JP2003273470A - Iii-group nitride semiconductor laser element - Google Patents

Iii-group nitride semiconductor laser element

Info

Publication number
JP2003273470A
JP2003273470A JP2003001255A JP2003001255A JP2003273470A JP 2003273470 A JP2003273470 A JP 2003273470A JP 2003001255 A JP2003001255 A JP 2003001255A JP 2003001255 A JP2003001255 A JP 2003001255A JP 2003273470 A JP2003273470 A JP 2003273470A
Authority
JP
Japan
Prior art keywords
region
substrate
dislocation
semiconductor laser
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003001255A
Other languages
Japanese (ja)
Other versions
JP3926271B2 (en
Inventor
Kunihiro Takatani
邦啓 高谷
Shigetoshi Ito
茂稔 伊藤
Takayuki Yuasa
貴之 湯浅
Mototaka Tanetani
元隆 種谷
Kensaku Motoki
健作 元木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Sumitomo Electric Industries Ltd
Original Assignee
Sharp Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, Sumitomo Electric Industries Ltd filed Critical Sharp Corp
Priority to JP2003001255A priority Critical patent/JP3926271B2/en
Publication of JP2003273470A publication Critical patent/JP2003273470A/en
Application granted granted Critical
Publication of JP3926271B2 publication Critical patent/JP3926271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitride semiconductor laser element including a III-group nitride semiconductor as a substrate which exhibits an excellent operation characteristic and assures a longer laser oscillation life. <P>SOLUTION: A laser beam guiding region of the III-group nitride semiconductor laminated layer structure on a GaN substrate is provided at the position deviated from the upper side of a relocation concentrated region vertically penetrating the substrate. Moreover, electrodes provided on the upper surface of the laminated layer structure and the lower surface of the substrate are provided at positions deviated from the upper and lower sides of the relocation concentrated region. It is also possible that dielectric material layers are provided at upper and lower portions of the relocation concentrated region between the upper surface of laminated layer structure and the lower surface of substrate, and the electrodes are not in contact with the positions. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、III族窒化物半
導体から成る半導体レーザ素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device made of a group III nitride semiconductor.

【0002】[0002]

【従来の技術】一般に、InxGayAlzN(ただし、
0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=
1)で表わされるIII族窒化物半導体は、大きなエネ
ルギーバンドギャップと高い熱的安定性を有し、またそ
の組成を調節することによってバンドギャップ幅を制御
することも可能である。このことから、発光素子や高温
デバイスをはじめとして、さまざまな半導体デバイスに
応用開発が進められている。
2. Description of the Related Art Generally, In x Ga y Al z N (however,
0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z =
The group III nitride semiconductor represented by 1) has a large energy band gap and high thermal stability, and the band gap width can be controlled by adjusting its composition. For this reason, application development is proceeding on various semiconductor devices such as light emitting devices and high temperature devices.

【0003】発光素子としては、青から緑の光波長域で
数cd級の光度を有する発光ダイオード(LED)が既
に実用化されており、また、レーザダイオード(LD)
としても、実用化に向けて開発が進められている段階に
ある。レーザダイオードについては、開発当初より、サ
ファイア等の比較的入手しやすい絶縁性基板を使用する
ことが試みられている。
As a light emitting element, a light emitting diode (LED) having a luminous intensity of several cd class in the light wavelength range from blue to green has already been put into practical use, and a laser diode (LD) is also used.
Even so, it is in the stage of being developed for practical use. From the beginning of development, it has been attempted to use an insulating substrate, such as sapphire, which is relatively easily available, for the laser diode.

【0004】[0004]

【発明が解決しようとする課題】しかしサファイア基板
を使用した素子では、基板とエピタキシャル層との大き
な格子不整合(サファイアC面とGaN結晶で約14
%)から生じる格子歪や、エピタキシャル層中に導入さ
れる高密度の転位欠陥(108〜1010cm-2)が素子
寿命をはじめとする特性に悪影響を及ぼしてきた。ま
た、半導体レーザ素子の基板としてサファイアを用いる
と、基板とエピタキシャル層の劈開方向が異なるため、
共振器端面を形成する際に一般的な手法である劈開法を
採用すると、良好な端面が得にくいといった問題もあ
る。
However, in the device using the sapphire substrate, there is a large lattice mismatch between the substrate and the epitaxial layer (about 14 sapphire C-plane and GaN crystal).
%) And high-density dislocation defects (10 8 to 10 10 cm −2 ) introduced into the epitaxial layer have adversely affected the characteristics including the device life. Also, when sapphire is used as the substrate of the semiconductor laser device, the cleavage direction of the substrate and the epitaxial layer are different,
If the cleavage method, which is a general method, is used to form the end face of the resonator, there is a problem that it is difficult to obtain a good end face.

【0005】これらの問題点を回避するため、サファイ
ア以外、例えばSiC等を基板として使用する試みもあ
る。しかし、基板の大きさや入手のし易さ、格子不整合
等については本質的な改善には至っていない。
In order to avoid these problems, there have been attempts to use, for example, SiC or the like as a substrate other than sapphire. However, the size of the substrate, the availability, the lattice mismatch, etc. have not been essentially improved.

【0006】本発明者らは、基板とエピタキシャル層の
格子不整合の解消や欠陥低減、良好な結晶性等の観点か
ら、エピタキシャル層と同様III族窒化物半導体であ
るGaNを基板として使用した素子の開発を行ってい
る。
From the viewpoints of elimination of lattice mismatch between the substrate and the epitaxial layer, reduction of defects, good crystallinity, etc., the inventors of the present invention use a device in which GaN, which is a group III nitride semiconductor, is used as the substrate, like the epitaxial layer. Is under development.

【0007】その結果、窒化物半導体レーザ素子の特性
を大きく向上させることが可能になったが、GaN基板
を用いても、常に良好な窒化物半導体レーザ素子が得ら
れるとは限らず、動作電流が次第に増大したり、特性が
急激に低下したりすることがあることも判明した。本発
明者らがその原因について仔細に調査を行ったところ、
GaN基板の製造にはいくつかの方法があり、それぞれ
の方法で製造される基板は構造的・品質的に異なるた
め、その影響が基板上の積層構造に現れて、窒化物半導
体レーザ素子の特性を大きく左右していることが明らか
になった。
As a result, it has become possible to greatly improve the characteristics of the nitride semiconductor laser device. However, even if a GaN substrate is used, a good nitride semiconductor laser device is not always obtained and the operating current is It has also been found that the value may gradually increase or the characteristics may suddenly decrease. When the inventors of the present invention conducted a detailed investigation on the cause,
There are several methods for manufacturing a GaN substrate, and the substrates manufactured by the respective methods are structurally and qualityally different, so that the influence appears in the laminated structure on the substrate and the characteristics of the nitride semiconductor laser device. It has become clear that it has a big influence on.

【0008】本発明は、基板としてもIII族窒化物半
導体を備える窒化物半導体レーザ素子であって、素子の
構造をそれぞれの基板に対して最適化することによっ
て、動作特性に優れ、レーザ発振寿命の長いものを提供
することを目的とする。
The present invention is a nitride semiconductor laser device including a group III nitride semiconductor as a substrate, and by optimizing the structure of the device for each substrate, the operating characteristics are excellent and the laser oscillation life is long. The purpose is to provide a long one.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、III族窒化物半導体より成る基板
と、基板の上面に設けられたIII族窒化物半導体より
成る積層構造と、積層構造の上面に設けられた電極を備
える半導体レーザ素子は、基板がその下面から上面に達
する転位集中領域と転位集中領域を除く部位である低転
位領域とを有し、積層構造が基板の低転位領域の上方の
みに位置するストライプ状のレーザ光導波領域を有し、
電極が基板の低転位領域の上方のみに位置する構成とす
る。
In order to achieve the above object, the present invention provides a substrate made of a group III nitride semiconductor, a laminated structure made of a group III nitride semiconductor provided on the upper surface of the substrate, and a laminated structure. A semiconductor laser device including an electrode provided on the upper surface of the structure has a dislocation concentration region where the substrate reaches the upper surface from the lower surface and a low dislocation region which is a portion excluding the dislocation concentration region, and the laminated structure has a low dislocation density of the substrate. Has a striped laser light waveguide region located only above the region,
The electrode is located only above the low dislocation region of the substrate.

【0010】この半導体レーザ素子は、III族窒化物
半導体より成る基板を備え、基板には上下方向に貫通す
る転位集中領域が存在するが、III族窒化物半導体よ
り成る積層構造に含まれるレーザ光導波領域は、転位集
中領域の上方には位置せず、転位集中領域以外の部位で
ある低転位領域の上方に位置する。したがって、基板の
転位集中領域の影響が積層構造に及んで、積層構造内の
転位集中領域の上方の部位に欠陥が生じたとしても、レ
ーザ光導波領域は、その欠陥から外れることになり、良
好な特性を有するものとなる。
This semiconductor laser device includes a substrate made of a group III nitride semiconductor, and a dislocation concentration region penetrating in the vertical direction is present in the substrate, but a laser optical element included in a laminated structure made of a group III nitride semiconductor. The wave region is not located above the dislocation-concentrated region but above the low-dislocation region, which is a region other than the dislocation-concentrated region. Therefore, even if the dislocation-concentrated region of the substrate influences the laminated structure and a defect occurs in a portion above the dislocation-concentrated region in the laminated structure, the laser light waveguide region is deviated from the defect, which is favorable. It has various characteristics.

【0011】また、積層構造の上面に設けられた電極
も、転位集中領域の上方ではなく低転位領域の上方に位
置しているから、転位集中領域の上方の部位の欠陥が積
層構造の上面に達して露出したとしても、その部位から
外れることになる。このため、電流が基板の転位集中領
域やその上に生じる可能性のある積層構造内の欠陥の部
位を流れるのを防止することができ、動作電流の増大に
よるレーザ光導波領域の劣化が抑えられる。
Further, since the electrode provided on the upper surface of the stacked structure is also located above the low dislocation concentration region, not above the dislocation concentrated region, defects in the region above the dislocation concentrated region are located on the upper surface of the stacked structure. Even if it reaches and is exposed, it will come off from that part. Therefore, it is possible to prevent the current from flowing through the dislocation concentration region of the substrate and the defect portion in the laminated structure that may be generated thereover, and suppress the deterioration of the laser light waveguide region due to the increase of the operating current. .

【0012】本発明ではまた、III族窒化物半導体よ
り成る基板と、基板の上面に設けられたIII族窒化物
半導体より成る積層構造と、基板の下面に設けられた電
極を備える半導体レーザ素子は、基板がその下面から上
面に達する転位集中領域と転位集中領域を除く部位であ
る低転位領域とを有し、積層構造が基板の低転位領域の
上方のみに位置するストライプ状のレーザ光導波領域を
有し、電極が基板の低転位領域の下方のみに位置する構
成とする。
The present invention also provides a semiconductor laser device including a substrate made of a group III nitride semiconductor, a laminated structure made of a group III nitride semiconductor provided on the upper surface of the substrate, and an electrode provided on the lower surface of the substrate. A stripe laser light guiding region in which the substrate has a dislocation-concentrated region reaching from the lower surface to the upper surface and a low-dislocation region which is a region excluding the dislocation-concentrated region, and the laminated structure is located only above the low-dislocation region of the substrate. And the electrode is located only below the low dislocation region of the substrate.

【0013】この半導体レーザ素子の基板にも上下方向
に貫通する転位集中領域が存在するが、レーザ光導波領
域は、転位集中領域の上方ではなく低転位領域の上方に
位置しているため、積層構造内の転位集中領域の上方の
部位に欠陥が生じたとしても、その欠陥から外れること
になって、良好な特性を有する。基板の下面には転位集
中領域の下端が露出するが、基板の下面に設けられた電
極は、転位集中領域の下方ではなく低転位領域の下方に
位置しているから、転位集中領域が露出した部位から外
れる。したがって、電流が転位集中領域を流れるのを防
止することができ、動作電流の増大によるレーザ光導波
領域の劣化が抑えられる。
Although the substrate of this semiconductor laser device also has a dislocation concentration region penetrating in the vertical direction, the laser light waveguide region is located above the low dislocation region and not above the dislocation concentration region, so that the stacked layers are stacked. Even if a defect occurs in a region above the dislocation-concentrated region in the structure, it will be out of the defect, and thus it has good characteristics. Although the lower end of the dislocation-concentrated region is exposed on the lower surface of the substrate, the electrode provided on the lower surface of the substrate is located below the low-dislocation-distributed region, not below the dislocation-concentrated region, so the dislocation-concentrated region is exposed. Remove from the site. Therefore, current can be prevented from flowing through the dislocation concentrated region, and deterioration of the laser light waveguide region due to increase in operating current can be suppressed.

【0014】本発明ではまた、III族窒化物半導体よ
り成る基板と、基板の上面に設けられたIII族窒化物
半導体より成る積層構造を備える半導体レーザ素子は、
基板がその下面から上面に達する転位集中領域と転位集
中領域を除く部位である低転位領域とを有し、積層構造
が基板の低転位領域の上方のみに位置するストライプ状
のレーザ光導波領域を有し、基板の下面のうち転位集中
領域の下方に位置する部位と、積層構造の上面のうち基
板の転位集中領域の上方に位置する部位とに、それぞれ
電流遮断層を備える構成とする。
The present invention also provides a semiconductor laser device comprising a substrate made of a group III nitride semiconductor and a laminated structure made of a group III nitride semiconductor provided on the upper surface of the substrate.
The substrate has a dislocation-concentrated region extending from the lower surface to the upper surface and a low-dislocation region that is a portion excluding the dislocation-concentrated region, and the laminated structure has a stripe-shaped laser light guiding region located only above the low-dislocation region of the substrate. A current blocking layer is provided on a portion of the lower surface of the substrate located below the dislocation concentrated region and on a portion of the upper surface of the laminated structure located above the dislocation concentrated region of the substrate.

【0015】この半導体レーザ素子の基板にも上下方向
に貫通する転位集中領域が存在するが、レーザ光導波領
域は、転位集中領域の上方ではなく低転位領域の上方に
位置しているため、積層構造内の転位集中領域の上方の
部位に欠陥が生じたとしても、その欠陥から外れること
になって、良好な特性を有する。また、基板の下面には
転位集中領域の下端が露出するが、基板下面のこの部位
には電流遮断層が備えられているため、基板の下面に設
ける電極の一部がこの部位に位置したとしても、電極と
転位集中領域との間を流れる電流はない。
The substrate of this semiconductor laser device also has a dislocation concentration region penetrating in the vertical direction, but since the laser light guiding region is located above the low dislocation region but not above the dislocation concentration region, the stacked layers are stacked. Even if a defect occurs in a region above the dislocation-concentrated region in the structure, it will be out of the defect, and thus it has good characteristics. Further, the lower end of the dislocation concentration region is exposed on the lower surface of the substrate, but since a current blocking layer is provided at this portion of the lower surface of the substrate, it is assumed that a part of the electrode provided on the lower surface of the substrate is located at this portion. However, there is no current flowing between the electrode and the dislocation concentrated region.

【0016】さらに、転位集中領域の上方に生じた欠陥
が積層構造の上面に達して露出したとしても、積層構造
上面のこの部位には電流遮断層が備えられているため、
積層構造の上面に設ける電極の一部がこの部位に位置す
るときでも、電極と積層構造内の欠陥の部分との間を流
れる電流はない。したがって、基板の転位集中領域や生
じる可能性のある積層構造内の欠陥の部位を電流が流れ
るのを防止することができ、動作電流の増大によるレー
ザ光導波領域の劣化が抑えられる。
Further, even if a defect generated above the dislocation concentrated region reaches the upper surface of the laminated structure and is exposed, a current blocking layer is provided at this portion of the upper surface of the laminated structure.
Even when part of the electrode provided on the upper surface of the laminated structure is located at this portion, there is no current flowing between the electrode and the defective portion in the laminated structure. Therefore, it is possible to prevent the current from flowing through the dislocation-concentrated region of the substrate or the defective portion in the laminated structure that may occur, and suppress the deterioration of the laser light waveguide region due to the increase in the operating current.

【0017】本発明ではまた、III族窒化物半導体よ
り成る基板と、基板の上面に設けられたIII族窒化物
半導体より成る積層構造を備える半導体レーザ素子は、
基板がその下面から上面に達する転位集中領域と転位集
中領域を除く部位である低転位領域とを有し、積層構造
が基板の低転位領域の上方のみに位置するストライプ状
のレーザ光導波領域を有し、積層構造の内部のうち基板
の転位集中領域の上方に位置する部位に電流遮断層を備
える構成とする。
The present invention also provides a semiconductor laser device having a substrate made of a group III nitride semiconductor and a laminated structure made of a group III nitride semiconductor provided on the upper surface of the substrate.
The substrate has a dislocation-concentrated region extending from the lower surface to the upper surface and a low-dislocation region that is a portion excluding the dislocation-concentrated region, and the laminated structure has a stripe-shaped laser light guiding region located only above the low-dislocation region of the substrate. The current blocking layer is provided in a portion of the laminated structure located above the dislocation concentration region of the substrate.

【0018】この半導体レーザ素子の基板にも上下方向
に貫通する転位集中領域が存在するが、レーザ光導波領
域は、転位集中領域の上方ではなく低転位領域の上方に
位置しているため、積層構造内の転位集中領域の上方の
部位に欠陥が生じたとしても、その欠陥から外れること
になり、良好な特性を有する。また、積層構造内のうち
転位集中領域の上方の部位には電流遮断層が備えられて
いるため、この部位に欠陥が生じたとしても、電流はこ
の部位を流れない。したがって、電流が基板の転位集中
領域や生じる可能性のある積層構造内の欠陥の部位を流
れるのを防止することができ、動作電流の増大によるレ
ーザ光導波領域の劣化が抑えられる。
The substrate of this semiconductor laser device also has a dislocation concentration region penetrating in the vertical direction, but since the laser light waveguide region is located above the low dislocation region rather than above the dislocation concentration region, the stacked layers are stacked. Even if a defect occurs in a region above the dislocation-concentrated region in the structure, it is out of the defect and has good characteristics. Further, since the current blocking layer is provided in the portion above the dislocation concentration region in the laminated structure, even if a defect occurs in this portion, the current does not flow in this portion. Therefore, it is possible to prevent the current from flowing through the dislocation-concentrated region of the substrate and the defective portion in the laminated structure that may occur, and suppress the deterioration of the laser light waveguide region due to the increase of the operating current.

【0019】基板の転位集中領域は、上方から見て、積
層構造のレーザ光導波領域と略平行なストライプ状とす
るとよい。転位集中領域をこのような形状とすること
で、レーザ光導波領域の形成が容易になる。また、電極
や電流遮断層の形成も容易になる。
The dislocation-concentrated region of the substrate may have a stripe shape which is substantially parallel to the laser light waveguide region of the laminated structure when viewed from above. The dislocation-concentrated region having such a shape facilitates formation of the laser light waveguide region. Further, the formation of the electrodes and the current blocking layer becomes easy.

【0020】電流遮断層はSiO2、SiN、SiO、
ZnO、PbO、TiO2、ZrO2、CeO2、Hf
2、Al23、Bi23、Cr23、In23、Nd2
3、Sb23、Ta25、Y23、AlF3、Ba
2、CeF2、CaF2、MgF2、NdF3、PbF2
SrF2、ZnSおよびZnSeのうちの少なくとも1
種類を含む誘電体とすることができる。
The current blocking layer is made of SiO 2 , SiN, SiO,
ZnO, PbO, TiO 2 , ZrO 2 , CeO 2 , Hf
O 2, Al 2 O 3, Bi 2 O 3, Cr 2 O 3, In 2 O 3, Nd 2
O 3 , Sb 2 O 3 , Ta 2 O 5 , Y 2 O 3 , AlF 3 , Ba
F 2 , CeF 2 , CaF 2 , MgF 2 , NdF 3 , PbF 2 ,
At least one of SrF 2 , ZnS, and ZnSe
It can be a dielectric including a type.

【0021】電流遮断層の厚さは1nm以上かつ1μm
以下とするのが好ましい。この範囲内の厚さとすること
で、確実に電流を遮断するとともに、ひび割れや剥がれ
等の機械的欠陥が生じるのを避けることができる。
The thickness of the current blocking layer is 1 nm or more and 1 μm.
The following is preferable. By setting the thickness within this range, it is possible to reliably cut off the electric current and avoid occurrence of mechanical defects such as cracks and peeling.

【0022】転位集中領域をレーザ光導波領域と略平行
なストライプ状とする場合、電流遮断層の幅は5μm以
上かつ300μm以下とするのが好ましい。この範囲内
の幅とすることで、転位集中領域や積層構造内に生じる
可能性のある欠陥の部分の電流を確実に遮断しながら、
電流遮断層がレーザ光導波領域に導くべき電流の妨げに
なるのを容易に避けることができる。
When the dislocation concentrated region is formed in a stripe shape substantially parallel to the laser light guiding region, the width of the current blocking layer is preferably 5 μm or more and 300 μm or less. By setting the width within this range, while surely interrupting the current of the defect portion that may occur in the dislocation concentration region or the laminated structure,
It can be easily avoided that the current blocking layer interferes with the current to be guided to the laser light guiding region.

【0023】[0023]

【発明の実施の形態】本発明の実施形態の説明に先立
ち、各実施形態の半導体レーザ素子で用いるGaN基板
について、図14〜図17を参照しながら、その作製方
法を含めて説明する。なお、結晶の面や方位を示す指数
が負の場合、絶対値の上に横線を付して表記するのが結
晶学の決まりであるが、本明細書では、そのような表記
ができないため、絶対値の前に負号「−」を付して負の
指数を表す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Prior to the description of the embodiments of the present invention, a GaN substrate used in the semiconductor laser device of each embodiment will be described with reference to FIGS. Note that when the index indicating the plane or orientation of the crystal is negative, it is the rule of crystallography to write a horizontal line above the absolute value, but in this specification such a notation is not possible, A negative sign "-" is added before the absolute value to represent a negative index.

【0024】図14は作製中のGaN基板の一部分を拡
大して模式的に示す縦断面図であり、図15はその全体
を模式的に示す斜視図である。まず、適切なウェハ表面
にストライプ状のマスクを周期的に施した支持基体21
を準備する。ここではウェハとして(111)面を表面
とする2インチGaAsウェハ、マスクとしてSiO 2
を使用した。次に、HVPE法(Hydride Vapor Phase
Epitaxy)により、n型GaN層22を、ファセット
{11−22}面23が成長中の表面に主として表出す
るように、[0001]方向に成長させる。その結果、
図14に示すように、表面の断面は鋸歯状の凹凸形状と
なる。凸部の頂点付近には{0001}面25が表出し
た部分がストライプ状に現れた。
FIG. 14 is an enlarged view of a part of the GaN substrate under fabrication.
FIG. 15 is a schematic vertical cross-sectional view, and FIG.
It is a perspective view which shows typically. First, the proper wafer surface
Support substrate 21 in which a striped mask is periodically applied
To prepare. Here, the wafer is the (111) surface
2 inch GaAs wafer, SiO as mask 2
It was used. Next, HVPE method (Hydride Vapor Phase)
Epitaxy) to facet the n-type GaN layer 22
The {11-22} plane 23 is mainly exposed on the growing surface.
So that it grows in the [0001] direction. as a result,
As shown in FIG. 14, the cross section of the surface has a serrated uneven shape.
Become. The {0001} plane 25 is exposed near the apex of the protrusion
The parts that appeared were striped.

【0025】上記凹凸形状は図14の奥行き方向に畝状
に伸びており、凹凸のピッチは最初に支持基体21に形
成したSiO2マスクの配置形状により規定される。即
ち、凹凸形状の凹部下方にはSiO2マスクが存在して
おり、凸部から垂線を支持基体21に下ろすと、SiO
2マスクの開口部のほぼ中心位置を横切る線となる。こ
こでは、SiO2マスクの形状を400μmピッチの周
期構造としており、したがって、凹凸形状のピッチも同
じく約400μmピッチとなっている。また、マスク開
口部とn型GaN層22の[1−100]方向はほぼ平
行になっている。
The concavo-convex shape extends like a ridge in the depth direction of FIG. 14, and the pitch of the concavo-convex shape is defined by the arrangement shape of the SiO 2 mask initially formed on the support base 21. That is, there is a SiO 2 mask below the concave and convex portions, and when a perpendicular is drawn from the convex portion to the supporting base 21, the SiO 2 mask is formed.
2 A line that crosses the center of the opening of the mask. Here, the shape of the SiO 2 mask is a periodic structure with a pitch of 400 μm, and therefore the pitch of the uneven shape is also a pitch of about 400 μm. The [1-100] direction of the mask opening and the n-type GaN layer 22 are substantially parallel to each other.

【0026】なお、この例では、SiO2マスクをスト
ライプ状としたため、n型GaN層22表面の凹凸形状
も畝状になっているが、マスク形状は帯状に限られるも
のではなく、ドット形状とすることもできる。その場合
のn型GaN層22の表面形状は、マスクの上方に位置
する部分が底となるすり鉢状の凹みが並んだものとな
り、すり鉢の斜面部分にはファセット{11−22}面
が表出することになる。ファセット{11−22}面が
表出した状態で、結晶成長を持続させる手法(成長条
件)については、本出願人が先に出願した特願平11−
273882号に詳細に開示している。なお、成長時に
酸素をドーピングすることで、成長する結晶の導電型を
n型とした。
In this example, since the SiO 2 mask has a stripe shape, the uneven shape of the surface of the n-type GaN layer 22 also has a ridge shape, but the mask shape is not limited to a band shape, but a dot shape. You can also do it. In that case, the surface shape of the n-type GaN layer 22 is such that a mortar-shaped recess whose bottom is located above the mask is lined up, and facet {11-22} faces are exposed on the sloped portion of the mortar. Will be done. Regarding the method (growth condition) for maintaining the crystal growth with the facet {11-22} planes exposed, Japanese Patent Application No. 11-
No. 273882 is disclosed in detail. The conductivity type of the growing crystal was changed to n-type by doping oxygen during growth.

【0027】表面に上記の凹凸形状を有する成長モード
を保ったまま、さらにn型GaN層の結晶成長を続ける
ことで、図15に示すように、基体21上に高さ30m
mのインゴットを作製した。図15において、インゴッ
ト上面の細かい線は、表面の畝の様子を模式的に表記し
たものである。
By continuing the crystal growth of the n-type GaN layer while maintaining the growth mode having the above-mentioned concavo-convex shape on the surface, as shown in FIG.
An m ingot was prepared. In FIG. 15, fine lines on the upper surface of the ingot schematically represent the ridges on the surface.

【0028】このインゴットを、スライサーにより切断
加工して薄片とし、さらにその薄片を研磨して、表面が
平坦な2インチ(約5cm)径、厚さ350μmのウェ
ハに加工して、n型GaN基板10とする。ウェハの表
面は、後に行うエピタキシャル成長のために、鏡面に研
磨する。この表面はほぼ(0001)面としたが、表面
上にエピタキシャル成長させる窒化物半導体層のモフォ
ロジを比較すると、(0001)面から任意の方向に
0.2〜1°の範囲のオフ角度を有していることが望ま
しく、特に0.4〜0.8°の範囲でモフォロジが最良
となる。図16および図17に、得られたn型GaN基
板10の一部分の縦断面図および上面図をそれぞれ示
す。
This ingot is cut by a slicer to make a thin piece, and the thin piece is polished and processed into a wafer having a flat surface having a diameter of 2 inches (about 5 cm) and a thickness of 350 μm, and an n-type GaN substrate. Set to 10. The surface of the wafer is mirror-polished for subsequent epitaxial growth. Although this surface is almost the (0001) plane, when the morphology of the nitride semiconductor layer epitaxially grown on the surface is compared, it has an off angle in the range of 0.2 to 1 ° from the (0001) plane in any direction. It is desirable that the morphology is best in the range of 0.4 to 0.8 °. 16 and 17 show a vertical sectional view and a top view, respectively, of a part of the obtained n-type GaN substrate 10.

【0029】次に、n型GaN基板10の評価を行っ
た。まず、基板表面を光学顕微鏡で詳細に観察したとこ
ろ、研磨加工された表面は必ずしも平坦でなく、n型G
aN層22の結晶成長時に凹部の最底部24(図14)
が生じていた部分に対応するストライプ状の領域がやや
窪んでいた。これは図17では部位X2にあたる。
Next, the n-type GaN substrate 10 was evaluated. First, when the surface of the substrate was observed in detail with an optical microscope, it was found that the polished surface was not always flat and that n-type G
The bottom 24 of the recess during crystal growth of the aN layer 22 (FIG. 14)
The stripe-shaped region corresponding to the portion where was generated was slightly depressed. This corresponds to the part X2 in FIG.

【0030】さらに、250℃の硫酸および燐酸の混酸
によりn型GaN基板10の表面を処理し、表出したエ
ッチピットを観察したところ、前述の窪みに対応するス
トライプ状の領域に多数のエッチピットが観測され、こ
こは転位(欠陥)が極めて集中している領域であること
が判明した。転位が集中した部分は機械的強度が他の部
位よりも劣るため、研磨工程におけるダメージを受け易
く、結果的に基板表面に窪みが生じたものと考えられ
る。
Further, the surface of the n-type GaN substrate 10 was treated with a mixed acid of sulfuric acid and phosphoric acid at 250 ° C., and the exposed etch pits were observed. As a result, a large number of etch pits were formed in the stripe-shaped regions corresponding to the above-mentioned depressions. Was observed, and it was found that this is a region where dislocations (defects) are extremely concentrated. It is considered that the portion where dislocations are concentrated has a lower mechanical strength than the other portions and is therefore easily damaged during the polishing process, resulting in the formation of depressions on the substrate surface.

【0031】なお、転位が集中したストライプ状の領域
の幅は約5〜40μmであり、この部分のエッチピット
密度は105〜109個/cm2と極めて大きくなってい
た。一方、このストライプ状の領域以外の部位のエッチ
ピット密度は102〜105個/cm2と低く抑えられて
いた。この結果が示すように、図14と図16の部位X
1は、周囲と比較して転位密度が大きくなっている部分
であり、本明細書では「転位集中領域」と呼称する。図
17の部位X2は、この転位集中領域X1が表面に露出
した部分である。
The width of the stripe-shaped region in which dislocations were concentrated was about 5 to 40 μm, and the etch pit density at this portion was as large as 10 5 to 10 9 pieces / cm 2 . On the other hand, the etch pit density of the portion other than the striped region was suppressed to a low value of 10 2 to 10 5 pieces / cm 2 . As the result shows, the site X in FIG. 14 and FIG.
Reference numeral 1 denotes a portion where the dislocation density is higher than that of the surrounding area, and is referred to as a "dislocation concentrated region" in the present specification. A portion X2 in FIG. 17 is a portion where the dislocation concentrated region X1 is exposed on the surface.

【0032】また、n型GaN基板10に紫外線を照射
し、表面からの蛍光発光を顕微鏡を用いて観察した(蛍
光顕微鏡観察)。観察の結果、転位集中領域X1に挟ま
れた領域の中央に、比較的はっきりとした境界を持ち、
周囲とコントラストが異なるストライプ状の発光を示す
部分が確認された。この発光部分は周囲よりも蛍光発光
強度が強く、やや黄色がかって明るく観察された。この
部分は、n型GaN層22の結晶成長時に{0001}
面が表出しつつ成長していた部分25(図14)に該当
し、図17の部位Y2である。
Further, the n-type GaN substrate 10 was irradiated with ultraviolet rays, and fluorescence emission from the surface was observed using a microscope (fluorescence microscope observation). As a result of the observation, there is a relatively clear boundary in the center of the region sandwiched by the dislocation concentrated regions X1,
It was confirmed that there were stripes of light emission with different contrasts from the surroundings. This luminescent part had a stronger fluorescence emission intensity than the surroundings, and was slightly yellowish and brightly observed. This portion is {0001} during the crystal growth of the n-type GaN layer 22.
The surface corresponds to the portion 25 (FIG. 14) that was growing while being exposed, and is the portion Y2 in FIG.

【0033】この部分の幅はやや揺らぎを有するが、広
いところで30μmの程度であった。幅が揺らぐ原因
は、n型GaN22の結晶成長時に、凸部25の成長が
必ずしも均一に進行するのではないためと考えられる。
また、蛍光発光が周囲と異なって観察されるのは、ドー
パントの取込まれ具合が周囲と異なる等の理由が推測さ
れる。
The width of this portion has some fluctuation, but it was about 30 μm in a wide area. The reason why the width fluctuates is considered to be that the growth of the convex portions 25 does not always proceed uniformly during the crystal growth of the n-type GaN 22.
Further, it is presumed that the reason why the fluorescence emission is observed differently from the surroundings is that the degree of incorporation of the dopant is different from the surroundings.

【0034】なお、この異なる蛍光発光を示す部分は、
インゴットの製作条件や、切り出されるウェハのインゴ
ット内における位置関係(支持基体21からの距離)に
よってはほとんど形成されないこともある。これらの事
実から、本明細書では部位Y2を「高ルミネセンス領
域」と呼称する。この高ルミネセンス領域は、n型Ga
N基板10の断面を示す図14、図16では、部位Y1
に該当する。
The portion showing the different fluorescence emission is
It may be hardly formed depending on the manufacturing conditions of the ingot and the positional relationship (distance from the support base 21) in the ingot of the wafer to be cut out. Due to these facts, the site Y2 is referred to as a “high luminescence region” in the present specification. The high luminescence region is n-type Ga.
In FIGS. 14 and 16 showing the cross section of the N substrate 10, a portion Y1
Corresponds to.

【0035】以下に述べる各実施形態の半導体レーザ素
子は、上記のように転位集中領域X1および高ルミネセ
ンス領域Y1を有するn型GaN基板上にIII族窒化
物半導体の積層構造を設けたものであり、特に、転位集
中領域X1の存在を考慮したものである。なお、各実施
形態ではSiO2マスクを400μmピッチの周期的な
ストライプ状として作製した基板を用いており、したが
って、転位集中領域X1、高ルミネセンス領域Y1のい
ずれも400μmピッチで存在する。
The semiconductor laser device of each of the embodiments described below has a laminated structure of a group III nitride semiconductor provided on the n-type GaN substrate having the dislocation concentrated region X1 and the high luminescence region Y1 as described above. In particular, the presence of the dislocation concentrated region X1 is taken into consideration. It should be noted that in each of the embodiments, the substrate in which the SiO 2 mask is formed in the form of periodic stripes having a pitch of 400 μm is used. Therefore, both the dislocation-concentrated region X1 and the high luminescence region Y1 are present at a pitch of 400 μm.

【0036】<第1の実施形態>第1の実施形態の半導
体レーザ素子1の構造を図3の縦断面図に模式的に示
し、その作製工程の途中における層構造を図1および図
2の縦断面図に模式的に示す。なお、各図においては、
基板の転位集中領域X1と高ルミネセンス領域Y1も表
している。
<First Embodiment> The structure of a semiconductor laser device 1 according to the first embodiment is schematically shown in the longitudinal sectional view of FIG. 3, and the layer structure in the middle of its manufacturing process is shown in FIGS. It is schematically shown in the longitudinal sectional view. In each figure,
The dislocation concentration region X1 and the high luminescence region Y1 of the substrate are also shown.

【0037】半導体レーザ素子1は、次のようにして作
製した。まず、上記のように製作したn型GaN基板1
00上に、MOCVD(Metalorganic Chemical Vapor
Deposition)法を用いて、3μmのn型GaN層10
2、40nmのn型In0.07Ga0.93Nクラック防止層
103、1.2μmのn型Al0.1Ga0.9Nクラッド層
104、0.1μmのn型GaN光ガイド層105、4
nmのIn0.1Ga0.9N井戸層と8nmのIn0.01Ga
0.99N障壁層から成る3重量子井戸活性層106(障壁
層/井戸層/障壁層/井戸層/障壁層/井戸層/障壁
層)、20nmのp型Al0.3Ga0.7Nキャリアブロッ
ク層107、0.1μmのp型GaN光ガイド層10
8、0.5μmのp型Al0.1Ga0.9Nクラッド層10
9、0.1μmのp型GaN第1コンタクト層110、
50nmのp型In0.15Ga0.85N第2コンタクト層1
11を順次結晶成長し、積層構造101を形成した(図
1)。
The semiconductor laser device 1 was manufactured as follows. First, the n-type GaN substrate 1 manufactured as described above
00, MOCVD (Metalorganic Chemical Vapor
3 μm n-type GaN layer 10 using the Deposition method.
2, 40 nm n-type In 0.07 Ga 0.93 N crack prevention layer 103, 1.2 μm n-type Al 0.1 Ga 0.9 N cladding layer 104, 0.1 μm n-type GaN optical guide layer 105, 4
nm In 0.1 Ga 0.9 N well layer and 8 nm In 0.01 Ga
Triple quantum well active layer 106 (barrier layer / well layer / barrier layer / well layer / barrier layer / well layer / barrier layer) consisting of a 0.99 N barrier layer, 20 nm p-type Al 0.3 Ga 0.7 N carrier block layer 107, 0.1 μm p-type GaN light guide layer 10
8, 0.5 μm p-type Al 0.1 Ga 0.9 N cladding layer 10
9, 0.1 μm p-type GaN first contact layer 110,
50 nm p-type In 0.15 Ga 0.85 N second contact layer 1
11 was sequentially crystal-grown to form a laminated structure 101 (FIG. 1).

【0038】このIII族窒化物半導体積層構造101
の断面を透過型電子顕微鏡で観察したところ、積層構造
101の内部に転位(欠陥)が集中した領域が存在する
場合があることが判明した。この転位の集中した領域
は、n型GaN基板100の転位集中領域X1の上方に
位置し、n型GaN層102の下面からp型InGaN
第2コンタクト層111の上面に達していた。また、積
層構造101の断面を蛍光顕微鏡観察したところ、周囲
よりも蛍光発光強度が強く、やや黄色がかって明るく観
察される領域が存在する場合があることも判明した。こ
の蛍光発光の強い領域は、基板100の高ルミネセンス
領域Y1の上方に位置し、やはり、n型GaN層102
の下面からp型InGaN第2コンタクト層111の上
面に達していた。
This group III nitride semiconductor laminated structure 101
When the cross section of the above was observed by a transmission electron microscope, it was found that a region in which dislocations (defects) were concentrated might exist inside the laminated structure 101. The region where the dislocations are concentrated is located above the dislocation concentrated region X1 of the n-type GaN substrate 100, and the p-type InGaN is formed from the lower surface of the n-type GaN layer 102.
The upper surface of the second contact layer 111 was reached. In addition, when the cross section of the laminated structure 101 was observed by a fluorescence microscope, it was found that there are cases where there is a region where the fluorescence emission intensity is stronger than the surroundings and a little yellowish and bright is observed. This region of strong fluorescence emission is located above the high luminescence region Y1 of the substrate 100, and again the n-type GaN layer 102.
Has reached the upper surface of the p-type InGaN second contact layer 111.

【0039】積層構造101内部の転位の集中した領域
と蛍光発光の強い領域は、基板100の転位集中領域X
1と高ルミネセンス領域Y1にそれぞれ連なっており、
転位集中領域X1や高ルミネセンス領域Y1の影響が及
んで生じたものと考えられる。以下、積層構造101内
部の転位の集中した領域を、基板100のものと同様に
「転位集中領域」と呼称して、X3で表し、積層構造1
01内部の蛍光発光の強い領域を、基板100のものと
同様に「高ルミネセンス領域」と呼称して、Y3で表
す。
The region where dislocations are concentrated and the region where the fluorescence emission is strong inside the laminated structure 101 are the dislocation concentrated regions X of the substrate 100.
1 and the high luminescence region Y1 respectively,
It is considered that this is caused by the influence of the dislocation concentrated region X1 and the high luminescence region Y1. Hereinafter, a region where dislocations are concentrated inside the laminated structure 101 is referred to as a “dislocation concentrated region” similarly to that of the substrate 100 and is represented by X3.
The region of strong fluorescence emission inside 01 is referred to as a “high luminescence region” similarly to that of the substrate 100 and is represented by Y3.

【0040】転位集中領域X3が存在する場合に、その
位置を考慮することなくレーザ光導波領域を設けると、
レーザ光導波領域が転位集中領域X3を含んでしまうこ
とになり、当然、その特性は良好にはならない。また、
転位集中領域X3や転位集中領域X1には電流が流れや
すく、露出した欠陥集中領域X3、X1に電極が触れる
と、動作電流の増大を招く。さらに、積層構造101上
に設ける電極が露出した転位集中領域X3に接触する
と、電極の材料である金属が転位集中領域X3を介して
積層構造101内に拡散しやすくなり、積層構造101
を成す各層の特性に変化をもたらす。GaN基板上にI
II族窒化物半導体を積層して作製した従来の半導体レ
ーザ素子で、動作電流が次第に増大したり特性が急激に
低下したりする現象が見られたのは、これらが原因とな
った可能性が高い。
When the dislocation-concentrated region X3 exists, if the laser light waveguide region is provided without considering its position,
The laser light waveguide region includes the dislocation concentration region X3, and naturally the characteristics are not good. Also,
A current easily flows in the dislocation concentrated regions X3 and X1 and when the electrodes touch the exposed defect concentrated regions X3 and X1, the operating current is increased. Further, when the electrode provided on the stacked structure 101 contacts the exposed dislocation concentrated region X3, the metal that is the material of the electrode easily diffuses into the stacked structure 101 through the dislocation concentrated region X3, and the stacked structure 101
Changes the characteristics of each layer. I on GaN substrate
In the conventional semiconductor laser device manufactured by stacking group II nitride semiconductors, the phenomenon that the operating current gradually increases or the characteristics suddenly deteriorate was observed. high.

【0041】そこで、本実施形態の半導体レーザ素子1
では、以下に述べるように、レーザ光導波領域を転位集
中領域X3から離れた位置に設け、また、電極も転位集
中領域X3や転位集中領域X1から離れた位置に設ける
ようにしている。高ルミネセンス領域Y3も、周囲とは
特性が異なり、レーザ光導波領域を設けるのに適してい
るとはいえないから、レーザ光導波領域は高ルミネセン
ス領域Y3からも離れた位置に設けるようにしている。
Therefore, the semiconductor laser device 1 of the present embodiment
Then, as described below, the laser light waveguide region is provided at a position distant from the dislocation concentration region X3, and the electrode is also provided at a position distant from the dislocation concentration region X3 and the dislocation concentration region X1. Since the high luminescence region Y3 also has characteristics different from the surroundings and is not suitable for providing the laser light guiding region, the laser light guiding region should be provided at a position distant from the high luminescence region Y3. ing.

【0042】なお、積層構造101の内部に常に転位集
中領域X3や高ルミネセンス領域Y3が生じるとは限ら
ない。後述するように、半導体レーザ素子をチップ単位
に分割する際に、転位集中領域X3や高ルミネセンス領
域Y3をチップ内部に存在しないように切断することが
できるが、ここでは、転位集中領域X3や高ルミネセン
ス領域Y3が生じたと仮定して、これらを図1〜図3に
示している。
The dislocation concentrated region X3 and the high luminescence region Y3 do not always occur inside the laminated structure 101. As will be described later, when the semiconductor laser device is divided into chips, the dislocation concentrated region X3 and the high luminescence region Y3 can be cut so as not to exist inside the chip. These are shown in FIGS. 1-3, assuming that a high luminescence region Y3 has occurred.

【0043】図1に示す積層構造101を形成した後、
図2に示すように、基板100の転位集中領域X1と高
ルミネセンス領域Y1との中央部の上方に、リッジ構造
を周期的に形成した。このリッジ構造の下方の部位がレ
ーザ光導波領域に相当することになる。リッジ構造は、
p型第2コンタクト層111の上面からp型クラッド層
109の途中までをドライエッチングにより掘り下げ、
エッチング除去された部分にAl0.1Ga0.9N層112
を再成長して埋め込むことにより形成した。以下、再成
長させたAl0.1Ga0.9N層112を埋め込み層とい
う。なお、Al0. 1Ga0.9N埋め込み層112はn型で
もi型でもよい。
After forming the laminated structure 101 shown in FIG.
As shown in FIG. 2, the dislocation concentration region X1 of the substrate 100
A ridge structure is formed above the center of the luminescence region Y1.
Were periodically formed. The lower part of this ridge structure is
Laser light guide region. The ridge structure is
From the top surface of the p-type second contact layer 111, the p-type cladding layer
We dig up to the middle of 109 by dry etching,
Al on the part removed by etching0.1Ga0.9N layer 112
Was regrown and embedded. Below, re-formation
Lengthened Al0.1Ga0.9The N layer 112 is called a buried layer
U In addition, Al0. 1Ga0.9The N buried layer 112 is n-type
May be i-type.

【0044】その後、リフトオフ技術あるいはエッチン
グ技術を用いて、p型電極113およびn型電極114
を形成した。その際、図3に示すように、電極113、
114は、基板100の転位集中領域X1の上方や下方
から外れる位置に形成した。
After that, the p-type electrode 113 and the n-type electrode 114 are formed by using the lift-off technique or the etching technique.
Was formed. At that time, as shown in FIG. 3, the electrodes 113,
114 was formed at a position deviating from above and below the dislocation concentration region X1 of the substrate 100.

【0045】こうして得られた半導体レーザ素子1で
は、レーザ光導波領域が、積層構造101の転位集中領
域X3と高ルミネセンス領域Y3の中央に位置すること
になり、優れた特性を有することになる。また、積層構
造101の転位集中領域X3が埋め込み層112の上面
に達して露出していたとしてもp型電極113がこれに
接触することはなく、電極113と転位集中領域X3の
間を流れる電流は生じないし、電極113の材料金属の
積層構造101内への拡散も抑えられる。基板100の
下面には転位集中領域X1が露出するが、n型電極11
4がこれに接触することもなく、電極114と転位集中
領域X1の間を流れる電流も生じない。したがって、半
導体レーザ素子1では、動作電流の増大やこれに起因す
るレーザ光導波領域の劣化が生じ難くなっており、安定
した動作特性が得られ、レーザ発振寿命も長くなる。
In the semiconductor laser device 1 thus obtained, the laser light guiding region is located at the center of the dislocation concentrated region X3 and the high luminescence region Y3 of the laminated structure 101, and thus has excellent characteristics. . Further, even if the dislocation-concentrated region X3 of the stacked structure 101 reaches the upper surface of the buried layer 112 and is exposed, the p-type electrode 113 does not come into contact with this and the current flowing between the electrode 113 and the dislocation-concentrated region X3. Does not occur, and the diffusion of the metal material of the electrode 113 into the laminated structure 101 is also suppressed. Although the dislocation concentrated region X1 is exposed on the lower surface of the substrate 100, the n-type electrode 11
4 does not come into contact with this, and no current flows between the electrode 114 and the dislocation concentrated region X1. Therefore, in the semiconductor laser device 1, increase in operating current and deterioration of the laser light guiding region due to this are less likely to occur, stable operating characteristics are obtained, and the laser oscillation life is extended.

【0046】半導体レーザ素子1の作製においては、レ
ーザ光導波領域や電極113、114の位置の基準とし
て、積層構造101の転位集中領域X3や高ルミネセン
ス領域Y3そのものではなく、基板100の転位集中領
域X1や高ルミネセンス領域Y1を採用している。積層
構造101の転位集中領域X3や高ルミネセンス領域Y
3は基板100の転位集中領域X1や高ルミネセンス領
域Y1の上方に位置するから、このようにしても、レー
ザ光導波領域や電極113、114を所望の位置に設定
することができる。また、基板100の転位集中領域X
1や高ルミネセンス領域Y1の位置は、基板100の作
製時に設けたSiO2マスクの位置から特定することが
できる。
In the fabrication of the semiconductor laser device 1, the dislocation concentration region X3 of the laminated structure 101 or the high luminescence region Y3 itself, not the dislocation concentration region of the substrate 100, is used as a reference for the positions of the laser light guiding region and the electrodes 113 and 114. The region X1 and the high luminescence region Y1 are adopted. Dislocation concentrated region X3 and high luminescence region Y of the laminated structure 101
Since 3 is located above the dislocation-concentrated region X1 and the high luminescence region Y1 of the substrate 100, the laser light waveguide region and the electrodes 113 and 114 can be set to desired positions also in this way. In addition, the dislocation concentration region X of the substrate 100
The positions of 1 and the high luminescence region Y1 can be specified from the position of the SiO 2 mask provided when the substrate 100 was manufactured.

【0047】積層構造101の転位集中領域X3や高ル
ミネセンス領域Y3の位置を顕微鏡観察等により確認し
ておき、これを基準として直接レーザ光導波領域や電極
113、114の位置を定めてもよいが、基板100の
転位集中領域X1や高ルミネセンス領域Y1の位置を基
準とする方が効率がよい。転位集中領域X3や高ルミネ
センス領域Y3が発生していないときは、レーザ光導波
領域や電極113、114の位置を上記のように設定す
ることに特に意味はないが、それらが発生していた場合
のために、レーザ光導波領域や電極113、114を常
に基板100の転位集中領域X1や高ルミネセンス領域
Y1の上方や下方から外れる位置に設定するのがよい。
The positions of the dislocation-concentrated region X3 and the high luminescence region Y3 of the laminated structure 101 may be confirmed by observing with a microscope or the like, and the positions of the laser light waveguide region and the electrodes 113 and 114 may be directly determined with reference to these. However, it is more efficient to use the positions of the dislocation concentration region X1 and the high luminescence region Y1 of the substrate 100 as a reference. When the dislocation-concentrated region X3 and the high-luminescence region Y3 are not generated, it is meaningless to set the positions of the laser light waveguide region and the electrodes 113 and 114 as described above, but they are generated. For the sake of convenience, it is preferable that the laser light guiding region and the electrodes 113 and 114 are always set at positions deviating from above and below the dislocation concentrated region X1 and the high luminescence region Y1 of the substrate 100.

【0048】電極113、114の形成にエッチング技
術を用いる場合には、一旦埋め込み層112の上面ある
いはn型GaN基板10の下面の全体にp型電極あるい
はn型電極を成膜し、その後所定の部分をエッチング除
去する。このため、一度は転位集中領域X3、X1を電
極金属が覆うことになる。しかし、前述の転位集中領域
X3を介した電極金属の半導体層への拡散現象は、主と
して素子構造完成後の通電時点で発生するので、電極形
成プロセス中に転位集中領域X3が一度覆われること
は、素子特性上問題を引き起こすことはない。
When the etching technique is used to form the electrodes 113 and 114, a p-type electrode or an n-type electrode is once formed on the entire upper surface of the buried layer 112 or the lower surface of the n-type GaN substrate 10, and then a predetermined amount is formed. The part is removed by etching. Therefore, the dislocation-concentrated regions X3 and X1 are once covered with the electrode metal. However, since the diffusion phenomenon of the electrode metal into the semiconductor layer through the dislocation-concentrated region X3 described above mainly occurs at the time of energization after completion of the device structure, the dislocation-concentrated region X3 is not covered once during the electrode formation process. However, there is no problem in device characteristics.

【0049】また、図3から分かるように、半導体レー
ザ素子1は、素子構造として重要なリッジ構造周辺の外
側に転位集中領域X3を追い出したような構成になって
いる。このため、半導体レーザ素子をチップ単位に分割
する場合には、この転位集中領域X3を境界として切断
すればよい。転位集中領域X3は機械的強度が周囲より
劣るため、硬度の高いIII族窒化物半導体であっても
容易に分割することができる。分割された端面に露出し
た転位集中領域X3の部分は、ウェットエッチングや研
磨などにより除去すれば、チップのエッジ部分を介して
流れるリーク電流も抑止でき、素子特性向上に効果が高
い。または、リッジ構造と転位集中領域X3の間の部分
で分割し、転位集中領域X3そのものをチップ内部から
追い出してしまえば、転位集中領域X3を介して流れる
リーク電流を、未然に防止することができる。
As can be seen from FIG. 3, the semiconductor laser device 1 has a structure in which the dislocation-concentrated region X3 is driven outside the periphery of the ridge structure, which is important as a device structure. Therefore, when the semiconductor laser device is divided into chips, the dislocation concentrated region X3 may be used as a boundary for cutting. Since the dislocation concentrated region X3 has a mechanical strength inferior to that of the surroundings, even a group III nitride semiconductor having high hardness can be easily divided. If the portion of the dislocation concentration region X3 exposed on the divided end face is removed by wet etching, polishing, or the like, the leak current flowing through the edge portion of the chip can be suppressed, which is highly effective in improving the device characteristics. Alternatively, by dividing the dislocation-concentrated region X3 itself from the inside of the chip by dividing the dislocation-concentrated region X3 between the ridge structure and the dislocation-concentrated region X3, a leak current flowing through the dislocation-concentrated region X3 can be prevented in advance. .

【0050】<第2の実施形態>第2の実施形態の半導
体レーザ素子2の構造を図5の縦断面図に模式的に示
し、その作製工程の途中における層構造を図4の縦断面
図に模式的に示す。本実施形態の半導体レーザ素子2
は、第1の実施形態の半導体レーザ素子1を修飾して、
埋め込み層112の上面うちn型GaN基板100の転
位集中領域X1の上方に位置する部位と、基板100の
下面のうち転位集中領域X1の下方に位置する部位とに
誘電体膜115を設けたものである。n型GaN基板1
00と積層構造101の構成や作製方法は第1の実施形
態と同様であり、重複する説明は省略する。
<Second Embodiment> The structure of a semiconductor laser device 2 of the second embodiment is schematically shown in the vertical sectional view of FIG. 5, and the layer structure in the middle of its manufacturing process is shown in the vertical sectional view of FIG. Is schematically shown in. Semiconductor laser device 2 of this embodiment
Modify the semiconductor laser device 1 of the first embodiment to
A dielectric film 115 is provided on the upper surface of the buried layer 112 above the dislocation concentration region X1 of the n-type GaN substrate 100 and on the lower surface of the substrate 100 below the dislocation concentration region X1. Is. n-type GaN substrate 1
No. 00 and the laminated structure 101 are similar in configuration and manufacturing method to those of the first embodiment, and duplicate explanations are omitted.

【0051】誘電体膜115は、図2のようにリッジ構
造を形成した後、フォトリソグラフィプロセスおよびリ
フトオフプロセスにより、SiO2を用いて形成した
(図4)。誘電体膜115の幅は50μm、膜厚は25
0nmである。積層構造101の内部に発生する転位集
中領域X3の幅は、基板100内の転位集中領域X1の
幅に略等しく、5〜40μmであり、埋め込み層112
上面の誘電体膜115は転位集中領域X3が露出してい
てもその全体を覆い、基板100下面の誘電体膜115
も露出した転位集中領域X1全体を覆う。
The dielectric film 115 was formed using SiO 2 by the photolithography process and the lift-off process after forming the ridge structure as shown in FIG. 2 (FIG. 4). The dielectric film 115 has a width of 50 μm and a film thickness of 25.
It is 0 nm. The width of the dislocation-concentrated region X3 generated inside the stacked structure 101 is approximately equal to the width of the dislocation-concentrated region X1 in the substrate 100, which is 5 to 40 μm.
Even if the dislocation concentrated region X3 is exposed, the dielectric film 115 on the upper surface covers the entire dislocation concentrated region X3, and the dielectric film 115 on the lower surface of the substrate 100 is formed.
Also covers the entire dislocation concentrated region X1 exposed.

【0052】誘電体膜115の形成後、誘電体膜11
5、リッジ構造のp型第2コンタクト層111および埋
め込み層112の上面全体にp型電極116を形成し、
n型GaN基板100の下面全体にn型電極117を形
成した(図5)。
After forming the dielectric film 115, the dielectric film 11 is formed.
5, the p-type electrode 116 is formed on the entire upper surfaces of the p-type second contact layer 111 and the buried layer 112 having the ridge structure,
An n-type electrode 117 was formed on the entire lower surface of the n-type GaN substrate 100 (FIG. 5).

【0053】電極116、117は、誘電体膜115に
よって、転位集中領域X3や転位集中領域X1から隔て
られており、電極116と転位集中領域X3の間や電極
117と転位集中領域X1の間を流れる電流はなく、ま
た、電極116の材料金属が転位集中領域X3を介して
積層構造101の内部に拡散することもない。したがっ
て、半導体レーザ素子2も、安定した動作特性を示し、
レーザ発振寿命の長い素子となる。
The electrodes 116 and 117 are separated from the dislocation-concentrated region X3 and the dislocation-concentrated region X1 by the dielectric film 115, and between the electrode 116 and the dislocation-concentrated region X3 and between the electrode 117 and the dislocation-concentrated region X1. There is no current flowing, and the material metal of the electrode 116 does not diffuse inside the stacked structure 101 via the dislocation concentrated region X3. Therefore, the semiconductor laser device 2 also exhibits stable operation characteristics,
The device has a long laser oscillation life.

【0054】なお、誘電体膜115の材料としては、S
iO2の他に、SiN、SiO、ZnO、PbO、Ti
2、ZrO2、CeO2、HfO2、Al23、Bi
23、Cr23、In23、Nd23、Sb23、Ta
25、Y23、AlF3、BaF2、CeF2、CaF2
MgF2、NdF3、PbF2、SrF2、ZnS、ZnS
e等、あるいはこれらの混合物を用いることもできる。
The material of the dielectric film 115 is S
In addition to iO 2 , SiN, SiO, ZnO, PbO, Ti
O 2 , ZrO 2 , CeO 2 , HfO 2 , Al 2 O 3 , Bi
2 O 3 , Cr 2 O 3 , In 2 O 3 , Nd 2 O 3 , Sb 2 O 3 , Ta
2 O 5 , Y 2 O 3 , AlF 3 , BaF 2 , CeF 2 , CaF 2 ,
MgF 2 , NdF 3 , PbF 2 , SrF 2 , ZnS, ZnS
e, etc., or a mixture thereof can also be used.

【0055】また、誘電体膜115の厚さは、1nm〜
1μmの範囲、より好ましくは5nm〜500nmの範
囲であればよい。膜厚が1nmより小さいと電流遮断や
金属拡散防止の効果が不十分になったり、電圧が印加さ
れたときに絶縁破壊が生じたりすることがあるので好ま
しくない。また、膜厚を1μmより大きくすると、誘電
体膜内の応力が大きくなって、膜にひび割れが生じた
り、あるいは膜剥れが生じやすくなるのでやはり好まし
くない。
The dielectric film 115 has a thickness of 1 nm to
It may be in the range of 1 μm, more preferably in the range of 5 nm to 500 nm. If the film thickness is less than 1 nm, the effect of blocking current or preventing metal diffusion may become insufficient, or dielectric breakdown may occur when a voltage is applied, which is not preferable. Further, if the film thickness is larger than 1 μm, the stress in the dielectric film becomes large, and the film is likely to be cracked or peeled off, which is also not preferable.

【0056】誘電体膜115の幅に関しては、転位集中
領域X3や転位集中領域X1の露出部分を完全に覆いう
るようにすればよく、このためには下限はあるものの、
特に上限はない。ただし、誘電体膜115の幅を過度に
大きくすると、レーザ光導波領域に導くべき電流の妨げ
となる可能性が生じ、これを避けるためにレーザ光導波
領域を設ける位置が制約を受ける。したがって、誘電体
膜115の幅は5〜300μmとするのが好ましい。
Regarding the width of the dielectric film 115, it is sufficient to completely cover the exposed portions of the dislocation-concentrated regions X3 and the dislocation-concentrated regions X1. Although there is a lower limit for this,
There is no particular upper limit. However, if the width of the dielectric film 115 is excessively increased, it may interfere with the current to be guided to the laser light guiding region, and in order to avoid this, the position where the laser light guiding region is provided is restricted. Therefore, the width of the dielectric film 115 is preferably 5 to 300 μm.

【0057】<第3の実施形態>第3の実施形態の半導
体レーザ素子3の構造を図8の縦断面図に模式的に示
し、その作製工程の途中における層構造を図6および図
7の縦断面図に模式的に示す。本実施形態の半導体レー
ザ素子3は、第1の実施形態の半導体レーザ素子1を修
飾して、積層構造101の内部のうちn型GaN基板1
00の転位集中領域X1の上方に位置する部位に誘電体
膜118を設けたものである。積層構造101の他の構
成は第1の実施形態と同様である。
<Third Embodiment> The structure of a semiconductor laser device 3 according to a third embodiment is schematically shown in the vertical cross-sectional view of FIG. 8, and the layer structure in the middle of its manufacturing process is shown in FIGS. 6 and 7. It is schematically shown in the longitudinal sectional view. The semiconductor laser device 3 according to the present embodiment is modified from the semiconductor laser device 1 according to the first embodiment, and the n-type GaN substrate 1 in the inside of the laminated structure 101 is modified.
No. 00, the dielectric film 118 is provided in a region located above the dislocation concentration region X1. Other configurations of the laminated structure 101 are similar to those of the first embodiment.

【0058】誘電体膜118はリッジ構造を形成する途
中で形成した。すなわち、前述のように、p型第2コン
タクト層111上面からp型クラッド層109の途中ま
でをドライエッチングにより掘り下げ、p型Al0.1
0.9N層109を露出させた段階で(図6)、基板1
00の転位集中領域X1の上方に位置する部位にSiO
2膜118を成膜し、その後リッジ構造周辺にAl0.1
0.9N埋め込み層112を再成長させて埋め込んだ
(図7)。
The dielectric film 118 is in the process of forming a ridge structure.
Formed in. That is, as described above, the p-type second capacitor
From the top surface of the tact layer 111 to the middle of the p-type cladding layer 109.
With dry etching, p-type Al0.1G
a0.9When the N layer 109 is exposed (FIG. 6), the substrate 1
00 in a region located above the dislocation concentration region X1
2A film 118 is formed, and then Al is formed around the ridge structure.0.1G
a0.9N buried layer 112 was regrown and buried
(Fig. 7).

【0059】誘電体膜118およびリッジ構造の形成
後、リッジ構造のp型第2コンタクト層111と埋め込
み層112の上面全体にp型電極116を形成し、n型
GaN基板100の下面のうち転位集中領域X1の下方
に位置する部位以外にn型電極114を形成した(図
8)。
After forming the dielectric film 118 and the ridge structure, the p-type electrode 116 is formed on the entire upper surfaces of the p-type second contact layer 111 and the buried layer 112 having the ridge structure, and the dislocations in the lower surface of the n-type GaN substrate 100 are formed. The n-type electrode 114 was formed in a portion other than the portion located below the concentrated region X1 (FIG. 8).

【0060】誘電体膜118を設けたことにより、Al
GaN埋め込み層112のエピタキシャル成長に転位集
中領域X3の影響が及ばなくなり、埋め込み層112に
は転位集中領域は発生しない。このため、レーザ光導波
領域以外を流れるリーク電流は低減され、電極116の
材料金属の積層構造101内への拡散も抑えられる。し
たがって、半導体レーザ素子3も、安定した動作特性を
示し、レーザ発振寿命の長い素子となる。
By providing the dielectric film 118, Al
The dislocation concentration region X3 does not affect the epitaxial growth of the GaN burying layer 112, and the dislocation concentration region does not occur in the burying layer 112. For this reason, the leak current flowing in the region other than the laser light guiding region is reduced, and the diffusion of the material metal of the electrode 116 into the laminated structure 101 is also suppressed. Therefore, the semiconductor laser device 3 also exhibits stable operation characteristics and has a long laser oscillation life.

【0061】なお、ここでは誘電体膜118をリッジ構
造のエッチング底面に形成したが、他の界面に設けても
構わない。例えば、n型InGaNクラック防止層10
3とn型AlGaNクラッド層104の界面に設けるこ
ともできる。ただし、本実施形態のように誘電体膜11
8をリッジ構造底面に形成する方が、半導体層の再成長
回数を1回で済ませることができて半導体レーザ素子の
結晶性が向上するという点と、電極の材料金属の拡散が
レーザ光導波領域に及び難いという点の双方で好まし
い。誘電体層118の材料、厚さおよび幅については、
第2の実施形態で説明したことがそのまま当てはまる。
Although the dielectric film 118 is formed on the etching bottom surface of the ridge structure here, it may be provided on another interface. For example, n-type InGaN crack prevention layer 10
It can also be provided at the interface between the n-type AlGaN cladding layer 104 and the n-type AlGaN cladding layer 104. However, as in the present embodiment, the dielectric film 11
8 is formed on the bottom surface of the ridge structure, the semiconductor layer can be regrown once, and the crystallinity of the semiconductor laser element is improved. It is preferable because it is difficult. For the material, thickness and width of the dielectric layer 118:
What has been described in the second embodiment is directly applicable.

【0062】<第4の実施形態>第4の実施形態の半導
体レーザ素子4の構造を図10の縦断面図に模式的に示
し、その作製工程の途中における層構造を図9の縦断面
図に模式的に示す。本実施形態の半導体レーザ素子4
は、第1の実施形態の半導体レーザ素子1を修飾して、
n型GaN基板100の上面のうち転位集中領域X1の
上方に位置する部位に、SiO2の誘電体膜119を設
けたものである。誘電体膜119は積層構造101を形
成する前に基板100上に設けておく(図9)。積層構
造101の作製工程および構成は第1の実施形態と同様
である。
<Fourth Embodiment> The structure of a semiconductor laser device 4 according to a fourth embodiment is schematically shown in the vertical cross-sectional view of FIG. 10, and the layer structure during the manufacturing process thereof is shown in the vertical cross-sectional view of FIG. Is schematically shown in. Semiconductor laser device 4 of this embodiment
Modify the semiconductor laser device 1 of the first embodiment to
A dielectric film 119 of SiO 2 is provided on a portion of the upper surface of the n-type GaN substrate 100 located above the dislocation concentration region X1. The dielectric film 119 is provided on the substrate 100 before forming the laminated structure 101 (FIG. 9). The manufacturing process and configuration of the laminated structure 101 are similar to those of the first embodiment.

【0063】基板100上に誘電体膜119を設けたこ
とにより、n型GaN層102のうち誘電体膜119の
上方および周辺の部分のモフォロジが多少低下するが、
基板100の転位集中領域X1がGaN層102および
その上方の各層のエピタキシャル成長に影響しなくなっ
て、積層構造101内に転位集中領域は発生しない。こ
のため、p型電極116を積層構造101の上面全体に
設けたりn型電極117を基板100の下面全体に設け
たりしても、リーク電流は生じず、p型電極116の材
料金属の積層構造101内への拡散も防止される。した
がって、半導体レーザ素子4も、安定した動作特性を示
し、レーザ発振寿命の長い素子となる。なお、誘電体層
119の材料、厚さおよび幅については、第2の実施形
態で説明したことがそのまま当てはまる。
By providing the dielectric film 119 on the substrate 100, the morphology of the portion of the n-type GaN layer 102 above and around the dielectric film 119 is slightly reduced,
The dislocation-concentrated region X1 of the substrate 100 does not affect the epitaxial growth of the GaN layer 102 and the layers above the GaN layer 102, and the dislocation-concentrated region does not occur in the stacked structure 101. Therefore, even if the p-type electrode 116 is provided on the entire upper surface of the laminated structure 101 or the n-type electrode 117 is provided on the entire lower surface of the substrate 100, a leak current does not occur, and the laminated structure of the material metal of the p-type electrode 116 is formed. Diffusion into 101 is also prevented. Therefore, the semiconductor laser device 4 also exhibits stable operation characteristics and has a long laser oscillation life. The material, thickness, and width of the dielectric layer 119 are the same as those described in the second embodiment.

【0064】<第5の実施形態>第5の実施形態の半導
体レーザ素子5の構造を図12の縦断面図に模式的に示
し、その作製工程の途中における層構造を図11の縦断
面図に模式的に示す。本実施形態の半導体レーザ素子5
は、第1の実施形態の半導体レーザ素子1を修飾して、
リッジ構造の周囲を埋め込む材料としてAlGaNでは
なく誘電体を用い、p型AlGaNクラッド層109上
に誘電体層122を設けたものである。
<Fifth Embodiment> The structure of a semiconductor laser device 5 according to the fifth embodiment is schematically shown in the vertical cross-sectional view of FIG. 12, and the layer structure during the manufacturing process thereof is shown in the vertical cross-sectional view of FIG. Is schematically shown in. Semiconductor laser device 5 of this embodiment
Modify the semiconductor laser device 1 of the first embodiment to
A dielectric is used instead of AlGaN as a material for filling the periphery of the ridge structure, and the dielectric layer 122 is provided on the p-type AlGaN cladding layer 109.

【0065】誘電体層122の形成後(図11)、リッ
ジ構造のp型第2コンタクト層111と誘電体層122
の上面全体にp型電極116を形成し、n型GaN基板
100の下面のうち転位集中領域X1の下方に位置する
部位以外にn型電極114を形成した(図12)。
After forming the dielectric layer 122 (FIG. 11), the p-type second contact layer 111 having a ridge structure and the dielectric layer 122 are formed.
The p-type electrode 116 was formed on the entire upper surface of the n-type GaN substrate 100, and the n-type electrode 114 was formed on the lower surface of the n-type GaN substrate 100 except the portion located below the dislocation concentrated region X1 (FIG. 12).

【0066】本実施形態の半導体レーザ素子5では、積
層構造101の内部に転位集中領域X3が発生しても、
転位集中領域X3は誘電体層122で遮断されてp型電
極116には達しない。したがって、半導体レーザ素子
1〜4と同様に、安定した動作特性を示し、レーザ発振
寿命の長い素子となる。
In the semiconductor laser device 5 of this embodiment, even if the dislocation concentrated region X3 is generated inside the laminated structure 101,
The dislocation concentrated region X3 is blocked by the dielectric layer 122 and does not reach the p-type electrode 116. Therefore, like the semiconductor laser devices 1 to 4, the device exhibits stable operation characteristics and has a long laser oscillation life.

【0067】<比較例>図2に示した第1の実施形態の
半導体レーザ素子1の作製途中の層構成を用いて、比較
例の半導体レーザ素子9を作製した。この半導体レーザ
素子9の構造を図13の縦断面図に模式的に示す。p型
電極212は、積層構造101の上面のうち、基板10
0の転位集中領域X1の上方に位置する部位から高ルミ
ネセンス領域Y1の上方に位置する部位にわたる広い範
囲に設けられており、n型電極213も、基板100の
下面のうち、転位集中領域X1の下方に位置する部位か
ら高ルミネセンス領域Y1の下方に位置する部位にわた
る広い範囲に設けられている。
Comparative Example A semiconductor laser device 9 of a comparative example was manufactured by using the layer structure in the process of manufacturing the semiconductor laser device 1 of the first embodiment shown in FIG. The structure of this semiconductor laser device 9 is schematically shown in the vertical sectional view of FIG. The p-type electrode 212 is formed on the substrate 10 on the upper surface of the laminated structure 101.
0 is provided over a wide range from a region located above the dislocation-concentrated region X1 to a region located above the high-luminescence region Y1. The n-type electrode 213 is also provided on the lower surface of the substrate 100 and has the dislocation-concentrated region X1. Is provided in a wide range from a portion located below the high luminescence region Y1 to a portion located below the high luminescence region Y1.

【0068】各実施形態の半導体レーザ素子1〜5およ
び比較例の半導体レーザ素子9それぞれの多くのサンプ
ルについて発光試験を行ったところ、半導体レーザ素子
9では、60℃、30mWという条件下で、100時間
以内に動作電流が増大する現象がいくつかのサンプルに
現れ、レーザ発振寿命が1000時間を超えたサンプル
は半数程度にとどまった。これに対し、各実施形態の半
導体レーザ素子1〜5では、同じ条件下で、動作電流の
増大は1000時間以上現れず、ほとんどのサンプルが
3000時間以上のレーザ発振寿命を示した。これによ
り、III族窒化物半導体基板に転位集中領域が存在す
ることがIII族窒化物半導体素子の特性を大きく左右
し、各実施形態の構成がIII族窒化物半導体素子の特
性向上に有用であることが確認された。
A light emission test was conducted on many samples of the semiconductor laser devices 1 to 5 of the respective embodiments and the semiconductor laser device 9 of the comparative example. As a result, it was found that the semiconductor laser device 9 was 100 ° C. under the conditions of 60 ° C. and 30 mW. The phenomenon in which the operating current increased within the time appeared in some of the samples, and the number of samples whose laser oscillation life exceeded 1000 hours was about half. On the other hand, in the semiconductor laser devices 1 to 5 of each embodiment, under the same conditions, the increase in operating current did not appear for 1000 hours or longer, and most of the samples exhibited a laser oscillation life of 3000 hours or longer. Thus, the presence of dislocation-concentrated regions in the group III nitride semiconductor substrate greatly affects the characteristics of the group III nitride semiconductor device, and the configurations of the respective embodiments are useful for improving the characteristics of the group III nitride semiconductor device. It was confirmed.

【0069】なお、上記第1〜第5の実施形態の構成
は、実施形態ごとに示したものに限らず、自由に組み合
わせることが可能である。一例をあげれば、コンタクト
層に誘電体膜を設けずにp型電極をパターニングする第
1の実施形態の構成と、基板の下面に誘電体膜を設けて
n型電極を全面に形成する第2の実施形態の構成とを、
組み合わせることができる。
The configurations of the above-described first to fifth embodiments are not limited to those shown in each embodiment, but can be freely combined. As an example, the configuration of the first embodiment in which the p-type electrode is patterned without providing the dielectric film on the contact layer, and the second embodiment in which the dielectric film is provided on the lower surface of the substrate to form the n-type electrode on the entire surface. The configuration of the embodiment of
Can be combined.

【0070】また、第1〜第5の実施形態においては、
リッジ構造の位置つまりレーザ光導波領域の位置を、転
位集中領域X1と高ルミネセンス領域Y1の中央の上方
に設定しているが、どちらかに寄っていても構わない。
実質的にリッジ構造の部分に、転位集中領域X3と高ル
ミネセンス領域Y3のどちらも含まれていなければよ
い。さらに、積層構造側の電流注入部としてはリッジ構
造に限らず、電極ストライプ型であってもBH型であっ
てもよい。
In the first to fifth embodiments,
The position of the ridge structure, that is, the position of the laser light guiding region is set above the center of the dislocation concentrated region X1 and the high luminescence region Y1, but it may be located closer to either one.
It suffices that neither the dislocation-concentrated region X3 nor the high-luminescence region Y3 is substantially included in the ridge structure portion. Further, the current injection portion on the laminated structure side is not limited to the ridge structure, and may be an electrode stripe type or a BH type.

【0071】また、第1の実施形態では電極113、1
14の位置、第2〜第5の実施形態では誘電体層11
5、118、119、122の存在および位置が重要な
のであって、他の層の構造や組成は自由に設定すること
ができる。例えば、各実施形態ではp型コンタクト層を
第1コンタクト層と第2コンタクト層の2層構造として
いるが、コンタクト層を1層としてもよい。電極につい
ても、III族窒化物半導体に適合するオーミック電極
となるものであれば、どのような材料を用いても構わな
い。例えば、p型電極としては、Au/Pd(Pdが半
導体側)、Au/Mo/Pd、Au/Pt/Pd、Au
/Pt/Mo/Pd、Au/Ni、Au/Mo/Ni/
Pd等を、n型電極としては、Al/Hf、Al/T
i、Al/Hf/Ti、Al/Zr等を採用することが
できる。
Further, in the first embodiment, the electrodes 113, 1
14 positions, the dielectric layer 11 in the second to fifth embodiments.
The existence and position of 5, 118, 119 and 122 are important, and the structure and composition of other layers can be freely set. For example, in each embodiment, the p-type contact layer has a two-layer structure of the first contact layer and the second contact layer, but the contact layer may be one layer. As for the electrodes, any material may be used as long as it is an ohmic electrode compatible with the group III nitride semiconductor. For example, as the p-type electrode, Au / Pd (Pd is the semiconductor side), Au / Mo / Pd, Au / Pt / Pd, Au
/ Pt / Mo / Pd, Au / Ni, Au / Mo / Ni /
Al / Hf, Al / T as P-type electrodes such as Pd
i, Al / Hf / Ti, Al / Zr, etc. can be adopted.

【0072】[0072]

【発明の効果】本発明の半導体レーザ素子では、レーザ
光導波領域が良好な特性を有する上、基板に転位集中領
域が存在することに起因する動作電流の増大と電極の材
料金属の拡散による劣化を抑えることができるため、動
作特性が安定し、レーザ発振寿命も長くなる。
In the semiconductor laser device of the present invention, the laser light guide region has good characteristics, and the operating current increases due to the presence of dislocation concentrated regions in the substrate and the deterioration due to the diffusion of the metal material of the electrode. Therefore, the operating characteristics are stable and the laser oscillation life is extended.

【0073】積層構造の上面に設ける電極や基板の下面
に設ける電極を基板の低転位領域の上方や下方のみに位
置させるようにすると、電極を形成する工程までは動作
電流の増大や材料金属の拡散の防止について特別な配慮
は必要でなく、積層構造の作製が容易である。積層構造
の上面のうち転位集中領域の上方に位置する部位および
基板の下面のうち転位集中領域の下方に位置する部位に
電流遮断層を備えるようにしても、電流遮断層を形成す
る工程までは動作電流の増大や材料金属の拡散の防止に
ついての配慮が必要でなく、積層構造の作製が容易であ
る。また、積層構造の内部のうち基板の転位集中領域の
上方に位置する部位に電流遮断層を備えるようにする
と、電極の形成に際して動作電流の増大と材料金属の拡
散の防止について考慮する必要がなく、電極の形状に制
約がなくなる。
If the electrodes provided on the upper surface of the laminated structure and the electrodes provided on the lower surface of the substrate are located only above and below the low dislocation region of the substrate, the operating current increases and the material metal No special consideration is required for the prevention of diffusion, and the laminated structure can be easily manufactured. Even if the current blocking layer is provided on the upper surface of the laminated structure above the dislocation concentrated region and on the lower surface of the substrate below the dislocation concentrated region, the steps up to the step of forming the current blocking layer Since it is not necessary to consider increase of operating current and prevention of diffusion of material metal, it is easy to manufacture a laminated structure. Further, when the current blocking layer is provided in the portion of the laminated structure located above the dislocation concentration region of the substrate, it is not necessary to consider the increase of the operating current and the prevention of the diffusion of the material metal when forming the electrode. , There is no restriction on the shape of the electrode.

【0074】基板の転位集中領域を、上方から見て、積
層構造のレーザ光導波領域と略平行なストライプ状とす
ると、レーザ光導波領域の形成を含めた積層構造の作製
が容易になり、電極や電流遮断層の形成も容易になる。
When the dislocation-concentrated region of the substrate has a stripe shape which is substantially parallel to the laser light guiding region of the laminated structure when viewed from above, the laminated structure including the formation of the laser light guiding region can be easily manufactured, and the electrode It also facilitates the formation of the current blocking layer.

【0075】電流遮断層の厚さを1nm以上かつ1μm
以下とすると、動作電流の増大を確実に防止することが
できる上、ひび割れや剥がれ等の機械的欠陥が生じるお
それも少ない。
The thickness of the current blocking layer is 1 nm or more and 1 μm.
In the case of the following, it is possible to reliably prevent an increase in operating current, and there is less risk that mechanical defects such as cracks and peeling will occur.

【0076】転位集中領域をレーザ光導波領域と略平行
なストライプ状とする場合、電流遮断層の幅を5μm以
上かつ300μm以下とすると、動作電流の増大を確実
に防止することができる上、電流遮断層がレーザ光導波
領域に導くべき電流の妨げになるのを容易に避けること
ができ。
When the dislocation-concentrated region is formed in a stripe shape substantially parallel to the laser light guiding region and the width of the current blocking layer is 5 μm or more and 300 μm or less, an increase in operating current can be reliably prevented and the current can be prevented. It is easy to avoid that the blocking layer interferes with the current to be guided to the laser light guiding region.

【図面の簡単な説明】[Brief description of drawings]

【図1】 第1の実施形態の半導体レーザ素子の作製工
程の途中における層構造を模式的に示す縦断面図。
FIG. 1 is a vertical cross-sectional view schematically showing a layer structure during a manufacturing process of a semiconductor laser device according to a first embodiment.

【図2】 第1の実施形態の半導体レーザ素子の作製工
程の途中における層構造を模式的に示す縦断面図。
FIG. 2 is a vertical cross-sectional view schematically showing a layer structure during a manufacturing process of the semiconductor laser device according to the first embodiment.

【図3】 第1の実施形態の半導体レーザ素子の構造を
模式的に示す縦断面図。
FIG. 3 is a vertical sectional view schematically showing the structure of the semiconductor laser device according to the first embodiment.

【図4】 第2の実施形態の半導体レーザ素子の作製工
程の途中における層構造を模式的に示す縦断面図。
FIG. 4 is a vertical cross-sectional view schematically showing a layer structure during a manufacturing process of the semiconductor laser device according to the second embodiment.

【図5】 第2の実施形態の半導体レーザ素子の構造を
模式的に示す縦断面図。
FIG. 5 is a longitudinal sectional view schematically showing the structure of the semiconductor laser device according to the second embodiment.

【図6】 第3の実施形態の半導体レーザ素子の作製工
程の途中における層構造を模式的に示す縦断面図。
FIG. 6 is a vertical cross-sectional view schematically showing a layer structure during a manufacturing process of a semiconductor laser device according to a third embodiment.

【図7】 第3の実施形態の半導体レーザ素子の作製工
程の途中における層構造を模式的に示す縦断面図。
FIG. 7 is a vertical cross-sectional view schematically showing the layer structure during the manufacturing process of the semiconductor laser device according to the third embodiment.

【図8】 第3の実施形態の半導体レーザ素子の構造を
模式的に示す縦断面図。
FIG. 8 is a vertical sectional view schematically showing the structure of a semiconductor laser device according to a third embodiment.

【図9】 第4の実施形態の半導体レーザ素子の作製工
程の途中における層構造を模式的に示す縦断面図。
FIG. 9 is a vertical cross-sectional view schematically showing the layer structure during the manufacturing process of the semiconductor laser device according to the fourth embodiment.

【図10】 第4の実施形態の半導体レーザ素子の構造
を模式的に示す縦断面図。
FIG. 10 is a vertical sectional view schematically showing the structure of a semiconductor laser device according to a fourth embodiment.

【図11】 第5の実施形態の半導体レーザ素子の作製
工程の途中における層構造を模式的に示す縦断面図。
FIG. 11 is a vertical cross-sectional view schematically showing the layer structure during the manufacturing process of the semiconductor laser device according to the fifth embodiment.

【図12】 第5の実施形態の半導体レーザ素子の構造
を模式的に示す縦断面図。
FIG. 12 is a vertical sectional view schematically showing the structure of a semiconductor laser device according to a fifth embodiment.

【図13】 比較例の半導体レーザ素子の構造を模式的
に示す縦断面図。
FIG. 13 is a vertical sectional view schematically showing the structure of a semiconductor laser device of a comparative example.

【図14】 作製中のGaN基板の一部分を拡大して模
式的に示す縦断面図。
FIG. 14 is a vertical cross-sectional view schematically showing an enlarged part of the GaN substrate being manufactured.

【図15】 作製中のGaN基板の全体を模式的に示す
斜視図。
FIG. 15 is a perspective view schematically showing the entire GaN substrate being manufactured.

【図16】 GaN基板の一部分の縦断面図。FIG. 16 is a vertical cross-sectional view of a part of a GaN substrate.

【図17】 GaN基板の一部分の上面図。FIG. 17 is a top view of a portion of a GaN substrate.

【符号の説明】[Explanation of symbols]

1、2、3、4、5 半導体レーザ素子 10 n型GaN基板 21 支持基体 22 n型GaN層 23 {11−22}ファセット面 24 凹部の最底部 25 {0001}面 100 n型GaN基板 101 III族窒化物半導体積層構造 102 n型GaN層 103 n型In0.07Ga0.93Nクラック防止層 104 n型Al0.1Ga0.9Nクラッド層 105 n型GaN光ガイド層 106 In0.1Ga0.9N/In0.01Ga0.99N3重
量子井戸活性層 107 p型Al0.3Ga0.7Nキャリアブロック層 108 p型GaN光ガイド層 109 p型Al0.1Ga0.9Nクラッド層 110 p型GaN第1コンタクト層 111 p型In0.15Ga0.85N第2コンタクト層 112 Al0.1Ga0.9N埋め込み層 113、116 p型電極 114、117 n型電極 115、118、119 SiO2膜 122 SiO2層 X1 基板の転位集中領域 X2 基板の転位集中領域露出部 Y1 基板の高ルミネセンス領域 Y2 基板の高ルミネセンス領域露出部 X3 積層構造の転位集中領域 Y3 積層構造の高ルミネセンス領域
1, 2, 3, 4, 5 Semiconductor Laser Element 10 n-type GaN Substrate 21 Supporting Substrate 22 n-type GaN Layer 23 {11-22} Facet Face 24 Bottom of Concavity 25 {0001} Face 100 n-type GaN Substrate 101 III Group nitride semiconductor laminated structure 102 n-type GaN layer 103 n-type In 0.07 Ga 0.93 N crack prevention layer 104 n-type Al 0.1 Ga 0.9 N cladding layer 105 n-type GaN optical guide layer 106 In 0.1 Ga 0.9 N / In 0.01 Ga 0.99 N3 quantum well active layer 107 p-type Al 0.3 Ga 0.7 N carrier block layer 108 p-type GaN optical guide layer 109 p-type Al 0.1 Ga 0.9 N cladding layer 110 p-type GaN first contact layer 111 p-type In 0.15 Ga 0.85 N the second contact layer 112 Al 0.1 Ga 0.9 n buried layer 113 and 116 p-type electrode 114 and 117 n-type electrode 115,1 8,119 SiO 2 film 122 SiO 2 layer X1 dislocation concentrated region Y3 layered structure of the high luminescent region Y2 high luminescent region exposed portion X3 laminated structure of the substrate of the dislocation-concentrated region exposed portion Y1 substrate dislocation concentrated region X2 substrate of the substrate High luminescence region of

フロントページの続き (72)発明者 伊藤 茂稔 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 湯浅 貴之 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 種谷 元隆 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 元木 健作 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 Fターム(参考) 5F073 AA13 AA45 AA47 AA51 AA61 AA74 CA07 CB02 DA05 DA07 EA27 Continued front page    (72) Inventor Shigetoshi Ito             22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka             Inside the company (72) Inventor Takayuki Yuasa             22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka             Inside the company (72) Inventor Mototaka Tanetani             22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka             Inside the company (72) Inventor Kensaku Motoki             Sumitomo, 1-1 1-1 Koyokita, Itami City, Hyogo Prefecture             Electric Industry Co., Ltd. Itami Works F-term (reference) 5F073 AA13 AA45 AA47 AA51 AA61                       AA74 CA07 CB02 DA05 DA07                       EA27

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 III族窒化物半導体より成る基板と、
基板の上面に設けられたIII族窒化物半導体より成る
積層構造と、積層構造の上面に設けられた電極を備える
半導体レーザ素子であって、 基板がその下面から上面に達する転位集中領域と転位集
中領域を除く部位である低転位領域とを有し、 積層構造が基板の低転位領域の上方のみに位置するスト
ライプ状のレーザ光導波領域を有し、 電極が基板の低転位領域の上方のみに位置することを特
徴とする半導体レーザ素子。
1. A substrate made of a group III nitride semiconductor,
What is claimed is: 1. A semiconductor laser device comprising: a laminated structure made of a group III nitride semiconductor provided on the upper surface of a substrate; and an electrode provided on the upper surface of the laminated structure. And a low-dislocation region that is a region excluding the region, the laminated structure has a laser-waveguide region in a stripe shape located only above the low-dislocation region of the substrate, and the electrode exists only above the low-dislocation region of the substrate. A semiconductor laser device characterized by being positioned.
【請求項2】 III族窒化物半導体より成る基板と、
基板の上面に設けられたIII族窒化物半導体より成る
積層構造と、基板の下面に設けられた電極を備える半導
体レーザ素子であって、 基板がその下面から上面に達する転位集中領域と転位集
中領域を除く部位である低転位領域とを有し、 積層構造が基板の低転位領域の上方のみに位置するスト
ライプ状のレーザ光導波領域を有し、 電極が基板の低転位領域の下方のみに位置することを特
徴とする半導体レーザ素子。
2. A substrate made of a group III nitride semiconductor,
What is claimed is: 1. A semiconductor laser device comprising: a laminated structure made of a group III nitride semiconductor provided on the upper surface of a substrate; and an electrode provided on the lower surface of the substrate. And a low-dislocation region that is a part except for, the laminated structure has a stripe-shaped laser light guiding region located only above the low-dislocation region of the substrate, and the electrode is located only below the low-dislocation region of the substrate. A semiconductor laser device characterized by:
【請求項3】 III族窒化物半導体より成る基板と、
基板の上面に設けられたIII族窒化物半導体より成る
積層構造を備える半導体レーザ素子であって、 基板がその下面から上面に達する転位集中領域と転位集
中領域を除く部位である低転位領域とを有し、 積層構造が基板の低転位領域の上方のみに位置するスト
ライプ状のレーザ光導波領域を有し、 基板の下面のうち転位集中領域の下方に位置する部位
と、積層構造の上面のうち基板の転位集中領域の上方に
位置する部位とに、それぞれ電流遮断層を備えることを
特徴とする半導体レーザ素子。
3. A substrate made of a group III nitride semiconductor,
A semiconductor laser device having a laminated structure made of a group III nitride semiconductor provided on an upper surface of a substrate, comprising: The laminated structure has a stripe-shaped laser light waveguide region located only above the low dislocation region of the substrate, and the portion of the lower surface of the substrate located below the dislocation concentrated region A semiconductor laser device, comprising: a current blocking layer provided on a portion of the substrate located above the dislocation concentration region.
【請求項4】 III族窒化物半導体より成る基板と、
基板の上面に設けられたIII族窒化物半導体より成る
積層構造を備える半導体レーザ素子であって、 基板がその下面から上面に達する転位集中領域と転位集
中領域を除く部位である低転位領域とを有し、 積層構造が基板の低転位領域の上方のみに位置するスト
ライプ状のレーザ光導波領域を有し、 積層構造の内部のうち基板の転位集中領域の上方に位置
する部位に電流遮断層を備えることを特徴とする半導体
レーザ素子。
4. A substrate made of a group III nitride semiconductor,
A semiconductor laser device having a laminated structure made of a group III nitride semiconductor provided on the upper surface of a substrate, wherein a dislocation concentrated region where the substrate reaches the upper surface from the lower surface and a low dislocation region which is a portion excluding the dislocation concentrated region are formed. The laminated structure has a stripe-shaped laser light guiding region located only above the low dislocation region of the substrate, and the current blocking layer is provided inside the laminated structure above the dislocation concentration region of the substrate. A semiconductor laser device comprising:
【請求項5】 基板の転位集中領域が、上方から見て、
積層構造のレーザ光導波領域と略平行なストライプ状で
あることを特徴とする請求項1から請求項4までのいず
れか1項に記載の半導体レーザ素子。
5. The dislocation concentration region of the substrate is viewed from above,
The semiconductor laser device according to any one of claims 1 to 4, wherein the semiconductor laser device has a stripe shape that is substantially parallel to a laser light guiding region of a laminated structure.
【請求項6】 電流遮断層がSiO2、SiN、Si
O、ZnO、PbO、TiO2、ZrO2、CeO2、H
fO2、Al23、Bi23、Cr23、In23、N
23、Sb23、Ta25、Y23、AlF3、Ba
2、CeF2、CaF2、MgF2、NdF3、PbF2
SrF2、ZnSおよびZnSeのうちの少なくとも1
種類を含む誘電体から成ることを特徴とする請求項3、
請求項4、または請求項3もしくは請求項4のいずれか
1項を引用する請求項5に記載の半導体レーザ素子。
6. The current blocking layer is SiO 2 , SiN, Si
O, ZnO, PbO, TiO 2 , ZrO 2 , CeO 2 , H
fO 2 , Al 2 O 3 , Bi 2 O 3 , Cr 2 O 3 , In 2 O 3 , N
d 2 O 3 , Sb 2 O 3 , Ta 2 O 5 , Y 2 O 3 , AlF 3 , Ba
F 2 , CeF 2 , CaF 2 , MgF 2 , NdF 3 , PbF 2 ,
At least one of SrF 2 , ZnS, and ZnSe
4. A dielectric comprising a type,
The semiconductor laser device according to claim 5, wherein claim 4 or any one of claim 3 or claim 4 is cited.
【請求項7】 電流遮断層の厚さが1nm以上かつ1μ
m以下であることを特徴とする請求項3、請求項4、ま
たは請求項3もしくは請求項4のいずれか1項を引用す
る請求項5に記載の半導体レーザ素子。
7. The current blocking layer has a thickness of 1 nm or more and 1 μm.
6. The semiconductor laser device according to claim 5, wherein m or less, claim 3, claim 4, or claim 3 or claim 4 cited.
【請求項8】 電流遮断層の幅が5μm以上かつ300
μm以下であることを特徴とする請求項3または請求項
4のいずれか1項を引用する請求項5に記載の半導体レ
ーザ素子。
8. The width of the current blocking layer is 5 μm or more and 300.
The semiconductor laser device according to claim 5, wherein the semiconductor laser device has a thickness of not more than μm.
JP2003001255A 2002-01-10 2003-01-07 Group III nitride semiconductor laser device and method of manufacturing the same Expired - Fee Related JP3926271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003001255A JP3926271B2 (en) 2002-01-10 2003-01-07 Group III nitride semiconductor laser device and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002003004 2002-01-10
JP2002-3004 2002-01-10
JP2003001255A JP3926271B2 (en) 2002-01-10 2003-01-07 Group III nitride semiconductor laser device and method of manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006346428A Division JP3973679B2 (en) 2002-01-10 2006-12-22 Group III nitride semiconductor laser device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2003273470A true JP2003273470A (en) 2003-09-26
JP3926271B2 JP3926271B2 (en) 2007-06-06

Family

ID=29217823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003001255A Expired - Fee Related JP3926271B2 (en) 2002-01-10 2003-01-07 Group III nitride semiconductor laser device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3926271B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005159278A (en) * 2003-07-11 2005-06-16 Nichia Chem Ind Ltd Nitride semiconductor laser device and method of manufacturing the same
JP2007180589A (en) * 2003-02-07 2007-07-12 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing same
JP2007184371A (en) * 2006-01-05 2007-07-19 Sumitomo Electric Ind Ltd Nitride semiconductor device with integrated electrodes
JP2007227790A (en) * 2006-02-24 2007-09-06 Sumitomo Electric Ind Ltd Nitride semiconductor device
JP2007251220A (en) * 2003-02-07 2007-09-27 Sanyo Electric Co Ltd Semiconductor element and manufacturing method thereof
WO2008004437A1 (en) * 2006-07-05 2008-01-10 Panasonic Corporation Semiconductor light emitting element and method for fabricating the same
US7372077B2 (en) 2003-02-07 2008-05-13 Sanyo Electric Co., Ltd. Semiconductor device
JP2008177438A (en) * 2007-01-19 2008-07-31 Sumitomo Electric Ind Ltd Nitride semiconductor light-emitting element
JP2008294343A (en) * 2007-05-28 2008-12-04 Sanyo Electric Co Ltd Method for manufacturing nitride semiconductor laser element
JP2008294344A (en) * 2007-05-28 2008-12-04 Sanyo Electric Co Ltd Method for manufacturing nitride-based semiconductor laser element
JP2009054813A (en) * 2007-08-28 2009-03-12 Sanyo Electric Co Ltd Semiconductor element, and manufacturing method thereof
JP2009177211A (en) * 2003-02-07 2009-08-06 Sanyo Electric Co Ltd Semiconductor device and method for manufacturing the same
JP2009253164A (en) * 2008-04-09 2009-10-29 Sumitomo Electric Ind Ltd Method for forming quantum well structure and method for manufacturing semiconductor light-emitting element
US7834423B2 (en) 2005-09-05 2010-11-16 Sumitomo Electric Industries, Ltd. Method of producing a nitride semiconductor device and nitride semiconductor device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7589357B2 (en) 2003-02-07 2009-09-15 Sanyo Electric Co., Ltd. Semiconductor device and method of fabricating the same
JP2009177211A (en) * 2003-02-07 2009-08-06 Sanyo Electric Co Ltd Semiconductor device and method for manufacturing the same
US8101465B2 (en) 2003-02-07 2012-01-24 Sanyo Electric Co., Ltd. Method of fabricating a semiconductor device with a back electrode
JP2007251220A (en) * 2003-02-07 2007-09-27 Sanyo Electric Co Ltd Semiconductor element and manufacturing method thereof
US7372077B2 (en) 2003-02-07 2008-05-13 Sanyo Electric Co., Ltd. Semiconductor device
JP2007180589A (en) * 2003-02-07 2007-07-12 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing same
JP2005159278A (en) * 2003-07-11 2005-06-16 Nichia Chem Ind Ltd Nitride semiconductor laser device and method of manufacturing the same
US7834423B2 (en) 2005-09-05 2010-11-16 Sumitomo Electric Industries, Ltd. Method of producing a nitride semiconductor device and nitride semiconductor device
JP2007184371A (en) * 2006-01-05 2007-07-19 Sumitomo Electric Ind Ltd Nitride semiconductor device with integrated electrodes
JP2007227790A (en) * 2006-02-24 2007-09-06 Sumitomo Electric Ind Ltd Nitride semiconductor device
US8178889B2 (en) 2006-07-05 2012-05-15 Panasonic Corporation Semiconductor light emitting element having a single defect concentrated region and a light emitting which is not formed on the single defect concentrated region
WO2008004437A1 (en) * 2006-07-05 2008-01-10 Panasonic Corporation Semiconductor light emitting element and method for fabricating the same
JP2008177438A (en) * 2007-01-19 2008-07-31 Sumitomo Electric Ind Ltd Nitride semiconductor light-emitting element
JP2008294343A (en) * 2007-05-28 2008-12-04 Sanyo Electric Co Ltd Method for manufacturing nitride semiconductor laser element
JP2008294344A (en) * 2007-05-28 2008-12-04 Sanyo Electric Co Ltd Method for manufacturing nitride-based semiconductor laser element
JP2009054813A (en) * 2007-08-28 2009-03-12 Sanyo Electric Co Ltd Semiconductor element, and manufacturing method thereof
JP2009253164A (en) * 2008-04-09 2009-10-29 Sumitomo Electric Ind Ltd Method for forming quantum well structure and method for manufacturing semiconductor light-emitting element
JP4539752B2 (en) * 2008-04-09 2010-09-08 住友電気工業株式会社 Method for forming quantum well structure and method for manufacturing semiconductor light emitting device
US8173458B2 (en) 2008-04-09 2012-05-08 Sumitomo Electric Industries, Ltd. Method for forming quantum well structure and method for manufacturing semiconductor light emitting element

Also Published As

Publication number Publication date
JP3926271B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
US7153715B2 (en) Semiconductor device and method for fabricating the same
KR101011945B1 (en) Manufacturing methods for nitride semiconductor and semiconductor device
JP4288743B2 (en) Nitride semiconductor growth method
JP3571641B2 (en) Nitride semiconductor device
EP1378949A1 (en) Semiconductor light-emitting device
KR100874077B1 (en) Nitride semiconductor laser device and method of manufacturing the same
US6812496B2 (en) Group III nitride semiconductor laser device
JP2000156524A (en) Semiconductor device, semiconductor substrate and manufacture thereof
KR20000035610A (en) Semiconductor thin film, semiconductor element and semiconductor device, and fabrication methods thereof
JP3998639B2 (en) Manufacturing method of semiconductor light emitting device
JPH11135770A (en) Iii-v compd. semiconductor, manufacture thereof and semiconductor element
JP3926271B2 (en) Group III nitride semiconductor laser device and method of manufacturing the same
JP4266694B2 (en) Nitride semiconductor laser device and optical device
JP2008028374A (en) Nitride semiconductor laser device
JP4015865B2 (en) Manufacturing method of semiconductor device
JP2002270971A (en) Nitride semiconductor element
JP2006165407A (en) Nitride semiconductor laser device
JP3916584B2 (en) Nitride semiconductor laser device
KR100639747B1 (en) Semiconductor laser, semiconductor device and their manufacturing methods
JP4163240B2 (en) Semiconductor light emitting device manufacturing method and semiconductor light emitting device manufacturing method
JP2008028375A (en) Nitride semiconductor laser device
JP2007184644A (en) Semiconductor device and method of manufacturing same
JP4637503B2 (en) Manufacturing method of nitride semiconductor laser device
JP3973679B2 (en) Group III nitride semiconductor laser device and method of manufacturing the same
JP3982521B2 (en) Nitride semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070227

R150 Certificate of patent or registration of utility model

Ref document number: 3926271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees