JP2003286506A - Air-permeable metallic material and manufacturing method therefor - Google Patents

Air-permeable metallic material and manufacturing method therefor

Info

Publication number
JP2003286506A
JP2003286506A JP2002091280A JP2002091280A JP2003286506A JP 2003286506 A JP2003286506 A JP 2003286506A JP 2002091280 A JP2002091280 A JP 2002091280A JP 2002091280 A JP2002091280 A JP 2002091280A JP 2003286506 A JP2003286506 A JP 2003286506A
Authority
JP
Japan
Prior art keywords
metal
powder
low melting
melting point
breathable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002091280A
Other languages
Japanese (ja)
Other versions
JP4025834B2 (en
Inventor
Teruo Takahashi
輝男 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyogo Prefectural Government
Original Assignee
Hyogo Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyogo Prefectural Government filed Critical Hyogo Prefectural Government
Priority to JP2002091280A priority Critical patent/JP4025834B2/en
Publication of JP2003286506A publication Critical patent/JP2003286506A/en
Application granted granted Critical
Publication of JP4025834B2 publication Critical patent/JP4025834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an air-permeable metallic material in a low temperature and low pressure condition, and to provide the metallic material having superior air permeability, which can be manufactured in the low temperature and low pressure condition. <P>SOLUTION: The method for obtaining the air-permeable metallic material 7 comprises preparing an SnO<SB>2</SB>powder 1 of an oxide of a low-melting metal, and an Fe powder or a nickel powder 2 which forms an intermetallic compound between itself and the SnO<SB>2</SB>powder 1, mixing the SnO<SB>2</SB>powder 1 with the Fe powder or the Ni powder 2, then molding a mixture of the metal powders to obtain a compact 3 of the metal powders, and further reducing the compact 3 of the metal powders in a reducing atmosphere at a low temperature. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、通気性金属材料に
関する。通気性金属材料の最も重要な用途は、フィルタ
である。例えば、自動車の燃料やオイルの濾過、原子力
分野におけるウラニウム化合物の除去、さらに高圧流体
回路におけるバルブ、ノズル、計器の保護等あらゆる産
業分野に使われている。また、通気性金属材料の比表面
積が大きいことを利用した用途も多数ある。例えば、ア
ルカリ電池や燃料電池の多孔質ニッケル電極は、比表面
積が大きいためにバルク材と比較して反応が極めて速い
という効果を利用したものである。ガスタービンエンジ
ン部品やミサイルのノーズチップに用いられている通気
性金属材料による吐出冷却法は、比表面積が大きいため
に熱交換が容易であることを利用したものである。
TECHNICAL FIELD The present invention relates to a breathable metal material. The most important application of breathable metallic materials is in filters. For example, it is used in all industrial fields such as filtration of fuel and oil for automobiles, removal of uranium compounds in the field of nuclear power, and protection of valves, nozzles and instruments in high pressure fluid circuits. In addition, there are many applications that utilize the large specific surface area of breathable metal materials. For example, the porous nickel electrode of an alkaline battery or a fuel cell utilizes the effect that the reaction is extremely fast as compared with the bulk material because of its large specific surface area. The discharge cooling method using a gas permeable metal material used for gas turbine engine parts and nose tips of missiles utilizes the fact that heat exchange is easy because of its large specific surface area.

【0002】[0002]

【従来技術】ところで、現在、通気性金属材料として
は、青銅、ステンレス鋼、ニッケル合金、チタンおよび
アルミニウムが主として使用されており、粉末冶金法に
よって製造されることが多い。この粉末冶金の製造工程
は、原料粉の種類やつくるものの使用目的によっても異
なるが、一般的には、(1)粉末を製造する「製粉工
程」、(2)成分あるいは粒径分布を調整し、潤滑剤な
どを加えて次工程における操業を安定化するための「混
合工程」、(3)金型に粉末を充填して、上下のパンチ
で加圧するかあるいは粉末をゴム袋に詰めて静水圧をか
けて、圧粉体あるいはグリーンコンパクトとよばれる成
形体をつくる「圧縮成形工程」、(4)成形体を高温で
焼き固めて十分な強度を付与し、目的の性質を与える
「焼結工程」からなり、焼結工程の後、用途に応じて再
び圧縮と焼結を繰り返して緻密化および強度向上を図っ
たり、寸法精度向上のための寸法矯正や耐食、耐摩耗性
向上のための表面処理が施されることがある。
2. Description of the Related Art At present, bronze, stainless steel, nickel alloys, titanium and aluminum are mainly used as breathable metal materials, and they are often manufactured by powder metallurgy. The manufacturing process of this powder metallurgy varies depending on the type of raw material powder and the purpose of use of the material to be made, but in general, (1) "milling process" for manufacturing powder, (2) component or particle size distribution is adjusted. , "Mixing process" to stabilize the operation in the next process by adding a lubricant, etc. (3) Fill the mold with powder and press it with the upper and lower punches, or pack the powder in a rubber bag and leave it quiet. "Compression molding process" in which compacts called green compacts or green compacts are created by applying water pressure. (4) Sintering that gives the desired properties by baking and compacting the compact at high temperature. After the sintering process, compression and sintering are repeated again depending on the application to densify and improve the strength, and for dimensional correction and corrosion resistance and wear resistance improvement to improve dimensional accuracy. Surface treatment may be applied.

【0003】本発明の理解を深めるために、金属粉末の
製造工程についてさらに説明する。
In order to deepen the understanding of the present invention, the manufacturing process of the metal powder will be further described.

【0004】粉末製造手段としては、例えば、鉄合金粉
末では、溶融鉄合金の流れに20MPaを超える高圧の
水ジェットを噴霧して微粉を得る「水アトマイズ法」
や、この高圧水の代わりにN2 やArガスを用いる
「ガスアトマイズ法」や、溶融鉄合金を急冷凝固して微
細粉を得る「急冷凝固法」などが採用されており、ニッ
ケル合金粉末では、上記の「水アトマイズ法」や「ガス
アトマイズ法」や「急冷凝固法」や沸点が103℃のカ
ルボニルニッケルNi(CO)4 の蒸気を247〜3
47℃の壁面に触れさせてNi微粉に分解させる「カル
ボニル法」や合金元素粉末を高エネルギーボールミルで
粉砕して酸化物が微細に分散した機械合金粉を得る「機
械合金化法」が採用されている。
As a means for producing powder, for example, in the case of iron alloy powder, a "water atomizing method" is used in which a high-pressure water jet exceeding 20 MPa is sprayed on the flow of molten iron alloy to obtain fine powder.
Alternatively, a “gas atomizing method” using N 2 or Ar gas in place of this high-pressure water, a “quench solidification method” in which a molten iron alloy is rapidly solidified to obtain fine powder, and the like, nickel alloy powder is used. The above-mentioned "water atomization method", "gas atomization method", "quenching solidification method", or vapor of carbonyl nickel Ni (CO) 4 having a boiling point of 103 ° C is 247 to 3
The "carbonyl method" for contacting the wall surface at 47 ° C to decompose into Ni fine powder and the "mechanical alloying method" for pulverizing alloy element powder with a high energy ball mill to obtain mechanical alloy powder in which oxides are finely dispersed are adopted. ing.

【0005】また、粉末混合工程は、(1)粉体加工プ
ロセスにおける操業条件を安定させ、目的の性能をもつ
焼結部品を得るために、原料粉の粒度分布調整のために
行われる「ブレンディング」やカーボンや潤滑剤のよう
な異種の粉末を添加する「ミキシング」などの操作が行
われる混合処理と、(2)数μm以下の微粒子は凝集し
やすく流動性が悪いので、微粉体に適当な方法を施して
粒径および粒子形状を整えた凝集粒子にする造粒処理
と、(3)製造工程で混入するセラミック粒子や有機物
粒子は強度低下の原因になり、酸素や窒素、水分などの
吸着ガスは結晶粒界を弱くするので、これらの混入粒子
や吸着ガスを除去するために行われるクリーニング処理
と、(4)粉末粒子表面の酸化被膜は圧縮成型性を損な
い、圧粉体強度を低下させるので、この表面酸化被膜の
還元除去と、圧縮性を改善するための粉末の軟化とを目
的とする焼なまし処理とを含んでおり、必要に応じてこ
れら各処理が施される。
In addition, the powder mixing step is (1) "blending" for stabilizing the operating conditions in the powder processing process and adjusting the particle size distribution of the raw material powder in order to obtain a sintered part having the desired performance. It is suitable for fine powder because it has a mixing process such as "mixing" in which different kinds of powder such as carbon or lubricant is added, and (2) fine particles of several μm or less are easily aggregated and have poor fluidity. Granulation treatment to give agglomerated particles whose particle size and particle shape are adjusted by various methods, and (3) ceramic particles and organic particles mixed in the manufacturing process cause a decrease in strength, such as oxygen, nitrogen and water. Since the adsorbed gas weakens the crystal grain boundaries, the cleaning treatment performed to remove these mixed particles and adsorbed gas, and (4) the oxide film on the surface of the powder particles impairs compression moldability and reduces the green compact strength. Low Since thereby the reduction removal of the surface oxide film, includes a annealing process for the purpose of softening of the powder to improve the compressibility, each of these processes is performed as required.

【0006】また、圧縮成形とは、金属粉末を圧縮する
ことで大きな空隙が埋まって緻密化が開始し、さらに圧
縮すると粉末粒子の接触部での凝着と粉末粒子全体の塑
性変形が開始し、最終的に粉末成形体を真密度へ極力漸
近させるための成形法である。金属粉末の詰まりやすさ
の指標である密度比(見かけの密度/真密度)が、より
1に近い圧粉成形体を得るための圧縮成型手段として
は、冷間等方圧成形や熱間等方圧成形が行われることが
多い。ところが、冷間等方圧成形では、一般的に、50
00kg/cm2 の高圧が金属粉末に加えられ、熱間
等方圧成形では、一般的に、その金属の融点以下の温度
で、2000kg/cm2 までの高圧が金属粉末に加
えられる。
Further, compression molding means that by compressing metal powder, large voids are filled and densification is started, and further compression starts adhesion at the contact portion of the powder particles and plastic deformation of the entire powder particles. Finally, it is a molding method for making the powder compact as close as possible to the true density. As a compression molding means for obtaining a powder compact having a density ratio (apparent density / true density), which is an index of the ease of clogging of metal powder, closer to 1, cold isostatic pressing, hot pressing, etc. Often, pressure forming is performed. However, in cold isostatic pressing, generally 50
A high pressure of 00 kg / cm 2 is applied to the metal powder, and in hot isostatic pressing, a high pressure of up to 2000 kg / cm 2 is generally applied to the metal powder at a temperature below the melting point of the metal.

【0007】最後に十分な強度と目的の性質を与えるた
めに行われる焼結工程の焼結温度、時間、焼結雰囲気な
どの焼結条件は、粉末の種類、性状、焼結材料の有すべ
き諸特性などに応じて精密に設定されるが、例えば、鉄
系合金鋼では1100〜1300℃、ステンレス鋼では
1100〜1350℃、Ti合金では1200〜130
0℃のような極めて高い温度で焼結されている。
Finally, the sintering conditions such as the sintering temperature, the time, and the sintering atmosphere in the sintering process performed to give sufficient strength and desired properties are determined by the kind of powder, the properties, and the sintering material. Although it is set precisely according to various characteristics to be set, for example, 1100 to 1300 ° C for iron-based alloy steel, 1100 to 1350 ° C for stainless steel, and 1200 to 130 for Ti alloy.
It is sintered at an extremely high temperature such as 0 ° C.

【0008】例えば、この種の多孔質超硬合金の製造方
法として、特開平3−138304号公報には、「WC
を主成分とし、結合成分としてNiまたはCoと、特性
改善用成分としてCr、Ti、Taの1種または2種以
上を配合した原料粉を造粒し、この造粒粉を成形型に注
入して真空雰囲気下で1160℃で30分間仮焼結し、
この仮焼結体を炉冷後に真空雰囲気下で1370℃で1
時間本焼結する方法」が開示されている。このように、
同公報に記載された多孔質超硬合金の製造方法では、極
めて高い温度で焼結が行われている。
[0008] For example, as a method for producing this type of porous cemented carbide, Japanese Patent Laid-Open No. 3-138304 discloses "WC.
Is used as the main component, and Ni or Co as the binding component and one or more of Cr, Ti, and Ta as the component for improving the characteristics are blended into a raw material powder, and the granulated powder is injected into a molding die. Pre-sintering for 30 minutes at 1160 ℃ in a vacuum atmosphere,
This temporary sintered body is cooled at 1370 ° C. in a vacuum atmosphere after furnace cooling.
A method of time main sintering "is disclosed. in this way,
In the method for producing a porous cemented carbide described in the publication, sintering is performed at an extremely high temperature.

【0009】さらに、平成10年度新エネルギー産業技
術総合開発機構の研究成果報告には、金属の溶融状態か
らの一方向凝固時における過飽和ガス原子の析出に伴っ
て気泡を金属内に一方向に生成させる、ロータス型ポー
ラス金属の製法が記載されている。しかしながら、この
製法に従って金属を溶融させるには、例えば、銅の場
合、1083℃以上の高温に上げる必要がある。
[0009] Further, in the research result report of the New Energy Industrial Technology Development Organization in 1998, bubbles are generated in one direction in the metal due to precipitation of supersaturated gas atoms during unidirectional solidification from the molten state of the metal. A method for producing a lotus-type porous metal is described. However, in order to melt the metal according to this manufacturing method, for example, in the case of copper, it is necessary to raise the temperature to 1083 ° C. or higher.

【0010】[0010]

【発明が解決しようとする課題】通気性金属材料を粉末
冶金法で製造する場合、上記したように、(1)「製粉
工程」、(2)「混合工程」、(3)「圧縮成形工程」
および(4)「焼結工程」に相当する工程が必要であ
り、現状の圧縮成形法では高温高圧を必要とし、焼結も
高温を必要としている。高温高圧状態を実現・維持する
ためには、それに耐え得る強固な構造の設備が必要であ
り、設備コストが上昇する。また、高温高圧操業を維持
することは安全面での問題も懸念される。
When the breathable metal material is manufactured by the powder metallurgy method, as described above, (1) "milling step", (2) "mixing step", (3) "compression molding step". "
And (4) a step corresponding to the "sintering step" is required, and the current compression molding method requires high temperature and high pressure, and sintering also requires high temperature. In order to realize and maintain the high temperature and high pressure state, equipment with a strong structure capable of withstanding it is required, which increases the equipment cost. In addition, maintaining high-temperature and high-pressure operation poses a safety problem.

【0011】本発明は従来の技術の有するこのような問
題点に鑑みてなされたものであって、その目的は、低温
且つ低圧条件で通気性金属材料を製造することができる
方法および低温且つ低圧条件で製造することができる通
気性に優れた金属材料を提供することにある。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a method and a low temperature and low pressure which can produce a breathable metal material under low temperature and low pressure conditions. It is to provide a metal material having excellent breathability that can be manufactured under the conditions.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に本発明は、低融点金属の酸化物と、この低融点金属と
の間で金属間化合物を形成する他方の金属とを低温度の
還元雰囲気下におくことにより、低融点金属の酸化物が
還元され且つこの低融点金属が溶融し、溶融した低融点
金属と他方の金属との間で通気性に優れた金属間化合物
を形成する。
In order to achieve the above object, the present invention provides a low melting point metal oxide and another metal forming an intermetallic compound between the low melting point metal at a low temperature. By placing in a reducing atmosphere, the oxide of the low melting point metal is reduced and the low melting point metal is melted to form an intermetallic compound having excellent air permeability between the melted low melting point metal and the other metal. .

【0013】例えば、鉄とスズの間では、図11に示す
ように、融点1130℃のFeSnを得ることが可能で
あり、ニッケルとスズの間では、図12に示すように、
融点1264℃のNi3Sn2を得ることが可能である。
For example, between iron and tin, FeSn having a melting point of 1130 ° C. can be obtained as shown in FIG. 11, and between nickel and tin as shown in FIG.
Ni 3 Sn 2 having a melting point of 1264 ° C. can be obtained.

【0014】[0014]

【発明の実施の形態】すなわち、本発明の通気性金属材
料の製造方法は、低融点金属の酸化物の粉末と、この低
融点金属との間で金属間化合物を形成する他方の金属の
粉末を準備し、これら低融点金属酸化物の粉末と他方の
金属の粉末とを混合し、次いで、この金属粉末の混合物
を成形して金属粉末成形体を得、さらに、その金属粉末
成形体に低温度の還元雰囲気下で還元処理を施すことを
特徴としている。
BEST MODE FOR CARRYING OUT THE INVENTION That is, the method for producing a gas permeable metallic material according to the present invention comprises a powder of an oxide of a low melting point metal and a powder of another metal forming an intermetallic compound between the powder of the low melting point metal and the powder. And mixing the powder of the low-melting metal oxide with the powder of the other metal, and then molding the mixture of the metal powder to obtain a metal powder compact, and further adding the low-melting metal powder compact to the metal powder compact. The feature is that the reduction treatment is performed in a reducing atmosphere at a temperature.

【0015】また、本発明の通気性金属材料は、低融点
金属の酸化物の粉末と、この低融点金属との間で金属間
化合物を形成する他方の金属の粉末を準備し、これら低
融点金属酸化物の粉末と他方の金属の粉末とを混合し、
次いで、この金属粉末の混合物を成形して金属粉末成形
体を得、さらに、その金属粉末成形体に低温度の還元雰
囲気下で還元処理を施すことによって得ることを特徴と
している。
For the breathable metal material of the present invention, a powder of an oxide of a low melting point metal and a powder of another metal forming an intermetallic compound between the low melting point metal are prepared. Mix the powder of the metal oxide and the powder of the other metal,
Then, the mixture of the metal powders is molded to obtain a metal powder compact, and the metal powder compact is subjected to a reducing treatment in a reducing atmosphere at a low temperature.

【0016】低融点金属としては、水銀、セシウム、ガ
リウム、ルビジウム、カリウム、ナトリウム、インジウ
ム、リチウム、セレン、スズ、ビスマス、タリウム、亜
鉛、テルル、アンチモン、マグネシウムまたはアルミニ
ウムを使用することができ、これらの金属の中で、酸化
物生成自由エネルギーの小さい(酸化しやすい)元素は
好ましくない。というのは、酸化物生成自由エネルギー
の小さな元素は、容易に水素還元されず、目的とする金
属間化合物が形成されないからである。
As the low melting point metal, mercury, cesium, gallium, rubidium, potassium, sodium, indium, lithium, selenium, tin, bismuth, thallium, zinc, tellurium, antimony, magnesium or aluminum can be used. Among the above metals, an element having a small free energy for oxide formation (which is easily oxidized) is not preferable. This is because an element having a small free energy for oxide formation is not easily reduced with hydrogen and the desired intermetallic compound is not formed.

【0017】また、低融点金属は、蒸気圧の小さいこと
が好ましい。というのは、低融点金属が溶融したとき
に、金属溶湯が容易に蒸発するのは好ましくないからで
ある。
The low melting point metal preferably has a low vapor pressure. This is because it is not preferable that the metal melt evaporates easily when the low melting point metal melts.

【0018】当然のことながら、毒性の強い金属元素は
好ましくない。
As a matter of course, a highly toxic metallic element is not preferable.

【0019】これらの欠点のない(酸化物生成自由エネ
ルギーが大きく、蒸気圧が小さく、毒性が低いか又は無
毒性)低融点金属としては、ガリウム(融点30℃、沸
点2400℃)、インジウム(融点157℃、沸点20
80℃)、スズ(融点232℃、沸点2080℃)、ビ
スマス(融点271℃、沸点1560℃)、タリウム
(融点304℃、沸点1457℃)、テルル(融点45
0℃、沸点990℃)、アンチモン(融点631℃、沸
点1750℃)が特に好ましい。これらの低融点金属の
酸化物の還元温度は700℃以下が好ましい。
As the low melting point metal which does not have these disadvantages (large free energy of oxide formation, low vapor pressure, low toxicity or non-toxicity), gallium (melting point 30 ° C., boiling point 2400 ° C.), indium (melting point) 157 ° C, boiling point 20
80 ° C), tin (melting point 232 ° C, boiling point 2080 ° C), bismuth (melting point 271 ° C, boiling point 1560 ° C), thallium (melting point 304 ° C, boiling point 1457 ° C), tellurium (melting point 45).
0 ° C., boiling point 990 ° C.) and antimony (melting point 631 ° C., boiling point 1750 ° C.) are particularly preferable. The reduction temperature of these low melting point metal oxides is preferably 700 ° C. or lower.

【0020】低融点金属との間で金属間化合物を形成す
る他方の金属としては、鉄、コバルト、ニッケル、パラ
ジウム、白金、銅、銀または金を使用することができ
る。
As the other metal forming the intermetallic compound with the low melting point metal, iron, cobalt, nickel, palladium, platinum, copper, silver or gold can be used.

【0021】例えば、低融点金属としてスズを選択し、
スズとの間で金属間化合物を形成する他方の金属として
鉄またはニッケルを選択し、酸化スズ粉末と鉄粉末また
はニッケル粉末を混合して低温度で還元すれば、酸化ス
ズが還元され且つ金属スズが溶融することによってスズ
溶湯が鉄粉またはニッケル粉の間隙に浸透し、スズと鉄
またはニッケルとの間で金属間化合物が生成する。
For example, selecting tin as the low melting point metal,
If iron or nickel is selected as the other metal forming an intermetallic compound with tin, and tin oxide powder and iron powder or nickel powder are mixed and reduced at low temperature, tin oxide is reduced and metal tin The molten metal penetrates into the gap between the iron powder or the nickel powder by melting, and an intermetallic compound is formed between the tin and the iron or nickel.

【0022】[0022]

【実施例】以下に本発明の実施例を説明する。 (1)原料の調製および通気性金属材料の製造 a.粉末の製造 低融点金属の酸化物としてはSnO
2 を選択し、他方の金属としては、鉄またはニッケル
を選択した。そして、鉄粉はガスアトマイズ法により粉
体化されたものを使用し、篩い分けにより得られた鉄粉
の粒径は150〜177μmの範囲であった。また、ニ
ッケル粉はカルボニル法により粉体化されたものを使用
し、その平均粒径は150μmであった。また、SnO
2 粉末の平均粒径は0.8μmであった。鉄粉の走査
電子顕微鏡(SEM)写真を図1(a)と図1(b)に
示す。図1(a)は倍率が100倍であり、図1(b)
は倍率が500倍である。また、ニッケル粉の走査電子
顕微鏡(SEM)写真を図2(a)と図2(b)に示
す。図2(a)は倍率が200倍であり、図2(b)は
倍率が500倍である。 b.粉末の混合 SnO2 粉末は、金属スズに還元
された場合において、鉄粉またはニッケル粉の表面に1
0μmの厚さになるように計算して得られた量のSnO
2 粉末(図3(a)の1)を鉄粉またはニッケル粉
(図3(a)の2)に配合し、このSnO2 粉末と鉄
粉を配合したもの又はSnO2 粉末とニッケル粉を配
合したものを乳鉢で均一に混合した。
EXAMPLES Examples of the present invention will be described below. (1) Preparation of raw materials and production of breathable metal material a. Manufacture of powder SnO as oxide of low melting point metal
2 was selected, and iron or nickel was selected as the other metal. The iron powder powdered by the gas atomizing method was used, and the particle size of the iron powder obtained by sieving was in the range of 150 to 177 μm. The nickel powder used was powdered by the carbonyl method, and the average particle size was 150 μm. Also, SnO
The average particle size of the two powders was 0.8 μm. Scanning electron microscope (SEM) photographs of iron powder are shown in FIGS. 1 (a) and 1 (b). 1 (a) has a magnification of 100 times, and FIG. 1 (b)
Has a magnification of 500 times. Scanning electron microscope (SEM) photographs of nickel powder are shown in FIGS. 2 (a) and 2 (b). 2 (a) has a magnification of 200 times, and FIG. 2 (b) has a magnification of 500 times. b. Mixing of powders SnO 2 powder can be applied to the surface of iron powder or nickel powder when reduced to metallic tin.
The amount of SnO obtained by calculating so as to have a thickness of 0 μm
2 powder (1 in FIG. 3 (a)) is mixed with iron powder or nickel powder (2 in FIG. 3 (a)), and this SnO 2 powder and iron powder are mixed or SnO 2 powder and nickel powder are mixed. The obtained mixture was uniformly mixed in a mortar.

【0023】鉄粉の表面に金属スズに還元された場合に
10μmの厚さになるように計算して得られた量のSn
2 粉末を配合・混合したものをFS10と称し、ニ
ッケル粉の表面に金属スズに還元された場合に10μm
の厚さになるように計算して得られた量のSnO2
末を配合・混合したものをNS10と称する。 c.粉末の成形 粉末の成形手段としては金型成形を採用し、成形方式は
一軸圧縮成形法とし、FS10の成形圧力は100kg
/cm2とし、 NS10の成形圧力は60kg/cm
2 とすることにより、図3(b)に示すような成形体
3を得た。このように、本発明は、粉末の成形手段とし
ては金型成形を採用することができ、その成形圧力は約
100kg/cm2(約10MPa)以下でよい。 d.成形体の低温還元 成形体3を図3(c)の4に示すような電気炉に挿入
し、電気炉4内に入口5から水素を流入させ、ヒータ6
により電気炉4内を600℃に加熱して、成形体3を1
時間還元処理し、図3(d)に示すような形状の通気性
金属材料7を得た。
The amount of Sn obtained by calculation so that the thickness of the iron powder is 10 μm when reduced to metallic tin
A mixture and mixture of O 2 powder is called FS10, and 10 μm when reduced to metallic tin on the surface of nickel powder.
A mixture of SnO 2 powder in an amount obtained by calculating so as to have the above thickness is referred to as NS10. c. Molding of powders Mold molding is adopted as the molding means of powders, the molding method is uniaxial compression molding, and the molding pressure of FS10 is 100kg.
/ Cm 2, and the molding pressure of NS10 is 60 kg / cm
By setting it to 2 , a molded body 3 as shown in FIG. 3 (b) was obtained. As described above, according to the present invention, mold molding can be adopted as the powder molding means, and the molding pressure may be about 100 kg / cm 2 (about 10 MPa) or less. d. The low temperature reduction molded body 3 of the molded body is inserted into an electric furnace as shown by 4 in FIG. 3 (c), hydrogen is introduced into the electric furnace 4 through an inlet 5, and the heater 6
The inside of the electric furnace 4 is heated to 600 ° C. by
After the time reduction treatment, a breathable metal material 7 having a shape as shown in FIG. 3 (d) was obtained.

【0024】図3(e)は、金属材料7の一部を拡大し
て示す模式図で、斜線部の金属8はFeまたはNi元素
を示し、Fe元素8またはNi元素8をSn9が囲む様
子を示している。 (2)試験結果 a.FS10 図4は、600℃で1時間還元処理後のFS10表面の
SEM写真であり、図4(a)は50倍の場合を示し、
図4(b)は200倍の場合を示す。
FIG. 3E is an enlarged schematic view of a part of the metal material 7. The metal 8 in the shaded area represents Fe or Ni element, and the Fe element 8 or Ni element 8 is surrounded by Sn9. Is shown. (2) Test results a. FS10 FIG. 4 is a SEM photograph of the FS10 surface after reduction treatment at 600 ° C. for 1 hour, and FIG. 4 (a) shows the case of 50 times magnification.
FIG. 4B shows the case of 200 times.

【0025】図4(a)において、矢示部は空隙を示
し、全体として鉄粉とスズ粉は良好に金属間化合物を形
成しており、適当な分布状態で空隙が存在している様子
が伺える。
In FIG. 4 (a), the portion indicated by the arrow indicates a void, and the iron powder and the tin powder form good intermetallic compounds as a whole, and the voids are present in an appropriate distribution state. I can ask.

【0026】図5は、600℃で1時間還元処理後のF
S10断面のSEM写真であり、図5(a)は1000
倍の場合を示し、図5(b)はFeのkαX線写真を示
し、図5(c)はSnのLαX線写真を示す。図5
(a)〜(c)より、SnはFeの周囲に存在し、Fe
とSnとの間で金属間化合物が形成されている様子が伺
える。
FIG. 5 shows F after reduction treatment at 600 ° C. for 1 hour.
5 is a SEM photograph of S10 cross section, FIG.
FIG. 5B shows a kα X-ray photograph of Fe, and FIG. 5C shows a Lα X-ray photograph of Sn. Figure 5
From (a) to (c), Sn exists around Fe and Fe
It can be seen that an intermetallic compound is formed between Sn and Sn.

【0027】図6は、600℃で1時間還元処理後のF
S10表面のCukαX線回折図形である。図6から明
らかなように、金属間化合物FeSnが生成しているこ
とが分かる。 b.NS10 図7は、600℃で1時間還元処理後のNS10表面の
SEM写 真であり、図7(a)は50倍の場合を示
し、図7(b)は200倍の場合を示す。
FIG. 6 shows F after reduction treatment at 600 ° C. for 1 hour.
It is a Cuk alpha X-ray diffraction pattern of the S10 surface. As is clear from FIG. 6, the intermetallic compound FeSn is generated. b. NS10 FIGS. 7A and 7B are SEM photographs of the surface of NS10 after reduction treatment at 600 ° C. for 1 hour. FIG. 7A shows a case of 50 times, and FIG. 7B shows a case of 200 times.

【0028】図7(a)において、矢示部は空隙を示
し、全体としてニッケル粉とスズ粉は良好に金属間化合
物を形成しており、適当な分布状態で空隙が存在してい
る様子が伺える。
In FIG. 7 (a), the portion indicated by an arrow indicates a void, and the nickel powder and the tin powder as a whole form a good intermetallic compound, and the void is present in an appropriate distribution state. I can ask.

【0029】図8は、600℃で1時間還元処理後のN
S10断面のSEM写真であり、図8(a)は1000
倍の場合を示し、図8(b)はNiのkαX線写真を示
し、図8(c)はSnのLαX線写真を示す。図8
(a)〜(c)より、SnはNiの周囲に存在し、Ni
とSnとの間で金属間化合物が形成されている様子が伺
える。
FIG. 8 shows N after reduction treatment at 600 ° C. for 1 hour.
8 is a SEM photograph of the S10 cross section, and FIG.
FIG. 8 (b) shows a kα X-ray photograph of Ni, and FIG. 8 (c) shows a Lα X-ray photograph of Sn. Figure 8
From (a) to (c), Sn exists around Ni and Ni
It can be seen that an intermetallic compound is formed between Sn and Sn.

【0030】図9は、600℃で1時間還元処理後のN
S10表面のCukαX線回折図形である。図9から明
らかなように、金属間化合物Ni3SnとNi3SN2
が生成していることが分かる。 c.通気性の試験 図10に示すように、図3(e)に示す金属材料7の外
径にほぼ等しい内径の有底円筒体10の底部に所定量の
水11を貯留し、この円筒体10内に図3(e)に示す
形状の金属材料7を挿入し、さらに、金属材料7上に所
定量の水12を貯留し、バルブ13から円筒体10の底
部に接続した空気通入管14を経て円筒体10内に高圧
空気(1.5kg/cm2 )を通入し、円筒体10を上方
から観察すると、水12内に多数の気泡15が上昇する
様子が認められた。このように、金属材料7は十分に通
気性のあることが確認された。
FIG. 9 shows N after reduction treatment at 600 ° C. for 1 hour.
It is a Cuk alpha X-ray diffraction pattern of the S10 surface. As is clear from FIG. 9, the intermetallic compounds Ni 3 Sn and Ni 3 SN 2
You can see that is generated. c. Air permeability test As shown in FIG. 10, a predetermined amount of water 11 is stored at the bottom of a bottomed cylindrical body 10 having an inner diameter substantially equal to the outer diameter of the metal material 7 shown in FIG. A metal material 7 having a shape shown in FIG. 3E is inserted therein, and a predetermined amount of water 12 is stored on the metal material 7, and an air inlet pipe 14 connected from the valve 13 to the bottom of the cylindrical body 10 is inserted. After passing high pressure air (1.5 kg / cm 2 ) into the cylindrical body 10 and observing the cylindrical body 10 from above, it was observed that many bubbles 15 rise in the water 12. In this way, it was confirmed that the metal material 7 has sufficient air permeability.

【0031】[0031]

【発明の効果】本発明の方法は上記のとおり構成されて
いるので、低温且つ低圧条件で通気性金属材料を製造す
ることができる。また、本発明によれば、通気性に優れ
た金属材料を提供することができる。
Since the method of the present invention is configured as described above, it is possible to manufacture a breathable metal material under low temperature and low pressure conditions. Further, according to the present invention, it is possible to provide a metal material having excellent air permeability.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、鉄粉の走査電子顕微鏡(SEM)写真
であり、図1(a)は倍率が100倍であり、図1
(b)は倍率が500倍である。
FIG. 1 is a scanning electron microscope (SEM) photograph of iron powder, and FIG. 1 (a) shows a magnification of 100 times.
(B) has a magnification of 500 times.

【図2】図2は、ニッケル粉の走査電子顕微鏡(SE
M)写真であり、図2(a)は倍率が200倍であり、
図2(b)は倍率が500倍である。
FIG. 2 is a scanning electron microscope (SE) of nickel powder.
M) is a photograph, and FIG. 2 (a) is a magnification of 200 times,
In FIG. 2B, the magnification is 500 times.

【図3】本発明の通気性金属材料の概略製造工程を示す
図である。
FIG. 3 is a diagram showing a schematic manufacturing process of the breathable metal material of the present invention.

【図4】図4は、600℃で1時間還元処理後のFS1
0表面のSEM写真であり、図4(a)は50倍の場合
を示し、図4(b)は200倍の場合を示す。
FIG. 4 shows FS1 after reduction treatment at 600 ° C. for 1 hour.
It is a SEM photograph of 0 surface, FIG.4 (a) shows the case of 50 times, FIG.4 (b) shows the case of 200 times.

【図5】図5は、600℃で1時間還元処理後のFS1
0断面のSEM写真であり、図5(a)は1000倍の
場合を示し、図5(b)はFeのkαX線写真を示し、
図5(c)はSnのLαX線写真を示す。
FIG. 5 shows FS1 after reduction treatment at 600 ° C. for 1 hour.
It is a SEM photograph of 0 cross section, FIG.5 (a) shows the case of 1000 time, FIG.5 (b) shows the k (alpha) X-ray photograph of Fe,
FIG. 5C shows an Lα X-ray photograph of Sn.

【図6】600℃で1時間還元処理後のFS10表面の
CukαX線回折図形である。
FIG. 6 is a Cukα X-ray diffraction pattern of the FS10 surface after reduction treatment at 600 ° C. for 1 hour.

【図7】図7は、600℃で1時間還元処理後のNS1
0表面のSEM写真であり、図7(a)は50倍の場合
を示し、図7(b)は200倍の場合を示す。
FIG. 7 shows NS1 after reduction treatment at 600 ° C. for 1 hour.
It is a SEM photograph of 0 surface, FIG.7 (a) shows the case of 50 times, FIG.7 (b) shows the case of 200 times.

【図8】図8は、600℃で1時間還元処理後のNS1
0断面のSEM写真であり、図8(a)は1000倍の
場合を示し、図8(b)はNiのkαX線写真を示し、
図8(c)はSnのLαX線写真を示す。
FIG. 8 shows NS1 after reduction treatment at 600 ° C. for 1 hour.
It is a SEM photograph of 0 cross section, FIG.8 (a) shows the case of 1000 times, FIG.8 (b) shows the k (alpha) X-ray photograph of Ni,
FIG. 8C shows a Lα X-ray photograph of Sn.

【図9】600℃で1時間還元処理後のNS10表面の
CukαX線回折図形である。
FIG. 9 is a Cukα X-ray diffraction pattern of the NS10 surface after reduction treatment at 600 ° C. for 1 hour.

【図10】金属材料の通気性の試験方法を説明する図で
ある。
FIG. 10 is a diagram illustrating a method for testing air permeability of a metal material.

【図11】Fe−Sn系2元状態図である。FIG. 11 is an Fe—Sn system binary state diagram.

【図12】Ni−Sn系2元状態図である。FIG. 12 is a Ni-Sn system binary state diagram.

【符号の説明】[Explanation of symbols]

1…SnO2 粉末 2…鉄粉またはニッケル粉 4…電気炉 6…ヒータ 7…通気性金属材料 8…鉄またはニッケル 9…スズ1 ... SnO 2 powder 2 ... Iron powder or nickel powder 4 ... Electric furnace 6 ... Heater 7 ... Breathable metal material 8 ... Iron or nickel 9 ... Tin

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 低融点金属の酸化物の粉末と、この低融
点金属との間で金属間化合物を形成する他方の金属の粉
末を準備し、これら低融点金属酸化物の粉末と他方の金
属の粉末とを混合し、次いで、この金属粉末の混合物を
成形して金属粉末成形体を得、さらに、その金属粉末成
形体に低温度の還元雰囲気下で還元処理を施すことを特
徴とする通気性金属材料の製造方法。
1. A low melting point metal oxide powder and a powder of the other metal forming an intermetallic compound between the low melting point metal are prepared, and the powder of the low melting point metal oxide and the other metal are prepared. And a mixture of the metal powders, and then the mixture of the metal powders is molded to obtain a metal powder compact, and the metal powder compact is subjected to a reduction treatment in a reducing atmosphere at a low temperature. Of manufacturing a conductive metal material.
【請求項2】 還元温度が700℃以下である請求項1
記載の通気性金属材料の製造方法。
2. The reduction temperature is 700 ° C. or lower.
A method for producing the breathable metal material as described above.
【請求項3】 低融点金属が水銀、セシウム、ガリウ
ム、ルビジウム、カリウム、ナトリウム、インジウム、
リチウム、セレン、スズ、ビスマス、タリウム、亜鉛、
テルル、アンチモン、マグネシウムまたはアルミニウム
であり、他方の金属が鉄、コバルト、ニッケル、パラジ
ウム、白金、銅、銀または金である請求項1または2記
載の通気性金属材料の製造方法。
3. The low melting point metal is mercury, cesium, gallium, rubidium, potassium, sodium, indium,
Lithium, selenium, tin, bismuth, thallium, zinc,
The method for producing a breathable metal material according to claim 1 or 2, which is tellurium, antimony, magnesium or aluminum, and the other metal is iron, cobalt, nickel, palladium, platinum, copper, silver or gold.
【請求項4】 低融点金属の酸化物の粉末と、この低融
点金属との間で金属間化合物を形成する他方の金属の粉
末を準備し、これら低融点金属酸化物の粉末と他方の金
属の粉末とを混合し、次いで、この金属粉末の混合物を
成形して金属粉末成形体を得、さらに、その金属粉末成
形体に低温度の還元雰囲気下で還元処理を施すことによ
って得た通気性金属材料。
4. A low melting metal oxide powder and another metal powder forming an intermetallic compound between the low melting metal oxide powder are prepared, and the low melting metal oxide powder and the other metal powder are prepared. And the air permeability obtained by subjecting the mixture of the metal powder to a metal powder compact to obtain a metal powder compact, and further subjecting the metal powder compact to a reduction treatment in a reducing atmosphere at a low temperature. Metal material.
【請求項5】 還元温度が700℃以下である請求項4
記載の通気性金属材料。
5. The reduction temperature is 700 ° C. or lower.
The breathable metal material described.
【請求項6】 低融点金属が水銀、セシウム、ガリウ
ム、ルビジウム、カリウム、ナトリウム、インジウム、
リチウム、セレン、スズ、ビスマス、タリウム、亜鉛、
テルル、アンチモン、マグネシウムまたはアルミニウム
であり、他方の金属が鉄、コバルト、ニッケル、パラジ
ウム、白金、銅、銀または金である請求項4または5記
載の通気性金属材料。
6. The low melting point metal is mercury, cesium, gallium, rubidium, potassium, sodium, indium,
Lithium, selenium, tin, bismuth, thallium, zinc,
The breathable metal material according to claim 4 or 5, which is tellurium, antimony, magnesium or aluminum, and the other metal is iron, cobalt, nickel, palladium, platinum, copper, silver or gold.
JP2002091280A 2002-03-28 2002-03-28 Method for producing breathable metal material Expired - Fee Related JP4025834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002091280A JP4025834B2 (en) 2002-03-28 2002-03-28 Method for producing breathable metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002091280A JP4025834B2 (en) 2002-03-28 2002-03-28 Method for producing breathable metal material

Publications (2)

Publication Number Publication Date
JP2003286506A true JP2003286506A (en) 2003-10-10
JP4025834B2 JP4025834B2 (en) 2007-12-26

Family

ID=29236407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002091280A Expired - Fee Related JP4025834B2 (en) 2002-03-28 2002-03-28 Method for producing breathable metal material

Country Status (1)

Country Link
JP (1) JP4025834B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100402199C (en) * 2005-09-22 2008-07-16 远东技术学院 Method for producing permeability type die steel
JP2009074106A (en) * 2007-09-18 2009-04-09 Tokyo Institute Of Technology Method for forming and manufacturing object composed of intermetallic-compound alloy containing low-melting-point metal and high-melting-point metal
WO2021093046A1 (en) * 2019-11-12 2021-05-20 丹阳市剑庐工具有限公司 Preparation method for hexagonal high-torque drilling shank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100402199C (en) * 2005-09-22 2008-07-16 远东技术学院 Method for producing permeability type die steel
JP2009074106A (en) * 2007-09-18 2009-04-09 Tokyo Institute Of Technology Method for forming and manufacturing object composed of intermetallic-compound alloy containing low-melting-point metal and high-melting-point metal
WO2021093046A1 (en) * 2019-11-12 2021-05-20 丹阳市剑庐工具有限公司 Preparation method for hexagonal high-torque drilling shank
US11801575B2 (en) 2019-11-12 2023-10-31 Jalor Industry Co., Limited Method for manufacturing high-torque hexagonal drill shank

Also Published As

Publication number Publication date
JP4025834B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
JP4897154B2 (en) Method for producing high density multi-component materials
JP2843900B2 (en) Method for producing oxide-particle-dispersed metal-based composite material
JP5826219B2 (en) Method for making a metal article having other additive components without melting
RU2329122C2 (en) Method of items production from metal alloys without melting
EP1492897B1 (en) Pre-alloyed bond powders
Moon et al. Full densification of loosely packed W–Cu composite powders
TW201219132A (en) Potassium/molybdenum composite metal powders, powder blends, products thereof, and methods for producing photovoltaic cells
JP4326473B2 (en) Reactor fuel pellets and manufacturing method thereof
US4131450A (en) Process for manufacturing cobalt-base reduced powder
JP4025834B2 (en) Method for producing breathable metal material
JPS59163726A (en) Vacuum breaker
CN104476653A (en) Three-dimensional (3D) printing and manufacturing method of porous niobium parts
EP2045346B1 (en) Method for producing a sintered composite sliding part
JP3067318B2 (en) Manufacturing method of electrode material
JP3113639B2 (en) Manufacturing method of alloy powder
JPH05217473A (en) Manufacture of electrode material
JP6516652B2 (en) W-Cu-Ag alloy and method of manufacturing the same
JPH0751721B2 (en) Low alloy iron powder for sintering
JPH1046208A (en) Production of ti-ni base alloy sintered body
JP2002212607A (en) Method for producing high melting point alloy
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JPH06128604A (en) Production of metallic material
JP2006218443A (en) Method for producing titanium or titanium-based alloy filter
KR100259334B1 (en) Producing method of a true-density ti5si3-based intermetallic compound alloy by elemental powder metallurgy
JP3106609B2 (en) Manufacturing method of electrode material

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041109

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060126

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Effective date: 20060510

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Effective date: 20070801

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070828

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101019

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees