「QUANTUM QBT−2
+」、NDTSYSTEM社製)を用いて検査した。<Peeling Strength Evaluation Method (1)> The following evaluation tests were performed on the laminated structures (molded articles) obtained in Examples 1 and 2 and Comparative Example. Amplitude of molded product 1
cm, 1 Hz, and after being vibrated up and down 100000 times, the appearance of the peeling of the skin material inside the molded product was examined by a handy type ultrasonic flaw detector (“QUANTUM QBT-2
+ ", Manufactured by NDTSYSTEM).
【0025】実施例1、2で得られた積層構造体(成形
品)は、剥離箇所が認められなかったので、剥離強度に
優れた積層構造体(成形品)であるといえる。一方、比
較例で得られた積層構造体(成形品)は、3箇所の剥離
が確認され、実施例1、2で得られた積層構造体(成形
品)に比べ、剥離強度が劣っていることが判明した。Since the laminated structure (molded product) obtained in Examples 1 and 2 had no peeling points, it can be said that the laminated structure (molded product) had excellent peel strength. On the other hand, in the laminated structure (molded product) obtained in Comparative Example, peeling was confirmed at three places, and the peel strength was inferior to that of the laminated structure (molded product) obtained in Examples 1 and 2. It has been found.
【0026】〈剥離強度の評価方法(2)〉上記実施例
1及び比較例で得られた積層構造体(成形品)に対し
て、以下のような評価試験を行った。積層構造体(成形
品)を一回り大きな筒状体に入れ、先頭構体モデルが面
している部分が引圧になるように減圧し、先頭構体モデ
ルを構成する積層構造体(成形品)のスキン材に引張応
力が加わる状態で、振幅1cm、1Hzで上下に100
000回振動させた。振動後、成形品内部におけるスキ
ン材の剥離の様子をハンディータイプの超音波探傷機
(「QUANTUM QBT−2+」、NDTSYST
EM社製)を用いて検査した。<Peeling Strength Evaluation Method (2)> The following evaluation test was performed on the laminated structures (molded articles) obtained in Example 1 and Comparative Example. Insert the laminated structure (molded product) into a larger cylindrical body and decompress it so that the part facing the front structure model becomes a suction pressure. With tensile stress applied to the skin material, 100 cm up and down with an amplitude of 1 cm and 1 Hz.
Vibrated 000 times. After vibration, peeling of the skin material inside the molded product is examined by using a handy type ultrasonic flaw detector (“QUANTUM QBT-2 +”, NDTSYST).
(Manufactured by EM).
【0027】実施例1で得られた積層構造体(成形品)
は、厳しい条件下においても剥離が全く認められなかっ
たが、比較例で得られた積層構造体(成形品)は、25
箇所の剥離が確認され、そのうち4箇所は非常に大きな
剥離であった。以上の結果から、本発明の実施形態に係
る実施例1で得られた積層構造体(成形品)は、厳しい
条件下においても、剥離強度に優れていることが判明し
た。Laminated structure (molded article) obtained in Example 1
No peeling was observed even under severe conditions, but the laminated structure (molded product) obtained in Comparative Example was 25
Peeling was confirmed at four places, of which four were very large. From the above results, it was found that the laminated structure (molded product) obtained in Example 1 according to the embodiment of the present invention was excellent in peel strength even under severe conditions.
【0028】(実施例3)プリプレグのマトリックス樹
脂として、低温硬化マトリックス樹脂#830(三菱レ
イヨン社製)を用い、成形するときのオーブン内の温度
を図3に示すように、10分間で室温から55℃まで昇
温して55℃で30分間保持した後、45分間で成形温
度の80℃まで昇温して、80℃、120分間で成形し
た以外は、実施例1と同様にして積層構造体(成形品)
を得た。また、成形温度より20℃低い温度から成形温
度まで昇温する昇温速度は0.83℃/分であった。得
られた積層構造体(成形品)の外観は、ピンホールもな
く、非常にきれいなものであった。(Example 3) As the matrix resin of the prepreg, low temperature curing matrix resin # 830 (manufactured by Mitsubishi Rayon Co., Ltd.) was used, and the temperature in the oven at the time of molding was from room temperature in 10 minutes as shown in FIG. A laminated structure was obtained in the same manner as in Example 1 except that the temperature was raised to 55 ° C. and held at 55 ° C. for 30 minutes, then raised to the molding temperature of 80 ° C. in 45 minutes and molded at 80 ° C. for 120 minutes. Body (molded product)
Got The rate of temperature increase from the temperature 20 ° C lower than the molding temperature to the molding temperature was 0.83 ° C / min. The appearance of the obtained laminated structure (molded product) was very clean without pinholes.
【0029】〈剥離強度の評価方法(3)〉上記実施例
3で得られた積層構造体(成形品)に対して、以下のよ
うな評価試験を行った。積層構造体(成形品)を振幅1
cm、1Hzで上下に100000回振動させた後、積
層構造体(成形品)内部におけるスキン材の剥離の様子
をハンディータイプの超音波探傷機(「QUANTUM
QBT−2+」、NDTSYSTEM社製)で検査し
た。その後、更に、振幅1cm、1Hzで上下に100
0000回振動させた後、積層構造体(成形品)内部に
おけるスキン材の剥離の様子を上記と同様の方法で検査
した。<Peeling Strength Evaluation Method (3)> The following evaluation test was performed on the laminated structure (molded article) obtained in Example 3 above. Amplitude of laminated structure (molded product) 1
cm, 1 Hz, and after being vibrated up and down 100000 times, the peeling of the skin material inside the laminated structure (molded product) is examined by a handy type ultrasonic flaw detector (“QUANTUM”).
QBT-2 + "manufactured by NDTSYSTEM). After that, 100 cm up and down at 1 cm and 1 Hz.
After vibrating 0000 times, the peeling of the skin material inside the laminated structure (molded product) was inspected by the same method as described above.
【0030】実施例3で得られた積層構造体(成形品)
は、はじめの100000回振動後、剥離が全く認めら
れず、その後の1000000回振動後においても、剥
離が全く認められなかった。以上の結果から、本発明の
実施形態に係る実施例3で得られた積層構造体(成形
品)は、非常に剥離強度に優れていることが判明した。Laminated structure (molded article) obtained in Example 3
No peeling was observed after the first 100,000 vibrations, and no peeling was observed even after the subsequent 1,000,000 vibrations. From the above results, it was found that the laminated structure (molded product) obtained in Example 3 according to the embodiment of the present invention has extremely excellent peel strength.
【0031】[0031]
【発明の効果】本発明の積層構造体の製造方法は、優れ
た剥離強度を有する積層構造体を得ることができる。ま
た、本発明の製造方法によって得られた積層構造体は、
優れた剥離強度を有するので、移動手段の胴体部、特
に、列車の先頭構体に好適に用いられる。According to the method for manufacturing a laminated structure of the present invention, a laminated structure having excellent peel strength can be obtained. Further, the laminated structure obtained by the manufacturing method of the present invention,
Since it has excellent peeling strength, it is suitable for use in the body part of the moving means, particularly in the front structure of the train.
【図1】 (a)は鉄道車両の先頭構体モデルの側面図
であり、(b)は鉄道車両の先頭構体モデルの正面図で
ある。FIG. 1A is a side view of a front structure model of a rail vehicle, and FIG. 1B is a front view of a front structure model of the rail vehicle.
【図2】 実施例1における成形温度の変化を示すグラ
フである。2 is a graph showing changes in molding temperature in Example 1. FIG.
【図3】 実施例3における成形温度の変化を示すグラ
フである。FIG. 3 is a graph showing changes in molding temperature in Example 3.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F204 AA39 AD02 AD05 AD17 AG03 AG20 AH30 AR06 AR11 FA13 FB01 FB11 FB22 FF01 FF05 FG05 FH06 FN15 FQ37 ─────────────────────────────────────────────────── ─── Continued front page F-term (reference) 4F204 AA39 AD02 AD05 AD17 AG03 AG20 AH30 AR06 AR11 FA13 FB01 FB11 FB22 FF01 FF05 FG05 FH06 FN15 FQ37
Claims (10)
ン材で挟んだ積層構造体の製造方法において、 コア材をプリプレグで挟んで大気圧下で一体成形するこ
とを特徴とする積層構造体の製造方法。1. A method for manufacturing a laminated structure in which a core material is sandwiched between skin materials formed of prepreg, wherein the core material is sandwiched between prepregs and integrally molded under atmospheric pressure. Method.
用いられることを特徴とする請求項1記載の積層構造体
の製造方法。2. The method for manufacturing a laminated structure according to claim 1, wherein the laminated structure is used for a body portion of a moving unit.
100km/時間以上を有する移動手段の胴体部に用い
られることを特徴とする請求項1又は2に記載の積層構
造体の製造方法。3. The method for manufacturing a laminated structure according to claim 1, wherein the laminated structure is used in a body portion of a moving unit having an instantaneous velocity of 100 km / hour or more.
体であることを特徴とする請求項2又は3に記載の積層
構造体の製造方法。4. The method for manufacturing a laminated structure according to claim 2, wherein the body portion of the moving means is a leading structure of a train.
とする請求項1記載の積層構造体の製造方法。5. The method for manufacturing a laminated structure according to claim 1, wherein the core material is a foamed resin.
脂が存在しないことを特徴とする請求項1記載の積層構
造体の製造方法。6. The method for producing a laminated structure according to claim 1, wherein no resin is present on at least one surface of the prepreg.
とを特徴とする請求項1記載の積層構造体の製造方法。7. The method for manufacturing a laminated structure according to claim 1, wherein the reinforcing material of the prepreg is a woven fabric.
形する際の成形温度を150℃以下とすることを特徴と
する請求項1記載の積層構造体の製造方法。8. The method for producing a laminated structure according to claim 1, wherein a molding temperature when the core material is sandwiched between prepregs and integrally molded is 150 ° C. or lower.
形する前に、50℃以上、且つ成形温度より低い温度で
10分以上保持した後、成形温度まで昇温して成形する
ことを特徴とする請求項1又は8に記載の積層構造体の
製造方法。9. Before the core material is sandwiched between prepregs and integrally molded, the core material is held at a temperature of 50 ° C. or higher and lower than the molding temperature for 10 minutes or more, and then heated to the molding temperature for molding. The method for manufacturing a laminated structure according to claim 1 or 8.
温度まで昇温する昇温速度が、1℃/分以下であること
を特徴とする請求項9記載の積層構造体の製造方法。10. The method for producing a laminated structure according to claim 9, wherein the rate of temperature increase from the temperature 20 ° C. lower than the molding temperature to the molding temperature is 1 ° C./min or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002112147A JP2003305741A (en) | 2002-04-15 | 2002-04-15 | Manufacturing method for laminated structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002112147A JP2003305741A (en) | 2002-04-15 | 2002-04-15 | Manufacturing method for laminated structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003305741A true JP2003305741A (en) | 2003-10-28 |
Family
ID=29394740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002112147A Withdrawn JP2003305741A (en) | 2002-04-15 | 2002-04-15 | Manufacturing method for laminated structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003305741A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008201041A (en) * | 2007-02-21 | 2008-09-04 | Toyota Motor Corp | Manufacturing method of fiber-reinforced composite material |
JP2010131838A (en) * | 2008-12-04 | 2010-06-17 | New Chemical Inc | Method for manufacturing fiber-reinforced resin-molded article |
KR20180119613A (en) * | 2016-03-30 | 2018-11-02 | 미츠비시 쥬고교 가부시키가이샤 | Front spheres and vehicles |
-
2002
- 2002-04-15 JP JP2002112147A patent/JP2003305741A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008201041A (en) * | 2007-02-21 | 2008-09-04 | Toyota Motor Corp | Manufacturing method of fiber-reinforced composite material |
JP2010131838A (en) * | 2008-12-04 | 2010-06-17 | New Chemical Inc | Method for manufacturing fiber-reinforced resin-molded article |
KR20180119613A (en) * | 2016-03-30 | 2018-11-02 | 미츠비시 쥬고교 가부시키가이샤 | Front spheres and vehicles |
KR102088122B1 (en) | 2016-03-30 | 2020-03-11 | 미츠비시 쥬고교 가부시키가이샤 | Front sphere and vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4126978B2 (en) | Preform, FRP comprising the same, and method for producing FRP | |
JP4407964B2 (en) | Composite honeycomb sandwich structure | |
JPH08506534A (en) | Composite molding apparatus and molding method for high-pressure co-curing molding of a lightweight honeycomb core composite product having a sloped surface using a low-density, stabilized sloped honeycomb core, and product manufactured thereby | |
JP4821262B2 (en) | Reinforcing fiber laminate, preform, FRP, reinforcing fiber laminate manufacturing method and manufacturing apparatus thereof | |
US6698484B1 (en) | Method for reducing core crush | |
EP2376280B1 (en) | Improved composite materials | |
JP4254158B2 (en) | Carbon fiber substrate manufacturing method, preform manufacturing method, and composite material manufacturing method | |
EP2746042A1 (en) | Methods for fabricating stabilized honeycomb core composite laminate structures | |
JP4304948B2 (en) | REINFORCED FIBER BASE, PREFORM, FIBER-REINFORCED RESIN MOLDING COMPRISING THE SAME AND METHOD FOR PRODUCING FIBER-REINFORCED RESIN MOLD | |
JP2008162281A (en) | Tethering type corner part and flange, and article equipped with them | |
JP4107475B2 (en) | Reinforcing fibers for fiber reinforced composites | |
WO2014078496A2 (en) | Expanding foam core prepreg | |
JP4609513B2 (en) | Preform manufacturing method | |
JP2002105223A (en) | Paperless prepreg and manufacturing method | |
JP2003305741A (en) | Manufacturing method for laminated structure | |
JP4458739B2 (en) | Manufacturing method of molded products | |
JP3127947B2 (en) | Composite molding | |
JP2004276355A (en) | Preform and method for manufacturing fiber reinforced resin composite using the preform | |
JP2004035604A (en) | Semi-impregnated prepreg | |
JP2004058609A (en) | Method for manufacturing laminated sheet | |
JP2705319B2 (en) | Method for producing carbon fiber reinforced composite material | |
JPH0687185A (en) | Laminated molding | |
JPH04267139A (en) | Carbon fiber reinforced composite material prepreg sheet | |
JP2000302062A (en) | Straightening plate | |
JP2004058608A (en) | Method for manufacturing hollow molded article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050705 |