JP2003282975A - Thermoelectric module - Google Patents

Thermoelectric module

Info

Publication number
JP2003282975A
JP2003282975A JP2002087269A JP2002087269A JP2003282975A JP 2003282975 A JP2003282975 A JP 2003282975A JP 2002087269 A JP2002087269 A JP 2002087269A JP 2002087269 A JP2002087269 A JP 2002087269A JP 2003282975 A JP2003282975 A JP 2003282975A
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric module
thickness
elements
wiring conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002087269A
Other languages
Japanese (ja)
Other versions
JP3583112B2 (en
Inventor
Masato Fukutome
正人 福留
Koichi Tanaka
広一 田中
Kenichi Tajima
健一 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002087269A priority Critical patent/JP3583112B2/en
Publication of JP2003282975A publication Critical patent/JP2003282975A/en
Application granted granted Critical
Publication of JP3583112B2 publication Critical patent/JP3583112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve long term reliability by preventing a thermoelectric module from being broken down. <P>SOLUTION: The thermoelectric module comprises a supporting board 1, a plurality of thermoelectric elements 2 arranged on the board 1, wiring conductors 4 for electrically coupling between the plurality of the elements 2, and an external connection terminal provided on the board 1 to electrically connect to the conductors 4. The elements 2 and the conductors 4 are connected via a solder layer 5. The ratio of a mean length of one side in a section of the element 2 to a sum of the thickness of the layer 5 and the thickness of the conductor 4 is 5 to 15. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体等の発熱体
の冷却等に好適に使用され、熱電特性に優れる熱電モジ
ュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric module which is preferably used for cooling a heating element such as a semiconductor and has excellent thermoelectric characteristics.

【0002】[0002]

【従来技術】ペルチェ効果を利用した熱電モジュール
は、構造が簡単で、取り扱いが容易であるのみでなく、
安定な特性を維持することが出来るため、広範囲にわた
る利用が注目されている。特に、熱電モジュールを用い
ると局所冷却ができ、室温付近の精密な温度制御が可能
であるため、半導体レーザや光集積回路等装置や小型冷
蔵庫等などの一定温度に精密制御される装置に利用され
ている。
2. Description of the Related Art Thermoelectric modules utilizing the Peltier effect not only have a simple structure and are easy to handle,
Since it is possible to maintain stable properties, widespread use is drawing attention. In particular, thermoelectric modules allow local cooling and precise temperature control around room temperature, so they are used in devices such as semiconductor lasers and optical integrated circuits that are precisely controlled at a constant temperature such as small refrigerators. ing.

【0003】一般にこのような熱電モジュールは、図1
に示すように、支持基板1の上にN型熱電素子2aとP
型熱電素子2bとが交互に配列し、支持基板上1に形成
された配線導体4によって電気的に直列に連結されるよ
うに構成されている。そして、この配線導体4は、大電
流にもたえうるように通常銅板からなり、半田層を介し
て、N型熱電素子2aおよびP型熱電素子2bを固着し
ている。
Generally, such a thermoelectric module is shown in FIG.
, The N-type thermoelectric element 2a and P
The thermoelectric elements 2b are alternately arranged and are electrically connected in series by the wiring conductors 4 formed on the supporting substrate 1. The wiring conductor 4 is usually made of a copper plate so as to withstand a large current, and the N-type thermoelectric element 2a and the P-type thermoelectric element 2b are fixed to each other via a solder layer.

【0004】配線導体4と熱電素子2a、2bの接合部
は、図2に示すように、配線導体4上には、半田層5、
メッキ層6(金メッキ層6a、ニッケルメッキ層6b)
を介して、N型熱電素子2aおよびP型熱電素子2bを
交互にそれぞれ1対ずつ固着し、PNPNPNの順に直
列に接続されるように構成されている。
As shown in FIG. 2, the joint portion between the wiring conductor 4 and the thermoelectric elements 2a and 2b has a solder layer 5 on the wiring conductor 4,
Plating layer 6 (gold plating layer 6a, nickel plating layer 6b)
One pair of N-type thermoelectric elements 2a and one pair of P-type thermoelectric elements 2b are alternately fixed to each other and are connected in series in the order of PNPNPN.

【0005】従来、熱電モジュールの冷却面Tcと放熱
面Thが最大温度差になるように電流(Imax)を
1.5秒間通電し、しかる後に4.5秒間通電を停止す
るのを繰り返す出力サイクル試験において、支持基板1
と配線導体4の接合部分、配線導体4と半田層5の接合
部分、さらに半田層5と金メッキ層6aの接合部分にお
いて、クラックや破損が発生するという問題があった。
Conventionally, an output cycle in which a current (Imax) is energized for 1.5 seconds so that the temperature difference between the cooling surface Tc and the heat radiating surface Th of the thermoelectric module is the maximum temperature difference, and then the energization is stopped for 4.5 seconds is repeated. In the test, support substrate 1
There is a problem that cracks and damages occur at the joint portion between the wiring conductor 4 and the wiring conductor 4, the joint portion between the wiring conductor 4 and the solder layer 5, and the joint portion between the solder layer 5 and the gold plating layer 6a.

【0006】この場合、最大温度差が約70℃あるた
め、熱電モジュールの低温側基板と高温側基板との温度
差によって寸法に差が生じ、熱応力が発生する。即ち、
熱電素子2の中心から外側になるほど熱電素子2の接合
部に生ずる引っ張り応力が大きくなる。片側が急激に冷
却された場合、支持基板1、配線導体4、半田層5、熱
電素子2の熱膨張率が異なるため、夫々の接合界面にお
いて、破壊、亀裂が生じ、特性低下の原因となってい
た。
In this case, since the maximum temperature difference is about 70 ° C., a difference in size occurs due to the temperature difference between the low temperature side substrate and the high temperature side substrate of the thermoelectric module, and thermal stress occurs. That is,
The tensile stress generated in the joint portion of the thermoelectric element 2 increases as it goes outward from the center of the thermoelectric element 2. When one side is rapidly cooled, the support substrate 1, the wiring conductor 4, the solder layer 5, and the thermoelectric element 2 have different coefficients of thermal expansion, so that breakage and cracks occur at the respective bonding interfaces, which causes deterioration of the characteristics. Was there.

【0007】このため、接合面の構成および厚みを改善
し、接合界面の機械的強度を向上させる事が知られてい
る。例えば、熱電素子2の電極端面に施すニッケルメッ
キ層6bの厚さxを、熱電素子2断面の1辺の長さをy
としたとき、y/x≦100を満たすように厚くするこ
とによって、冷却面Tcと放熱面Thが最大温度差にな
るときの電流値(Imax)の通電をON/OFFさせ
る出力サイクル試験における接合界面の機械的強度を向
上させることが特開平4−249385号公報に記載さ
れている。
Therefore, it is known that the structure and thickness of the joint surface are improved and the mechanical strength of the joint interface is improved. For example, the thickness x of the nickel plating layer 6b applied to the electrode end surface of the thermoelectric element 2 is y, and the length of one side of the cross section of the thermoelectric element 2 is y.
Then, by increasing the thickness so as to satisfy y / x ≦ 100, the junction in the output cycle test for turning on / off the energization of the current value (Imax) when the cooling surface Tc and the heat radiating surface Th have the maximum temperature difference The improvement of the mechanical strength of the interface is described in JP-A-4-249385.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特開平
4−249385号公報に記載の熱電モジュールは、ニ
ッケルメッキ層6と熱電素子2の界面の接合強度は改善
できるものの、電極と半田層5の界面、半田層5と金メ
ッキ層6aの界面の熱応力を十分に緩和できなという問
題があった。
However, in the thermoelectric module described in Japanese Patent Laid-Open No. 4-249385, although the bonding strength at the interface between the nickel plating layer 6 and the thermoelectric element 2 can be improved, the interface between the electrode and the solder layer 5 is improved. However, there is a problem that the thermal stress at the interface between the solder layer 5 and the gold plating layer 6a cannot be sufficiently relaxed.

【0009】したがって、本発明は、熱電モジュールの
破壊を防止し、長期信頼性を改善することを目的とす
る。
Therefore, an object of the present invention is to prevent destruction of the thermoelectric module and improve long-term reliability.

【0010】[0010]

【課題を解決するための手段】本発明は、熱電素子断面
の1辺の長さに対して半田層および電極の厚みを小さく
して、最大温度差を生じさせたときの接合界面における
熱応力差を低減させることによって、熱電モジュールに
おける接合界面の破壊を防止することができるという知
見に基づくものである。
According to the present invention, the thermal stress at the joint interface when the maximum temperature difference is generated by reducing the thickness of the solder layer and the electrode with respect to the length of one side of the cross section of the thermoelectric element. It is based on the finding that it is possible to prevent the destruction of the bonding interface in the thermoelectric module by reducing the difference.

【0011】即ち、本発明の熱電モジュールは、支持基
板と、該支持基板上に配列された複数の熱電素子と、該
複数の熱電素子間を電気的に連結する配線導体と、前記
支持基板上に設けられ、該配線導体と電気的に連結され
た外部接続端子とを具備し、各熱電素子と前記配線導体
が半田層を介して接合されてなる熱電モジュールにおい
て、前記半田層の厚みと前記配線導体の厚みとの和に対
する前記熱電素子の断面における1辺の平均長さの比が
5〜15であることを特徴とするものである。
That is, the thermoelectric module of the present invention comprises a support substrate, a plurality of thermoelectric elements arranged on the support substrate, wiring conductors electrically connecting the plurality of thermoelectric elements, and the support substrate. A thermoelectric module comprising an external connection terminal electrically connected to the wiring conductor, wherein each thermoelectric element and the wiring conductor are joined via a solder layer, wherein the thickness of the solder layer and the The ratio of the average length of one side in the cross section of the thermoelectric element to the sum of the thickness of the wiring conductor is 5 to 15.

【0012】特に、前記配線導体の厚みに対する前記熱
電モジュールの断面における1辺の平均長さの比が5〜
20であることが好ましい。これにより、接合界面にお
ける熱応力を緩和し、長期信頼性を向上するだけでな
く、電極及び半田層の熱抵抗を低減することができるた
め、優れた熱電特性を発現することが可能となる。
Particularly, the ratio of the average length of one side in the cross section of the thermoelectric module to the thickness of the wiring conductor is 5 to 5.
It is preferably 20. Thereby, not only the thermal stress at the bonding interface can be relaxed and long-term reliability can be improved, but also the thermal resistance of the electrode and the solder layer can be reduced, so that excellent thermoelectric characteristics can be exhibited.

【0013】また、前記半田層の厚みに対する前記熱電
素子の断面における1辺の平均長さの比が10〜100
であることが好ましい。これにより、半田層界面の接合
不良を低減し、かつ接合界面における熱応力を緩和し、
長期信頼性を向上することができる。
The ratio of the average length of one side in the cross section of the thermoelectric element to the thickness of the solder layer is 10 to 100.
Is preferred. This reduces the joint failure at the solder layer interface and relaxes the thermal stress at the joint interface,
The long-term reliability can be improved.

【0014】さらに、前記熱電素子が5×10-5Ωm以
下の比抵抗を有することが好ましい。これにより、素子
の内部に発生するジュール熱を抑制し、素子の温度を一
定温度に制御することが容易になる。
Further, it is preferable that the thermoelectric element has a specific resistance of 5 × 10 −5 Ωm or less. Thereby, it becomes easy to suppress the Joule heat generated inside the element and control the temperature of the element to a constant temperature.

【0015】また、前記熱電素子の形状因子が2000
/m以上、素子密度が100個/cm2以上であること
が好ましい。これにより、素子内部に生じる熱を効率良
く冷却でき、且つ素子内部の発熱量を抑制することがで
きる。
The shape factor of the thermoelectric element is 2000.
/ M or more, and the device density is preferably 100 / cm 2 or more. This makes it possible to efficiently cool the heat generated inside the element and suppress the amount of heat generated inside the element.

【0016】さらに、前記熱電素子間の最短距離が20
0〜400μmであることが好ましい。これにより、単
位面積あたりの素子数を向上することができ、かつ素子
と電極との接合に用いる半田により素子間の電気的短絡
を抑制することが可能となる。また、熱電素子内部で発
生する熱を効率よく冷却し、熱電素子内部の発熱量を抑
制することができる。
Further, the shortest distance between the thermoelectric elements is 20.
It is preferably 0 to 400 μm. As a result, the number of elements per unit area can be increased, and the electrical short circuit between the elements can be suppressed by the solder used for joining the elements and the electrodes. Further, the heat generated inside the thermoelectric element can be efficiently cooled, and the amount of heat generated inside the thermoelectric element can be suppressed.

【0017】[0017]

【発明の実施の形態】本発明の熱電モジュールは、図1
及び2のように構成されており、熱電素子断面の1辺の
長さをtとしたとき、配線導体の厚みaと前記半田層厚み
bとの和が、関係式5≦t/(a+b)≦15を満たす
ように構成されていることが重要である。
BEST MODE FOR CARRYING OUT THE INVENTION The thermoelectric module of the present invention is shown in FIG.
And 2 and the length of one side of the cross section of the thermoelectric element is t, the sum of the thickness a of the wiring conductor and the solder layer thickness b is expressed by the relational expression 5 ≦ t / (a + b). It is important that the configuration is such that ≦ 15 is satisfied.

【0018】このような関係にある場合、熱電素子の中
心から外側になるほど熱電素子の接合部に生ずる引っ張
り応力を低減することができる。
In such a relationship, the tensile stress generated in the joint portion of the thermoelectric element can be reduced as it goes outward from the center of the thermoelectric element.

【0019】よって、t/(a+b)が5より小さい
と、接合部における抵抗が増大し、十分な熱電特性が得
られないという不都合があり、また、15より大きいと
接合部分においてクラックや破損が発生するという不都
合がある。
Therefore, if t / (a + b) is less than 5, there is a disadvantage that the resistance at the joint increases, and sufficient thermoelectric properties cannot be obtained, and if it is more than 15, cracks and damages occur at the joint. There is an inconvenience that it will occur.

【0020】なお、熱電素子の断面が正方形の場合、t
は一辺の長さになり、長方形の場合、tは長辺と短辺と
の平均となる。また、熱電素子の断面が円の場合、tは
直径に相当する。
If the thermoelectric element has a square cross section, t
Is the length of one side, and in the case of a rectangle, t is the average of the long side and the short side. When the thermoelectric element has a circular cross section, t corresponds to the diameter.

【0021】また、本発明の熱電モジュールは、熱電素
子断面の1辺の長さをtとしたとき、配線導体の厚みaお
よび前記半田層厚みbが、5≦t/b≦20、10≦t
/a≦100を満たすように構成されていることが好ま
しい。
Further, in the thermoelectric module of the present invention, when the length of one side of the cross section of the thermoelectric element is t, the thickness a of the wiring conductor and the solder layer thickness b are 5≤t / b≤20,10≤. t
It is preferably configured to satisfy / a ≦ 100.

【0022】このような関係にある場合、支持基板1、
配線導体4、半田層5、および熱電素子2の熱応力差が
低減されるため、熱電素子2の中心から外側になるほど
熱電素子2の接合部に生ずる引っ張り応力を低減するこ
とができる本発明の熱電素子2は、Bi、Sb、Te、
Seのうち少なくとも2種を含むことが重要であり、例
えば、上記の金属を用いても良いが、A23型金属間化
合物及びその固溶体であることが好ましい。ここで、A
がBi及び/又はSb、BがTe及び/又はSeからな
る半導体結晶であって、特に組成比B/Aが1.4〜
1.6であることが、室温における熱電特性を高めるた
めに好ましい。
In such a relationship, the supporting substrate 1,
Since the difference in thermal stress between the wiring conductor 4, the solder layer 5, and the thermoelectric element 2 is reduced, the tensile stress generated in the joint portion of the thermoelectric element 2 can be reduced as the distance from the center of the thermoelectric element 2 to the outside increases. The thermoelectric element 2 includes Bi, Sb, Te,
It is important to include at least two kinds of Se. For example, the above metals may be used, but A 2 B 3 type intermetallic compound and its solid solution are preferable. Where A
Is a semiconductor crystal of Bi and / or Sb, B is Te and / or Se, and the composition ratio B / A is 1.4 to
A value of 1.6 is preferable in order to improve thermoelectric properties at room temperature.

【0023】A23型金属間化合物としては、公知であ
るBi2Te3、Sb2Te3、Bi2Se3の少なくとも1
種であることが好ましく、固溶体としてBi2Te3とB
2Se3の固溶体であるBi2Te3-xSex(x=0.
05〜0.25)、又はBi 2Te3とSb2Te3の固溶
体であるBixSb2-xTe3(x=0.1〜0.6)等
を例示できる。
A2B3Known intermetallic compounds of the type
Bi2Te3, Sb2Te3, Bi2Se3At least one of
Seed is preferable, and Bi is used as a solid solution.2Te3And B
i2Se3Is a solid solution of Bi2Te3-xSex(X = 0.
05-0.25), or Bi 2Te3And Sb2Te3Solid solution of
Bi that is the bodyxSb2-xTe3(X = 0.1-0.6) etc.
Can be illustrated.

【0024】また、金属間化合物を効率よく半導体化す
るために、ドーパントとしてI、Cl及びBr等のハロ
ゲン元素を含むことが好ましい。このハロゲン元素は、
半導体化の点で、上記の金属間化合物原料100重量部
に対して0.01〜5重量部、特に0.1〜4重量部の
割合で含まれることが好ましい。
Further, in order to efficiently convert the intermetallic compound into a semiconductor, it is preferable to contain a halogen element such as I, Cl and Br as a dopant. This halogen element is
From the viewpoint of semiconductivity, it is preferably contained in an amount of 0.01 to 5 parts by weight, particularly 0.1 to 4 parts by weight, based on 100 parts by weight of the above intermetallic compound raw material.

【0025】さらに、P型熱電素子を製造する場合に
は、キャリア濃度調整のためにTeを含むことが好まし
い。これにより、N型熱電素子と同様に、熱電特性を高
めることができる。
Further, when manufacturing a P-type thermoelectric element, it is preferable to contain Te for adjusting the carrier concentration. Thereby, thermoelectric characteristics can be improved similarly to the N-type thermoelectric element.

【0026】P型及びN型熱電素子の比抵抗が、5×1
-5Ωm以下、特に1.5×10-5Ωm以下であること
が好ましい。これにより、素子内部で発生するジュール
熱を抑制することができ、効率良く冷却することができ
る。熱電素子は電流を流すことによりペルチェ効果によ
って、一方の端部を発熱、さらにもう一方の端部で冷却
することができる。しかしながら、熱電素子自体の抵抗
により、素子内部にジュール熱が発生し、効率よく冷却
することができなくなる。そのため、P型及びN型熱電
素子の比抵抗を5×10-5Ωm以下、特に1.5×10
-5Ωm以下にすることにより、効率よく冷却することが
できる。
The specific resistance of the P-type and N-type thermoelectric elements is 5 × 1.
It is preferably 0 -5 Ωm or less, and particularly preferably 1.5 × 10 -5 Ωm or less. Thereby, the Joule heat generated inside the element can be suppressed, and the element can be efficiently cooled. The thermoelectric element can generate heat at one end and cool at the other end by the Peltier effect by passing an electric current. However, due to the resistance of the thermoelectric element itself, Joule heat is generated inside the element and it becomes impossible to cool it efficiently. Therefore, the specific resistance of the P-type and N-type thermoelectric elements is 5 × 10 −5 Ωm or less, especially 1.5 × 10 5.
-5 Ωm or less allows efficient cooling.

【0027】さらに本発明の熱電モジュールは、熱電素
子の幅W、長さLで表される形状因子L/Sを2000
/m以上にすることが重要であり、発熱体の冷却効率を
高め、信頼性の高い熱電モジュールを実現することがで
きる。この形状因子L/Sが2000/m未満であれ
ば、熱電素子の内部において生じるジュール熱を放熱し
難くなり、所定の冷却温度を達成できなくなる。特に、
冷却効率を高めるため、L/Sは3000/m以上、更
には5000/m以上、より好適には7000/m以上
であることが好ましい。なお、上限は製造上の実現性か
ら30000/mであることが好ましい。
Further, in the thermoelectric module of the present invention, the shape factor L / S represented by the width W and the length L of the thermoelectric element is 2000.
/ M or more is important, and it is possible to improve the cooling efficiency of the heating element and realize a highly reliable thermoelectric module. If this shape factor L / S is less than 2000 / m, it becomes difficult to radiate the Joule heat generated inside the thermoelectric element, and it becomes impossible to achieve a predetermined cooling temperature. In particular,
In order to enhance the cooling efficiency, L / S is preferably 3000 / m or more, more preferably 5000 / m or more, and even more preferably 7000 / m or more. The upper limit is preferably 30,000 / m from the viewpoint of manufacturing feasibility.

【0028】また、単位面積あたりの熱電素子数である
素子密度が100個/cm2以上であることも重要であ
る。素子密度が100個/cm2に満たないと、十分な
吸熱量が得られないという問題が生じる。そして、吸熱
量をより向上させるため、特に120個/cm2以上、
更には140個/cm2以上であることが好ましい。
It is also important that the element density, which is the number of thermoelectric elements per unit area, is 100 / cm 2 or more. If the element density is less than 100 pieces / cm 2 , there is a problem that a sufficient heat absorption amount cannot be obtained. And, in order to further improve the heat absorption amount, in particular, 120 pieces / cm 2 or more,
Further, it is preferable that the number is 140 / cm 2 or more.

【0029】熱電モジュールは、モジュールを構成する
熱電素子の数が多くなれば、モジュールの低温側の吸熱
量が増大し、効率良く冷却することができる。しかしな
がら、熱電素子数の増大は、モジュールの大型化を招く
ため、好ましくない。そこで熱電素子の断面積を小さく
し、単位面積あたりの素子数を増やすことによって、限
られたスペース内に多くの素子を配列させることがで
き、小型化、高効率化が可能となる。
In the thermoelectric module, when the number of thermoelectric elements constituting the module increases, the amount of heat absorption on the low temperature side of the module increases, and the module can be cooled efficiently. However, an increase in the number of thermoelectric elements causes an increase in the size of the module, which is not preferable. Therefore, by reducing the cross-sectional area of the thermoelectric element and increasing the number of elements per unit area, it is possible to arrange many elements in a limited space, and it is possible to achieve miniaturization and high efficiency.

【0030】さらに複数の熱電素子が配列された熱電モ
ジュールにおいて、熱電素子間で最も間隔の狭い距離、
即ち最短距離が200〜400μm、特に250〜35
0μmであることことが好ましい。200μm未満であ
れば、熱電素子と基板上の電極との接合に用いる半田ペ
ーストにより熱電素子間の電気的短絡の問題が発生する
傾向があり、また、400μmを越えると、単位面積あ
たりの熱電素子数が減少し、モジュールの大型化、もし
くは吸熱量の低下を招く恐れがある。
Further, in a thermoelectric module in which a plurality of thermoelectric elements are arranged, the distance between the thermoelectric elements is the smallest,
That is, the shortest distance is 200 to 400 μm, especially 250 to 35 μm.
It is preferably 0 μm. If it is less than 200 μm, the problem of electrical short circuit between thermoelectric elements tends to occur due to the solder paste used for joining the thermoelectric elements to the electrodes on the substrate, and if it exceeds 400 μm, the thermoelectric elements per unit area are increased. The number of modules may decrease, which may lead to an increase in module size or a decrease in heat absorption.

【0031】以上のように構成される本発明の熱電モジ
ュールは、優れた冷却効率を有するため、特に半導体レ
ーザや光集積回路などの恒温化、小型冷蔵庫として好適
に使用することができる。
Since the thermoelectric module of the present invention constructed as described above has an excellent cooling efficiency, it can be suitably used particularly as a constant temperature miniature refrigerator for semiconductor lasers and optical integrated circuits.

【0032】[0032]

【実施例】金属間化合物を放電プラズマ法により焼成
し、比抵抗ρ、出力因子PF及び性能指数Zが表1に示
した特性を有するN型及びP型の熱電素子が得られ、こ
れをワイヤーソウにて所定の厚みにスライシング加工
し、ウエハーを切り出した。
[Examples] N-type and P-type thermoelectric elements having the specific resistance ρ, output factor PF and figure of merit Z shown in Table 1 were obtained by firing an intermetallic compound by a discharge plasma method. The wafer was cut out by slicing to a predetermined thickness with a saw.

【0033】熱伝導率測定には、直径10mm、厚み1
mmの円板試料を、ゼーベック係数、抵抗率測定には縦
3mm、横3mm、長さ15mmの角柱試料を作製し
た。また、熱電モジュールの作製には、上記のウエハー
にNi電極、Au電極をメッキにて形成した後、ダイサ
ーにより所定のチップ形状に切断加工した。
For measuring the thermal conductivity, the diameter is 10 mm and the thickness is 1
For a disk sample having a size of 3 mm, a rectangular column sample having a length of 3 mm, a width of 3 mm, and a length of 15 mm was prepared for measuring Seebeck coefficient and resistivity. Further, in the production of the thermoelectric module, Ni electrodes and Au electrodes were formed on the above wafer by plating, and then cut into a predetermined chip shape by a dicer.

【0034】熱伝導率はレーザーフラッシュ法により、
ゼーベック係数、抵抗率は真空理工社製熱電能評価装置
により、それぞれ20℃の条件下で測定した。そして、
性能指数Zは、式Z=S2/ρk(Sはゼーベック係
数、ρは抵抗率、kは熱伝導率である)により算出し、
出力因子PFは、PF=S2/ρにより算出した。
The thermal conductivity was measured by the laser flash method.
The Seebeck coefficient and the resistivity were measured under the conditions of 20 ° C. by a thermoelectric power evaluation device manufactured by Vacuum Riko Co., Ltd., respectively. And
The performance index Z is calculated by the formula Z = S 2 / ρk (S is the Seebeck coefficient, ρ is the resistivity, and k is the thermal conductivity).
The output factor PF was calculated by PF = S 2 / ρ.

【0035】次に、熱電モジュールを作製した。即ち、
N型熱電素子を31個、P型熱電素子を31個選び出
し、縦6mm、横8.2mmのアルミナ基板上に形成さ
れた厚さaの銅電極表面に、厚さbの半田層を介して熱
電素子を固着し、図1のような熱電モジュールを作製し
た。その際に、熱電素子の断面における1辺の平均長さ
t、形状因子L/S、素子密度d及び素子間最短距離D
が表1となるようにした。
Next, a thermoelectric module was produced. That is,
31 N-type thermoelectric elements and 31 P-type thermoelectric elements were selected, and a copper layer having a thickness of a was formed on an alumina substrate having a length of 6 mm and a width of 8.2 mm. The thermoelectric element was fixed and the thermoelectric module as shown in FIG. 1 was produced. At that time, the average length t of one side in the cross section of the thermoelectric element, the form factor L / S, the element density d, and the shortest distance D between elements
Is shown in Table 1.

【0036】このようにして得られた熱電モジュールの
外観観察を行い、配線導体と半田層との界面及び半田層
とメッキ層との界面でクラックが発生しているかどうか
を観察した。また、冷却テストを行った。即ち、基板1
aの載置面8に発熱体としてヒータ9を設置し、ヒータ
の冷却面(Tc)が60℃の一定温度となるように加熱
した。
The appearance of the thermoelectric module thus obtained was observed, and it was observed whether cracks occurred at the interface between the wiring conductor and the solder layer and at the interface between the solder layer and the plating layer. In addition, a cooling test was conducted. That is, the substrate 1
A heater 9 was installed as a heating element on the mounting surface 8 of a, and heating was performed so that the cooling surface (Tc) of the heater had a constant temperature of 60 ° C.

【0037】そして、熱電モジュールを構成する熱電素
子に直列に直流電流を流し、冷却面Tc及び放熱面Th
の温度を測定するとともに、熱電素子に流す電流を変え
て発熱体9から吸熱量が最大になる時の電流を最大電流
max、その時の吸熱量最大吸熱量Qcmaxを測定した。
Then, a direct current is made to flow in series to the thermoelectric elements constituting the thermoelectric module, and the cooling surface Tc and the heat radiation surface Th are
In addition to measuring the temperature, the maximum current I max when the heat absorption amount from the heating element 9 becomes maximum and the maximum heat absorption amount Qc max at that time were measured by changing the current flowing through the thermoelectric element.

【0038】次いで、熱電モジュールの冷却面Tcと放
熱面Thが最大温度差になるように電流値(Imax)の
電流を1.5秒間通電した後、4.5秒間通電を停止す
る通電のON/OFFを5000回繰り返す出力サイク
ル試験を実施し、試験後にも、試験前と同様の方法で、
モジュール特性(Imax、Qcmax)を測定した。結果を
表1、2に示した。
Next, a current having a current value (I max ) is applied for 1.5 seconds so that the cooling surface Tc and the heat dissipation surface Th of the thermoelectric module have a maximum temperature difference, and then the energization is stopped for 4.5 seconds. Perform an output cycle test that repeats ON / OFF 5000 times, and after the test, in the same way as before the test,
Module characteristics (I max , Qc max ) were measured. The results are shown in Tables 1 and 2.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】本発明の試料No.2〜6及び9〜15
は、t/(a+b)が5〜15、t/aが5〜20、t
/bが10〜100であって、外観にも異常がなく、試
験前の最大電流Imaxが1.6A以上、最大吸熱量Qc
maxが3W以上であった。そして、出力サイクル試験後
のImax及びQcmaxの変化率はいずれも5%以下で、大
きな特性劣化は見られなかった。
Sample No. of the present invention. 2-6 and 9-15
Is t / (a + b) is 5 to 15, t / a is 5 to 20, t
/ B is 10 to 100, the appearance is not abnormal, the maximum current I max before the test is 1.6 A or more, and the maximum heat absorption amount Qc.
max was 3 W or more. The change rates of I max and Qc max after the output cycle test were both 5% or less, and no significant characteristic deterioration was observed.

【0042】一方、t/(a+b)が0.99と小さい
本発明の範囲外の試料No.1は、試験前の最大電流I
maxが1.50A、最大吸熱量Qcmaxが2.94Wであ
り、外観検査においてにクラックが観察された。そし
て、出力サイクル試験後のIma xが1.39A、Qcmax
は1.83Wに低下し、その変化率はそれぞれ7.3
%、37.8%と大きく変化した。
On the other hand, sample No. out of the range of the present invention in which t / (a + b) was as small as 0.99. 1 is the maximum current I before the test
The maximum was 1.50 A, the maximum heat absorption amount Qc max was 2.94 W, and cracks were observed in the visual inspection. And, I ma x after the output cycle test is 1.39A, Qc max
Decrease to 1.83W, and the rate of change is 7.3 each.
% And 37.8%.

【0043】また、t/(a+b)が18.1と大き
く、本発明の範囲外の試料No.7及び8は、試験前の
最大電流Imaxが2.11A以上、最大吸熱量Qcmax
3.85W以上であり、外観検査においてクラックが観
察された。そして、出力サイクル試験後のQcmax
2.87W以下に低下し、その変化率は28.4%以上
であった。
Further, t / (a + b) was as large as 18.1, which was outside the range of the present invention. In Examples 7 and 8, the maximum current I max before the test was 2.11 A or more and the maximum heat absorption amount Qc max was 3.85 W or more, and cracks were observed in the visual inspection. The Qc max after the output cycle test dropped to 2.87 W or less, and the rate of change was 28.4% or more.

【0044】[0044]

【発明の効果】本発明の熱電モジュールは、配線導体厚
みおよび半田層厚みに対する熱電素子厚みを小さくする
ことによって、熱電モジュールにおける接合界面の熱応
力による破壊を防止することができ、その結果、長期に
わたり優れた熱電特性を発現する熱電モジュールを実現
できる。
EFFECTS OF THE INVENTION The thermoelectric module of the present invention can prevent damage due to thermal stress at the joint interface in the thermoelectric module by reducing the thickness of the thermoelectric element with respect to the thickness of the wiring conductor and the thickness of the solder layer. It is possible to realize a thermoelectric module that exhibits excellent thermoelectric characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱電モジュールの概略を示す斜視図で
ある。
FIG. 1 is a perspective view showing an outline of a thermoelectric module of the present invention.

【図2】本発明の熱電モジュールの接合断面を示す図で
ある。
FIG. 2 is a view showing a joint cross section of the thermoelectric module of the present invention.

【符号の説明】[Explanation of symbols]

1、・・・支持基板 1a、・・・上部支持基板 1b・・・下部支持基板 2・・・熱電素子 2a・・・N型熱電素子 2b・・・P型熱電素子 4・・・配線導体 5・・・半田層 6・・・メッキ層 6a・・・金メッキ層 6b・・・ニッケルメッキ層 8・・・載置面 9・・・発熱体 Tc・・・冷却面 Th・・・放熱面 1, ... Support substrate 1a, ... Upper support substrate 1b: lower support substrate 2 ... Thermoelectric element 2a ... N-type thermoelectric element 2b ... P-type thermoelectric element 4 ... Wiring conductor 5 ... Solder layer 6 ... Plating layer 6a ... Gold plating layer 6b ... Nickel plating layer 8: Mounting surface 9 ... Heating element Tc ... Cooling surface Th: Heat dissipation surface

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】支持基板と、該支持基板上に配列された複
数の熱電素子と、該複数の熱電素子間を電気的に連結す
る配線導体と、前記支持基板上に設けられ、該配線導体
と電気的に連結された外部接続端子とを具備し、各熱電
素子と前記配線導体が半田層を介して接合されてなる熱
電モジュールにおいて、前記半田層の厚みと前記配線導
体の厚みとの和に対する前記熱電素子の断面における1
辺の平均長さの比が5〜15であることを特徴とする熱
電モジュール。
1. A support substrate, a plurality of thermoelectric elements arranged on the support substrate, a wiring conductor electrically connecting the plurality of thermoelectric elements, and a wiring conductor provided on the support substrate. In the thermoelectric module comprising an external connection terminal electrically connected to the thermoelectric element and the wiring conductor joined via a solder layer, the sum of the thickness of the solder layer and the thickness of the wiring conductor. In the cross section of the thermoelectric element with respect to
A thermoelectric module, characterized in that the ratio of the average length of the sides is 5 to 15.
【請求項2】前記配線導体の厚みに対する前記熱電モジ
ュールの断面における1辺の平均長さの比が5〜20で
あること特徴とする請求項1記載の熱電モジュール。
2. The thermoelectric module according to claim 1, wherein the ratio of the average length of one side in the cross section of the thermoelectric module to the thickness of the wiring conductor is 5 to 20.
【請求項3】前記半田層の厚みに対する前記熱電素子の
断面における1辺の平均長さの比が10〜100である
ことを特徴とする請求項1又は2記載の熱電モジュー
ル。
3. The thermoelectric module according to claim 1, wherein the ratio of the average length of one side in the cross section of the thermoelectric element to the thickness of the solder layer is 10 to 100.
【請求項4】前記熱電素子が5×10-5Ωm以下の比抵
抗を有することを特徴とする請求項1乃至3のいずれか
に記載の熱電モジュール。
4. The thermoelectric module according to claim 1, wherein the thermoelectric element has a specific resistance of 5 × 10 −5 Ωm or less.
【請求項5】前記熱電素子の形状因子が2000/m以
上、素子密度が100個/cm2以上であることを特徴
とする請求項1乃至4のいずれかに記載の熱電モジュー
ル。
5. The thermoelectric module according to claim 1, wherein the thermoelectric element has a form factor of 2000 / m or more and an element density of 100 / cm 2 or more.
【請求項6】前記熱電素子間の最短距離が200〜40
0μmであることを特徴とする請求項1乃至5のいずれ
かに記載の熱電モジュール。
6. The shortest distance between the thermoelectric elements is 200-40.
It is 0 micrometer, The thermoelectric module in any one of Claim 1 thru | or 5 characterized by the above-mentioned.
JP2002087269A 2002-03-27 2002-03-27 Thermoelectric module and cooling device Expired - Fee Related JP3583112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002087269A JP3583112B2 (en) 2002-03-27 2002-03-27 Thermoelectric module and cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002087269A JP3583112B2 (en) 2002-03-27 2002-03-27 Thermoelectric module and cooling device

Publications (2)

Publication Number Publication Date
JP2003282975A true JP2003282975A (en) 2003-10-03
JP3583112B2 JP3583112B2 (en) 2004-10-27

Family

ID=29233523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002087269A Expired - Fee Related JP3583112B2 (en) 2002-03-27 2002-03-27 Thermoelectric module and cooling device

Country Status (1)

Country Link
JP (1) JP3583112B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009150908A1 (en) * 2008-06-13 2009-12-17 アルゼ株式会社 Thermoelectric converter element and conductive member for thermoelectric converter element
WO2011047404A3 (en) * 2009-10-23 2012-03-15 Miba Sinter Austria Gmbh Thermogenerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009150908A1 (en) * 2008-06-13 2009-12-17 アルゼ株式会社 Thermoelectric converter element and conductive member for thermoelectric converter element
WO2011047404A3 (en) * 2009-10-23 2012-03-15 Miba Sinter Austria Gmbh Thermogenerator

Also Published As

Publication number Publication date
JP3583112B2 (en) 2004-10-27

Similar Documents

Publication Publication Date Title
EP1594173B1 (en) Cooling device for electronic component using thermo-electric conversion material
JP2004031696A (en) Thermoelectric module and method for manufacturing the same
EA000388B1 (en) Method of fabrication of thermoelectric modules and solder for such fabrication
JP2012235088A (en) Thermoelectric conversion module and manufacturing method thereof
KR20000006412A (en) Improved thermoelectric module and method of manufacturing the same
CN104508846A (en) Thermoelectric conversion module
WO2013091459A1 (en) Conductively cooled high-power semiconductor laser and preparation method thereof
JP2013236057A (en) Thermoelectric conversion module
US20030234037A1 (en) Thermoelectric conversion unit and thermoelectric module
KR20130071759A (en) Cooling thermoelectric moudule and method of manufacturing method of the same
JP5713526B2 (en) Thermoelectric conversion module, cooling device, power generation device and temperature control device
KR102510123B1 (en) Thermoelectric element
JP2007067231A (en) Thermoelectric module
JP2007013000A (en) Thermoelectric conversion material
JP2003174204A (en) Thermoelectric conversion device
JP2003282975A (en) Thermoelectric module
JP3588355B2 (en) Thermoelectric conversion module substrate and thermoelectric conversion module
JP2008085309A (en) Thermoelectric conversion module, its manufacturing method, and thermoelectric conversion material used for thermoelectric conversion module
JP2005136075A (en) Thermoelectric conversion module and its manufacturing method
JP2018032687A (en) Thermoelectric module
JP4005937B2 (en) Thermoelectric module package
JP2006013200A (en) Thermoelectric transducing module, substrate therefor cooling device, and power generating device
Tan et al. Fabrication of thermoelectric cooler for device integration
JP2005016836A (en) Cooling device
KR102456680B1 (en) Thermoelectric element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040727

R150 Certificate of patent or registration of utility model

Ref document number: 3583112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees