JP2003266210A - Surface coated cemented carbide cutting tool with hard coating layer displaying excellent wear resistance - Google Patents

Surface coated cemented carbide cutting tool with hard coating layer displaying excellent wear resistance

Info

Publication number
JP2003266210A
JP2003266210A JP2002069774A JP2002069774A JP2003266210A JP 2003266210 A JP2003266210 A JP 2003266210A JP 2002069774 A JP2002069774 A JP 2002069774A JP 2002069774 A JP2002069774 A JP 2002069774A JP 2003266210 A JP2003266210 A JP 2003266210A
Authority
JP
Japan
Prior art keywords
layer
crystal structure
average
hard coating
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002069774A
Other languages
Japanese (ja)
Other versions
JP3855261B2 (en
Inventor
Tetsuhiko Honma
哲彦 本間
Katsumi Kobayashi
勝己 小林
Fumio Tsushima
文雄 対馬
Kazuhiro Kono
和弘 河野
Yoko Watanabe
陽子 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002069774A priority Critical patent/JP3855261B2/en
Publication of JP2003266210A publication Critical patent/JP2003266210A/en
Application granted granted Critical
Publication of JP3855261B2 publication Critical patent/JP3855261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cemented carbide cutting tool in which a hard coating layer exerts excellent wear resistance. <P>SOLUTION: This surface coated cemented carbide cutting tool with an entire average layer thickness of 12 to 25 μm has a hard coating layer on a cemented carbide surface. The coating layer is constituted by (a) a lower layer, (b) an upper layer, and (c) a surface layer via an intermediate layer. (a) The lower layer is a titanium carbonitride layer of longitudinally long grown crystal structure having an average layer thickness of 6 to 15 μm. (b) The upper layer has an average layer thickness of 3 to 10 μm, and a granular crystal structure and a mixed phase structure whose crystal structure consists of α and κ aluminas, the ratio of both of the aluminas satisfying the formula, Fα/(Fα+Fκ)=0.1 to 0.4, wherein Fα and Fκ represent the totals of peak intensities appearing on the α and κ crystal surfaces, respectively in diffraction patterns of X ray diffraction method. (c) The surface layer is a titanium carbide layer and/or a titanium carbonitride of a compressive stress holding layer having an average layer thickness of 1.5 of 4 μm and a granular crystal structure. Furthermore, the intermediate layer is a titanium nitride having an average layer thickness of 0.1 to 0.6 μm and a granular crystal structure. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、硬質被覆層が、
一段とすぐれた耐摩耗性を発揮し、使用寿命の一層の延
命化を可能とする表面被覆超硬合金製切削工具(以下、
被覆超硬工具という)に関するものである。 【0002】 【従来の技術】一般に、被覆超硬工具には、各種の鋼や
鋳鉄などの被削材の旋削加工や平削り加工にバイトの先
端部に着脱自在に取り付けて用いられるスローアウエイ
チップ、前記被削材の穴あけ加工などに用いられるドリ
ルやミニチュアドリル、さらに前記被削材の面削加工や
溝加工、肩加工などに用いられるソリッドタイプのエン
ドミルなどがあり、また前記スローアウエイチップを着
脱自在に取り付けて前記ソリッドタイプのエンドミルと
同様に切削加工を行うスローアウエイエンドミル工具な
どが知られている。 【0003】また、一般に、上記の被覆超硬工具とし
て、炭化タングステン基超硬合金基体(以下、超硬基体
という)の表面に、(a)例えば通常の化学蒸着装置を
用い、いずれも粒状結晶組織を有する、Tiの炭化物
(以下、TiCで示す)層、窒化物(以下、同じくTi
Nで示す)層、炭窒化物(以下、TiCNで示す)層、
炭酸化物(以下、TiCOで示す)層、および炭窒酸化
物(以下、TiCNOで示す)層のうちの1層または2
層以上の複層からなり、かつ0.5〜15μmの平均層
厚を有する下部層、(b)同じく通常の化学蒸着装置を
用い、粒状結晶組織を有する高温硬質層である酸化アル
ミニウム(以下、Al23で示す)層からなり、かつ
0.5〜15μmの平均層厚を有する上部層、以上
(a)および(b)で構成された硬質被覆層を蒸着形成
してなる、被覆超硬工具が知られており、これが各種の
鋼や鋳鉄などの連続切削や断続切削に用いられることも
よく知られるところである。さらに、上記Al23層に
は結晶構造がα型のもの(以下、α−Al23で示す)
やκ型のもの(以下、κ−Al23で示す)などが広く
実用に供されることも良く知られており、また例えば特
開平6−8010号公報や特開平7−328808号公
報に記載されるように、上記下部層として、通常の化学
蒸着装置にて、反応ガスとして有機炭窒化物を含む混合
ガスを使用し、700〜950℃の中温温度域で化学蒸
着することにより縦長成長結晶組織とし、この組織によ
り層自身の靭性を向上を図った炭窒化チタン層(以下、
l−TiCN層で示す)も知られている。 【0004】 【発明が解決しようとする課題】近年の切削加工装置の
FA化はめざましく、一方で切削加工に対する省力化お
よび省エネ化、さらに低コスト化の要求も強く、これに
伴い、切削工具にはより一層の耐摩耗性向上を図って、
使用寿命をより一層延命化することが求められている。 【0005】 【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、硬質被覆層がすぐれた耐摩耗性
を発揮し、使用寿命の延命化を可能とする被覆超硬工具
を開発すべく研究を行った結果、 (a)上記の超硬基体の表面に蒸着形成される硬質被覆
層の下部層をl−TiCN層からなる高靭性層とすると
共に、同上部層をα−Al23とκ−Al23の混合相
組織を有し、かつ前記α−Al23とκ−Al23の相
互割合が、X線回折法により得られた回折パターンにお
いて、α型結晶面に現れるピーク強度の合計をFα、κ
型結晶面に現れるピーク強度の合計をFκとした場合、 Fα/(Fα+Fκ)=0.1〜0.4、 を満足する高温硬質層であるAl23結晶混合層に特定
し、かつ前記超硬基体と下部層、および前記下部層と上
部層の間に、密着層としてTiN層からなる中間薄層を
介在させた上で、前記上部層のAl23結晶混合層の表
面に、表面層として、いずれも粒状結晶組織を有する炭
化チタン層および/または炭窒化チタン層(以下、Ti
C層/TiCN層で示す)を蒸着形成した構成とする
と、かかる構成の硬質被覆層を超硬基体の表面に蒸着形
成してなる被覆超硬工具においては、切削時に発生する
高熱によって硬質被覆層の上部層であるAl23結晶混
合層におけるκ−Al23相がκ型からα型へ体積収縮
を伴う相変態を起すが、これと共存するα−Al23
による触媒作用で前記相変態が促進されるようになるこ
と。 (b)上記の上部層におけるκ−Al23相の相変態に
伴って発生した体積収縮を下部層のl−TiCN層は、
これのもつ縦長成長結晶組織によって十分に吸収するこ
とから、前記l−TiCN層内に内部応力が残留するこ
とはないが、上記の表面層であるTiC層/TiCN層
は前記上部層の体積収縮を吸収することができないこと
から、前記上部層には大きな圧縮内部応力が残留するよ
うになること。 (c)上記の(a)および(b)の硬質被覆層の表面層
が圧縮内部応力を保持するTiC層/TiCN層で構成
された被覆超硬工具は、切刃部の耐摩耗性が一段と向上
し、使用寿命の一層の延命化が可能となること。以上
(a)〜(c)に示される研究結果を得たのである。 【0006】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、12〜25μ
mの全体平均層厚を有する硬質被覆層を蒸着形成してな
る被覆超硬工具において、前記硬質被覆層を、いずれも
0.1〜0.6μmの平均層厚を有する密着層であるT
iN層からなる中間薄層を介して蒸着形成された、
(a)6〜15μmの平均層厚を有する高靭性層である
l−TiCN層からなる下部層と、(b)3〜10μm
の平均層厚およびα−Al23とκ−Al23の混合相
組織を有し、かつ前記α−Al23とκ−Al23の相
互割合が、X線回折法により得られた回折パターンにお
いて、α型結晶面に現れるピーク強度の合計をFα、κ
型結晶面に現れるピーク強度の合計をFκとした場合、
Fα/(Fα+Fκ)=0.1〜0.4、を満足する高
温硬質層であるAl23結晶混合層からなる上部層、
(c)さらに、上記の上部層の表面に直接蒸着形成され
た、1.5〜4μmの平均層厚を有する圧縮応力保持層
であるTiC層/TiCN層からなる表面層、で構成し
てなる、硬質被覆層がすぐれた耐摩耗性を発揮する被覆
超硬工具に特徴を有するものである。 【0007】つぎに、この発明の被覆超硬工具の硬質被
覆層に関し、平均層厚、さらにAl 23結晶混合層にお
ける相互割合を上記の通り限定した理由を説明する。 (1)中間薄層 中間薄層を構成するTiN層には、上記の通り超硬基体
と下部層、および下部層と上部層の間に密着層として存
在し、これら両層の相互密着性を向上させる作用がある
が、その平均層厚が0.1μm未満では所望のすぐれた
密着性を確保することができず、一方その平均層厚が
0.6μmを越えると、硬質被覆層の耐摩耗性低下の原
因となるばかりでなく、これが障害層として働き、上部
層の相変態に伴う体積収縮の下部層への吸収が不十分と
なり、上部層自体に圧縮応力が残留するようになり、こ
の結果前記上部層が相対的に層厚であることと相俟っ
て、チッピングが発生し易くなることから、その平均層
厚を0.1〜0.6μmと定めた。 【0008】(2)下部層 下部層を構成するl−TiCN層には、高靭性層として
基本的に硬質被覆層の靭性を向上させ、切削時に発生す
る機械的熱的衝撃を緩和し、前記硬質被覆層にチッピン
グが発生するのを著しく抑制するほか、上記の通り上部
層で発生した体積収縮を吸収して、前記上部層に欠けや
チッピング発生の原因となる圧縮応力が残留しないよう
にする作用があるが、その平均層厚が6μm未満では前
記作用に所望の効果が得られず、一方その平均層厚が1
5μmを越えると、前記硬質被覆層に偏摩耗の原因とな
る塑性変形が発生し易くなることから、その平均層厚を
6〜15μmと定めた。 【0009】(3)上部層 上部層を構成するAl23結晶混合層におけるα−Al
23には、上記の通りκ−Al23がα−Al23へ体
積収縮を伴う相変態を行なうのを促進する作用がある
が、上記の通り回折パターンにおけるα型結晶面、一般
には(012)面、(104)面、(110)、(11
3)面、(024)面、および(116)面に現れるピ
ーク強度の合計をFα、同じくκ型結晶面、一般には
(002)面、(112)面、(013)面、(12
2)面、(015)面、および(050)面に現れるピ
ーク強度の合計をFκとした場合、Fα/(Fα+F
κ)の値が0.1未満では、相対的にα−Al23の割
合が少な過ぎてκ−Al23のα−Al23への相変態
促進効果が不十分であり、一方前記Fα/(Fα+F
κ)の値が0.4を越えると、相対的に相変態するκ−
Al23の割合が少なくなり過ぎて前記上部層に所望の
圧縮内部応力を残留させることが困難になることから、
前記Fα/(Fα+Fκ)の値を0.1〜0.4に定め
た。また、α−Al23およびκ−Al23のいずれ
も、すぐれた高温硬さと耐熱性を有するので、高温硬質
層として硬質被覆層に硬さと耐熱性を付与せしめ、もっ
て上記下部層との共存においてチッピングの発生なく、
すぐれた耐摩耗性を発揮せしめる作用があるが、その平
均層厚が3μm未満では所望のすぐれた耐摩耗性を確保
することができず、一方その平均層厚が10μmを越え
ると、硬質被覆層にチッピングが発生し易くなることか
ら、その平均層厚を3〜10μmと定めた。 【0010】(4)表面層 表面層を構成するTiC層/TiCN層には、上記の通
り上部層を構成するAl23結晶混合層におけるκ−A
23の切削時におけるα−Al23への相変態に伴う
体積収縮によって高い圧縮応力が残留するようになり、
この圧縮応力保持層としての表面層は、切削加工中常に
高い圧縮応力を保持するようになることと相俟って、圧
縮応力が存在しないTiC層/TiCN層に比してすぐ
れた耐摩耗性を発揮するようになるが、その平均層厚が
1.5μm未満では上部層の体積収縮によって割れが発
生し、前記体積収縮現象によって発生する圧縮応力を層
内に十分に保持することができず、一方その平均層厚が
4μmを越えると、上部層における相変態が緩慢にな
り、この結果表面層における圧縮応力の残留も小さなも
のとなって、前記表面層に所望の耐摩耗性向上効果が得
られないことから、その平均層厚を1.5〜4μmと定
めた。 【0011】(5)硬質被覆層 その全体平均層厚が12μm未満では所望のすぐれた耐
摩耗性を確保することができず、一方その平均層厚が2
5μmを越えると、硬質被覆層にチッピングが発生し易
くなることから、その平均層厚を12〜25μmと定め
た。なお、被覆超硬工具の使用前後の識別を容易にする
目的で、最表面層として黄金色の色調を有するTiN層
を0.1〜0.5μmの平均層厚で蒸着形成しても良
い。 【0012】 【発明の実施の形態】つぎに、この発明の被覆超硬工具
を実施例により具体的に説明する。原料粉末として、い
ずれも0.5〜4μmの範囲内の所定の平均粒径を有す
るWC粉末、TiC粉末、TaC粉末、NbC粉末、C
32粉末、TiN粉末、およびCo粉末を用意し、こ
れら原料粉末を表1に示される配合組成に配合し、ボー
ルミルでアルコールを加えて24時間湿式混合し、乾燥
した後、150MPaの圧力で所定形状の圧粉体にプレ
ス成形し、この圧粉体を6Pa以下の真空中、1370
〜1470℃の範囲内の所定温度に1時間保持の条件で
真空焼結し、焼結後、切刃稜線部にR:0.07のホー
ニング加工を施すことにより、ISO・CNMG120
408に規定するスローアウエイチップ形状をもった超
硬基体A〜Fをそれぞれ製造した。なお、上記の超硬基
体A〜Fのうちの超硬基体C〜Fの表面部には表面から
5〜30μmの深さ範囲に亘ってCo富化領域(軟化
層)が形成されていた。 【0013】ついで、これらの超硬基体A〜Fの表面
に、通常の化学蒸着装置を用い、表2(表中のl−Ti
CNは特開平6−8010号公報に記載される縦長成長
結晶組織をもつTiCN層の形成条件を示すものであ
る)に示される条件にて、表3,4に示される組成およ
び目標層厚の硬質被覆層を形成し、さらに最終的にすく
い面と逃げ面の交わる切刃稜線部を、炭化珪素粉を分散
含有するウレタン樹脂製の砥石で表面研磨することによ
り、本発明被覆超硬工具1〜12および比較被覆超硬工
具1〜12をそれぞれ製造した。なお、比較被覆超硬工
具1〜12は、いずれも硬質被覆層の上部層がα−Al
23またはκ−Al23からなり、かつ表面層の形成が
ないものである。 【0014】この結果得られた本発明被覆超硬工具1〜
12および比較被覆超硬工具の硬質被覆層の組成および
層厚を、X線回析装置、さらに走査型電子顕微鏡を用い
て測定したところ、表3,4の組成および目標層厚と実
質的に同じ組成および平均層厚(任意5ヶ所測定の平均
値との比較)を示した。また、上記の本発明被覆超硬工
具1〜12の硬質被覆層を構成する上部層であるAl2
3結晶混合層について、これのX線回析パターンか
ら、α型結晶面である(012)面、(104)面、
(110)、(113)面、(024)面、および(1
16)面に現れるピーク強度の合計:Fα、同じくκ型
結晶面である(002)面、(112)面、(013)
面、(122)面、(015)面、および(050)面
に現れるピーク強度の合計:Fκを求め、これらの値か
らFα/(Fα+Fκ)の値を算出し、この算出結果を
表5に示した。 【0015】つぎに、上記本発明被覆超硬工具1〜12
および比較被覆超硬工具1〜12について、これを工具
鋼製バイトの先端部に固定治具にてネジ止めした状態
で、 被削材:JIS・SCM440の丸棒、 切削速度:420m/min.、 切り込み:1.5mm、 送り:0.3mm/rev.、 切削時間:5分、 の条件での合金鋼の乾式連続切削試験、 被削材:JIS・S20Cの長さ方向等間隔4本縦溝入
り丸棒、 切削速度:330m/min.、 切り込み:2.0mm、 送り:0.2mm/rev.、 切削時間:5分、 の条件での炭素鋼の乾式断続切削試験、さらに、 被削材:JIS・FCD450の丸棒、 切削速度:150m/min.、 切り込み:2.0mm、 送り:0.25mm/rev.、 切削時間:2分、 の条件での球状黒鉛鋳鉄の乾式連続切削試験を行い、い
ずれの切削試験でも切刃の逃げ面摩耗幅を測定した。こ
の測定結果を表5に示した。 【0016】 【表1】【0017】 【表2】 【0018】 【表3】【0019】 【表4】 【0020】 【表5】【0021】 【発明の効果】表3〜5に示される結果から、本発明被
覆超硬工具1〜12は、硬質被覆層の表面層を構成する
TiC層/TiCN層に、上部層であるAl23結晶混
合層におけるκ−Al23の切削時におけるα−Al2
3への相変態に伴う体積収縮によって高い圧縮応力が
残留するようになり、この圧縮応力保持層としての表面
層は、切削加工中常に高い圧縮応力を保持するようにな
ることと相俟って、前記表面層であるTiC層/TiC
N層が存在せず、かつ上部層がα−Al23層またはκ
−Al23層からなる比較被覆超硬工具1〜12に比し
て、すぐれた耐摩耗性を発揮することが明らかである。
上述のように、この発明の被覆超硬工具は、各種の鋼や
鋳鉄などの連続切削や断続切削加工ですぐれた耐摩耗性
を発揮し、切削加工のさらに一段の省力化および省エネ
化、さらに低コスト化を可能とするものである。
DETAILED DESCRIPTION OF THE INVENTION [0001] TECHNICAL FIELD The present invention relates to a hard coating layer comprising:
Demonstrates even better wear resistance, further extending service life
Surface coated cemented carbide cutting tools that enable life
Coated carbide tools). [0002] 2. Description of the Related Art In general, coated carbide tools include various types of steel and steel.
For turning and planing of workpieces such as cast iron
Throwaway used detachably attached to the end
Tips and drills used for drilling the work material
Tools and miniature drills, as well as face milling of the work material
Solid type end used for groove processing, shoulder processing, etc.
Domill, etc.
Removably attached to the solid type end mill
Similarly, a slow-away end mill tool that performs cutting
Which is known. [0003] Generally, the above-mentioned coated carbide tool is used.
A tungsten carbide-based cemented carbide substrate
(A), for example, a normal chemical vapor deposition apparatus
Used, each having a granular crystal structure, Ti carbide
(Hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiC).
N) layer, carbonitride (hereinafter referred to as TiCN) layer,
Carbon dioxide (hereinafter, referred to as TiCO) layer and carbonitridation
One or two of the material (hereinafter, referred to as TiCNO) layers
An average layer of 0.5 to 15 μm consisting of multiple layers
Lower layer having a thickness, (b) also using a conventional chemical vapor deposition apparatus
Al oxide used as a high-temperature hard layer having a granular crystal structure
Minium (hereinafter referred to as AlTwoOThree), And
An upper layer having an average layer thickness of 0.5 to 15 μm,
Hard coating layer composed of (a) and (b) is formed by vapor deposition
A known coated carbide tool is
It is also used for continuous and interrupted cutting of steel and cast iron.
It is well known. Further, the above AlTwoOThreeIn layers
Has an α-type crystal structure (hereinafter referred to as α-AlTwoOThreeIndicated by
And κ type (hereinafter κ-AlTwoOThreeEtc.)
It is well known that it is put to practical use.
JP-A-6-8010 and JP-A-7-328808
As described in the report, as the lower layer, ordinary chemical
Mixing containing organic carbonitride as reaction gas in vapor deposition equipment
Using gas, chemical vapor at a medium temperature range of 700 to 950 ° C
To form a vertically elongated crystal structure.
Titanium carbonitride layer (hereinafter, referred to as
(indicated by an l-TiCN layer) are also known. [0004] SUMMARY OF THE INVENTION In recent years,
The adoption of FA is remarkable, while saving labor for cutting.
There are strong demands for energy saving, energy saving, and cost reduction.
Along with this, we aim to further improve the wear resistance of cutting tools,
There is a demand for further extending the service life. [0005] Means for Solving the Problems Accordingly, the present inventors have
In view of the above, the hard coating layer has excellent wear resistance
Coated carbide tool that demonstrates high performance and extends the service life
As a result of conducting research to develop (A) Hard coating formed by vapor deposition on the surface of the above-mentioned super-hard substrate
When the lower layer of the layer is a high toughness layer composed of an l-TiCN layer,
In both cases, the upper layer is α-AlTwoOThreeAnd κ-AlTwoOThreeMixed phase
Having a structure, and the α-AlTwoOThreeAnd κ-AlTwoOThreePhase of
Mutual proportions are found in the diffraction pattern obtained by the X-ray diffraction method.
And the sum of the peak intensities appearing on the α-type crystal plane is Fα, κ
When the sum of the peak intensities appearing on the type crystal plane is Fκ, Fα / (Fα + Fκ) = 0.1 to 0.4, Is a high-temperature hard layer that satisfiesTwoOThreeSpecific to crystal mixed layer
And the cemented carbide substrate and lower layer, and the lower layer and upper
An intermediate thin layer made of a TiN layer is used as an adhesion layer between the partial layers.
With the intervening, the upper layer AlTwoOThreeTable of mixed crystal layer
The surface, as a surface layer, charcoal having a granular crystal structure
Titanium nitride layer and / or titanium carbonitride layer (hereinafter referred to as Ti
C layer / TiCN layer).
And a hard coating layer of this configuration is deposited on the surface of the super-hard substrate.
In the case of coated carbide tools made of
Al which is the upper layer of the hard coating layer due to high heatTwoOThreeCrystal blend
Κ-Al in laminated layersTwoOThreePhase shrinks from κ to α
Phase transformation accompanied by α-AlTwoOThreephase
Phase transformation is promoted by the catalysis of
When. (B) κ-Al in the above upper layerTwoOThreeFor phase transformation
The accompanying volume shrinkage caused the lower l-TiCN layer to:
It can be sufficiently absorbed by the vertically grown crystal structure.
Therefore, internal stress remains in the 1-TiCN layer.
However, the above-mentioned surface layer, ie, TiC layer / TiCN layer
Cannot absorb the volume shrinkage of the upper layer
Therefore, a large compressive internal stress remains in the upper layer.
Swell. (C) Surface layer of the hard coating layer of the above (a) and (b)
Is composed of TiC layer / TiCN layer which keeps compressive internal stress
Coated carbide tools further improve the wear resistance of the cutting edge
And the service life can be further extended. that's all
The research results shown in (a) to (c) were obtained. The present invention has been made based on the above research results.
The surface of the super-hard substrate, 12-25μ
A hard coating layer with a total average layer thickness of
In the coated carbide tool, the hard coating layer
T which is an adhesion layer having an average layer thickness of 0.1 to 0.6 μm
vapor-deposited and formed via an intermediate thin layer consisting of an iN layer,
(A) a high toughness layer having an average layer thickness of 6 to 15 μm
a lower layer made of an l-TiCN layer, and (b) 3 to 10 μm
Average layer thickness and α-AlTwoOThreeAnd κ-AlTwoOThreeMixed phase
Having a structure, and the α-AlTwoOThreeAnd κ-AlTwoOThreePhase of
Mutual proportions appear in the diffraction pattern obtained by the X-ray diffraction method.
And the sum of the peak intensities appearing on the α-type crystal plane is Fα, κ
When the sum of the peak intensities appearing on the type crystal plane is Fκ,
High enough to satisfy Fα / (Fα + Fκ) = 0.1 to 0.4
Al which is a warm hard layerTwoOThreeAn upper layer composed of a crystal mixed layer,
(C) Further, it is formed by vapor deposition directly on the surface of the upper layer.
And a compressive stress holding layer having an average layer thickness of 1.5 to 4 μm.
And a surface layer composed of a TiC layer / TiCN layer.
A coating with a hard coating layer that exhibits excellent wear resistance
It has features in carbide tools. Next, the hard coating of the coated carbide tool of the present invention is described.
Regarding the covering layer, the average layer thickness TwoOThreeCrystal mixed layer
The reason for limiting the mutual ratios as described above will be described. (1) Intermediate thin layer As described above, the TiN layer constituting the intermediate thin layer includes a super-hard substrate.
Between the lower and upper layers and between the lower and upper layers.
Has the effect of improving the mutual adhesion between these two layers.
However, if the average layer thickness is less than 0.1 μm, the desired excellent
Adhesion cannot be ensured, while the average layer thickness is
If the thickness exceeds 0.6 μm, the wear resistance of the hard coating layer is reduced.
This not only causes
Insufficient absorption of volumetric shrinkage due to phase transformation of layer into lower layer
This causes compressive stress to remain in the upper layer itself,
As a result, the upper layer is relatively thick.
Therefore, chipping is likely to occur, so the average layer
The thickness was determined to be 0.1-0.6 μm. (2) Lower layer The l-TiCN layer constituting the lower layer has a high toughness layer
Basically, it improves the toughness of the hard coating layer and
To reduce mechanical and thermal shock,
In addition to significantly suppressing the occurrence of
Absorbs volume shrinkage generated in the upper layer,
Make sure that the compressive stress that causes chipping does not remain.
However, if the average layer thickness is less than 6 μm,
The desired effect cannot be obtained in the above-mentioned operation, while the average layer thickness is 1
If it exceeds 5 μm, the hard coating layer may cause uneven wear.
Plastic deformation tends to occur.
It was determined to be 6 to 15 μm. (3) Upper layer Al constituting upper layerTwoOThreeΑ-Al in the crystal mixed layer
TwoOThreeHas a κ-AlTwoOThreeIs α-AlTwoOThreeBody
Acts to promote phase transformation with product shrinkage
However, as described above, α-type crystal plane in the diffraction pattern, generally
Have (012) plane, (104) plane, (110), and (11) plane.
3) The peaks appearing on the (024) and (116) planes
The sum of the peak strengths is Fα, also the κ type crystal plane, generally
(002) plane, (112) plane, (013) plane, (12) plane
2) The peaks appearing on the (015) plane and the (050) plane
When the sum of the peak strengths is Fκ, Fα / (Fα + F
When the value of κ) is less than 0.1, α-AlTwoOThreePercent
Too small for κ-AlTwoOThreeΑ-AlTwoOThreePhase transformation to
The promoting effect is insufficient, while the Fα / (Fα + F
When the value of κ) exceeds 0.4, relatively phase transformation κ-
AlTwoOThreeIs too low and the desired
Because it becomes difficult to keep the compressive internal stress,
The value of Fα / (Fα + Fκ) is set to 0.1 to 0.4.
Was. Also, α-AlTwoOThreeAnd κ-AlTwoOThreeAny of
Has excellent high-temperature hardness and heat resistance.
As a layer, it gives the hard coating layer hardness and heat resistance.
Without chipping in the coexistence with the lower layer,
It has the effect of exhibiting excellent wear resistance.
If the average layer thickness is less than 3 μm, the desired excellent wear resistance is secured.
On the other hand, the average layer thickness of which exceeds 10 μm
Does the chipping easily occur in the hard coating layer?
Thus, the average layer thickness was determined to be 3 to 10 μm. (4) Surface layer The TiC layer / TiCN layer constituting the surface layer has
Al constituting the upper layerTwoOThreeΚ-A in the crystal mixed layer
lTwoOThreeΑ-Al during cuttingTwoOThreeWith the transformation to
High compressive stress will remain due to volume shrinkage,
The surface layer as the compressive stress holding layer is always
Combined with maintaining high compressive stress,
Immediately compared to TiC layer / TiCN layer without compressive stress
It exhibits excellent wear resistance, but its average layer thickness is
If the thickness is less than 1.5 μm, cracks occur due to volume contraction of the upper layer.
The compressive stress generated by the volume shrinkage phenomenon.
Cannot be held sufficiently within the
If it exceeds 4 μm, the phase transformation in the upper layer becomes slow.
As a result, the residual compressive stress in the surface layer is small.
As a result, the desired abrasion resistance improving effect is obtained on the surface layer.
Therefore, the average layer thickness was determined to be 1.5 to 4 μm.
I did. (5) Hard coating layer If the overall average layer thickness is less than 12 μm, the desired excellent
Abrasion cannot be ensured, while the average layer thickness is 2
If it exceeds 5 μm, chipping is likely to occur in the hard coating layer.
The average layer thickness is set to 12 to 25 μm
Was. The coated carbide tool can be easily identified before and after use.
For the purpose, a TiN layer having a golden color tone as the outermost layer
May be deposited with an average layer thickness of 0.1 to 0.5 μm.
No. [0012] DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a coated carbide tool of the present invention
Will be specifically described with reference to examples. As raw material powder,
The deviation also has a predetermined average particle size in the range of 0.5 to 4 μm.
WC powder, TiC powder, TaC powder, NbC powder, C
rThreeCTwoPrepare powder, TiN powder and Co powder
These raw material powders are blended in the composition shown in Table 1 and
Add alcohol with a mil mill, wet mix for 24 hours and dry
After that, it is pressed at a pressure of 150 MPa into a green compact of a predetermined shape.
This compact is pressed in a vacuum of 6 Pa or less at 1370
Under the condition of holding for 1 hour at a predetermined temperature within the range of ~ 1470 ° C
Vacuum sintering and after sintering, R: 0.07
ISO / CNMG120
Super with a throwaway tip shape specified in 408
Hard substrates A to F were respectively manufactured. In addition, the above-mentioned super hard group
The surface portions of the super hard bases C to F in the bodies A to F
Co-rich region (softening) over a depth range of 5-30 μm
Layer) was formed. Next, the surfaces of these superhard substrates A to F
Table 2 (l-Ti in the table)
CN is a vertically elongated growth described in JP-A-6-8010.
The figure shows the conditions for forming a TiCN layer having a crystal structure.
Under the conditions shown in Tables 3 and 4,
And a hard coating layer with the target layer thickness.
Silicon carbide powder is dispersed at the edge of the cutting edge where the flank and flank intersect
By polishing the surface with a urethane resin grindstone
The present invention coated carbide tools 1-12 and comparative coated carbide
Tools 1 to 12 were manufactured respectively. Note that the comparison coating carbide
In each of tools 1 to 12, the upper layer of the hard coating layer was α-Al
TwoOThreeOr κ-AlTwoOThreeAnd the formation of the surface layer
Not something. The resulting coated cemented carbide tools 1 to 1
Composition of hard coating layer of 12 and comparative coated carbide tools and
The layer thickness was measured using an X-ray diffraction device and a scanning electron microscope.
Table 3 and 4 show the composition, target layer thickness and actual
Qualitatively the same composition and average layer thickness (average of measurements at five arbitrary locations)
Value). In addition, the above-mentioned coated cemented carbide
Which is the upper layer constituting the hard coating layer of the tools 1 to 12Two
OThreeThe X-ray diffraction pattern of the mixed crystal layer
(Α) crystal plane (012) plane, (104) plane,
The (110), (113), (024), and (1)
16) Total peak intensity appearing on the surface: Fα, also κ type
(002) plane, (112) plane, and (013) crystal plane
Plane, (122) plane, (015) plane, and (050) plane
Of the peak intensities appearing in the equation:
Calculate the value of Fα / (Fα + Fκ) from
The results are shown in Table 5. Next, the coated carbide tools 1 to 12 according to the present invention will be described.
And the comparative coated carbide tools 1 to 12
Screwed to the end of a steel cutting tool with a fixing jig
so, Work material: JIS SCM440 round bar, Cutting speed: 420 m / min. , Cut: 1.5 mm, Feed: 0.3 mm / rev. , Cutting time: 5 minutes, Dry continuous cutting test of alloy steel under the conditions of Work material: JIS S20C with 4 longitudinal grooves at regular intervals in the length direction
Round bar, Cutting speed: 330 m / min. , Notch: 2.0 mm, Feed: 0.2 mm / rev. , Cutting time: 5 minutes, Intermittent cutting test of carbon steel under the conditions of Work material: JIS FCD450 round bar, Cutting speed: 150 m / min. , Notch: 2.0 mm, Feed: 0.25 mm / rev. , Cutting time: 2 minutes, A dry continuous cutting test of spheroidal graphite cast iron was conducted under the following conditions.
The flank wear width of the cutting edge was also measured in the displacement cutting test. This
Table 5 shows the measurement results. [0016] [Table 1][0017] [Table 2] [0018] [Table 3][0019] [Table 4] [0020] [Table 5][0021] From the results shown in Tables 3 to 5, it can be seen that the present invention
Coated carbide tools 1 to 12 constitute the surface layer of the hard coating layer
Al as an upper layer is added to the TiC layer / TiCN layer.TwoOThreeCrystal blend
Κ-Al in laminated layersTwoOThreeΑ-Al during cuttingTwo
OThreeHigh compressive stress due to volume shrinkage accompanying phase transformation to
It will remain, and the surface as this compressive stress holding layer will
The layer will always retain a high compressive stress during the cutting operation.
In combination with the above, the surface layer TiC layer / TiC
No N layer and upper layer is α-AlTwoOThreeLayer or κ
-AlTwoOThreeCompared to the coated carbide tools 1 to 12 consisting of layers
It is clear that they exhibit excellent wear resistance.
As described above, the coated carbide tool of the present invention can be used for various steels and
Excellent wear resistance in continuous and intermittent cutting of cast iron
Demonstrates further cutting and labor savings in cutting
It is possible to further reduce the cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 対馬 文雄 茨城県結城郡石下町大字古間木1511番地 三菱マテリアル株式会社筑波製作所内 (72)発明者 河野 和弘 茨城県結城郡石下町大字古間木1511番地 三菱マテリアル株式会社筑波製作所内 (72)発明者 渡邉 陽子 茨城県結城郡石下町大字古間木1511番地 三菱マテリアル株式会社筑波製作所内 Fターム(参考) 3C046 FF03 FF10 FF13 4K030 AA03 AA09 AA14 AA17 AA18 AA24 BA18 BA36 BA38 BA41 BA43 BB03 BB12 CA03 JA01 LA22    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Fumio Tsushima             1511 Furamagi, Ishishita-cho, Yuki-gun, Ibaraki Prefecture             Mitsubishi Materials Corporation Tsukuba Works (72) Inventor Kazuhiro Kono             1511 Furamagi, Ishishita-cho, Yuki-gun, Ibaraki Prefecture             Mitsubishi Materials Corporation Tsukuba Works (72) Inventor Yoko Watanabe             1511 Furamagi, Ishishita-cho, Yuki-gun, Ibaraki Prefecture             Mitsubishi Materials Corporation Tsukuba Works F term (reference) 3C046 FF03 FF10 FF13                 4K030 AA03 AA09 AA14 AA17 AA18                       AA24 BA18 BA36 BA38 BA41                       BA43 BB03 BB12 CA03 JA01                       LA22

Claims (1)

【特許請求の範囲】 【請求項1】 炭化タングステン基超硬合金基体の表面
に、12〜25μmの全体平均層厚を有する硬質被覆層
を蒸着形成してなる表面被覆超硬合金製切削工具におい
て、前記硬質被覆層を、 いずれも0.1〜0.6μmの平均層厚および粒状結晶
組織を有する密着層である窒化チタン層からなる中間薄
層を介して蒸着形成された、 (a)6〜15μmの平均層厚および縦長成長結晶組織
を有する高靭性層である炭窒化チタン層からなる下部層
と、 (b)3〜10μmの平均層厚および粒状結晶組織を有
し、かつ結晶構造がα型とκ型の酸化アルミニウムから
なる混合相組織を有すると共に、前記α型酸化アルミニ
ウムとκ型酸化アルミニウムの相互割合が、X線回折法
により得られた回折パターンにおいて、α型結晶面に現
れるピーク強度の合計をFα、κ型結晶面に現れるピー
ク強度の合計をFκとした場合、 Fα/(Fα+Fκ)=0.1〜0.4、 を満足する高温硬質層である酸化アルミニウム結晶混合
層からなる上部層、 (c)さらに、上記の上部層の表面に直接蒸着形成され
た、1.5〜4μmの平均層厚および粒状結晶組織を有
する圧縮応力保持層である炭化チタン層および/または
炭窒化チタン層からなる表面層、で構成してなる、硬質
被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金
製切削工具。
Claims: 1. A surface-coated cemented carbide cutting tool comprising a tungsten carbide-based cemented carbide substrate and a hard coating layer having a total average layer thickness of 12 to 25 μm formed on the surface of the substrate. The hard coating layer was formed by vapor deposition through an intermediate thin layer consisting of a titanium nitride layer, which is an adhesion layer having an average layer thickness of 0.1 to 0.6 μm and a granular crystal structure, (a) 6 A lower layer comprising a titanium carbonitride layer which is a tough layer having an average layer thickness of about 15 μm and a vertically elongated crystal structure, and (b) an average layer thickness of 3 to 10 μm and a granular crystal structure, and having a crystal structure. It has a mixed phase structure composed of α-type and κ-type aluminum oxides, and the mutual proportion of the α-type aluminum oxide and κ-type aluminum oxide appears on the α-type crystal plane in the diffraction pattern obtained by the X-ray diffraction method. Where Fα is the total peak intensity and Fκ is the total peak intensity appearing on the κ-type crystal plane, and a mixture of aluminum oxide crystals as a high-temperature hard layer satisfying the following condition: Fα / (Fα + Fκ) = 0.1 to 0.4. (C) a titanium carbide layer, which is a compressive stress holding layer having an average layer thickness of 1.5 to 4 μm and a granular crystal structure, which is directly formed on the surface of the upper layer by vapor deposition, and / or Or a surface-coated cemented carbide cutting tool having a hard coating layer exhibiting excellent wear resistance, comprising a surface layer comprising a titanium carbonitride layer.
JP2002069774A 2002-03-14 2002-03-14 Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer Expired - Fee Related JP3855261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002069774A JP3855261B2 (en) 2002-03-14 2002-03-14 Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002069774A JP3855261B2 (en) 2002-03-14 2002-03-14 Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2003266210A true JP2003266210A (en) 2003-09-24
JP3855261B2 JP3855261B2 (en) 2006-12-06

Family

ID=29200518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002069774A Expired - Fee Related JP3855261B2 (en) 2002-03-14 2002-03-14 Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP3855261B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528941A (en) * 2004-03-12 2007-10-18 ケンナメタル インコーポレイテッド Coated body and method for coating substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528941A (en) * 2004-03-12 2007-10-18 ケンナメタル インコーポレイテッド Coated body and method for coating substrate

Also Published As

Publication number Publication date
JP3855261B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
JP3887811B2 (en) Cutting tool made of surface-coated tungsten carbide based cemented carbide with a hard coating layer that provides excellent wear resistance in high-speed cutting
JP2000071108A (en) Surface coated cemented carbide cutting tool of hard coating layer displaying excellent delamination-proof property
JP2000218410A (en) Surface coated cemented carbide cutting tool having good tenacity of aluminum oxide layer forming hard coated layer
JP2000158204A (en) Surface-covering cemented carbide alloy cutting tool having hard covering layer exhibiting excellent chipping resistance
JP3994590B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with high efficiency cutting and hard coating layer
JPH11172464A (en) Cutting tool made of surface coated sintered hard alloy exhibiting excellent wear resistance in high-speed cutting
JP2003266210A (en) Surface coated cemented carbide cutting tool with hard coating layer displaying excellent wear resistance
JPH10204639A (en) Cutting tool made of surface-coated cemented carbide in which hard coating layer has excellent chipping resistance
JP3661503B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JPH1076406A (en) Cemented carbide cutting tool covered with hard covering layer excellent in anti-chipping property
JP2003019603A (en) Surface covered cemented carbide cutting tool having hard coating layer with excellent chipping resistance
JP3371796B2 (en) Surface coated cemented carbide cutting tool with excellent fracture resistance
JP3855260B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer
JP2000218409A (en) Surface coated cemented carbide cutting tool having hard coated layer of good defect resistance
JP2000246511A (en) Throw-away cutting tip made of surface coated super hard alloy exhibiting excellent initial conformity at its hard coated layer
JPH1076405A (en) Cemented carbide cutting tool covered with hard covering layer excellent in anti-chipping property
JP3282600B2 (en) Surface-coated cemented carbide cutting tool with a hard coating layer that exhibits excellent fracture resistance
JP2001096404A (en) Surface-coated cutting tool of tungsten carbide-based cemented carbide exhibiting appreciable chipping resistance of hard coating layer in intermittent heavy cutting
JP3887812B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JP3922330B2 (en) Cutting tool made of surface-coated cemented carbide with excellent thermal barrier and interlayer adhesion
JPH081408A (en) Cutting tool made of surface-covered tungsten carbide base cemented carbide having excellent in-layer adhesion of hard covered layer
JPH09277103A (en) Cutting tool made of surface-coated cemented carbide excellent in chipping resistance
JP2000117509A (en) Throw away cut tip made of surface covering cemented carbide having excellent wear resistance
JP2000317705A (en) Cutting tool made of surface coating tungsten carbide group cemented carbide alloy having hard coating layer exhibiting excellent abrasion-resistance
JP3371823B2 (en) Surface coated cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060903

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees