JP2003254590A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2003254590A
JP2003254590A JP2002053602A JP2002053602A JP2003254590A JP 2003254590 A JP2003254590 A JP 2003254590A JP 2002053602 A JP2002053602 A JP 2002053602A JP 2002053602 A JP2002053602 A JP 2002053602A JP 2003254590 A JP2003254590 A JP 2003254590A
Authority
JP
Japan
Prior art keywords
capacity
indoor
compressor
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002053602A
Other languages
Japanese (ja)
Other versions
JP4043255B2 (en
Inventor
Atsushi Takeuchi
淳 竹内
Yoshikazu Nishihara
義和 西原
Yasuhiro Nakamura
康裕 中村
Tokuya Asada
徳哉 浅田
Toshihiko Nishimoto
敏彦 西本
Hiroshi Arashima
博 荒島
Kenji Shirai
健二 白井
Naoto Fujita
直人 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002053602A priority Critical patent/JP4043255B2/en
Publication of JP2003254590A publication Critical patent/JP2003254590A/en
Application granted granted Critical
Publication of JP4043255B2 publication Critical patent/JP4043255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner which improves comfort and saves on energy by responding to change of a form of an indoor machine and a heat exchanger specification and exerting the optimum capacity according to a required capacity inside a room. <P>SOLUTION: The indoor machine is provided with a temperature difference calculating means 22 for calculating a temperature difference between a set temperature and a detected temperature, a rated capacity memorizing means 25 for memorizing a rated capacity of the indoor machine, an ON/OFF determining means 24 of the indoor machine, and a heat exchanger capacity set value memorizing means 36, while an outdoor machine is provided with a compressor capacity control means 28 for controlling the capacity of a variable displacement compressor by a predetermined cycle using data obtained from the temperature difference calculating means 22, the rated capacity memorizing means 25 and the ON/OFF determining means 24, and an equation of a compressor displacement is derived based on a set value of an indoor heat exchanger capacity memorized in the heat exchanger capacity set value memorizing means 36 for controlling the compressor displacement. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、1台の室外機に少
なくとも1台の室内機を接続し、圧縮機運転周波数で能
力を制御する空気調和装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner in which at least one indoor unit is connected to one outdoor unit and the capacity is controlled by the compressor operating frequency.

【0002】[0002]

【従来の技術】従来、多室形空気調和装置において、容
量可変形圧縮機を用い、室内機からの要求負荷に応じ
て、室外機の圧縮機容量を可変制御するものが提案され
ている。
2. Description of the Related Art Conventionally, a multi-room air conditioner has been proposed in which a variable capacity compressor is used and the compressor capacity of an outdoor unit is variably controlled according to a load demanded from the indoor unit.

【0003】以下、1台の室外機に複数台の室内機を接
続した多室形空気調和装置を例に取り(例えば特開平4
−42524号公報)、図面を参照しながら従来の多室
形空気調和装置について説明する。
An example of a multi-room air conditioner in which a plurality of indoor units are connected to one outdoor unit will be described below (for example, Japanese Unexamined Patent Publication No. Hei 4 (1999) -96945).
No. 42524), a conventional multi-room air conditioner will be described with reference to the drawings.

【0004】図9は、従来の多室形空気調和装置の冷凍
サイクルを示しており、室外機101内には、インバー
タ駆動の周波数可変形圧縮機103(以下、単に圧縮機
と称す)、室外熱交換器104、冷暖房切換用の四方弁
105が設けられる一方、室内機102a、102b、
102c内には、それぞれ室内熱交換器106a、10
6b、106cが設けられている。室外機101と室内
機102a、102b、102cとは、室外機101内
に設けられた液側主管107より分岐した液側分岐管1
08a、108b、108c、及び、室外機101内に
設けられたガス側主管109より分岐したガス側分岐管
110a、110b、110cとで接続されている。
FIG. 9 shows a refrigeration cycle of a conventional multi-room air conditioner. In the outdoor unit 101, an inverter-driven variable frequency compressor 103 (hereinafter simply referred to as a compressor) and an outdoor unit are provided. A heat exchanger 104 and a four-way valve 105 for switching between heating and cooling are provided, while indoor units 102a, 102b,
The indoor heat exchangers 106a, 10a,
6b and 106c are provided. The outdoor unit 101 and the indoor units 102a, 102b, and 102c are branched from a liquid-side main pipe 107 provided in the outdoor unit 101.
08a, 108b, 108c and gas side branch pipes 110a, 110b, 110c branched from the gas side main pipe 109 provided in the outdoor unit 101.

【0005】また、液側分岐管108a、108b、1
08cには、それぞれステッピングモータを用いて弁開
度をパルス制御可能な電動膨張弁111a、111b、
111cを介装している。
Liquid side branch pipes 108a, 108b, 1
Reference numerals 08c denote electric expansion valves 111a and 111b whose pulse opening can be pulse-controlled by using stepping motors.
111c is interposed.

【0006】さらに、各室内機102a、102b、1
02cには、各室内機102a、102b、102cが
設置されている部屋の室温を検出する室内温度センサ1
17a、117b、117c、及び、居住者が希望する
運転モード(冷房または暖房)と室温と運転、停止を設
定できる運転設定回路118a、118b、118cが
設けられている。
Furthermore, the indoor units 102a, 102b, 1
02c is an indoor temperature sensor 1 for detecting the room temperature of the room in which the indoor units 102a, 102b, 102c are installed.
17a, 117b, 117c, and operation setting circuits 118a, 118b, 118c capable of setting the operation mode (cooling or heating) desired by the occupant, room temperature, and operation / stop.

【0007】この冷凍サイクルにおいて、圧縮機周波数
の制御方法について説明する。図10は、圧縮機周波数
制御の流れを示すブロック図、図3は室内温度Trと設
定温度Tsとの差温△Tの温度ゾーン分割図である。
A method of controlling the compressor frequency in this refrigeration cycle will be described. 10 is a block diagram showing the flow of compressor frequency control, and FIG. 3 is a temperature zone division diagram of the temperature difference ΔT between the room temperature Tr and the set temperature Ts.

【0008】まず、室内機102aにおいて、室内温度
センサ117aの出力を室内温度検出回路121より温
度信号として差温演算回路122に送出するとともに、
設定判別回路123において、運転設定回路118aで
設定された設定温度及び運転モードを判別して差温演算
回路122に送出する。差温演算回路122では、差温
△T(=Tr−Ts)を算出し、図3に示される負荷ナ
ンバーLn値に変換して、これを差温信号とする。
First, in the indoor unit 102a, the output of the indoor temperature sensor 117a is sent from the indoor temperature detecting circuit 121 to the differential temperature calculating circuit 122 as a temperature signal, and
The setting determination circuit 123 determines the set temperature and the operation mode set by the operation setting circuit 118a and sends them to the differential temperature calculation circuit 122. The temperature difference calculation circuit 122 calculates the temperature difference ΔT (= Tr−Ts) and converts it into the load number Ln value shown in FIG. 3 to use as the temperature difference signal.

【0009】例えば、冷房運転時でTr=27.3℃、
Ts=26℃とすると、差温△T=1.3℃で、Ln=
6となる。
For example, Tr = 27.3 ° C. during cooling operation,
If Ts = 26 ° C., the temperature difference ΔT = 1.3 ° C., Ln =
It becomes 6.

【0010】また、ON−OFF判別回路124にて、
運転設定回路118aで設定された室内機102aの運
転(ON)または停止(OFF)を判別し、さらに定格
容量記憶回路125に室内機102aの定格容量を記憶
しておき、これらの定格容量信号、差温信号、運転モー
ド信号、ON−OFF判別信号を信号送出回路126よ
り室外機101の信号受信回路127へ送る。室内機1
02b、102cからも同様の信号が信号受信回路12
7へ送られる。信号受信回路127で受信した信号は圧
縮機周波数演算回路128へ送出される。
Further, in the ON-OFF discrimination circuit 124,
The operation (ON) or stop (OFF) of the indoor unit 102a set by the operation setting circuit 118a is determined, and the rated capacity of the indoor unit 102a is stored in the rated capacity storage circuit 125. The differential temperature signal, the operation mode signal, and the ON-OFF determination signal are sent from the signal sending circuit 126 to the signal receiving circuit 127 of the outdoor unit 101. Indoor unit 1
Similar signals from 02b and 102c are also received by the signal receiving circuit 12.
Sent to 7. The signal received by the signal receiving circuit 127 is sent to the compressor frequency arithmetic circuit 128.

【0011】圧縮機周波数演算回路128では、室内機
102a、102b、102cのそれぞれの定格容量信
号、差温信号、運転モード信号、ON−OFF判別信号
より表1に示される負荷定数テーブル130から負荷定
数を読み出し、この負荷定数の総和に定数を乗じて圧縮
機103の周波数を決定する。
In the compressor frequency calculation circuit 128, the load constant table 130 shown in Table 1 is used to load the load from the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON-OFF discrimination signal of each of the indoor units 102a, 102b, 102c The constant is read and the sum of the load constants is multiplied by the constant to determine the frequency of the compressor 103.

【表1】 [Table 1]

【0012】このようにして、各部屋の要求能力の総和
に応じて圧縮機周波数は制御される。
In this way, the compressor frequency is controlled according to the total required capacity of each room.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上記構
成の従来の空気調和装置には以下のような課題があつ
た。室内機102a、102b、102cからの要求負
荷に応じて、負荷定数テーブル130を用いて負荷定数
を読み出すため、最適な圧縮機制御を行うためには室内
機の定格容量だけでなく、形態ごとに負荷定数テーブル
が必要になり、室内機種が増えるとデータ数も膨大にな
ってしまう。
However, the conventional air conditioner having the above structure has the following problems. Since the load constant is read using the load constant table 130 according to the required load from the indoor units 102a, 102b, 102c, in order to perform optimum compressor control, not only the rated capacity of the indoor unit but also each type A load constant table is required, and the number of data will become enormous as the number of indoor models increases.

【0014】また、予め室外機101に負荷定数テーブ
ル130を持たせる必要があるので、接続室内機種が新
たに追加されると、最適な圧縮機制御を行うことが困難
になる。
Further, since it is necessary to previously provide the outdoor unit 101 with the load constant table 130, it becomes difficult to perform optimum compressor control when a connected indoor model is newly added.

【0015】本発明は、従来技術の有するこのような問
題点に鑑みてなされたものであり、室内機の形態変化、
熱交換器仕様の変化に対応し、室内の要求能力に応じた
最適な能力を発揮することにより、快適性の向上及び省
エネルギーを図ることのできる空気調和装置を提供する
ことを目的としている。
The present invention has been made in view of the above problems of the prior art.
It is an object of the present invention to provide an air conditioner capable of improving comfort and energy saving by responding to changes in heat exchanger specifications and exhibiting optimum capacity according to indoor required capacity.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、容量可変形圧縮機と室外熱交換器を有す
る1台の室外機と、室内熱交換器を有する複数台の室内
機とを互いに接続した多室形空気調和装置であって、前
記複数台の室内機の各々に、室内機が設置される室内の
温度を任意に設定する室内温度設定手段と、室内温度を
検出する室内温度検出手段と、前記室内温度設定手段に
より設定された温度と前記室内温度検出手段により検出
された室内温度との差温を算出する差温演算手段と、室
内機の定格容量を記憶する定格容量記憶手段と、各室内
機が運転中か停止中かを判別するON/FF判別手段
と、室内機の室内熱交換器能力設定値を記憶する熱交換
器能力設定値記憶手段とを設ける一方、前記室外機に、
前記差温演算手段、前記定格容量記憶手段及び前記ON
/OFF判別手段より得られるデータを用いて前記容量
可変形圧縮機の容量を所定周期毎に制御する圧縮機容量
制御手段を設け、該圧縮機容量制御手段が、前記熱交換
器能力設定値記憶手段に記憶された室内熱交換器能力設
定値に基づいて圧縮機容量の演算式を導き出して圧縮機
容量を制御するようにしたことを特徴とする。
In order to achieve the above-mentioned object, the present invention provides one outdoor unit having a variable capacity compressor and an outdoor heat exchanger, and a plurality of indoor units having an indoor heat exchanger. A multi-room type air conditioner in which an indoor unit is installed in each of the plurality of indoor units, and an indoor temperature setting means for arbitrarily setting the temperature of the room in which the indoor unit is installed, and the indoor temperature are detected. The indoor temperature detecting means, the temperature difference calculating means for calculating the temperature difference between the temperature set by the indoor temperature setting means and the indoor temperature detected by the indoor temperature detecting means, and the rated capacity of the indoor unit are stored. Provided are a rated capacity storage means, an ON / FF determination means for determining whether each indoor unit is in operation or a stop, and a heat exchanger capacity set value storage means for storing an indoor heat exchanger capacity set value of the indoor unit. On the other hand, in the outdoor unit,
The differential temperature calculation means, the rated capacity storage means, and the ON
A compressor capacity control means is provided for controlling the capacity of the variable capacity compressor at predetermined intervals using the data obtained from the ON / OFF discrimination means, and the compressor capacity control means stores the heat exchanger capacity set value storage. It is characterized in that an arithmetic expression of the compressor capacity is derived based on the indoor heat exchanger capacity set value stored in the means to control the compressor capacity.

【0017】また、前記熱交換器能力設定値記憶手段に
代えて、室内機の熱交換器能力値と基準とする熱交換器
能力値との能力比の値を形態補正値として記憶する形態
補正値記憶手段を設け、前記圧縮機容量制御手段が、前
記形態補正値記憶手段に記憶された形態補正値に基づい
て圧縮機容量の演算式を導き出して圧縮機容量を制御す
るようにしてもよい。
Further, in place of the heat exchanger capacity set value storage means, a shape correction is performed in which a value of a capacity ratio between the heat exchanger capacity value of the indoor unit and a reference heat exchanger capacity value is stored as a shape correction value. Value storage means may be provided, and the compressor capacity control means may control the compressor capacity by deriving an arithmetic expression of the compressor capacity based on the shape correction value stored in the shape correction value storage means. .

【0018】さらに、前記圧縮機容量制御手段が、前記
熱交換器能力設定値記憶手段に記憶された室内熱交換器
能力設定値に加えて、室内機定格容量毎に設定された定
格容量係数に基づいて圧縮機容量の演算式を導き出して
圧縮機容量を制御するように構成することもできる。
Further, in addition to the indoor heat exchanger capacity set value stored in the heat exchanger capacity set value storage means, the compressor capacity control means sets a rated capacity coefficient set for each indoor unit rated capacity. It is also possible to derive an arithmetic expression of the compressor capacity based on this and control the compressor capacity.

【0019】また、前記圧縮機容量制御手段が、室内機
運転台数に応じて圧縮機容量の演算式を変えることによ
り、圧縮機容量を制御するようにしてもよい。
Further, the compressor capacity control means may control the compressor capacity by changing the arithmetic expression of the compressor capacity according to the number of operating indoor units.

【0020】さらに、本発明は、容量可変形圧縮機と室
外熱交換器を有する1台の室外機と、室内熱交換器を有
する1台の室内機とを互いに接続した空気調和装置であ
って、前記室内機に、室内機が設置される室内の温度を
任意に設定する室内温度設定手段と、室内温度を検出す
る室内温度検出手段と、前記室内温度設定手段により設
定された温度と前記室内温度検出手段により検出された
室内温度との差温を算出する差温演算手段と、室内機の
定格容量を記憶する定格容量記憶手段と、室内機が運転
中か停止中かを判別するON/FF判別手段と、室内機
の室内熱交換器能力設定値を記憶する熱交換器能力設定
値記憶手段とを設ける一方、前記室外機に、前記差温演
算手段、前記定格容量記憶手段及び前記ON/OFF判
別手段より得られるデータを用いて前記容量可変形圧縮
機の容量を所定周期毎に制御する圧縮機容量制御手段を
設け、該圧縮機容量制御手段が、前記熱交換器能力設定
値記憶手段に記憶された室内熱交換器能力設定値に基づ
いて圧縮機容量の演算式を導き出して圧縮機容量を制御
するようにしたことを特徴とする。
Further, the present invention is an air conditioner in which one outdoor unit having a variable capacity compressor and an outdoor heat exchanger and one indoor unit having an indoor heat exchanger are connected to each other. An indoor temperature setting unit that arbitrarily sets the temperature of the room in which the indoor unit is installed, an indoor temperature detection unit that detects the indoor temperature, a temperature set by the indoor temperature setting unit, and the indoor unit A temperature difference calculating means for calculating a temperature difference between the indoor temperature detected by the temperature detecting means, a rated capacity storing means for storing a rated capacity of the indoor unit, and an ON / ON for determining whether the indoor unit is in operation or stopped. FF discrimination means and heat exchanger capacity set value storage means for storing the indoor heat exchanger capacity set value of the indoor unit are provided, while the outdoor unit has the differential temperature calculation means, the rated capacity storage means and the ON unit. Obtained from the / OFF discrimination means Compressor capacity control means for controlling the capacity of the variable capacity compressor at predetermined intervals by using data is provided, and the compressor capacity control means is the indoor heat stored in the heat exchanger capacity setting value storage means. The compressor capacity is controlled by deriving an arithmetic expression of the compressor capacity based on the exchanger capacity setting value.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照しながら説明する。 実施の形態1.図1は、本発明の実施の形態1にかかる
多室形空気調和装置の冷凍サイクルを示しており、1台
の室外機1に3台の室内機2a、2b、2cが接続され
ている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. Embodiment 1. FIG. 1 shows a refrigeration cycle of a multi-room air conditioner according to a first embodiment of the present invention, in which one outdoor unit 1 is connected with three indoor units 2a, 2b, 2c.

【0022】図1に示されるように、室外機1内には、
インバータ駆動の周波数可変形圧縮機3(以下、単に圧
縮機と称す)、室外熱交換器4、冷暖房切換用の四方弁
5が設けられる一方、室内機2a、2b、2c内には、
それぞれ室内熱交換器6a、6b、6cが設けられてい
る。室外機1と室内機2a、2b、2cとは、室外機1
内に設けられた液側主管7より分岐した液側分岐管8
a、8b、8c、及び、室外機1内に設けられたガス側
主管9より分岐したガス側分岐管10a、10b、10
cとで接続されている。液側分岐管8a、8b、8cに
は、それぞれステッピングモータを用いて弁開度をパル
ス制御可能な電動膨張弁11a、11b、11cが介装
され、各室内機2a、2b、2cには、各室内機2a、
2b、2cが設置されている部屋の室温を検出する室内
温度センサ17a、17b、17c、及び、居住者が希
望する運転モード(冷房または暖房)と室温と運転、停
止を設定できる運転設定手段18a、18b、18cが
設けられている。
As shown in FIG. 1, in the outdoor unit 1,
An inverter-driven variable frequency compressor 3 (hereinafter, simply referred to as a compressor), an outdoor heat exchanger 4, and a four-way valve 5 for switching between heating and cooling are provided, while the indoor units 2a, 2b, and 2c have:
Indoor heat exchangers 6a, 6b, 6c are provided respectively. The outdoor unit 1 and the indoor units 2a, 2b, and 2c are the outdoor unit 1
Liquid-side branch pipe 8 branched from the liquid-side main pipe 7 provided inside
a, 8b, 8c, and gas-side branch pipes 10a, 10b, 10 branched from the gas-side main pipe 9 provided in the outdoor unit 1.
It is connected with c. The liquid side branch pipes 8a, 8b, 8c are respectively provided with electric expansion valves 11a, 11b, 11c capable of pulse-controlled valve opening using a stepping motor, and each indoor unit 2a, 2b, 2c is provided with: Each indoor unit 2a,
Indoor temperature sensors 17a, 17b, 17c that detect the room temperature of the room where 2b and 2c are installed, and operation setting means 18a that can set the operation mode (cooling or heating) desired by the occupant, room temperature, and operation / stop. , 18b, 18c are provided.

【0023】次に、圧縮機周波数の制御方法について説
明する。図2は圧縮機周波数の制御の流れを示すブロッ
ク図であり、図3は室内温度Trと設定温度Tsとの差
温△Tの温度ゾーン分割図である。
Next, a method of controlling the compressor frequency will be described. 2 is a block diagram showing the flow of control of the compressor frequency, and FIG. 3 is a temperature zone division diagram of the temperature difference ΔT between the room temperature Tr and the set temperature Ts.

【0024】まず、室内機2aにおいて、室内温度セン
サ17aの出力を室内温度検出手段21より温度信号と
して差温演算手段22に送出するとともに、室内温度設
定手段23にて運転設定手段18aで設定された設定温
度及び運転モードを判別して差温演算手段22に送出す
る。差温演算手段22では、差温△T(=Tr−Ts)
を算出し、図3に示される負荷ナンバーLn値に変換し
て、これを差温信号とする。
First, in the indoor unit 2a, the output of the indoor temperature sensor 17a is sent from the indoor temperature detecting means 21 as a temperature signal to the temperature difference calculating means 22, and the indoor temperature setting means 23 sets the operation setting means 18a. The set temperature and the operation mode are discriminated and sent to the temperature difference calculating means 22. In the temperature difference calculating means 22, the temperature difference ΔT (= Tr−Ts)
Is calculated and converted into the load number Ln value shown in FIG. 3, which is used as the temperature difference signal.

【0025】例えば、冷房運転時で、Tr=27.3
℃、Ts=26℃とすると、差温△T=1.3℃で、L
n=6となる。
For example, Tr = 27.3 during cooling operation.
℃, Ts = 26 ℃, the temperature difference ΔT = 1.3 ℃, L
n = 6.

【0026】ON−OFF判別手段24では、運転設定
手段18aで設定された室内機2aの運転(ON)また
は停止(OFF)を判別し、定格容量記憶手段25に室
内機2aの定格容量を記憶するとともに、熱交換器能力
設定値記憶手段36に室内機2aの室内熱交換器能力設
定値を記憶しておき、これらの熱交換器能力設定値信
号、定格容量信号、差温信号、運転モード信号、ON−
OFF判別信号を信号送信手段26より室外機1の信号
受信手段27へ送る。室内機2b、2cからも同様の信
号が信号受信手段27へ送られる。信号受信手段27で
受信した信号は、圧縮機容量制御手段28及び運転台数
認識手段32へ送信される。
The ON-OFF discriminating means 24 discriminates the operation (ON) or stop (OFF) of the indoor unit 2a set by the operation setting means 18a, and the rated capacity storage means 25 stores the rated capacity of the indoor unit 2a. In addition, the heat exchanger capacity setting value storage means 36 stores the indoor heat exchanger capacity setting values of the indoor unit 2a, and these heat exchanger capacity setting value signals, rated capacity signals, differential temperature signals, and operation modes are stored. Signal, ON-
The OFF discrimination signal is sent from the signal transmitting means 26 to the signal receiving means 27 of the outdoor unit 1. Similar signals are sent from the indoor units 2b and 2c to the signal receiving means 27. The signal received by the signal receiving means 27 is transmitted to the compressor capacity control means 28 and the operating number recognition means 32.

【0027】また、圧縮機容量制御手段28では、室内
機2a、2b、2cのそれぞれの定格容量信号、差温信
号、運転モード信号、ON−OFF判別信号より表1に
示される負荷定数テーブル30から負荷定数を読み出
し、この負荷定数を、熱交換器能力設定値記憶手段36
に記憶された室内熱交換器能力設定値で除して、能力補
正負荷定数を算出し、能力補正負荷定数の総和に定数を
乗じて圧縮機3の容量(運転周波数)を決定する。な
お、負荷定数テーブル30は、定格容量、運転モード、
負荷ナンバーLn値に基づいて予め決定されるとともに
各室内機2a、2b、2cに設けられた負荷定数記憶手
段31に記憶された負荷定数が、信号送信手段26より
信号受信手段27に送出されて作成される。
In the compressor capacity control means 28, the load constant table 30 shown in Table 1 is obtained from the rated capacity signal, the temperature difference signal, the operation mode signal and the ON / OFF discrimination signal of each of the indoor units 2a, 2b and 2c. The load constant is read from the heat exchanger, and the load constant is stored in the heat exchanger capacity setting value storage means 36.
The capacity correction load constant is calculated by dividing it by the indoor heat exchanger capacity setting value stored in the table, and the capacity (operating frequency) of the compressor 3 is determined by multiplying the sum of the capacity correction load constants by the constant. The load constant table 30 includes the rated capacity, the operation mode,
The load constant stored in the load constant storage means 31 provided in each of the indoor units 2a, 2b, and 2c, which is predetermined based on the load number Ln value, is sent from the signal transmission means 26 to the signal reception means 27. Created.

【0028】一例として、運転台数が全室(2a、2
b、2c)、2室(2a、2b)、1室(2a)運転時
の室内機2a、2b、2cからの信号が表2の場合につ
いて説明する。
As an example, the number of operating units is 2 (2a, 2).
b, 2c), 2 rooms (2a, 2b), 1 room (2a) when the signals from the indoor units 2a, 2b, 2c during operation are shown in Table 2.

【表2】 [Table 2]

【0029】全室運転は、表2より、室内機2a、2
b、2cの負荷定数はそれぞれ15、10、19で、熱
交換器能力設定値は2.9、2.9、3.1となり、能
力補正負荷係数Hnは、 Hn=15/2.9+10/2.9+19/3.1=1
4.7(小数点以下第二位を四捨五入) となり、圧縮機3の周波数Hzは、Aを定数とすると、 Hz= A×Hn= A×14.7 となる。
The operation of all rooms is shown in Table 2 by the indoor units 2a, 2
The load constants of b and 2c are 15, 10 and 19, respectively, the heat exchanger capacity setting values are 2.9, 2.9 and 3.1, and the capacity correction load coefficient Hn is Hn = 15 / 2.9 + 10 / 2.9 + 19 / 3.1 = 1
It becomes 4.7 (the second place after the decimal point is rounded off), and the frequency Hz of the compressor 3 is given by Hz = A × Hn = A × 14.7, where A is a constant.

【0030】この演算結果を周波数信号として圧縮機駆
動回路(図示せず)に送出して圧縮機3の周波数の制御
を行なう。以降、所定周期毎に室内機2a、2b、2c
のそれぞれの熱交換器能力設定値信号、定格容量信号、
差温信号、運転モード信号、ON−OFF判別信号より
演算を行ない、演算結果を周波数信号として圧縮機駆動
回路(図示せず)に送出して圧縮機3の周波数の制御を
行なう。
The result of this calculation is sent as a frequency signal to a compressor drive circuit (not shown) to control the frequency of the compressor 3. After that, the indoor units 2a, 2b, 2c are every predetermined cycle.
Each heat exchanger capacity setpoint signal, rated capacity signal,
Calculation is performed from the differential temperature signal, the operation mode signal, and the ON-OFF determination signal, and the calculation result is sent as a frequency signal to a compressor drive circuit (not shown) to control the frequency of the compressor 3.

【0031】2室運転は、表2より、室内機2a、2
b、2cの負荷定数はそれぞれ15、10、0で、熱交
換器能力設定値は2.9、2.9、3.1となり、能力
補正負荷係数Hnは、 Hn=15/2.9+10/2.9+0/3.1=8.
6(小数点以下第二位を四捨五入) となり、圧縮機3の周波数Hzは、同じく定数をAとし
て、 Hz= A×Hn= A×8.6 となる。
In the two-room operation, from Table 2, the indoor units 2a, 2
The load constants of b and 2c are 15, 10 and 0, the heat exchanger capacity setting values are 2.9, 2.9 and 3.1, and the capacity correction load coefficient Hn is Hn = 15 / 2.9 + 10 / 2.9 + 0 / 3.1 = 8.
6 (rounded to the second decimal place), and the frequency Hz of the compressor 3 is given by Hz = A × Hn = A × 8.6, where A is the constant.

【0032】また、1室運転は、表2より、室内機2
a、2b、2cの負荷定数はそれぞれ15、0、0で、
熱交換器能力設定値は2.9、2.9、3.1となり、
能力補正負荷係数Hnは、 Hn=15/2.9+0/2.9+0/3.1=5.2
(小数点以下第二位を四捨五入) となり、圧縮機3の周波数Hzは、同じく定数をAとし
て、 Hz= A×Hn= A×5.2 となる。
In addition, as shown in Table 2, the indoor unit 2
The load constants of a, 2b and 2c are 15, 0 and 0, respectively,
The heat exchanger capacity setting values are 2.9, 2.9 and 3.1,
The capacity correction load coefficient Hn is Hn = 15 / 2.9 + 0 / 2.9 + 0 / 3.1 = 5.2.
(The second decimal place is rounded off), and the frequency Hz of the compressor 3 is Hz = A × Hn = A × 5.2 with the constant A as well.

【0033】上記説明は、主に冷房時について行なった
が、暖房時についても同様に制御可能である。
Although the above description was mainly given for cooling, the same control is possible for heating.

【0034】このように、室内の定格容量だけでなく、
室内機形態の違いなどに起因する熱交換器能力設定値に
応じて圧縮機周波数を制御するため、室内要求負荷に合
った最適な圧縮機運転が出来る。また、室内機形態が違
う毎にデータを持つよりも極めて少ないデータ量で制御
することが可能となる。従って、冷凍サイクルを室内機
の要求負荷に合わせてきめ細かく最適に制御しながら、
快適性の向上及び省エネルギーを図ることができる。
Thus, not only the rated capacity of the room,
Since the compressor frequency is controlled according to the heat exchanger capacity setting value caused by the difference in the indoor unit configuration, it is possible to operate the compressor optimally for the required indoor load. Further, it is possible to control with an extremely small amount of data compared to having data for each different indoor unit form. Therefore, while controlling the refrigeration cycle according to the required load of the indoor unit, finely and optimally,
It is possible to improve comfort and save energy.

【0035】実施の形態2.次に、本発明の実施の形態
2にかかる多室形空気調和装置について、図面を参照し
ながら説明する。なお、実施の形態2における冷凍サイ
クルは、図1に示される実施の形態1の場合と同一であ
るので説明を省略する。
Embodiment 2. Next, a multi-room air conditioner according to a second embodiment of the present invention will be described with reference to the drawings. The refrigeration cycle in the second embodiment is the same as that in the first embodiment shown in FIG.

【0036】図4は、本発明の実施の形態2における圧
縮機周波数制御の流れを示すブロック図である。
FIG. 4 is a block diagram showing the flow of compressor frequency control in the second embodiment of the present invention.

【0037】図4に示されるブロック図が、実施の形態
1の図2に示されるブロック図と異なる点は、接続され
た室内熱交換器が記憶する熱交換器能力設定値の代わり
に、接続された室内機の熱交換器能力値と基準となる熱
交換器能力値との能力比を形態補正値として、室内機の
形態補正値記憶手段37に記憶しておき、形態補正値信
号、定格容量信号、差温信号、運転モード信号、ON−
OFF判別信号を信号送信手段26より室外機1の信号
受信手段27へ送る。
The block diagram shown in FIG. 4 is different from the block diagram shown in FIG. 2 of the first embodiment in that instead of the heat exchanger capacity set value stored in the connected indoor heat exchanger, the connection value is changed. The capacity ratio between the heat exchanger capacity value of the indoor unit and the reference heat exchanger capacity value is stored as the shape correction value in the shape correction value storage means 37 of the indoor unit, and the shape correction value signal and the rating are stored. Capacity signal, differential temperature signal, operation mode signal, ON-
The OFF discrimination signal is sent from the signal transmitting means 26 to the signal receiving means 27 of the outdoor unit 1.

【0038】室内機2b、2cからも同様の信号が信号
受信手段27へ送られる。信号受信手段27で受信した
信号は圧縮機容量制御手段28へ送信される。
Similar signals are sent from the indoor units 2b and 2c to the signal receiving means 27. The signal received by the signal receiving means 27 is transmitted to the compressor capacity control means 28.

【0039】圧縮機容量制御手段28では、室内機2
a、2b、2cのそれぞれの定格容量信号、差温信号、
運転モード信号、ON−OFF判別信号より表1に示さ
れる負荷定数テーブル30から負荷定数を読み出し、こ
の負荷定数を、形態補正値で除して、形態補正負荷定数
を算出し、形態補正負荷定数の総和に定数を乗じて圧縮
機3の周波数を決定する。
In the compressor capacity control means 28, the indoor unit 2
a, 2b, 2c rated capacity signal, differential temperature signal,
The load constant is read from the load constant table 30 shown in Table 1 from the operation mode signal and the ON-OFF discrimination signal, and the load constant is divided by the form correction value to calculate the form correction load constant. The frequency of the compressor 3 is determined by multiplying the sum of the above by a constant.

【0040】圧縮機周波数の計算式は、実施の形態1と
同様であるため、その説明は省略する。
Since the formula for calculating the compressor frequency is the same as that of the first embodiment, its explanation is omitted.

【0041】実施の形態3.次に、本発明の実施の形態
3にかかる多室形空気調和装置について、図面を参照し
ながら説明する。なお、実施の形態3における冷凍サイ
クルは、図1に示される実施の形態1の場合と同一であ
るので説明を省略する。
Embodiment 3. Next, a multi-room air conditioner according to a third embodiment of the present invention will be described with reference to the drawings. Since the refrigeration cycle in the third embodiment is the same as that in the first embodiment shown in FIG. 1, the description thereof will be omitted.

【0042】図5は、本発明の実施の形態3における圧
縮機周波数制御の流れを示すブロック図である。
FIG. 5 is a block diagram showing the flow of compressor frequency control in the third embodiment of the present invention.

【0043】図5に示されるブロック図が、実施の形態
1の図2に示されるブロック図と異なる点は、圧縮機容
量制御手段28において、室内機2a、2b、2cのそ
れぞれの差温信号、運転モード信号、ON−OFF判別
信号より表3に示される共通負荷定数テーブル38から
共通負荷定数を読み出すとともに、それぞれの定格容量
信号より表4に示される定格容量係数テーブル37から
定格容量係数を読み出し、この共通負荷定数と定格容量
係数を乗じたものを、室内熱交換器能力設定値で除し
て、能力補正負荷定数を算出し、能力補正負荷定数の総
和に定数を乗じて圧縮機3の周波数を決定するようにし
たことである。
The block diagram shown in FIG. 5 is different from the block diagram shown in FIG. 2 of the first embodiment in that the compressor capacity control means 28 has a differential temperature signal for each of the indoor units 2a, 2b, 2c. The common load constant is read from the common load constant table 38 shown in Table 3 from the operation mode signal and the ON-OFF discrimination signal, and the rated capacity coefficient is obtained from the rated capacity coefficient table 37 shown in Table 4 from each rated capacity signal. The data obtained by multiplying the common load constant and the rated capacity coefficient by reading is divided by the indoor heat exchanger capacity setting value to calculate the capacity correction load constant, and the sum of the capacity correction load constants is multiplied by the constant to calculate the compressor 3 That is, the frequency of is decided.

【表3】 [Table 3]

【表4】 [Table 4]

【0044】一例として、運転台数全室(2a、2b、
2c)からの信号が表2の(a)の場合について説明す
る。
As an example, all operating rooms (2a, 2b,
The case where the signal from 2c) is (a) in Table 2 will be described.

【0045】全室運転は、表3及び表4より、室内機2
a、2b、2cの共通負荷定数はそれぞれ15、8、1
2で、定格容量係数はそれぞれ1.00、1.17、
1.60で、熱交換器能力設定値はそれぞれ2.9、
2.9、3.1となり、能力補正負荷係数Hnは、 Hn=15×1.00/2.9+8×1.17/2.9
+12×1.60/3.1=14.6(小数点以下第二
位を四捨五入) となり、圧縮機3の周波数Hzは、Aを定数とすると、 Hz= A×Hn= A×14.6 となる。
From the table 3 and the table 4, the operation of the indoor unit 2
The common load constants of a, 2b, 2c are 15, 8, 1 respectively.
2, the rated capacity coefficient is 1.00, 1.17,
1.60, the heat exchanger capacity set value is 2.9,
2.9 and 3.1, and the capacity correction load coefficient Hn is Hn = 15 × 1.00 / 2.9 + 8 × 1.17 / 2.9.
+ 12 × 1.60 / 3.1 = 14.6 (rounding to the second decimal place), and the frequency Hz of the compressor 3 is given by: Hz = A × Hn = A × 14.6, where A is a constant. Become.

【0046】この演算結果を周波数信号として圧縮機駆
動回路(図示せず)に送出して圧縮機3の周波数の制御
を行なう。以降、所定周期毎に室内機2a、2b、2c
のそれぞれの熱交換器能力設定値信号、定格容量信号、
差温信号、運転モード信号、ON−OFF判別信号より
演算を行ない、演算結果を周波数信号として圧縮機駆動
回路(図示せず)に送出して圧縮機3の周波数の制御を
行なう。
The result of this calculation is sent as a frequency signal to a compressor drive circuit (not shown) to control the frequency of the compressor 3. After that, the indoor units 2a, 2b, 2c are every predetermined cycle.
Each heat exchanger capacity setpoint signal, rated capacity signal,
Calculation is performed from the differential temperature signal, the operation mode signal, and the ON-OFF determination signal, and the calculation result is sent as a frequency signal to a compressor drive circuit (not shown) to control the frequency of the compressor 3.

【0047】上記説明は、主に冷房時について行なった
が、暖房時についても同様に制御可能である。
Although the above description is mainly made for cooling, the same control can be made for heating.

【0048】このように、室内の定格容量に関して、定
格容量係数テーブル37から読み取る定格容量係数から
圧縮機周波数を制御するため、それぞれの定格容量にお
ける負荷定数テーブルを持つ場合に比べ、極めて少ない
データ量で制御することが可能となる。従って、冷凍サ
イクルを室内機の要求負荷に合わせてきめ細かく最適に
制御しながら、快適性の向上及び省エネルギーを図るこ
とができる。
As described above, since the compressor frequency is controlled based on the rated capacity coefficient read from the rated capacity coefficient table 37 with respect to the rated capacity in the room, the amount of data is extremely small as compared with the case where the load constant table for each rated capacity is provided. It becomes possible to control with. Therefore, it is possible to improve comfort and save energy while finely and optimally controlling the refrigeration cycle according to the required load of the indoor unit.

【0049】実施の形態4.次に、本発明の実施の形態
4にかかる多室形空気調和装置について、図面を参照し
ながら説明する。なお、実施の形態4における冷凍サイ
クルは、図1に示される実施の形態1の場合と同一であ
るので説明を省略する。
Fourth Embodiment Next, a multi-room air conditioner according to a fourth embodiment of the present invention will be described with reference to the drawings. The refrigeration cycle in the fourth embodiment is the same as that in the first embodiment shown in FIG.

【0050】また、実施の形態4における圧縮機周波数
制御の流れを示すブロック図は、図1に示される実施の
形態1の場合と同一であり、圧縮機容量制御手段28に
おいて室内機2a、2b、2cのそれぞれの定格容量信
号、差温信号、運転モード信号、ON−OFF判別信号
より表1に示される負荷定数テーブル30から負荷定数
を読み出し、この負荷定数を、室内熱交換器能力設定値
で除して、能力補正負荷定数を算出し、能力補正負荷定
数の総和に定数を乗じて圧縮機3の周波数を決定する。
The block diagram showing the flow of the compressor frequency control in the fourth embodiment is the same as that in the first embodiment shown in FIG. 1, and the compressor capacity control means 28 uses the indoor units 2a, 2b. 2c, the load constant is read from the load constant table 30 shown in Table 1 from the rated capacity signal, the differential temperature signal, the operation mode signal, and the ON-OFF discrimination signal, and this load constant is set to the indoor heat exchanger capacity setting value. Then, the capacity correction load constant is calculated, and the sum of the capacity correction load constants is multiplied by the constant to determine the frequency of the compressor 3.

【0051】この時、この定数を運転台数に応じて、変
更する。
At this time, this constant is changed according to the number of operating vehicles.

【0052】一例として、運転台数が全室(2a、2
b、2c)、2室(2a、2b)、1室(2a)運転時
の室内機2a、2b、2cからの信号が同じく表2の場
合について説明する。
As an example, the number of operating units is 2 (2a, 2).
b, 2c), 2 rooms (2a, 2b), 1 room (2a) when the signals from the indoor units 2a, 2b, 2c are also in Table 2 will be described.

【0053】全室運転は、表2より、室内機2a、2
b、2cの負荷定数はそれぞれ15、10、19で、熱
交換器能力設定値は2.9、2.9、3.1となり、能
力補正負荷係数Hnは、 Hn=15/2.9+10/2.9+19/3.1=1
4.7(小数点以下第二位を四捨五入) となり、圧縮機3の周波数Hzは、Aを定数とすると、
Hz= A×Hn= A×14.7となる。
From the table 2, the indoor units 2a, 2
The load constants of b and 2c are 15, 10 and 19, respectively, the heat exchanger capacity setting values are 2.9, 2.9 and 3.1, and the capacity correction load coefficient Hn is Hn = 15 / 2.9 + 10 / 2.9 + 19 / 3.1 = 1
4.7 (rounded to the second decimal place), and the frequency Hz of the compressor 3 is
Hz = A × Hn = A × 14.7.

【0054】この演算結果を周波数信号として圧縮機駆
動回路(図示せず)に送出して圧縮機3の周波数の制御
を行なう。以降、所定周期毎に室内機2a、2b、2c
のそれぞれの熱交換器能力設定値、定格容量信号、差温
信号、運転モード信号、ON−OFF判別信号より演算
を行ない、演算結果を周波数信号として圧縮機駆動回路
(図示せず)に送出して圧縮機3の周波数の制御を行な
う。
The result of this calculation is sent as a frequency signal to a compressor drive circuit (not shown) to control the frequency of the compressor 3. After that, the indoor units 2a, 2b, 2c are every predetermined cycle.
Each heat exchanger capacity setting value, rated capacity signal, differential temperature signal, operation mode signal, and ON-OFF discrimination signal are calculated, and the calculation result is sent to a compressor drive circuit (not shown) as a frequency signal. Then, the frequency of the compressor 3 is controlled.

【0055】2室運転は、表2より、室内機2a、2
b、2cの負荷定数はそれぞれ15、10、0で、熱交
換器能力設定値は2.9、2.9、3.1となり、能力
補正負荷係数Hnは、 Hn=15/2.9+10/2.9+0/3.1=8.
6(小数点以下第二位を四捨五入) となり、圧縮機3の周波数Hzは、別の定数Bを用い
て、Hz= B×Hn= B×8.6となる。
In the two-room operation, from Table 2, the indoor units 2a, 2
The load constants of b and 2c are 15, 10 and 0, the heat exchanger capacity setting values are 2.9, 2.9 and 3.1, and the capacity correction load coefficient Hn is Hn = 15 / 2.9 + 10 / 2.9 + 0 / 3.1 = 8.
6 (rounded to the second decimal place), and the frequency Hz of the compressor 3 becomes Hz = B × Hn = B × 8.6 using another constant B.

【0056】また1室運転は、表2より、室内機2a、
2b、2cの負荷定数はそれぞれ15、0、0で、熱交
換器能力設定値は2.9、2.9、3.1となり、能力
補正負荷係数Hnは、 Hn=15/2.9+0/2.9+0/3.1=5.2
(小数点以下第二位を四捨五入) となり、圧縮機3の周波数Hzは、また別の定数Cを用
いて、Hz= C×Hn= C×5.2となる。
Further, in the single room operation, from Table 2, the indoor unit 2a,
The load constants of 2b and 2c are 15, 0 and 0, the heat exchanger capacity set values are 2.9, 2.9 and 3.1, and the capacity correction load coefficient Hn is Hn = 15 / 2.9 + 0 /. 2.9 + 0 / 3.1 = 5.2
(The second decimal place is rounded off), and the frequency Hz of the compressor 3 is Hz = C × Hn = C × 5.2 using another constant C.

【0057】これを図で示すと図6の能力補正負荷係数
と圧縮機周波数の関係図となる。
This is shown in the figure, which is a relationship diagram between the capacity correction load coefficient and the compressor frequency in FIG.

【0058】上記説明は、主に冷房時について行なった
が、暖房時についても同様に制御可能である。
Although the above description was mainly made for cooling, the same control can be made for heating.

【0059】このように、各部屋の要求能力の総和及び
運転台数に応じて圧縮機周波数を制御するため、室内要
求負荷に合った最適な圧縮機運転が出来る。従って、冷
凍サイクルを室内機の要求負荷に合わせてきめ細かく最
適に制御しながら、快適性の向上及び省エネルギーを図
ることができる。
In this way, the compressor frequency is controlled according to the sum of the required capacity of each room and the number of operating units, so that the optimum compressor operation can be performed according to the indoor required load. Therefore, it is possible to improve comfort and save energy while finely and optimally controlling the refrigeration cycle according to the required load of the indoor unit.

【0060】実施の形態5.次に、本発明の実施の形態
5にかかる空気調和装置について、図面を参照しながら
説明する。
Fifth Embodiment Next, an air conditioner according to a fifth embodiment of the present invention will be described with reference to the drawings.

【0061】図7は、本実施の形態にかかる空気調和装
置の冷凍サイクルを示しており、室外機1内には、イン
バータ駆動の周波数可変形圧縮機3(以下、単に圧縮機
と称す)、室外熱交換器4、冷暖房切換用の四方弁5が
設けられる一方、室内機2d内には室内熱交換器6dが
設けられている。室外機1と室内機2dとは、室外機1
内に設けられた液側主管7につながる液側分岐管8d、
及び、室外機1内に設けられたガス側主管9につながる
ガス側分岐管10dとで接続されている。液側分岐管8
dには、ステッピングモータを用いて弁開度をパルス制
御可能な電動膨張弁11dが介装され、室内機2dには
室内機が設置されている部屋の室温を検出する室内温度
センサ17d、及び、居住者が希望する運転モード(冷
房または暖房)と室温と運転、停止を設定できる運転設
定手段18dが設けられている。
FIG. 7 shows a refrigeration cycle of the air conditioner according to the present embodiment. In the outdoor unit 1, an inverter-driven variable frequency compressor 3 (hereinafter simply referred to as compressor), An outdoor heat exchanger 4 and a four-way valve 5 for switching between heating and cooling are provided, while an indoor heat exchanger 6d is provided inside the indoor unit 2d. The outdoor unit 1 and the indoor unit 2d are the outdoor unit 1
A liquid side branch pipe 8d connected to the liquid side main pipe 7 provided inside,
Also, they are connected by a gas side branch pipe 10d connected to the gas side main pipe 9 provided in the outdoor unit 1. Liquid side branch pipe 8
An electric expansion valve 11d capable of pulse-controlling a valve opening using a stepping motor is interposed in d, and an indoor temperature sensor 17d that detects a room temperature of a room in which the indoor unit is installed is installed in the indoor unit 2d, and There is provided an operation setting means 18d capable of setting an operation mode (cooling or heating) desired by a resident, room temperature, operation and stop.

【0062】次に、圧縮機周波数の制御方法について、
図8に示される圧縮機周波数の制御の流れを示すブロッ
ク図及び図3に示される室内温度Trと設定温度Tsと
の差温△Tの温度ゾーン分割図を参照しながら説明す
る。
Next, regarding the method of controlling the compressor frequency,
This will be described with reference to the block diagram showing the flow of control of the compressor frequency shown in FIG. 8 and the temperature zone division diagram of the temperature difference ΔT between the room temperature Tr and the set temperature Ts shown in FIG.

【0063】まず、室内機2dにおいて、室内温度セン
サ17dの出力を室内温度検出手段21より温度信号と
して差温演算手段22に送出するとともに、室内温度設
定手段23にて運転設定手段18dで設定された設定温
度及び運転モードを判別して差温演算手段22に送出す
る。差温演算手段22では、差温△T(=Tr−Ts)
を算出し、図3に示される負荷ナンバーLn値に変換し
てこれを差温信号とする。
First, in the indoor unit 2d, the output of the indoor temperature sensor 17d is sent from the indoor temperature detecting means 21 to the differential temperature calculating means 22 as a temperature signal, and the indoor temperature setting means 23 sets the operation setting means 18d. The set temperature and the operation mode are discriminated and sent to the temperature difference calculating means 22. In the temperature difference calculating means 22, the temperature difference ΔT (= Tr−Ts)
Is calculated and converted into the load number Ln value shown in FIG. 3 and used as the temperature difference signal.

【0064】例えば、冷房運転時でTr=27.3℃、
Ts=26℃とすると、差温△T=1.3℃で、Ln=
6となる。
For example, Tr = 27.3 ° C. during cooling operation,
If Ts = 26 ° C., the temperature difference ΔT = 1.3 ° C., Ln =
It becomes 6.

【0065】また、ON−OFF判別手段24におい
て、運転設定手段18dで設定された室内機2dの運転
(ON)または停止(OFF)を判別し、定格容量記憶
手段25に室内機2dの定格容量を記憶するとともに、
熱交換器能力設定値記憶手段36に室内機2dの室内熱
交換器能力設定値を記憶しておき、これらの熱交換器能
力設定値信号、定格容量信号、差温信号、運転モード信
号、ON−OFF判別信号を信号送信手段26より室外
機1の信号受信手段27へ送る。信号受信手段27で受
信した信号は圧縮機容量制御手段28へ送信される。
Further, the ON-OFF discriminating means 24 discriminates the operation (ON) or stop (OFF) of the indoor unit 2d set by the operation setting means 18d, and the rated capacity storage means 25 stores the rated capacity of the indoor unit 2d. And remember
The indoor heat exchanger capacity set value of the indoor unit 2d is stored in the heat exchanger capacity set value storage means 36, and these heat exchanger capacity set value signal, rated capacity signal, differential temperature signal, operation mode signal, ON The -OFF discrimination signal is sent from the signal transmitting means 26 to the signal receiving means 27 of the outdoor unit 1. The signal received by the signal receiving means 27 is transmitted to the compressor capacity control means 28.

【0066】圧縮機容量制御手段28では、室内機2d
の定格容量信号、差温信号、運転モード信号、ON−O
FF判別信号より表1に示される負荷定数テーブル30
から負荷定数を読み出し、この負荷定数を、室内熱交換
器能力設定値で除して、能力補正負荷定数を算出し、こ
の能力補正負荷定数に定数を乗じて圧縮機3の周波数を
決定する。
In the compressor capacity control means 28, the indoor unit 2d
Rated capacity signal, differential temperature signal, operation mode signal, ON-O
The load constant table 30 shown in Table 1 from the FF discrimination signal
The load constant is read from the load constant, the load constant is divided by the indoor heat exchanger capacity setting value to calculate a capacity correction load constant, and the capacity correction load constant is multiplied by the constant to determine the frequency of the compressor 3.

【0067】一例として、室内機2dからの信号が表5
の場合について説明する。
As an example, the signals from the indoor unit 2d are shown in Table 5.
The case will be described.

【表5】 [Table 5]

【0068】表5より、室内機2dの負荷定数は15
で、熱交換器能力設定値は2.9となり、能力補正負荷
係数Hnは、 Hn=15/2.9=5.2(小数点以下第二位を四捨
五入) となり、圧縮機3の周波数Hzは、Dを定数とすると、
Hz= D×Hn = D×5.2となる。
From Table 5, the load constant of the indoor unit 2d is 15
Then, the heat exchanger capacity set value becomes 2.9, the capacity correction load coefficient Hn becomes Hn = 15 / 2.9 = 5.2 (rounded to the second decimal place), and the frequency Hz of the compressor 3 becomes , D are constants,
Hz = D × Hn = D × 5.2.

【0069】この演算結果を周波数信号として圧縮機駆
動回路(図示せず)に送出して圧縮機3の周波数の制御
を行なう。以降、所定周期毎に室内機2dの熱交換器能
力設定値、定格容量信号、差温信号、運転モード信号、
ON−OFF判別信号より演算を行ない、演算結果を周
波数信号として圧縮機駆動回路(図示せず)に送出して
圧縮機3の周波数の制御を行なう。
The result of this calculation is sent as a frequency signal to a compressor drive circuit (not shown) to control the frequency of the compressor 3. Thereafter, the heat exchanger capacity setting value of the indoor unit 2d, the rated capacity signal, the differential temperature signal, the operation mode signal,
Calculation is performed from the ON-OFF discrimination signal, and the calculation result is sent to a compressor drive circuit (not shown) as a frequency signal to control the frequency of the compressor 3.

【0070】上記説明は、主に冷房時について行なった
が、暖房時についても同様に制御可能である。
Although the above description has been made mainly for cooling, the same control can be performed for heating.

【0071】このように、室内の定格容量だけでなく、
室内機形態の違いなどに起因する熱交換器能力設定値に
応じて圧縮機周波数を制御するため、室内要求負荷に合
った最適な圧縮機運転が出来る。また、室内機の形態が
違う毎にデータを持つよりも極めて少ないデータ量で制
御することが可能となる。従って、冷凍サイクルを室内
機の要求負荷に合わせてきめ細かく最適に制御しなが
ら、快適性の向上及び省エネルギーを図ることができ
る。
Thus, not only the rated capacity in the room,
Since the compressor frequency is controlled according to the heat exchanger capacity setting value caused by the difference in the indoor unit configuration, it is possible to operate the compressor optimally for the required indoor load. In addition, it is possible to control with an extremely small amount of data compared to having data for each different type of indoor unit. Therefore, it is possible to improve comfort and save energy while finely and optimally controlling the refrigeration cycle according to the required load of the indoor unit.

【0072】[0072]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。本
発明の多室形空気調和機によれば、室内機に、希望する
室内温度を設定可能な室内温度設定手段と、室内温度を
検出する室内温度検出手段と、室内温度設定手段と室内
温度検出手度とから設定室内温度と室内温度との差温を
算出する差温演算手段と、室内機の定格容量を記憶する
定格容量記憶手段と、室内機の熱交換器能力を記憶する
室内熱交換器能力設定値記憶手段と、差温が取り得る範
囲を複数個の温度ゾーンに分割し、各温度ゾーン毎かつ
室内機の定格容量毎に室内負荷に対応する負荷定数を定
めて記憶する負荷定数記憶手段とを設け、室外機に設け
られた圧縮機容量制御手段が、差温演算手段、定格容量
記憶手段、室内熱交換器能力設定値記憶手段、負荷定数
記憶手段より得られるデータを用いて、圧縮機周波数を
算出する計算式を決定し、この計算式に基づいて容量可
変形圧縮機の運転周波数を制御するようにしたので、圧
縮機周波数の最適制御を行うことができるとともに室内
要求負荷に合った運転が可能となり、冷凍サイクルを室
内機の要求負荷に合わせてきめ細かく最適に制御しなが
ら、快適性の向上及び省エネルギーを図ることができ
る。
Since the present invention is constructed as described above, it has the following effects. According to the multi-room air conditioner of the present invention, the indoor unit has an indoor temperature setting unit capable of setting a desired indoor temperature, an indoor temperature detecting unit detecting the indoor temperature, an indoor temperature setting unit and an indoor temperature detecting unit. Temperature difference calculating means for calculating the temperature difference between the set indoor temperature and the indoor temperature from the hand temperature, rated capacity storage means for storing the rated capacity of the indoor unit, and indoor heat exchange for storing the heat exchanger capacity of the indoor unit Load capacity constant value storage means and a load constant that divides the range that the differential temperature can take into a plurality of temperature zones and determines and stores a load constant corresponding to the indoor load for each temperature zone and for each rated capacity of the indoor unit. And a compressor capacity control means provided in the outdoor unit, using the data obtained from the differential temperature calculation means, the rated capacity storage means, the indoor heat exchanger capacity set value storage means, and the load constant storage means. , Formula to calculate compressor frequency Since the operating frequency of the variable displacement compressor was controlled based on this calculation formula, the compressor frequency can be optimally controlled and the operation that meets the indoor required load can be performed, and the refrigeration cycle It is possible to improve comfort and save energy while finely and optimally controlling the unit according to the required load of the indoor unit.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態1乃至4にかかる多室形
空気調和装置の冷凍サイクル図である。
FIG. 1 is a refrigeration cycle diagram of a multi-room air conditioner according to first to fourth embodiments of the present invention.

【図2】 本発明の実施の形態1における圧縮機周波数
の制御ブロック図である。
FIG. 2 is a control block diagram of a compressor frequency according to the first embodiment of the present invention.

【図3】 (a)は差温△Tの冷房時の温度ゾーン分割
図であり、(b)は暖房時の温度ゾーン分割図である。
FIG. 3 (a) is a temperature zone division diagram during cooling of the differential temperature ΔT, and FIG. 3 (b) is a temperature zone division diagram during heating.

【図4】 本発明の実施の形態2における圧縮機周波数
の制御ブロック図である。
FIG. 4 is a control block diagram of a compressor frequency according to the second embodiment of the present invention.

【図5】 本発明の実施の形態3における圧縮機周波数
の制御ブロック図である。
FIG. 5 is a control block diagram of a compressor frequency according to the third embodiment of the present invention.

【図6】 本発明の実施の形態4にかかる多室形空気調
和装置において運転している室内機定格容量の総和と圧
縮機容量(運転周波数)との関係図を示すグラフであ
る。
FIG. 6 is a graph showing a relationship diagram between the total sum of indoor unit rated capacities and the compressor capacities (operating frequencies) that are operating in the multi-room air conditioner according to the fourth embodiment of the present invention.

【図7】 本発明の実施の形態5にかかる空気調和装置
の冷凍サイクル図である。
FIG. 7 is a refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 5 of the present invention.

【図8】 本発明の実施の形態5における圧縮機周波数
の制御ブロック図である。
FIG. 8 is a control block diagram of a compressor frequency according to the fifth embodiment of the present invention.

【図9】 従来の多室形空気調和装置の冷凍サイクル図
である。
FIG. 9 is a refrigeration cycle diagram of a conventional multi-room air conditioner.

【図10】 図9の従来の多室形空気調和装置における
圧縮機周波数の制御ブロック図である。
10 is a control block diagram of a compressor frequency in the conventional multi-room air conditioner of FIG.

【符号の説明】[Explanation of symbols]

1 室外機、 2a,2b,2c,2d 室内機、3
周波数可変形圧縮機、 4 室外熱交換器、 5 四方
弁、6a,6b,6c,6d 室内熱交換器、 7 液
側主管、8a,8b,8c,8d 液側分岐管、 9
ガス側主管、10a,l0b,l0c,l0d ガス側
分岐管、lla,llb,llc,lld 電動膨張
弁、17a,17b,17c,17d 室内温度セン
サ、18a,18b,18c,18d 運転設定手段、
21 室内温度検出手段、 22 差温演算手段、23
室内温度設定手段、 24 ON−OFF判別手段、
25 定格容量記憶手段、 26 信号送信手段、 2
7 信号受信手段、28 圧縮機容量制御手段、 30
負荷定数テーブル、31 負荷定数記憶手段、 32
運転台数認識手段、36 熱交換器能力設定値記憶手
段、 37 定格容量係数テーブル、38 共通負荷定
数テーブル、 39 形態補正値記憶手段
1 outdoor unit, 2a, 2b, 2c, 2d indoor unit, 3
Variable frequency compressor, 4 outdoor heat exchanger, 5 four-way valve, 6a, 6b, 6c, 6d indoor heat exchanger, 7 liquid side main pipe, 8a, 8b, 8c, 8d liquid side branch pipe, 9
Gas side main pipe, 10a, 10b, 10c, 10d Gas side branch pipe, 11a, 11b, 11c, 11d Electric expansion valve, 17a, 17b, 17c, 17d Indoor temperature sensor, 18a, 18b, 18c, 18d Operation setting means,
21 indoor temperature detecting means, 22 differential temperature calculating means, 23
Indoor temperature setting means, 24 ON-OFF discrimination means,
25 rated capacity storage means, 26 signal transmission means, 2
7 signal receiving means, 28 compressor capacity control means, 30
Load constant table, 31 load constant storage means, 32
Operating number recognition means, 36 heat exchanger capacity set value storage means, 37 rated capacity coefficient table, 38 common load constant table, 39 form correction value storage means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 康裕 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 浅田 徳哉 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 西本 敏彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 荒島 博 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 白井 健二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 藤田 直人 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3L060 AA03 AA05 CC02 DD02 EE04 3L092 AA02 AA03 DA14 EA15 FA05 GA09 GA10 JA14 KA13 KA15 LA07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yasuhiro Nakamura             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Tokuya Asada             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Toshihiko Nishimoto             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Hiroshi Arashima             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Kenji Shirai, Inventor             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Naoto Fujita             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F term (reference) 3L060 AA03 AA05 CC02 DD02 EE04                 3L092 AA02 AA03 DA14 EA15 FA05                       GA09 GA10 JA14 KA13 KA15                       LA07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 容量可変形圧縮機と室外熱交換器を有す
る1台の室外機と、室内熱交換器を有する複数台の室内
機とを互いに接続した多室形空気調和装置であって、 前記複数台の室内機の各々に、室内機が設置される室内
の温度を任意に設定する室内温度設定手段と、室内温度
を検出する室内温度検出手段と、前記室内温度設定手段
により設定された温度と前記室内温度検出手段により検
出された室内温度との差温を算出する差温演算手段と、
室内機の定格容量を記憶する定格容量記憶手段と、各室
内機が運転中か停止中かを判別するON/FF判別手段
と、室内機の室内熱交換器能力設定値を記憶する熱交換
器能力設定値記憶手段とを設ける一方、前記室外機に、
前記差温演算手段、前記定格容量記憶手段及び前記ON
/OFF判別手段より得られるデータを用いて前記容量
可変形圧縮機の容量を所定周期毎に制御する圧縮機容量
制御手段を設け、該圧縮機容量制御手段が、前記熱交換
器能力設定値記憶手段に記憶された室内熱交換器能力設
定値に基づいて圧縮機容量の演算式を導き出して圧縮機
容量を制御するようにしたことを特徴とする多室形空気
調和装置。
1. A multi-chamber air conditioner in which a single outdoor unit having a variable capacity compressor and an outdoor heat exchanger and a plurality of indoor units having an indoor heat exchanger are connected to each other. In each of the plurality of indoor units, the indoor temperature setting means for arbitrarily setting the temperature of the room in which the indoor unit is installed, the indoor temperature detecting means for detecting the indoor temperature, and the indoor temperature setting means are set. A temperature difference calculating means for calculating a temperature difference between the temperature and the room temperature detected by the room temperature detecting means,
Rated capacity storage means for storing the rated capacity of the indoor unit, ON / FF determination means for determining whether each indoor unit is operating or stopped, and a heat exchanger for storing the indoor heat exchanger capacity set value of the indoor unit While the capacity setting value storage means is provided, the outdoor unit,
The differential temperature calculation means, the rated capacity storage means, and the ON
A compressor capacity control means is provided for controlling the capacity of the variable capacity compressor at predetermined intervals using the data obtained from the ON / OFF discrimination means, and the compressor capacity control means stores the heat exchanger capacity set value storage. A multi-room air conditioner characterized in that an arithmetic expression of a compressor capacity is derived based on an indoor heat exchanger capacity set value stored in the means to control the compressor capacity.
【請求項2】 前記熱交換器能力設定値記憶手段に代え
て、室内機の熱交換器能力値と基準とする熱交換器能力
値との能力比の値を形態補正値として記憶する形態補正
値記憶手段を設け、前記圧縮機容量制御手段が、前記形
態補正値記憶手段に記憶された形態補正値に基づいて圧
縮機容量の演算式を導き出して圧縮機容量を制御するよ
うにした請求項1に記載の多室形空気調和装置。
2. A form correction in which a value of a capacity ratio between a heat exchanger capacity value of an indoor unit and a reference heat exchanger capacity value is stored as a form correction value instead of the heat exchanger capacity set value storage means. A value storage means is provided, and the compressor capacity control means controls the compressor capacity by deriving an arithmetic expression of the compressor capacity based on the shape correction value stored in the shape correction value storage means. 1. The multi-room air conditioner according to 1.
【請求項3】 前記圧縮機容量制御手段が、前記熱交換
器能力設定値記憶手段に記憶された室内熱交換器能力設
定値に加えて、室内機定格容量毎に設定された定格容量
係数に基づいて圧縮機容量の演算式を導き出して圧縮機
容量を制御するようにした請求項1に記載の多室形空気
調和装置。
3. The compressor capacity control means, in addition to the indoor heat exchanger capacity set value stored in the heat exchanger capacity set value storage means, a rated capacity coefficient set for each indoor unit rated capacity. The multi-room air conditioner according to claim 1, wherein an arithmetic expression of the compressor capacity is derived based on the compressor capacity to control the compressor capacity.
【請求項4】 前記圧縮機容量制御手段が、室内機運転
台数に応じて圧縮機容量の演算式を変えることにより、
圧縮機容量を制御するようにした請求項1乃至請求項3
のいずれか1項に記載の多室形空気調和装置。
4. The compressor capacity control means changes the arithmetic expression of the compressor capacity according to the number of operating indoor units,
4. The compressor according to claim 1, wherein the compressor capacity is controlled.
The multi-room air conditioner according to any one of 1.
【請求項5】 容量可変形圧縮機と室外熱交換器を有す
る1台の室外機と、室内熱交換器を有する1台の室内機
とを互いに接続した空気調和装置であって、 前記室内機に、室内機が設置される室内の温度を任意に
設定する室内温度設定手段と、室内温度を検出する室内
温度検出手段と、前記室内温度設定手段により設定され
た温度と前記室内温度検出手段により検出された室内温
度との差温を算出する差温演算手段と、室内機の定格容
量を記憶する定格容量記憶手段と、室内機が運転中か停
止中かを判別するON/FF判別手段と、室内機の室内
熱交換器能力設定値を記憶する熱交換器能力設定値記憶
手段とを設ける一方、前記室外機に、前記差温演算手
段、前記定格容量記憶手段及び前記ON/OFF判別手
段より得られるデータを用いて前記容量可変形圧縮機の
容量を所定周期毎に制御する圧縮機容量制御手段を設
け、該圧縮機容量制御手段が、前記熱交換器能力設定値
記憶手段に記憶された室内熱交換器能力設定値に基づい
て圧縮機容量の演算式を導き出して圧縮機容量を制御す
るようにしたことを特徴とする空気調和装置。
5. An air conditioner in which a single outdoor unit having a variable capacity compressor and an outdoor heat exchanger and a single indoor unit having an indoor heat exchanger are connected to each other. The indoor temperature setting means for arbitrarily setting the indoor temperature in which the indoor unit is installed, the indoor temperature detecting means for detecting the indoor temperature, the temperature set by the indoor temperature setting means and the indoor temperature detecting means. A temperature difference calculation means for calculating a temperature difference from the detected indoor temperature, a rated capacity storage means for storing a rated capacity of the indoor unit, and an ON / FF determination means for determining whether the indoor unit is in operation or stopped. A heat exchanger capacity set value storage means for storing an indoor heat exchanger capacity set value of the indoor unit, while the outdoor unit has the differential temperature calculation means, the rated capacity storage means, and the ON / OFF determination means. With more available data Compressor capacity control means for controlling the capacity of the variable capacity compressor at predetermined intervals is provided, and the compressor capacity control means sets the indoor heat exchanger capacity setting stored in the heat exchanger capacity setting value storage means. An air conditioner characterized in that an arithmetic expression of a compressor capacity is derived based on the value to control the compressor capacity.
JP2002053602A 2002-02-28 2002-02-28 Air conditioner Expired - Fee Related JP4043255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002053602A JP4043255B2 (en) 2002-02-28 2002-02-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002053602A JP4043255B2 (en) 2002-02-28 2002-02-28 Air conditioner

Publications (2)

Publication Number Publication Date
JP2003254590A true JP2003254590A (en) 2003-09-10
JP4043255B2 JP4043255B2 (en) 2008-02-06

Family

ID=28664988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053602A Expired - Fee Related JP4043255B2 (en) 2002-02-28 2002-02-28 Air conditioner

Country Status (1)

Country Link
JP (1) JP4043255B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047367A (en) * 2007-08-21 2009-03-05 Mitsubishi Electric Corp Air conditioner
JP2010078191A (en) * 2008-09-24 2010-04-08 Toshiba Carrier Corp Air conditioner
JP2016061552A (en) * 2014-09-22 2016-04-25 三菱電機株式会社 Air conditioner
CN114198874A (en) * 2021-11-18 2022-03-18 青岛海信日立空调系统有限公司 Air conditioning system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5132757B2 (en) * 2010-11-19 2013-01-30 三菱電機株式会社 Control device, control method and program
CN109764491B (en) * 2019-01-31 2021-06-01 深圳市共济科技股份有限公司 Data center air conditioner control system, control method and storage medium

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047367A (en) * 2007-08-21 2009-03-05 Mitsubishi Electric Corp Air conditioner
JP2010078191A (en) * 2008-09-24 2010-04-08 Toshiba Carrier Corp Air conditioner
WO2010035424A3 (en) * 2008-09-24 2010-06-10 東芝キヤリア株式会社 Air conditioner
EP2354693A2 (en) * 2008-09-24 2011-08-10 Toshiba Carrier Corporation Air conditioner
CN102177402A (en) * 2008-09-24 2011-09-07 东芝开利株式会社 Air conditioner
RU2471126C1 (en) * 2008-09-24 2012-12-27 Тосиба Кэрриер Корпорейшн Air conditioner
CN102177402B (en) * 2008-09-24 2013-07-17 东芝开利株式会社 Air conditioner
EP2354693A4 (en) * 2008-09-24 2014-07-23 Toshiba Carrier Corp Air conditioner
US9010137B2 (en) 2008-09-24 2015-04-21 Toshiba Carrier Corporation Air conditioner
JP2016061552A (en) * 2014-09-22 2016-04-25 三菱電機株式会社 Air conditioner
CN114198874A (en) * 2021-11-18 2022-03-18 青岛海信日立空调系统有限公司 Air conditioning system

Also Published As

Publication number Publication date
JP4043255B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
JP3327158B2 (en) Multi-room air conditioner
US4720982A (en) Multi-type air conditioner with optimum control for each load
JP3163121B2 (en) Air conditioner
JPS6334459A (en) Air conditioner
JPH0762569B2 (en) Operation control device for air conditioner
JPH06257828A (en) Multi-chamber type air conditioning system
JP2003254590A (en) Air conditioner
JP3097350B2 (en) Multi-room air conditioner
JP3223918B2 (en) Multi-room air conditioning system
JP3275669B2 (en) Multi-room air conditioning system
JPH06123512A (en) Multi-room air conditioner
JP4151219B2 (en) Multi-chamber air conditioner
JP2003254635A (en) Multi-chamber type air conditioner
JPH09264614A (en) Air conditioner
JP2730398B2 (en) Multi-room air conditioning system
JP2003247742A (en) Multi-chamber type air conditioner and control method thereof
JPH06257827A (en) Multi chamber type air conditioning system
JPH08189690A (en) Heating and dehumidifying operation controller for multi-room split type air conditioner
JP3429397B2 (en) Air conditioner
JP3286817B2 (en) Multi-room air conditioner
JPH09178247A (en) Controller for multi-room air conditioning equipment
JP4110716B2 (en) Refrigeration equipment
JP2730381B2 (en) Multi-room air conditioner
JPH07286761A (en) Air conditioner
JP2003120988A (en) Multichamber-shaped air conditioner of refrigerant heating type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees