JP2003222709A - Optical element and its manufacturing method - Google Patents

Optical element and its manufacturing method

Info

Publication number
JP2003222709A
JP2003222709A JP2002023203A JP2002023203A JP2003222709A JP 2003222709 A JP2003222709 A JP 2003222709A JP 2002023203 A JP2002023203 A JP 2002023203A JP 2002023203 A JP2002023203 A JP 2002023203A JP 2003222709 A JP2003222709 A JP 2003222709A
Authority
JP
Japan
Prior art keywords
resin
mold
optical element
curable resin
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002023203A
Other languages
Japanese (ja)
Inventor
Senichi Hayashi
専一 林
Masaki Omori
正樹 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002023203A priority Critical patent/JP2003222709A/en
Publication of JP2003222709A publication Critical patent/JP2003222709A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element improving durability of a mold by reducing demolding force in starting demolding, controlling a start point and a direction of the demolding, and preventing peeling, deformation and breakage of a resin from a glass base material, and to provide its manufacturing method. <P>SOLUTION: The optical element forms the energy curable resin having a required shape on a base material by dropping the energy curable resin into the mold, installing the base material thereon, and applying energy on the resin to be cured and demolded. It has a projection-like part in viewing from the orthogonal direction to a base material face on an outer peripheral part of a molding. In addition, the projection-like part is made a demolding start point in the manufacturing method of the optical element forming the energy curable resin having a required shape on the base material by dropping the energy curable resin into the mold, installing the base material thereon, and applying energy on the resin to be cured and demolded. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非球面を有するレ
ンズや表面に微細な形状(凹凸)を有する光学素子、例
えば回折格子やフレネルレンズ、光ディスク基材とその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lens having an aspherical surface, an optical element having a fine shape (unevenness) on the surface thereof, for example, a diffraction grating, a Fresnel lens, an optical disk substrate and a method for manufacturing the same.

【0002】[0002]

【従来の技術】光学素子の製造方法にはガラスの研削、
研摩や型を用いた精密成形、熱可塑性樹脂の射出成形や
プレス成形等があり、機能やコスト、要求精度等により
使い分けられている。例えば、カメラ等に使用される結
像系のレンズには球面レンズとしては温度、 湿度の環境
変動に関して性能劣化が少なく、経済的にも有利なガラ
スの研削、研摩により製造され、非球面レンズに関して
は、型を用いたガラスの精密成形により製造される。カ
メラでもファインダーに使用されるレンズは優れた結像
性能を要求されないため、コスト面から樹脂の射出成形
により製造される。
2. Description of the Related Art The method of manufacturing an optical element includes grinding glass,
There are polishing, precision molding using a mold, injection molding of thermoplastic resin, press molding, etc., and they are used properly depending on the function, cost, required accuracy, etc. For example, for aspherical lenses used for imaging lenses used in cameras, etc., aspherical lenses are manufactured by grinding and polishing glass, which has less performance deterioration due to environmental changes in temperature and humidity, and is economically advantageous. Is manufactured by precision molding of glass using a mold. Since lenses used for viewfinders in cameras are not required to have excellent imaging performance, they are manufactured by resin injection molding in terms of cost.

【0003】又、径が30mm以上の非球面レンズや表
面に微細な凹凸形状を有する光学素子では、ガラス基材
の上に光エネルギー硬化型樹脂の薄層を成形し、硬化さ
せることにより所要の表面形状を形成する方法が用いら
れる。大きな非球面レンズはガラスの精密成形では形状
精度が悪くなり、精度を確保しようとすると成形時間が
長くなりコスト高になる。微細な凹凸形状を有する光学
素子もガラスでは離型時に凹凸部が破壊し製造できず、
樹脂による製造が必須となるが素子全体が樹脂では、環
境変動に対する性能劣化が大きく樹脂部を薄層にする上
記の方法によりその影響を小さくする。
Further, in an aspherical lens having a diameter of 30 mm or more and an optical element having fine irregularities on the surface, a required layer is formed by molding a thin layer of a light energy curable resin on a glass substrate and curing the resin. A method of forming a surface profile is used. The precision of shape of a large aspherical lens deteriorates in precision molding of glass, and if the precision is to be secured, the molding time becomes long and the cost becomes high. Even optical elements with fine irregularities cannot be manufactured with glass because the irregularities are destroyed during mold release,
Manufacture with a resin is indispensable, but if the entire element is a resin, performance deterioration due to environmental fluctuations is large, and the influence is reduced by the above-described method of forming a thin resin layer.

【0004】この光エネルギー硬化型樹脂の成形におけ
る離型方法としては例えば、特開昭63−131352
号の突き出しによる離型、特開平01−152015号
の加熱、冷却による熱応力を利用した離型、特開昭62
−117154号の振動による離型等がある。離型性の
改善としては例えば、特許第2680175号の離型性
の良い型、特許第3006199号の離型剤処理を施し
た型、特開平04−254801号の樹脂に内填離型剤
を含有させる等の提案がなされている。
As a mold releasing method in the molding of this light energy curable resin, for example, JP-A-63-131352 is used.
Release by protrusion of No. JP-A No. 01-152015, release using heat stress due to heating and cooling, JP-A-62-2015
-117154 vibration causes mold release. Examples of the mold releasability improvement include a mold having a good mold releasability of Japanese Patent No. 2680175, a mold having a mold releasing agent treatment of Japanese Patent No. 3006199, and a resin of Japanese Patent Application Laid-Open No. 04-254801 containing an internal release agent. Proposals have been made to include it.

【0005】又、特開平06−270166号の最外周
部分に樹脂をつけ硬化させた離型、特開平07−227
916号では外側の基材レンズ部の一部に偏心荷重部材
を当接し、その偏心荷重部材を起点とした離型の提案が
なされている。
[0005] Further, in JP-A 06-270166, a mold release in which a resin is attached to the outermost peripheral portion and hardened, is disclosed in JP-A 07-227.
No. 916 proposes a mold release method in which an eccentric load member is brought into contact with a part of the outer base lens portion, and the eccentric load member is used as a starting point.

【0006】[0006]

【発明が解決しようとする課題】光エネルギー硬化型樹
脂の成形において、離型に支障を来すと樹脂が基材から
剥離してしまったり、樹脂の表面形状が変化したり、表
面に微細な凹凸を有する素子等ではその凹凸部が破壊し
たりする。又、形状精度への悪影響だけでなく離型性は
生産タクト(成形時間)や型の耐久の点からコストにも
大きく影響する。こうした離型性の改善が上記の提案で
あるが、先の3件は離型に対する負荷方法に関してであ
り、離型に要する力の低減を図ったものではない。従っ
て、離型時には相当の応力が樹脂/型界面に働き上記の
不具合が全て改善される訳ではなかった。
In the molding of light energy curable resin, if the release is hindered, the resin peels from the base material, the surface shape of the resin changes, or the surface is fine. In an element having unevenness, the unevenness may be destroyed. Further, not only the shape accuracy is adversely affected, but also the releasability greatly affects the cost in terms of production tact (molding time) and mold durability. The above-mentioned proposals have been made to improve the releasability as described above, but the above three cases are related to the load method for the releasability and are not intended to reduce the force required for the releasability. Therefore, at the time of mold release, considerable stress acts on the resin / mold interface, and not all of the above problems are solved.

【0007】又、次の3件は離型力自体の低減であり、
型表面材や樹脂組成の改良が考えられている。
Further, the following three cases are reduction of the releasing force itself,
Improvements in mold surface materials and resin compositions have been considered.

【0008】しかし、型表面材で離型性が良いものは、
テフロン(登録商標)のように表面粗さが悪く光学用途
には使用できず、離型剤も耐久が短かったり、外観や成
形後の樹脂の環境耐久に悪影響を与える。又、樹脂の組
成改良では、内填離型剤での離型性の向上が図られてい
るが、これも、型の汚れによる型耐久の低下や成形品の
外観、成形後の樹脂の環境耐久に悪影響を与える。
However, if the mold surface material has a good releasing property,
Like Teflon (registered trademark), it has a poor surface roughness and cannot be used for optical applications, and the release agent also has a short durability, and adversely affects the appearance and the environmental durability of the resin after molding. In addition, in improving the resin composition, the releasability of the internal release agent is improved, but this also reduces the mold durability due to mold stains, the appearance of the molded product, and the environment of the resin after molding. It adversely affects durability.

【0009】最後の2件は型と基材の間に硬化させた樹
脂や偏心荷重部材を起点として離型性の向上を考えてい
る。
In the last two cases, improvement of the mold releasability is considered starting from a cured resin or an eccentric load member between the mold and the base material.

【0010】しかし、起点用の硬化した樹脂は金型と基
材に間にメインの樹脂を挟み硬化した後に追加したもの
で、その起点用樹脂の硬化収縮によりその樹脂の接着点
より180度反対側から離型し、離型方向が制御できな
かったり、その樹脂の量によっては逆に離型が難しくな
ることも予想される。偏心荷重部材を使ったものは基本
的には通常の離型用のピンを基材端部に当てて押し上げ
る片爪剥し法と変わらないので必ずしも離型性が向上す
るとは限らない。
However, the cured resin for the starting point is added after the main resin is sandwiched between the mold and the base material and cured, and is 180 degrees opposite to the adhesion point of the resin due to the curing shrinkage of the starting resin. It is expected that the mold is released from the side and the mold release direction cannot be controlled, or that the mold release becomes difficult depending on the amount of the resin. Since the one using the eccentric load member is basically the same as the one-claw peeling method in which the pin for releasing is applied to the end of the base material and pushed up, the releasing property is not always improved.

【0011】本発明は上記問題に鑑みてなされたもの
で、その目的とする処は、離型開始時の離型力を低減で
きると共に離型の開始地点や離型の方向を制御でき、ガ
ラス基材からの樹脂の剥離や変形、破壊を防止して型の
耐久向上を図ることができる光学素子及びその製造方法
を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to reduce the release force at the start of release and to control the start point of release and the direction of release. An object of the present invention is to provide an optical element capable of improving the durability of a mold by preventing the resin from being peeled off, deformed or destroyed from the base material, and a method for manufacturing the same.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、エネルギー硬化型樹脂を、型に滴下しそ
の上に基材を設置し、エネルギーを樹脂に対して加え硬
化させ、離型することにより基材上に所要の形状を有す
るエネルギー硬化型樹脂を形成した光学素子において、
成形品の外周部に基材面と直角方向から見た形状が凸状
である部分を有することを特徴とする。
In order to achieve the above object, the present invention provides an energy-curable resin dropped into a mold, a base material is placed on the resin, and energy is applied to the resin to cure the resin. In an optical element in which an energy curable resin having a required shape is formed on a substrate by molding,
It is characterized in that the outer peripheral portion of the molded product has a portion having a convex shape when viewed from the direction perpendicular to the surface of the base material.

【0013】又、本発明は、エネルギー硬化型樹脂を、
型に滴下しその上に基材を設置し、エネルギーを樹脂に
対して加え硬化させ、離型することにより基材上に所要
の形状を有するエネルギー硬化型樹脂を形成した光学素
子の製造方法において、凸状である部分を離型起点とす
ることを特徴とする。
The present invention also provides an energy curable resin,
A method of manufacturing an optical element in which an energy-curable resin having a desired shape is formed on a substrate by dropping it on a mold, setting a substrate on the mold, applying energy to the resin to cure the resin, and releasing the mold. , The convex portion is used as the release starting point.

【0014】[0014]

【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0015】本発明では、離型力自体の低減、特に離型
開始時の離型力を低減するために、図11に示すように
成形された樹脂1101の外周部に凸状の部分1101
a及び1101c,1101d,1101eを設け、こ
の先端1101b及び1101c,1101d,110
1eの各先端に応力を集中させ、この部分を起点として
低応力で離型するようにしたものである。ここで、11
02はガラス基材である。
In the present invention, in order to reduce the releasing force itself, particularly the releasing force at the time of starting the releasing, a convex portion 1101 is formed on the outer peripheral portion of the resin 1101 molded as shown in FIG.
a and 1101c, 1101d, 1101e are provided, and the tips 1101b and 1101c, 1101d, 110
Stress is concentrated on each tip of 1e, and the mold is released with low stress starting from this portion. Where 11
02 is a glass base material.

【0016】しかし、外周部を図11の1101a,1
101c,1101d,1101eのような凸状形状に
するには、型構造が複雑になったりする。
However, the outer peripheral portion is shown by 1101a, 1 in FIG.
In order to form a convex shape such as 101c, 1101d, and 1101e, the mold structure becomes complicated.

【0017】そこで、本発明では、図12に示すように
ガラス基材1204と型1201の間にスペーサー12
03を用いることによって、エネルギー硬化型樹脂12
02の外周部に凸状の部分を形成すると共に前記樹脂1
202の膜厚を制御している。
Therefore, in the present invention, as shown in FIG. 12, the spacer 12 is provided between the glass substrate 1204 and the mold 1201.
By using 03, the energy curable resin 12
No. 02 and the resin 1
The film thickness of 202 is controlled.

【0018】又、図13に示すように、4分割したスペ
ーサー1301a,1301b,1301c,1301
dを用い、樹脂を硬化させ外周部に凸状の部分を形成し
た後、離型開始前に前記スペーサー1301a,130
1b,1301c,1301dを引き抜いておく。離型
開始時には、前記スペーサー1301e,1301f,
1301g,1301hに対応する凸状部分の各先端に
応力が集中して低荷重での離型が可能となる。
Further, as shown in FIG. 13, spacers 1301a, 1301b, 1301c, and 1301 divided into four parts.
Using d, the resin is cured to form a convex portion on the outer peripheral portion, and then the spacers 1301a, 1301
1b, 1301c, 1301d are pulled out beforehand. At the time of starting the mold release, the spacers 1301e, 1301f,
Stress is concentrated on the respective tips of the convex portions corresponding to 1301g and 1301h, which enables mold release with a low load.

【0019】以下に本発明の実施の形態を具体的に説明
するが、本発明はこれらの実施例に限定されるものでは
ない。
The embodiments of the present invention will be specifically described below, but the present invention is not limited to these examples.

【0020】[実施例1]図1は本発明に係る光学素子
の実施態様を示す概略図、図2は本実施例で用いた型を
示す概略図、図13は本実施例で用いたスペーサーの配
置を示す図、図3は本実施例での光学素子の製造方法を
示す概略図である。
Example 1 FIG. 1 is a schematic diagram showing an embodiment of an optical element according to the present invention, FIG. 2 is a schematic diagram showing a mold used in this example, and FIG. 13 is a spacer used in this example. And FIG. 3 is a schematic view showing a method of manufacturing an optical element in this embodiment.

【0021】図1において、101は光エネルギー硬化
型樹脂で、102はガラス基材である。101の表面1
01a,101bには型により転写されたフレネル形状
が形成されている(101aは尾根部(断面図の山
部)、101bは谷部(断面図の谷部))。成形された
光学素子の外周は101c,101d,101e,10
1fのように凸状になっている。この成形品は図2に示
す型を用いて作製した。
In FIG. 1, 101 is a light energy curable resin and 102 is a glass base material. Surface 1 of 101
Fresnel shapes transferred by a mold are formed on 01a and 101b (101a is a ridge portion (mountain portion in cross section), 101b is a valley portion (valley portion in cross section)). The outer circumference of the molded optical element is 101c, 101d, 101e, 10
It is convex like 1f. This molded product was produced using the mold shown in FIG.

【0022】図2の201は表面に最大深さ30μmの
フレネル形状201c,201d(201cは谷部(断
面図の谷部)、201dは尾根部(断面図の山部))を
有する型で、りん青銅の母材201aの上にKNメッキ
201bを100μm施し、このメッキ層を切削加工に
よりフレネル形状201c,201dを形成した。
Reference numeral 201 in FIG. 2 is a mold having Fresnel shapes 201c and 201d (201c is a valley portion (trough portion in cross section), 201d is a ridge portion (ridge portion in cross section)) having a maximum depth of 30 μm on the surface. KN plating 201b was applied to a thickness of 100 μm on a phosphor bronze base material 201a, and Fresnel shapes 201c and 201d were formed by cutting the plating layer.

【0023】図13は4分割できるスペーサー1301
a,1301b,1301c,1301dの配置図であ
る。分割できる各々のスペーサーには1301e,13
01f,1301g,1301hのように先端が曲率半
径2mmの凸状部を有している。前記型及び前記スペー
サーを用いて図3に示す工程でガラス基材の上に表面に
フレネル形状を有する樹脂層が接着された光学素子を作
製した。
FIG. 13 shows a spacer 1301 which can be divided into four parts.
It is a layout of a, 1301b, 1301c, 1301d. Each spacer that can be divided has 1301e, 13
01f, 1301g, and 1301h have a convex portion with a radius of curvature of 2 mm at the tip. An optical element in which a resin layer having a Fresnel shape was adhered on the surface of a glass substrate was produced in the process shown in FIG. 3 using the mold and the spacer.

【0024】図3において、302は硬化前の光エネル
ギー硬化型樹脂、303はスペーサー、306は不図示
の駆動装置に連結されている離型ピンである。先ず、型
301の上に4分割できるスペーサー303を設置し、
次に光エネルギー硬化型樹脂302を滴下した(図3
(a))。その上にガラス基材304を載せて不図示の
装置で加圧する。ここで用いるガラス基材の樹脂との接
触面は密着性向上のためシランカップリング剤を施して
ある。そして、スペーサー303で樹脂厚と外周の凸状
部(先端が曲率半径2mm)が決定されると(図3
(b))、UV光を照射し樹脂を硬化させる(図3
(c))。
In FIG. 3, 302 is a light energy curable resin before curing, 303 is a spacer, and 306 is a release pin connected to a driving device (not shown). First, install a spacer 303 that can be divided into four on the mold 301,
Next, the light energy curable resin 302 was dropped (FIG. 3).
(A)). A glass base material 304 is placed on it and pressure is applied by an apparatus (not shown). A silane coupling agent is applied to the contact surface of the glass base material used with the resin for improving the adhesion. When the spacer 303 determines the resin thickness and the convex portion of the outer circumference (the tip has a radius of curvature of 2 mm) (FIG. 3).
(B)), UV light is irradiated to cure the resin (FIG. 3).
(C)).

【0025】硬化が終了すると4、分割できるスペーサ
ー303を引き抜き、101c,101d,101e,
101f 部の外側のガラス部4ヶ所を増圧しながら離型
させた(図3(d))。先ず、一番最初に101c部の
先端が20kN程度で離型し始め、そのまま20kNを
維持すると101d,101e,101f 部はその先端
のエッジ部より25kN程度で離型し始めた。この凸部
で各々剥離開始した直後に一旦荷重を下げ剥離を停止
し、4箇所とも剥離を開始した時点で再度荷重を掛けて
4箇所から離型を同時に開始しさせた。すると、4箇所
とも15kNで離型し始め、そのまま15kNで5秒程
度で全面離型した。
When the curing is completed, the spacers 303 which can be divided into 4 are pulled out, and 101c, 101d, 101e,
The four glass parts outside the 101f part were released from the mold while increasing the pressure (FIG. 3 (d)). First, the tip of the 101c part started to release at about 20 kN, and when 20 kN was maintained as it was, the 101d, 101e, and 101f parts began to release at about 25 kN from the edge of the tip. Immediately after the peeling was started at each of the convex portions, the load was once reduced to stop the peeling, and when the peeling was started at all four positions, the load was applied again to start the mold release from the four positions at the same time. Then, the four parts started to be released at 15 kN, and the entire surface was released at 15 kN in about 5 seconds.

【0026】こうして成形された表面にフレネル形状が
形成された光エネルギー硬化型樹脂は、樹脂とガラス基
材との剥離はなく、格子のエッジ部の欠けや変形もなか
った。
In the light energy curable resin having the Fresnel shape formed on the surface thus molded, the resin and the glass substrate were not separated from each other, and the edges of the lattice were not chipped or deformed.

【0027】又、型も繰り返し1000shotの成形
で変化は見られなかった。
No change was observed in the mold after repeated molding of 1000 shots.

【0028】[実施例2]図4は本発明に係る光学素子
の実施態様を示す概略図、図5は本実施例で用いた型を
示す概略図、図14は本実施例で用いたスペーサーの配
置を示す図、図6は本実施例での光学素子の作製方法を
示す概略図である。
Example 2 FIG. 4 is a schematic view showing an embodiment of an optical element according to the present invention, FIG. 5 is a schematic view showing a mold used in this example, and FIG. 14 is a spacer used in this example. And FIG. 6 is a schematic view showing a method for manufacturing an optical element in this embodiment.

【0029】図4において、401は光エネルギー硬化
型樹脂で、402はガラス基材である。401の表面に
は型により転写された微細な凹凸が形成されている。外
周は401aのように凸状になっている。この成形品は
図5に示す型を用いて作製した。図5は石英上にグレー
マスクを用いたフォトリソ法とエッチング法により形成
した最大深さ7μmの断面が鋸歯状の型(断面で501
aはフレネル形状の谷部、501bはフレネル形状の山
部)である。
In FIG. 4, 401 is a light energy curable resin, and 402 is a glass base material. On the surface of 401, fine irregularities transferred by the mold are formed. The outer circumference is convex like 401a. This molded product was produced using the mold shown in FIG. FIG. 5 shows a mold having a sawtooth-shaped cross section with a maximum depth of 7 μm formed by photolithography and etching using a gray mask on quartz.
a is a Fresnel-shaped trough, and 501b is a Fresnel-shaped peak.

【0030】図14は2分割できるスペーサー1401
a,1401bの配置図である。スペーサー1401a
は1401cのように先端が曲率半径2mmの凸状部を
有している。前記型501及び前記スペーサー1401
を用いて図6に示す工程で表面に微細な凹凸を有する回
折格子を作製した。
FIG. 14 shows a spacer 1401 which can be divided into two parts.
It is a layout of a, 1401b. Spacer 1401a
Has a convex portion with a radius of curvature of 2 mm like 1401c. The mold 501 and the spacer 1401
Using the above, a diffraction grating having fine irregularities on the surface was produced in the step shown in FIG.

【0031】図6において、602は硬化前の光エネル
ギー硬化型樹脂、603はスペーサー、606は不図示
の駆動装置に連結されている離型ピンである。先ず、型
601の上に2分割できるスペーサー603を設置し、
次に光エネルギー硬化型樹脂602を滴下した(図6
(a))。その上にガラス基材604を載せて不図示の
装置で加圧する。ここで用いるガラス基材の樹脂との接
触面は密着性向上のためシランカップリング剤を施して
ある。そして、スペーサー603で樹脂厚と外周の凸状
部(先端が曲率半径2mm)が決定されると(図6
(b))、UV光を照射して光エネルギー硬化型樹脂6
02を硬化させる(図6(c))。
In FIG. 6, 602 is a light energy curable resin before curing, 603 is a spacer, and 606 is a release pin connected to a driving device (not shown). First, install a spacer 603 that can be divided into two on the mold 601.
Next, the light energy curable resin 602 was dropped (FIG. 6).
(A)). A glass substrate 604 is placed on it and pressed by a device (not shown). A silane coupling agent is applied to the contact surface of the glass base material used with the resin for improving the adhesion. Then, when the spacer 603 determines the resin thickness and the convex portion of the outer circumference (the tip has a radius of curvature of 2 mm) (FIG. 6).
(B)), a light energy curable resin 6 by irradiating with UV light
02 is cured (FIG. 6C).

【0032】硬化が終了すると、2分割できるスペーサ
ー603を引き抜き、ガラス基材端部を離型ピン606
により徐々に増圧しながら離型させた(図5(d))。
凸状部401aの先端401bは25kN程度で離型し
始め、そのまま25kNで10秒程度で全面離型した。
When the curing is completed, the spacer 603 which can be divided into two parts is pulled out, and the end portion of the glass substrate is released by the release pin 606.
Then, the pressure was gradually increased to release the mold (FIG. 5 (d)).
The tip 401b of the convex portion 401a started to be released at about 25 kN, and the entire surface was released at 25 kN for about 10 seconds.

【0033】こうして成形された表面に回折格子が形成
された光エネルギー硬化型樹脂は、樹脂とガラス基材と
の剥離はなく、格子のエッジ部の欠けや変形もなかっ
た。
In the light energy curable resin having the diffraction grating formed on the surface thus molded, the resin and the glass substrate were not separated from each other, and the edge portion of the grating was not chipped or deformed.

【0034】又、型も繰り返し1000shotの成形
で変化は見られなかった。
Also, the mold did not show any change after repeated molding of 1000 shots.

【0035】[実施例3]図7は本発明に係る光学素子
の実施態様を示す概略図、図8は本実施例で用いた型を
示す概略図、図15は本実施例で用いたスペーサーの配
置を示す図、図3は本実施例での光学素子の製造方法を
示す概略図である。
[Embodiment 3] FIG. 7 is a schematic view showing an embodiment of an optical element according to the present invention, FIG. 8 is a schematic view showing a mold used in this embodiment, and FIG. 15 is a spacer used in this embodiment. And FIG. 3 is a schematic view showing a method of manufacturing an optical element in this embodiment.

【0036】図7において、701は光エネルギー硬化
型樹脂で、702はガラス基材である。701の表面7
01a、bには型により転写されたフレネル形状が形成
されている(701aは尾根部(断面図の山部)、70
1bは谷部(断面図の谷部))。成形された光学素子の
外周は701c,701d,701e,701fのよう
に凸状になっている。この成形品は図8に示す型を用い
て作製した。
In FIG. 7, 701 is a light energy curable resin and 702 is a glass substrate. Surface 7 of 701
Fresnel shapes transferred by a mold are formed on 01a and b (701a is a ridge portion (mountain portion in cross section),
1b is a valley (valley in the cross-sectional view). The outer periphery of the molded optical element is convex like 701c, 701d, 701e, and 701f. This molded product was produced using the mold shown in FIG.

【0037】図8の801は表面に最大深さ40μmの
フレネル形状801c,801d(801cは谷部(断
面図の谷部)、801dは尾根部(断面図の山部))を
有する型で、りん青銅の母材801aの上にKNメッキ
801bを100μm施し、このメッキ層を切削加工に
よりフレネル形状801c,801dを形成した。
Reference numeral 801 in FIG. 8 is a mold having Fresnel shapes 801c and 801d (801c is a valley portion (trough portion in cross section), 801d is a ridge portion (ridge portion in cross section)) having a maximum depth of 40 μm on the surface. On the phosphor bronze base material 801a, 100 μm of KN plating was applied, and the plating layer was cut to form Fresnel shapes 801c and 801d.

【0038】図15は4分割できるスペーサー1501
a,1501b,1501c,1501dの配置図であ
る。分割できる各々のスペーサーには1501e,15
01f,1501g,1501hのように先端が曲率半
径2mmの凸状部を有している。前記型及び前記スペー
サーを用いて図3に示す工程でガラス基材の上に表面に
フレネル形状を有する樹脂層が接着された光学素子を作
製した。
FIG. 15 shows a spacer 1501 which can be divided into four parts.
It is a layout of a, 1501b, 1501c, 1501d. Each spacer that can be divided has 1501e, 15
01f, 1501g, and 1501h, the tip has a convex portion with a radius of curvature of 2 mm. An optical element in which a resin layer having a Fresnel shape was adhered on the surface of a glass substrate was produced in the process shown in FIG. 3 using the mold and the spacer.

【0039】図3において、302は硬化前の光エネル
ギー硬化型樹脂、303はスペーサー、306は不図示
の駆動装置に連結されている離型ピンである。先ず、型
301の上に4分割できるスペーサー303を設置し、
次に光エネルギー硬化型樹脂302を滴下した(図3
(a))。その上にガラス基材304を載せて不図示の
装置で加圧する。ここで用いるガラス基材の樹脂との接
触面は密着性向上のためシランカップリング剤を施して
ある。そして、スペーサー303で樹脂厚と外周の凸状
部(先端が曲率半径2mm)が決定されると(図3
(b))、UV光を照射し樹脂を硬化させる(図3
(c))。
In FIG. 3, 302 is a light energy curable resin before curing, 303 is a spacer, and 306 is a release pin connected to a driving device (not shown). First, install a spacer 303 that can be divided into four on the mold 301,
Next, the light energy curable resin 302 was dropped (FIG. 3).
(A)). A glass base material 304 is placed on it and pressure is applied by an apparatus (not shown). A silane coupling agent is applied to the contact surface of the glass base material used with the resin for improving the adhesion. When the spacer 303 determines the resin thickness and the convex portion of the outer circumference (the tip has a radius of curvature of 2 mm) (FIG. 3).
(B)), UV light is irradiated to cure the resin (FIG. 3).
(C)).

【0040】硬化が終了すると4分割できるスペーサー
303を引き抜き、701c,701d,701e,7
01f部の外側のガラス部4箇所を増圧しながら離型さ
せた(図3(d))。先ず、一番最初に701c部の先
端が20kN程度で離型し始め、そのまま20kNを維
持すると701d,701e,701f部はその先端の
エッジ部より25kN程度で離型し始めた。この凸部で
各々剥離開始した直後に一旦荷重を下げ剥離を停止し、
4箇所とも剥離を開始した時点で再度荷重を掛けて4箇
所から離型を同時に開始しさせた。すると、4箇所とも
15kNで離型し始め、そのまま15kNで5秒程度で
全面離型した。
When the curing is completed, the spacer 303 which can be divided into four parts is pulled out, and 701c, 701d, 701e, 7
The four glass parts outside the 01f part were released from the mold while increasing the pressure (FIG. 3 (d)). First, the tip of the 701c portion starts to release at about 20 kN, and if 20 kN is maintained as it is, the 701d, 701e, and 701f portions start to release at about 25 kN from the edge portion of the tip. Immediately after starting peeling at each of these protrusions, the load is once reduced to stop peeling,
When peeling was started at all four points, a load was applied again to start releasing from four points at the same time. Then, the four parts started to be released at 15 kN, and the entire surface was released at 15 kN in about 5 seconds.

【0041】こうして成形された表面にフレネル形状が
形成された光エネルギー硬化型樹脂は、樹脂とガラス基
材との剥離はなく、格子のエッジ部の欠けや変形もなか
った。
The light energy curable resin having the Fresnel shape formed on the surface thus molded had no peeling between the resin and the glass substrate, and there was no chipping or deformation of the edge portion of the lattice.

【0042】又、型も繰り返し1000shotの成形
で変化は見られなかった。
Also, the mold did not show any change after repeated molding of 1000 shots.

【0043】[実施例4]図9は本実施例での光学素子
の製造方法を示す概略図で、マスクを用いる以外は実施
例1と同様に成形した。前記型を用いて図9に示す工程
でガラス基材の上に表面にフレネル形状を有する樹脂層
が接着された光学素子を作製した。
[Embodiment 4] FIG. 9 is a schematic view showing a method for manufacturing an optical element in this embodiment, and the molding was carried out in the same manner as in Embodiment 1 except using a mask. An optical element in which a resin layer having a Fresnel shape was adhered on the surface of a glass substrate was produced in the step shown in FIG. 9 using the mold.

【0044】図9において、902は硬化前の光エネル
ギー硬化型樹脂、906はマスク、903は不図示の駆
動装置に連結されている離型ピンである。先ず、型90
1の上に光エネルギー硬化型樹脂902を滴下し(図9
(a))、その上にガラス基材904を載せて不図示の
装置で加圧する。ここで用いるガラス基材の樹脂との接
触面は密着性向上のためシランカップリング剤を施して
ある。そして、スペーサーを兼ねた離型ピン903で樹
脂厚が決定されると(図9(b))、UV光をマスク9
06を介して照射し樹脂を硬化させる。マスク906は
上から見ると図16に示すようにな形状となっており、
先端部が曲率半径2mmの凸状部1601a,1601
b,1601c,1601dを有し、1601eは光を
透過しないため、樹脂の1601e部(斜線部)は未硬
化のままである(図9(c))。
In FIG. 9, 902 is a light energy curable resin before curing, 906 is a mask, and 903 is a release pin connected to a driving device (not shown). First, the mold 90
1 onto which a light energy curable resin 902 is dropped (see FIG.
(A)), a glass substrate 904 is placed on it, and pressure is applied by an apparatus (not shown). A silane coupling agent is applied to the contact surface of the glass base material used with the resin for improving the adhesion. Then, when the resin thickness is determined by the release pin 903 which also serves as a spacer (FIG. 9B), the UV light is masked 9
Irradiate through 06 to cure the resin. The mask 906 has a shape as shown in FIG. 16 when viewed from above,
Convex portions 1601a and 1601 whose tip has a radius of curvature of 2 mm
b 1601c and 1601d, and 1601e does not transmit light, so the 1601e portion (hatched portion) of the resin remains uncured (FIG. 9C).

【0045】不図示であるが、ここで一旦離型ピンを下
げ、未硬化の部分をアセトンで洗い流す。ガラス部を離
型ピンにより徐々に増圧しながら離型させた(図9
(d))。先ず、一番最初に101c部の先端が23k
N程度で離型し始め、そのまま23kNを維持すると、
101d,101e,101f部はその先端のエッジ部
より23kN程度で離型し始めた。この凸部で各々剥離
開始した直後に一旦荷重を下げて剥離を停止し、4箇所
とも剥離を開始した時点で再度荷重を掛けて4箇所から
離型を同時に開始しさせた。すると、4箇所とも18k
Nで離型し始め、そのまま18kNで8秒程度で全面離
型した。
Although not shown, the release pin is once lowered and the uncured portion is washed away with acetone. The glass part was released by gradually increasing the pressure with a release pin (Fig. 9).
(D)). First of all, the tip of 101c part is 23k.
When the mold starts to be released at about N and remains at 23 kN,
The parts 101d, 101e, and 101f started to be released from the edge part of the tip thereof at about 23 kN. Immediately after the peeling was started at each of the convex portions, the load was once reduced to stop the peeling, and when the peeling was started at all four points, the load was applied again to start the release from the four points at the same time. Then, at 4 places, 18k
The mold release was started with N, and the entire surface was released with 18 kN in about 8 seconds.

【0046】こうして成形された表面にフレネル形状が
形成された光エネルギー硬化型樹脂は、樹脂とガラス基
材との剥離はなく、格子のエッジ部の欠けや変形もなか
った。
In the light energy curable resin having the Fresnel shape formed on the surface thus molded, the resin and the glass substrate were not separated from each other, and the edge portions of the lattice were not chipped or deformed.

【0047】又、型も繰り返し1000shotの成形
で変化は見られなかった。
Also, the mold did not show any change after repeated molding of 1000 shots.

【0048】[実施例5]図10は本実施例での光学素
子の製造方法を示す概略図で、熱エネルギー硬化型樹脂
を用いる以外は実施例1と同様に成形した。
[Embodiment 5] FIG. 10 is a schematic view showing a method for manufacturing an optical element in this embodiment, which was molded in the same manner as in Embodiment 1 except that a heat energy curable resin was used.

【0049】図10において、1002は硬化前の熱エ
ネルギー硬化型樹脂、1003はスペーサー、1007
はヒーター、1006は不図示の駆動装置に連結されて
いる離型ピンである。先ず、型1001の上に4分割で
きるスペーサー1003を設置し、次に熱エネルギー硬
化型樹脂1002を滴下し(図10(a))、その上に
ガラス基材1004を載せて不図示の装置で加圧する。
ここで用いるガラス基材の樹脂との接触面は密着性向上
のためシランカップリング剤を施してある。ここで用い
るガラス基材の樹脂との接触面は密着性向上のためシラ
ンカップリング剤を施してある。そして、スペーサー1
003で樹脂厚と外周の凸状部(先端が曲率半径2m
m)が決定されると(図10(b))、ヒーター100
7に通電し型の温度を80℃一定に30分保ち樹脂を硬
化させる(図10(c))。
In FIG. 10, 1002 is a heat energy curable resin before curing, 1003 is a spacer, 1007.
Is a heater and 1006 is a release pin connected to a driving device (not shown). First, a spacer 1003 that can be divided into four parts is installed on the mold 1001, and then a thermal energy curable resin 1002 is dropped (FIG. 10A), and a glass base material 1004 is placed on the spacer 1003 by an apparatus (not shown). Pressurize.
A silane coupling agent is applied to the contact surface of the glass base material used with the resin for improving the adhesion. A silane coupling agent is applied to the contact surface of the glass base material used with the resin for improving the adhesion. And spacer 1
In 003, the resin thickness and the convex portion on the outer circumference (the tip has a radius of curvature of 2 m
m) is determined (FIG. 10B), the heater 100
Then, the temperature of the mold is kept constant at 80 ° C. for 30 minutes to cure the resin (FIG. 10C).

【0050】硬化が終了すると、4分割できるスペーサ
ー1003を引き抜き、101c,101d,101
e,101f部の外側のガラス部4箇所を増圧しながら
離型させた(図10(d))。先ず、一番最初に101
c部の先端が21kN程度で離型し始め、そのまま21
kNを維持すると101d,101e,101f部はそ
の先端のエッジ部より25kN程度で離型し始めた。こ
の凸部で各々剥離開始した直後に一旦荷重を下げ剥離を
停止し、4箇所とも剥離を開始した時点で再度荷重を掛
けて4箇所から離型を同時に開始しさせた。すると、4
箇所とも16kNで離型し始め、そのまま16kNで9
秒程度で全面離型した。
When the curing is completed, the spacer 1003 which can be divided into four parts is pulled out, and 101c, 101d, 101
The four glass parts outside the e and 101f parts were released from the mold while increasing the pressure (FIG. 10 (d)). First of all, 101
The tip of part c begins to release at about 21 kN,
When kN was maintained, the 101d, 101e, and 101f parts began to release from the edge part at the tip thereof at about 25 kN. Immediately after the peeling was started at each of the convex portions, the load was once reduced to stop the peeling, and when the peeling was started at all four positions, the load was applied again to start the mold release from the four positions at the same time. Then 4
All parts started to release at 16kN, then 9k at 16kN
The entire surface was released in about 2 seconds.

【0051】又、今回は熱エネルギー源として型に内蔵
するヒーターを示したが、図10(c)に示すような型
と樹脂とスペーサーがセットされた状態のものに対して
オーブンやホットプレート等で同等の熱エネルギー量を
加えても良い。
Also, this time, a heater built in the mold as a heat energy source is shown. However, as shown in FIG. 10C, an oven, a hot plate, etc. can be used for the mold, the resin and the spacer set. The same amount of heat energy may be added at.

【0052】こうして成形された表面にフレネル形状が
形成された光エネルギー硬化型樹脂は、樹脂とガラス基
材との剥離はなく、格子のエッジ部の欠けや変形もなか
った。
The light energy curable resin having a Fresnel shape formed on the surface thus molded had no peeling between the resin and the glass substrate, and there was no chipping or deformation of the edge portion of the lattice.

【0053】又、型も繰り返し1000shotの成形
で変化は見られなかった。
The mold did not show any change after repeated 1000 shots of molding.

【0054】[0054]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、成形品の外周部に、基材面と直角方向から見た
形状が凸状である部分を有することにより、 離型開始時
の離型力を低減できると共に離型の開始地点や離型の方
向を制御でき、ガラス基材からの樹脂の剥離や変形、破
壊を防止して型の耐久向上を図ることができるという効
果が得られる。
As is apparent from the above description, according to the present invention, the molded product has a convex portion in the outer peripheral portion when viewed from the direction perpendicular to the surface of the base material. The mold release force at the start can be reduced, and the mold release start point and mold release direction can be controlled, and it is possible to improve the durability of the mold by preventing the resin from peeling, deforming or breaking from the glass substrate. The effect is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1・4・5での光学素子を示す概略図で
ある。
FIG. 1 is a schematic diagram showing an optical element in Examples 1, 4, and 5.

【図2】実施例1・4・5で用いる型を示す概略図であ
る。
FIG. 2 is a schematic view showing a mold used in Examples 1, 4, and 5.

【図3】実施例1・3での光学素子の製造方法を示す概
略図である。
FIG. 3 is a schematic view showing a method for manufacturing an optical element in Examples 1 and 3.

【図4】実施例2での光学素子を示す概略図である。FIG. 4 is a schematic view showing an optical element in Example 2.

【図5】実施例2で用いる型を示す概略図である。5 is a schematic view showing a mold used in Example 2. FIG.

【図6】実施例2での光学素子の製造方法を示す概略図
である。
FIG. 6 is a schematic view showing a method for manufacturing an optical element in Example 2.

【図7】実施例3での光学素子を示す概略図である。FIG. 7 is a schematic view showing an optical element in Example 3.

【図8】実施例3で用いる型を示す概略図である。FIG. 8 is a schematic view showing a mold used in Example 3.

【図9】実施例4での光学素子の製造方法を示す概略図
である。
FIG. 9 is a schematic view showing a method for manufacturing an optical element in Example 4.

【図10】実施例5での光学素子の製造方法を示す概略
図である。
FIG. 10 is a schematic diagram illustrating a method for manufacturing an optical element in Example 5.

【図11】本発明による光学素子を示す概略図である。FIG. 11 is a schematic view showing an optical element according to the present invention.

【図12】スペーサーを含む構成の断面を示す概略図で
ある。
FIG. 12 is a schematic view showing a cross section of a structure including a spacer.

【図13】実施例1・4・5でのスペーサーの配置を示
す概略図である。
FIG. 13 is a schematic view showing the arrangement of spacers in Examples 1, 4, and 5.

【図14】実施例2でのスペーサーの配置を示す概略図
である。
14 is a schematic view showing the arrangement of spacers in Example 2. FIG.

【図15】実施例3でのスペーサーの配置を示す概略図
である。
FIG. 15 is a schematic diagram showing the arrangement of spacers in Example 3.

【図16】実施例4で用いたマスクを示す概略図であ
る。
FIG. 16 is a schematic view showing a mask used in Example 4.

【符号の説明】[Explanation of symbols]

101,305,401,605,701,905,1005 成形硬化後のエネ
ルギー硬化型樹脂 102,304,402,604,702,904,1004 ガラス基材 201,301,501,601,801,901,1001 型 303,603,1003,1203,1301,1401 スペーサー 302,602,902,1002 硬化前のエネルギ
ー硬化型樹脂 306,606,903,1006 離型ピン 1601 マスク 1007 ヒータ
101,305,401,605,701,905,1005 Energy-curing resin after molding and curing 102,304,402,604,702,904,1004 Glass substrate 201,301,501,601,801,901,1001 Mold 303,603,1003,1203,1301,1401 Spacer 302,602,902,1002 Energy-curing resin before hardening 306,606,100,1160,1601,9031,1006 heater

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29L 11:00 B29L 11:00 Fターム(参考) 2H049 AA04 AA14 AA40 AA43 AA45 AA63 4F202 AA44 AH73 CA01 CB01 CM02 CM90 4F204 AA36 AA44 AD04 AH73 AH75 AH79 EA03 EA04 EB01 EB11 EF01 EF05 EK13 EK17 EK18 EK25 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B29L 11:00 B29L 11:00 F term (reference) 2H049 AA04 AA14 AA40 AA43 AA45 AA63 4F202 AA44 AH73 CA01 CB01 CM02 CM90 4F204 AA36 AA44 AD04 AH73 AH75 AH79 EA03 EA04 EB01 EB11 EF01 EF05 EK13 EK17 EK18 EK25

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 エネルギー硬化型樹脂を、型に滴下しそ
の上に基材を設置し、エネルギーを樹脂に対して加え硬
化させ、離型することにより基材上に所要の形状を有す
るエネルギー硬化型樹脂を形成した光学素子において、 成形品の外周部に基材面と直角方向から見た形状が凸状
である部分を有することを特徴とする光学素子。
1. An energy-curable resin having a required shape on a substrate by dropping an energy-curable resin into a mold, setting a substrate on the mold, applying energy to the resin to cure the resin, and releasing the resin. An optical element in which a mold resin is formed, wherein an outer peripheral portion of the molded product has a portion having a convex shape when viewed in a direction perpendicular to the surface of the base material.
【請求項2】 エネルギー硬化型樹脂を、型に滴下しそ
の上に基材を設置し、エネルギーを樹脂に対して加え硬
化させ、離型することにより基材上に所要の形状を有す
るエネルギー硬化型樹脂を形成した光学素子の製造方法
において、 凸状である部分を離型起点とすることを特徴とする光学
素子の製造方法。
2. An energy-curable resin having a desired shape on a substrate by dropping an energy-curable resin onto a mold, placing a substrate on the resin, applying energy to the resin to cure the resin, and releasing the resin. A method of manufacturing an optical element, comprising forming a mold resin, wherein a convex portion is used as a mold release starting point.
【請求項3】 光エネルギー硬化型樹脂に対し光エネル
ギーを加えて硬化させることを特徴とする請求項2記載
の光学素子の製造方法。
3. The method for manufacturing an optical element according to claim 2, wherein light energy is applied to the light energy curable resin to cure the resin.
【請求項4】 外周部に対しマスク処理を行い凸状部分
及びそれに隣接する中心部分を硬化させ、その他の部分
を未硬化状態にし且つ未硬化部分を除去することを特徴
とする請求項2記載の光学素子の製造方法。
4. The masking process is applied to the outer peripheral portion to cure the convex portion and the central portion adjacent to the convex portion, leave the other portion in an uncured state, and remove the uncured portion. Of manufacturing optical element of.
【請求項5】 熱エネルギー硬化型樹脂に対し熱エネル
ギーを加え硬化させることを特徴とする請求項2記載の
光学素子の製造方法。
5. The method of manufacturing an optical element according to claim 2, wherein heat energy is applied to the heat energy curable resin to cure the resin.
JP2002023203A 2002-01-31 2002-01-31 Optical element and its manufacturing method Withdrawn JP2003222709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002023203A JP2003222709A (en) 2002-01-31 2002-01-31 Optical element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002023203A JP2003222709A (en) 2002-01-31 2002-01-31 Optical element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003222709A true JP2003222709A (en) 2003-08-08

Family

ID=27745985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002023203A Withdrawn JP2003222709A (en) 2002-01-31 2002-01-31 Optical element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003222709A (en)

Similar Documents

Publication Publication Date Title
JP3978706B2 (en) Manufacturing method of fine structure
US7195732B2 (en) Method and mold for fabricating article having fine surface structure
CA2689890A1 (en) Method of manufacturing an intracutaneous microneedle array
TW200815176A (en) Optical element and production device for producing same
JP3876631B2 (en) Optical element provided with resin thin film having micro uneven pattern, manufacturing method and apparatus of reflector
JP2003222706A (en) Optical element and its manufacturing method
JP2002192500A (en) Manufacturing method for article having micro surface structure
WO2006059659A1 (en) Method for producing composite optical element
JP2003222709A (en) Optical element and its manufacturing method
JPH06254868A (en) Manufacture of composite precisely molded product
JP2003222708A (en) Optical element and its manufacturing method
JP3068735B2 (en) Molded product, method for producing the same, and molding die
JP2003220619A (en) Optical element and its production method
JP3566635B2 (en) Optical article manufacturing method
CN111002608A (en) Device and method for producing a lens, fresnel lens
JPH08211214A (en) Production of curved face grating
JP2002096338A (en) Method and mold for molding optical element, and optical element
JP4496719B2 (en) Circuit pattern transfer mold and manufacturing method thereof
JP2005081782A (en) Optical element and method for production thereof
JP2004230471A (en) Ceramic fine pattern forming method
JP3165167B2 (en) Micro lens and manufacturing method thereof
JPH09141678A (en) Manufacture of composite optical device
JP2006035779A (en) Mold, molding method, molded product, transmission type screen and rear type projector
JP3263116B2 (en) Method of manufacturing artificial stone having uneven pattern, method of manufacturing mold used in the method, and master mold
JP2003266450A (en) Optical element and manufacturing method therefor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20041222

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405