JP2003220619A - Optical element and its production method - Google Patents

Optical element and its production method

Info

Publication number
JP2003220619A
JP2003220619A JP2002023200A JP2002023200A JP2003220619A JP 2003220619 A JP2003220619 A JP 2003220619A JP 2002023200 A JP2002023200 A JP 2002023200A JP 2002023200 A JP2002023200 A JP 2002023200A JP 2003220619 A JP2003220619 A JP 2003220619A
Authority
JP
Japan
Prior art keywords
mold
resin
optical element
light energy
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002023200A
Other languages
Japanese (ja)
Inventor
Masaki Omori
正樹 大森
Senichi Hayashi
専一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002023200A priority Critical patent/JP2003220619A/en
Publication of JP2003220619A publication Critical patent/JP2003220619A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element which can reduce peeling force when peeling is started and improve the durability of a mold by preventing the peeling from a glass substrate, deformation, and breakage of a resin, and to provide a method for producing the optical element. <P>SOLUTION: In the optical element, a shape photocurable resin is copied by using a mold, cured by being irradiated with light, and demolded to form the resin having necessary shape on a base material. Two areas different in demoldability exist on a resin/mold interface, the inside is an area poor in demoldability, and the outside is an area good in demoldability. In the method for producing the optical element in which the resin is shape-transferred by using the mold, cured by being irradiated with light, and demolded to form the resin having the necessary shape on the base material, the material of a contact surface is different from the resin of a mold. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非球面を有するレ
ンズや表面に微細な形状(凹凸)を有する光学素子、例
えば回折格子やフレネルレンズ、光ディスク基板とその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lens having an aspherical surface, an optical element having a fine shape (unevenness) on the surface thereof, such as a diffraction grating, a Fresnel lens, an optical disk substrate, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】光学素子の製造方法にはガラスの研削、
研摩や型を用いた精密成形、熱可塑性樹脂の射出成形や
プレス成形等があり、機能やコスト、要求精度等により
使い分けられている。例えば、カメラ等に使用される結
像系のレンズには球面レンズとしては温度、 湿度の環境
変動に関して性能劣化が少なく、経済的にも有利なガラ
スの研削、研摩により製造され、非球面レンズに関して
は、型を用いたガラスの精密成形により製造される。カ
メラでもファインダーに使用されるレンズは優れた結像
性能を要求されないため、コスト面から樹脂の射出成形
により製造される。
2. Description of the Related Art The method of manufacturing an optical element includes grinding glass,
There are polishing, precision molding using a mold, injection molding of thermoplastic resin, press molding, etc., and they are used properly depending on the function, cost, required accuracy, etc. For example, for aspherical lenses used for imaging lenses used in cameras, etc., aspherical lenses are manufactured by grinding and polishing glass, which has less performance deterioration due to environmental changes in temperature and humidity, and is economically advantageous. Is manufactured by precision molding of glass using a mold. Since lenses used for viewfinders in cameras are not required to have excellent imaging performance, they are manufactured by resin injection molding in terms of cost.

【0003】又、径が30mm以上の非球面レンズや表
面に微細な凹凸形状を有する光学素子では、ガラス基材
の上に光エネルギー硬化型樹脂の薄層を成形し、硬化さ
せることにより所要の表面形状を形成する方法が用いら
れる。大きな非球面レンズはガラスの精密成形では形状
精度が悪くなり、精度を確保しようとすると成形時間が
長くなりコスト高になる。微細な凹凸形状を有する光学
素子もガラスでは離型時に凹凸部が破壊し製造できず、
樹脂による製造が必須となるが、素子全体が樹脂では、
環境変動に対する性能劣化が大きく、樹脂部を薄層にす
る上記の方法によりその影響を小さくする。
Further, in an aspherical lens having a diameter of 30 mm or more and an optical element having fine irregularities on the surface, a required layer is formed by molding a thin layer of a light energy curable resin on a glass substrate and curing the resin. A method of forming a surface profile is used. The precision of shape of a large aspherical lens deteriorates in precision molding of glass, and if the precision is to be secured, the molding time becomes long and the cost becomes high. Even optical elements with fine irregularities cannot be manufactured with glass because the irregularities are destroyed during mold release,
Manufacturing with resin is essential, but if the entire element is resin,
The performance is greatly deteriorated due to environmental fluctuations, and the influence is reduced by the above-mentioned method of forming the resin portion as a thin layer.

【0004】この光エネルギー硬化型樹脂の成形におけ
る離型方法としては、例えば特開昭63−131352
号の突き出しによる離型、特開平01−152015号
の加熱、冷却による熱応力を利用した離型、特開昭62
−117154号の振動による離型等がある。離型性の
改善としては例えば、特許第2680175号の離型性
の良い型、特許第3006199号の離型剤処理を施し
た型、特開平04−254801号の樹脂に内填離型剤
を含有させる等の提案がなされている。
As a mold releasing method in the molding of this light energy curable resin, for example, JP-A-63-131352 is used.
Release by protrusion of No. JP-A No. 01-152015, release using heat stress due to heating and cooling, JP-A-62-2015
-117154 vibration causes mold release. Examples of the mold releasability improvement include a mold having a good mold releasability of Japanese Patent No. 2680175, a mold having a mold releasing agent treatment of Japanese Patent No. 3006199, and a resin of Japanese Patent Application Laid-Open No. 04-254801 containing an internal release agent. Proposals have been made to include it.

【0005】[0005]

【発明が解決しようとする課題】光エネルギー硬化型樹
脂の成形において、離型に支障を来すと樹脂が基材から
剥離してしまったり、樹脂の表面形状が変化したり、表
面に微細な凹凸を有する素子等ではその凹凸部が破壊し
たりする。又、形状精度への悪影響だけでなく離型性は
生産タクト(成形時間)や型の耐久の点からコストにも
大きく影響する。こうした離型性の改善が上記の提案で
あるが、先の3件は離型に対する負荷方法に関してであ
り、離型に要する力の低減を図ったものではない。従っ
て、離型時には相当の応力が樹脂/型界面に働き上記の
不具合が全て改善される訳ではなかった。
In the molding of light energy curable resin, if the release is hindered, the resin peels from the base material, the surface shape of the resin changes, or the surface is fine. In an element having unevenness, the unevenness may be destroyed. Further, not only the shape accuracy is adversely affected, but also the releasability greatly affects the cost in terms of production tact (molding time) and mold durability. The above-mentioned proposals have been made to improve the releasability as described above, but the above three cases are related to the load method for the releasability and are not intended to reduce the force required for the releasability. Therefore, at the time of mold release, considerable stress acts on the resin / mold interface, and not all of the above problems are solved.

【0006】又、後の3件は離型力自体の低減であり、
型表面材や樹脂組成の改良が考えられている。
Also, the latter three cases are reduction of the releasing force itself,
Improvements in mold surface materials and resin compositions have been considered.

【0007】しかし、型表面材で離型性が良いものは、
テフロン(登録商標)のように表面粗さが悪く光学用途
には使用できず、離型剤も耐久が短かったり、外観や成
形後の樹脂の環境耐久に悪影響を与える。又、樹脂の組
成改良では、内填離型剤での離型性の向上が図られてい
るが、これも、型の汚れによる型耐久の低下や成形品の
外観、成形後の樹脂の環境耐久に悪影響を与える。
However, if the mold surface material has a good releasing property,
Like Teflon (registered trademark), it has a poor surface roughness and cannot be used for optical applications, and the release agent also has a short durability, and adversely affects the appearance and the environmental durability of the resin after molding. In addition, in improving the resin composition, the releasability of the internal release agent is improved, but this also reduces the mold durability due to mold stains, the appearance of the molded product, and the environment of the resin after molding. It adversely affects durability.

【0008】本発明は上記問題に鑑みてなされたもの
で、その目的とする処は、離型開始時の離型力を低減す
ることができるとともに、ガラス基板からの樹脂の剥離
や変形及び破壊を防止して型の耐久性向上を図ることが
できる光学素子及びその製造方法を提供することにあ
る。
The present invention has been made in view of the above problems, and an object of the present invention is to reduce the releasing force at the time of starting the releasing, and to separate, deform and destroy the resin from the glass substrate. It is an object of the present invention to provide an optical element and a method for manufacturing the same that can prevent the above-mentioned phenomenon and improve the durability of the mold.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、光エネルギー硬化型樹脂を、型を用いて
形状転写、光照射により硬化後、離型することにより基
材上に所要の形状を有する光エネルギー硬化型樹脂を形
成した光学素子において、樹脂/型界面に離型性が異な
る2つの領域が存在し、内側が離型性が悪い領域、外側
が離型性が良い領域であることを特徴とする。
In order to achieve the above object, the present invention requires a light energy curable resin on a substrate by transferring a shape using a mold, curing by light irradiation, and releasing. In an optical element formed with a light energy curable resin having the shape of, there are two regions having different releasability at the resin / mold interface, the inner region has poor releasability, and the outer region has good releasability. Is characterized in that.

【0010】又、本発明は、光エネルギー硬化型樹脂
を、型を用いて形状転写、光照射により硬化後、離型す
ることにより基材上に所要の形状を有する光エネルギー
硬化型樹脂を形成した光学素子の製造方法において、型
の樹脂との接触面の材質が異なるものを使用することを
特徴とする。
Further, according to the present invention, a light energy curable resin having a desired shape is formed on a substrate by transferring a shape of a light energy curable resin using a mold, curing by light irradiation, and then releasing the resin. In the method of manufacturing an optical element described above, different materials are used for the contact surface with the resin of the mold.

【0011】[0011]

【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0012】本発明は、離型力自体の低減、特に離型開
始時の離型力を低減するために、樹脂/型界面に離型性
が異なる領域を存在させ、内側が離型性が悪い領域、外
側が離型性が良い領域とすることにより、図11に示す
ように樹脂21の離型性が良い領域21aは低荷重で剥
離が開始し、離型性が悪い領域21bの離型開始時には
樹脂と型22の開き角が0度に近い為、剥離先端部に応
力が集中し、低荷重での離型が可能となる。ここで、2
2aは型の離型性が良い領域で22bは悪い領域であ
る。
According to the present invention, in order to reduce the releasing force itself, particularly to reduce the releasing force at the time of starting the releasing, a region having different releasing properties is present at the resin / mold interface, and the inside has the releasing property. By setting the bad region and the region having good releasability on the outer side, as shown in FIG. 11, the region 21a having good releasability of the resin 21 starts peeling under a low load, and the region 21b having poor releasability is separated. Since the opening angle between the resin and the mold 22 is close to 0 degree at the start of the mold, stress concentrates on the exfoliation tip, and mold release with a low load becomes possible. Where 2
2a is a region where the mold releasability is good, and 22b is a bad region.

【0013】[実施例1]図1は本発明に係る光学素子
の実施態様を示す概略図、図2は本実施例で用いた型を
示す概略図、図3は本実施例での光学素子の作製方法を
示す概略図である。
[Embodiment 1] FIG. 1 is a schematic view showing an embodiment of an optical element according to the present invention, FIG. 2 is a schematic view showing a mold used in this embodiment, and FIG. 3 is an optical element in this embodiment. FIG.

【0014】図1において、1は光エネルギー硬化型樹
脂で、2はガラス基材である。1の表面1cには型によ
り転写された微細な凹凸が形成されている。1aは樹脂
の良離型部で1bは悪離型部である。この成形品は図2
に示す型を用いて作製した。
In FIG. 1, 1 is a light energy curable resin and 2 is a glass substrate. On the surface 1c of No. 1, fine irregularities transferred by the mold are formed. Reference numeral 1a is a resin good release part, and 1b is a bad release part. This molded product is shown in Figure 2.
It was produced using the mold shown in.

【0015】図2は石英上にフォトリソ法とエッチング
法により形成した深さ0.5μmの溝3cを有する型で
あり、溝形成部の外側3aには50μm厚の1μm以下
のフッ素系離型剤がコーティングされている。3bはフ
ッ素系離型剤がコーティングされていない、表面が石英
のままの部分である。この型を用いて図3に示す工程で
表面に微細な凹凸を有する回折格子を作製した。
FIG. 2 shows a mold having a groove 3c having a depth of 0.5 μm formed on quartz by a photolithography method and an etching method, and a fluorine-based mold release agent having a thickness of 1 μm or less and a thickness of 50 μm is provided on the outer side 3a of the groove forming portion. Is coated. 3b is a part where the surface is still quartz, which is not coated with a fluorine-based release agent. Using this mold, a diffraction grating having fine irregularities on the surface was produced in the process shown in FIG.

【0016】図3において、4は硬化前の光エネルギー
硬化型樹脂、5はスペーサー、6は不図示の駆動装置に
連結されている離型ピンである。先ず、型3の上に光エ
ネルギー硬化型樹脂4を滴化し(図3(a))、その上
にガラス基材2を載せて不図示の装置で加圧する。ここ
で用いるガラス基材の樹脂との接触面は密着性向上のた
めシランカップリング剤を施してある。そして、スペー
サーで樹脂厚が決定されると(図3(b))、光を照射
し樹脂を硬化させる(図3(c))。
In FIG. 3, 4 is a light energy curable resin before curing, 5 is a spacer, and 6 is a release pin connected to a driving device (not shown). First, the light energy curable resin 4 is dropped on the mold 3 (FIG. 3A), the glass base material 2 is placed thereon, and pressure is applied by an apparatus (not shown). A silane coupling agent is applied to the contact surface of the glass base material used with the resin for improving the adhesion. Then, when the resin thickness is determined by the spacer (FIG. 3B), light is irradiated to cure the resin (FIG. 3C).

【0017】硬化が終了すると、ガラス部を離型ピンに
より徐々に増圧しながら離型させた(図3(d))。3
a部の端は20kN程度で離型し始めそのまま20kN
で、3bの端まで離型し、3b部の端は30kNで離型
し始め、そのまま30kNで10秒程度で全面離型し
た。
When the curing was completed, the glass part was released from the mold while gradually increasing the pressure with a release pin (FIG. 3 (d)). Three
The end of part a starts to release at about 20 kN and it is 20 kN as it is.
Then, the mold was released up to the end of 3b, and the end of the 3b part started to be released at 30 kN, and the entire surface was released at 30 kN for about 10 seconds.

【0018】こうして成形された表面に回折格子が形成
された光エネルギー硬化型樹脂は、樹脂とガラス基材と
の剥離はなく、格子のエッジ部の欠けや変形もなかった
又、型も繰り返し1000shotの成形で変化は見ら
れなかった。
The light energy curable resin having a diffraction grating formed on the surface thus molded had no peeling between the resin and the glass substrate, and there was no chipping or deformation of the edge portion of the grating, and the mold was repeatedly used for 1000 shots. No change was observed in molding.

【0019】<比較例1>実施例1とフッ素系離型剤コ
ーティング無しの型を用いた以外は全て同様に成形した
ところ、離型開始には150kNを要し、1秒以下で一
気に離型した。成形品は樹脂がガラス基板から一部剥離
していた。
<Comparative Example 1> Molding was carried out in the same manner as in Example 1 except that a mold having no fluorine-based release agent coating was used. It took 150 kN to start the mold release, and the mold was released at once in less than 1 second. did. In the molded product, the resin was partly peeled from the glass substrate.

【0020】[実施例2]図4は本発明に係る光学素子
の実施態様を示す概略図、図5は本実施例で用いた型を
示す概略図、図6は本実施例での光学素子の作製方法を
示す概略図である。
[Embodiment 2] FIG. 4 is a schematic view showing an embodiment of an optical element according to the present invention, FIG. 5 is a schematic view showing a mold used in this embodiment, and FIG. 6 is an optical element in this embodiment. FIG.

【0021】図4において、7は光エネルギー硬化型樹
脂で、8はガラス基材である。7の表面7cには型によ
り転写されたフレネル形状が形成されている。7aは樹
脂の良離型部で7bは悪離型部である。この成形品は図
5に示す型を用いて作製した。
In FIG. 4, 7 is a light energy curable resin and 8 is a glass base material. The surface 7c of 7 has a Fresnel shape transferred by a mold. Reference numeral 7a is a resin good release part, and 7b is a bad release part. This molded product was produced using the mold shown in FIG.

【0022】図5の9は表面に最大深さ25μmのフレ
ネル形状を有する型で、りん青銅の母材9aの上にKN
メッキ9bを50μm施し、このメッキ層を切削加工に
よりフレネル形状9cを形成した。この型を用いて図6
に示す工程でガラス基材の上に表面にフレネル形状を有
する樹脂層が接着された光学素子を作製した。
Reference numeral 9 in FIG. 5 is a mold having a Fresnel shape having a maximum depth of 25 μm on the surface, and KN is formed on a phosphor bronze base material 9a.
The plating 9b was applied to a thickness of 50 μm, and the plating layer was cut to form a Fresnel shape 9c. Figure 6
An optical element having a Fresnel-shaped resin layer adhered on the surface of a glass substrate was produced in the step shown in FIG.

【0023】図6において、10は硬化前の光エネルギ
ー硬化型樹脂、11 はスペーサー、12はマスク、13
は不図示の駆動装置に連結されている離型ピンである。
先ず、型9の上に光エネルギー硬化型樹脂10を滴化し
(図6(a))、その上にガラス基材8を載せて不図示
の装置で加圧する。ここで用いるガラス基材の樹脂との
接触面は密着性向上のためシランカップリング剤を施し
てある。そして、スペーサーで樹脂厚が決定されると
(図6(b))、光を照射し樹脂を硬化させる(図6
(c))。ここで樹脂がゲル状態まで硬化した後、光照
射をマスク12を介して行った。よって、樹脂の7a部
はゲル状態のままである(図6(d))。
In FIG. 6, 10 is a light energy curable resin before curing, 11 is a spacer, 12 is a mask, 13
Is a release pin connected to a drive device (not shown).
First, the light energy curable resin 10 is dropped on the mold 9 (FIG. 6A), the glass base material 8 is placed thereon, and pressure is applied by an apparatus (not shown). A silane coupling agent is applied to the contact surface of the glass base material used with the resin for improving the adhesion. Then, when the resin thickness is determined by the spacer (FIG. 6B), light is irradiated to cure the resin (FIG. 6B).
(C)). Here, after the resin was cured to a gel state, light irradiation was performed through the mask 12. Therefore, the 7a portion of the resin remains in the gel state (FIG. 6 (d)).

【0024】樹脂7b部の硬化が終了すると、ガラス部
を離型ピンにより徐々に増圧しながら離型させた(図6
(e))。7a部の端は10kN程度で離型し始め、そ
のまま10kNで、3bの端まで離型し、3b部の端は
30kNで離型し始め、そのまま30kNで10秒程度
で全面離型した。離型後、今度は未硬化部7a部のみに
光照射を行い7a部を硬化させた。
When the curing of the resin 7b portion is completed, the glass portion is released from the mold while gradually increasing the pressure by the release pin (FIG. 6).
(E)). The end of the 7a portion started to release at about 10 kN, the release was continued at 10 kN to the end of 3b, the end of the 3b portion started to release at 30 kN, and the entire release was continued at 30 kN for about 10 seconds. After releasing the mold, this time only the uncured portion 7a was irradiated with light to cure the portion 7a.

【0025】こうして成形された表面にフレネル形状が
形成された光エネルギー硬化型樹脂は、樹脂とガラス基
材との剥離はなく、格子のエッジ部の欠けや変形もなか
った又、型も繰り返し1000shotの成形で変化は
見られなかった。
In the light energy curable resin having the Fresnel shape formed on the surface thus molded, the resin and the glass substrate were not separated from each other, and the edges of the lattice were not chipped or deformed, and the mold was repeatedly used for 1000 shots. No change was observed in molding.

【0026】<比較例2>実施例2と硬化途中でマスキ
ングすることなく全面を硬化させた以外は全て同様に成
形したところ、離型開始には200kNを要し、1秒以
下で一気に離型した。成形品はフレネル部のエッジが欠
け、型に樹脂の付着が見られた。
Comparative Example 2 The same molding as in Example 2 was carried out except that the entire surface was cured without masking during curing, but 200 kN was required to start the mold release, and the mold was released at once in less than 1 second. did. The edge of the Fresnel part of the molded product was chipped, and resin adhesion was found on the mold.

【0027】[実施例3]図7は本発明に係る光学素子
の実施態様を示す概略図、図8は本実施例で用いた型を
示す概略図、図9は本実施例での光学素子の製造方法を
示す概略図である。
[Embodiment 3] FIG. 7 is a schematic view showing an embodiment of an optical element according to the present invention, FIG. 8 is a schematic view showing a mold used in this embodiment, and FIG. 9 is an optical element in this embodiment. FIG. 3 is a schematic view showing a manufacturing method of.

【0028】図7において、14は光エネルギー硬化型
樹脂で、15はガラス基材である。14の表面形状は型
により転写された非球面14cとなっている。14aは
樹脂の良離型部で14bは悪離型部である。この成形品
は図8に示す型を用いて作製した。図8の16は超硬合
金で作製されその表面は16aは研削、研摩により非球
面に加工され、表面粗さはRaで2nm以下に仕上げら
れている。その周囲の17はテフロンで作製され、表面
17aはラッピング加工されているが、表面粗さはRa
で200nm程度であった。この型を用いて図9に示す
工程でガラス基材の上に表面が非球面形状を有する樹脂
層が接着された光学素子を作製した。
In FIG. 7, 14 is a light energy curable resin, and 15 is a glass base material. The surface shape of 14 is an aspherical surface 14c transferred by a mold. Reference numeral 14a is a resin good release part, and 14b is a bad release part. This molded product was produced using the mold shown in FIG. Reference numeral 16 in FIG. 8 is made of cemented carbide, and the surface 16a is processed into an aspherical surface by grinding and polishing, and the surface roughness Ra is finished to 2 nm or less. The periphery 17 is made of Teflon, and the surface 17a is lapped, but the surface roughness is Ra.
Was about 200 nm. Using this mold, an optical element was produced in which a resin layer having an aspherical surface was adhered onto a glass substrate in the step shown in FIG.

【0029】図9において、18は硬化前の光エネルギ
ー硬化型樹脂、19は不図示の駆動装置に連結されてい
る離型ピンである。先ず、型16の上に光エネルギー硬
化型樹脂18を滴化し(図9(a))、その上にガラス
基材15を載せて不図示の装置で加圧する。ここで用い
るガラス基材の樹脂との接触面は密着性向上のためシラ
ンカップリング剤を施してある。そして、離型ピンにガ
ラスが接触することにより樹脂厚が決定されると(図9
(b))、光を照射し樹脂を硬化させる(図9
(c))。
In FIG. 9, 18 is a light energy curable resin before curing, and 19 is a release pin connected to a driving device (not shown). First, the light energy curable resin 18 is dropped on the mold 16 (FIG. 9A), the glass base material 15 is placed thereon, and pressure is applied by an apparatus (not shown). A silane coupling agent is applied to the contact surface of the glass base material used with the resin for improving the adhesion. When the resin thickness is determined by the glass coming into contact with the release pin (see FIG. 9).
(B)), light is applied to cure the resin (FIG. 9).
(C)).

【0030】硬化が終了すると、ガラス部15aを離型
ピンにより徐々に増圧しながら、離型させた(図9
(d))。14a部の端は20kN程度で離型し始め、
そのまま20kNで14bの端まで離型し、14b部の
端は30kNで離型し始め、そのまま30kNで10秒
程度で全面離型した。
When the curing is completed, the glass portion 15a is released from the mold while gradually increasing the pressure by the release pin (FIG. 9).
(D)). The end of the 14a portion starts to release at about 20 kN,
The mold was released as it was up to the end of 14b at 20 kN, and the end of the 14b part started to be released at 30 kN, and the entire surface was released at 30 kN in about 10 seconds.

【0031】こうして成形された表面に非球面形状が形
成された光エネルギー硬化型樹脂は、樹脂とガラス基材
との剥離はなく、形状精度も型の形状を0.1μm以下
で転写していた。
In the light energy curable resin having the aspherical surface formed on the surface thus molded, the resin and the glass base material were not separated from each other, and the shape accuracy was such that the shape of the mold was transferred at 0.1 μm or less. .

【0032】又、型も繰り返し1000shotの成形
で変化は見られなかった。
Also, the mold did not show any change after repeated molding of 1000 shots.

【0033】<比較例3>実施例3とテフロン部分を超
硬にした以外は全て同様に成形したところ、離型開始に
は300kNを要し、樹脂がガラス基板から剥離し、型
に樹脂が付着した。
Comparative Example 3 When molding was carried out in the same manner as in Example 3 except that the Teflon portion was made of cemented carbide, 300 kN was required to start demolding, the resin peeled from the glass substrate, and the resin remained on the mold. It adhered.

【0034】[実施例4]図10は本実施例で用いた型
を示す概略図で、実施例1で用いた型の1μm以下のフ
ッ素系離型剤のコーティング部を20aのようにし、こ
の20a部の外側のガラス部を離型時に加圧した以外は
実施例1と同様に成形した。
[Embodiment 4] FIG. 10 is a schematic view showing the mold used in this embodiment. The mold used in Embodiment 1 is coated with a fluorine-based releasing agent having a diameter of 1 μm or less as 20a. The molding was performed in the same manner as in Example 1 except that the glass portion outside the 20a portion was pressed during release.

【0035】こうして成形された表面に回折格子が形成
された光エネルギー硬化型樹脂は、実施例1と同様に樹
脂とガラス基材との剥離はなく、格子のエッジ部の欠け
や変形もなかった又、型も繰り返し1000shotの
成形で変化は見られなかった。
The light energy curable resin having the diffraction grating formed on the surface thus molded did not peel off the resin and the glass base material as in Example 1, and did not have chipping or deformation of the edge portion of the grating. Also, no change was observed in the mold after repeated molding of 1000 shots.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
樹脂/型界面に離型性の差を設け最初に離型する部分を
良離型とすることにより離型開始時の離型力を低減で
き、ガラス基板からの樹脂の剥離や変形、破壊を防止
し、型の耐久も向上する。
As described above, according to the present invention,
By providing a difference in releasability at the resin / mold interface and making the part to be released first good, the release force at the start of release can be reduced, and peeling, deformation and destruction of the resin from the glass substrate Prevents and improves mold durability.

【0037】又、本発明によれば、型の表面材質を変更
することにより容易に離型性の差を実現でき、型の変更
をすることなく離型性の差を実現することができる。
Further, according to the present invention, the difference in releasability can be easily realized by changing the surface material of the mold, and the difference in releasability can be realized without changing the mold.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例での光学素子を示す概略図であ
る。
FIG. 1 is a schematic view showing an optical element in a first example.

【図2】第1の実施例で用いる型を示す概略図である。FIG. 2 is a schematic view showing a mold used in the first embodiment.

【図3】第1の実施例での光学素子の製造方法を示す概
略図である。
FIG. 3 is a schematic diagram showing a method for manufacturing an optical element in the first embodiment.

【図4】第2の実施例での光学素子を示す概略図であ
る。
FIG. 4 is a schematic diagram showing an optical element according to a second embodiment.

【図5】第2の実施例で用いる型を示す概略図である。FIG. 5 is a schematic view showing a mold used in the second embodiment.

【図6】第2の実施例での光学素子の製造方法を示す概
略図である。
FIG. 6 is a schematic view showing a method for manufacturing an optical element in the second embodiment.

【図7】第3の実施例での光学素子を示す概略図であ
る。
FIG. 7 is a schematic diagram showing an optical element in a third embodiment.

【図8】第3の実施例で用いる型を示す概略図である。FIG. 8 is a schematic view showing a mold used in a third embodiment.

【図9】第3の実施例での光学素子の製造方法を示す概
略図である。
FIG. 9 is a schematic view showing a method for manufacturing an optical element in the third example.

【図10】第4の実施例で用いる型を示す概略図であ
る。
FIG. 10 is a schematic view showing a mold used in a fourth embodiment.

【図11】本発明による離型時の樹脂/型界面の状況を
示す図である。
FIG. 11 is a diagram showing a condition of a resin / mold interface at the time of mold release according to the present invention.

【符号の説明】[Explanation of symbols]

1,7,14,21 成形硬化後の光エネルギー硬化
型樹脂 2,8,15 ガラス基材 3,9,16,17,20,22 型 4,10,18 硬化前の光エネルギー硬化型樹
脂 5,11 スペーサー 6,13,19 離型ピン 12 マスク
1,7,14,21 Light energy curable resin 2,8,15 after molding and curing Glass substrate 3,9,16,17,20,22 Mold 4,10,18 Light energy curable resin 5 before curing , 11 Spacer 6,13,19 Release pin 12 Mask

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G11B 7/26 531 G11B 7/26 531 // B29K 101:10 B29K 101:10 B29L 11:00 B29L 11:00 Fターム(参考) 4F202 AA44 AH73 AH74 AJ03 AJ09 AJ11 CA01 CB01 CD22 CK11 CK83 4F204 AA44 AH73 AH74 AH75 EA03 EA04 EB01 EF01 EK17 EK18 EK24 EK25 5D029 KB08 MA34 5D121 AA06 DD02 EE26 EE28 GG02 GG30 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) G11B 7/26 531 G11B 7/26 531 // B29K 101: 10 B29K 101: 10 B29L 11:00 B29L 11: 00 F term (reference) 4F202 AA44 AH73 AH74 AJ03 AJ09 AJ11 CA01 CB01 CD22 CK11 CK83 4F204 AA44 AH73 AH74 AH75 EA03 EA04 EB01 EF01 EK17 EK18 EK24 EK25 5D029 KB08 MA34 5D121EE02EE02 DD02 A26DD02A06DD02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光エネルギー硬化型樹脂を、型を用いて
形状転写、光照射により硬化後、離型することにより基
材上に所要の形状を有する光エネルギー硬化型樹脂を形
成した光学素子において、 樹脂/型界面に離型性が異なる2つの領域が存在し、内
側が離型性が悪い領域、外側が離型性が良い領域である
ことを特徴とする光学素子。
1. An optical element in which a light energy curable resin is formed on a substrate by transferring the shape of the light energy curable resin using a mold, curing by light irradiation, and then releasing. An optical element characterized in that there are two regions having different releasability at the resin / mold interface, the region having poor releasability inside and the region having good releasability outside.
【請求項2】 光エネルギー硬化型樹脂を、型を用いて
形状転写、光照射により硬化後、離型することにより基
材上に所要の形状を有する光エネルギー硬化型樹脂を形
成した光学素子の製造方法において、 型の樹脂との接触面の材質が異なるものを使用すること
を特徴とする光学素子の製造方法。
2. An optical element in which a light energy curable resin having a desired shape is formed on a substrate by transferring a shape of a light energy curable resin using a mold, curing by light irradiation, and then releasing. A method of manufacturing an optical element, characterized in that different materials are used for the contact surface with the resin of the mold.
【請求項3】 光エネルギー硬化型樹脂の硬化状態を異
ならせることを特徴とする請求項1記載の光学素子の製
造方法。
3. The method of manufacturing an optical element according to claim 1, wherein the curing state of the light energy curable resin is different.
【請求項4】 マスキングをして光照射することを特徴
とする請求項3記載の光学素子の製造方法。
4. The method for manufacturing an optical element according to claim 3, wherein the masking is performed and light irradiation is performed.
JP2002023200A 2002-01-31 2002-01-31 Optical element and its production method Pending JP2003220619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002023200A JP2003220619A (en) 2002-01-31 2002-01-31 Optical element and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002023200A JP2003220619A (en) 2002-01-31 2002-01-31 Optical element and its production method

Publications (1)

Publication Number Publication Date
JP2003220619A true JP2003220619A (en) 2003-08-05

Family

ID=27745982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002023200A Pending JP2003220619A (en) 2002-01-31 2002-01-31 Optical element and its production method

Country Status (1)

Country Link
JP (1) JP2003220619A (en)

Similar Documents

Publication Publication Date Title
TW200815176A (en) Optical element and production device for producing same
WO2003090993A1 (en) Method of forming compound lens
JPH1158401A (en) Manufacture of mold for producing resin plate and production of resin plate
JPH0313902A (en) Compound optical parts and production thereof
WO2006059659A1 (en) Method for producing composite optical element
JP2010224205A (en) Joined optical element and method for manufacturing the same
JPH06254868A (en) Manufacture of composite precisely molded product
JP4612801B2 (en) Mold, composite optical element manufacturing method, and composite optical element
JP2003220619A (en) Optical element and its production method
JP2003222708A (en) Optical element and its manufacturing method
JP2003222706A (en) Optical element and its manufacturing method
JP3068735B2 (en) Molded product, method for producing the same, and molding die
JP3566635B2 (en) Optical article manufacturing method
JPH0866972A (en) Manufacture of composite type optic
JP2003266450A (en) Optical element and manufacturing method therefor
JP2000241608A (en) Resin bonded optical element and manufacture therefor
JP4481531B2 (en) Optical element
JP2008299148A (en) Junction type optical element and manufacturing method therefor
JP2003222709A (en) Optical element and its manufacturing method
JPH10228674A (en) Disk substrate
JP4171936B2 (en) Resin-molding mold for resin-bonded optical element and manufacturing method
JP2006088640A (en) Manufacturing method of composite optical element and composite optical element
JP3228613B2 (en) Method for manufacturing composite optical element
JP2008129229A (en) Composite optical element and method of manufacturing composite optical element
JP2002096338A (en) Method and mold for molding optical element, and optical element