JP2003211255A - Method for continuously casting aluminum cast block - Google Patents

Method for continuously casting aluminum cast block

Info

Publication number
JP2003211255A
JP2003211255A JP2002009682A JP2002009682A JP2003211255A JP 2003211255 A JP2003211255 A JP 2003211255A JP 2002009682 A JP2002009682 A JP 2002009682A JP 2002009682 A JP2002009682 A JP 2002009682A JP 2003211255 A JP2003211255 A JP 2003211255A
Authority
JP
Japan
Prior art keywords
cooling water
cooling
ingot
mold
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002009682A
Other languages
Japanese (ja)
Other versions
JP3765535B2 (en
Inventor
Masaisa Tsunekawa
雅功 常川
Yoshio Watanabe
良夫 渡辺
Norifumi Hayashi
典史 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2002009682A priority Critical patent/JP3765535B2/en
Publication of JP2003211255A publication Critical patent/JP2003211255A/en
Application granted granted Critical
Publication of JP3765535B2 publication Critical patent/JP3765535B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for continuously casting an aluminum cast block provided with a cooling setup which can increase the cooling intensity of the cast block by collecting and absorbing scattered stream of cooling water and effectively using the recovered water again for cooling of the cast block. <P>SOLUTION: The cooling water is supplied to the lower area of a mold in two parts, namely to the upper part and the lower part. In the cooling water supplied to the upper part, the cooling water scattered on the cast block surface is wholly absorbed by the cooling water supplied to the lower part. It is desirable that the cooling water supplied to the upper part forms a jet stream flowing out from a hole-like spouting outlet and the cooling water supplied to the lower part forms a water film stream flowing out from slits arranged on the mold. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム(アルミ
ニウム合金を含む、以下同じ)鋳塊の連続鋳造方法、と
くに一層の冷却強化が達成し得るアルミニウム鋳塊の連
続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for ingots of aluminum (including aluminum alloys, the same applies hereinafter), and more particularly to a continuous casting method for ingots of aluminum capable of achieving further cooling strengthening.

【0002】[0002]

【従来の技術】アルミニウムスラブ(矩形断面)やアル
ミニウムビレット(円形断面)など、アルミニウム鋳塊
の連続鋳造は、図2に示すように、上下に開放された鋳
型1の上部から、スパウト2および溶湯を鋳型内に分配
し湯面高さを制御するためのフロート3を介して、アル
ミニウム溶湯4を供給し、鋳型1での一次冷却により凝
固殻を形成させ、鋳型1の下方で表面に直接冷却水5を
供給して二次冷却を行い、凝固した鋳塊6を鋳型1の下
部から引き出すことにより行われる。
2. Description of the Related Art Continuous casting of an aluminum ingot such as an aluminum slab (rectangular cross section) and an aluminum billet (circular cross section) is carried out from the upper part of a mold 1 opened up and down as shown in FIG. Is supplied to the mold through a float 3 for controlling the height of the molten metal surface, the molten aluminum 4 is supplied, the solidified shell is formed by the primary cooling in the mold 1, and the surface is directly cooled below the mold 1. Water 5 is supplied to perform secondary cooling, and the solidified ingot 6 is pulled out from the lower portion of the mold 1.

【0003】この際、鋳型1から流出される冷却水は、
図3(a)〜(b)に示すように、通常、鋳型下部のス
リット7から流出する水膜流8の形態や孔(ホール)状
の吐出口9から流出する流出するジェット流10の形態
であるが、冷却強化のために、冷却水量を増大したり、
スリット幅や孔径を小さくして流速を増加させた場合
や、冷却水の鋳塊表面への衝突角度を増加させた場合に
は、図3(c)に示すように、いずれも冷却水5が鋳塊
表面11に衝突したのち、該表面11で跳ね返って冷却
水の散乱流12が生じる。
At this time, the cooling water flowing out of the mold 1 is
As shown in FIGS. 3 (a) and 3 (b), usually, the form of the water film flow 8 flowing out from the slit 7 at the bottom of the mold and the form of the jet flow 10 flowing out from the hole-shaped discharge port 9 However, for strengthening cooling, increase the amount of cooling water,
When the slit width or the hole diameter is reduced to increase the flow velocity, or when the collision angle of the cooling water with respect to the surface of the ingot is increased, as shown in FIG. After colliding with the ingot surface 11, a scattering flow 12 of the cooling water is generated by bouncing back on the surface 11.

【0004】その結果、冷却水5の衝突点より下の鋳塊
表面で鋳塊の冷却に寄与する冷却水量が著しく減少する
ため、鋳塊の表面組織および内部組織の粗大化による鋳
塊品質の劣化や、顕著な場合には鋳塊の再溶解による湯
漏れトラブルも発生する。鋳塊が大型の場合には、冷却
不足に起因して鋳造速度を十分に上げることができず、
生産性を低下させるという難点がある。
As a result, the amount of cooling water that contributes to the cooling of the ingot is significantly reduced on the surface of the ingot below the collision point of the cooling water 5, so that the quality of the ingot is improved due to the coarsening of the surface structure and internal structure of the ingot. Deterioration and, if significant, remelting of the ingot also cause problems of molten metal leakage. When the ingot is large, the casting speed cannot be sufficiently increased due to insufficient cooling,
It has the drawback of reducing productivity.

【0005】アルミニウム鋳塊の連続鋳造における冷却
を強化するために、鋳型の下方において多段階に冷却す
る方式(特開平9−308945号公報、特開平10−
180418号公報)や鋳型下部にスプレーノズル等を
追加設置する方式が提案されているが、これらの方式で
は大掛かりな設備改造が必要となるため実用的ではな
い。鋳型から2種の異なる角度の冷却水をジェット流と
して流出させるデュアルジェット(Dual-Jet)鋳型を用
いる鋳造方式も提案されている(特表平10−5006
29号公報)。
In order to enhance the cooling in continuous casting of an aluminum ingot, a method of cooling in multiple stages below the mold (Japanese Patent Laid-Open Nos. 9-308945 and 10-1998).
No. 180418) or a method of additionally installing a spray nozzle or the like under the mold, but these methods are not practical because large-scale facility modification is required. A casting method using a dual jet (Dual-Jet) mold in which two kinds of cooling water at different angles are discharged as a jet flow from the mold has also been proposed (Table 1-5006).
No. 29).

【0006】この方式において、図4(a)(b)に示
すように、鋳型に設けられた孔(ホール)状の吐出口か
ら流出する第1ジェット流13は衝突角度45deg.
(45°)で鋳塊表面に当たり、同じく鋳型に設けられ
た孔(ホール)状の吐出口から流出する第2ジェット流
14は衝突角度22deg.(22°)で鋳塊表面に当
たるもので、第1ジェット流13を流出する吐出口と第
2ジェット流14を流出する吐出口とは互い違いに設け
られ、高冷却水量、高衝突角度時に生じる鋳塊表面での
冷却水の散乱(跳ね返り)を第1ジェットと第2ジェッ
トを交互に配することで防止しようとするものである。
In this system, as shown in FIGS. 4 (a) and 4 (b), the first jet stream 13 flowing out from the hole-shaped discharge port provided in the mold has a collision angle of 45 deg.
The second jet stream 14 that hits the surface of the ingot at (45 °) and flows out from the hole-shaped discharge port also provided in the mold has a collision angle of 22 deg. (22 °) hits the surface of the ingot, and the outlets for outflowing the first jet stream 13 and the outlets for outflowing the second jet stream 14 are provided alternately, and the casting occurs at a high cooling water amount and a high collision angle. It is intended to prevent the scattering (bounce) of cooling water on the surface of the lump by alternately arranging the first jet and the second jet.

【0007】すなわち、第1ジェット流13は鋳塊表面
に衝突した後、水平方向に流れ、さらに隣部のジェット
流とジェット流の中間部で合流する。これらのジェット
流は、速度エネルギーが高く、鋳塊表面(鋳肌)から分
離して跳ね返るが、 第1ジェット流間には第2ジェッ
ト流が流出しているため、散乱流15は、第2ジェット
流14に吸収されて、再び鋳肌での冷却に関与すること
になり、鋳塊の強冷却が可能となる。
That is, the first jet stream 13 collides with the surface of the ingot, then flows in the horizontal direction, and further merges with the adjacent jet stream and the intermediate portion of the jet stream. These jet streams have high velocity energy and are separated from the surface of the ingot (cast surface) and bounce off. However, since the second jet stream is flowing out between the first jet streams, the scattered stream 15 becomes the second stream. It is absorbed by the jet stream 14 and once again participates in the cooling on the casting surface, which enables strong cooling of the ingot.

【0008】しかしながら、このデュアルジェット鋳型
方式においては、第1ジェット流13を流出する吐出口
と第2ジェット流14を流出する吐出口とは互い違いに
設けられ、第1ジェット流13の衝突点間の中央下部に
第2ジェット流14の衝突点が存在するため、鋳塊表面
からの第1ジェット流13散乱方向が、第2ジェット流
14の水流範囲に無い場合には、散乱した第1ジェット
流13の散乱流15を吸収することができないという問
題がある。矩形断面のスラブにおいて表面の凹凸が激し
い場合や、円形断面のビレットや異形断面の鋳塊のよう
に、表面が曲面をなす場合には、第1ジェット流の散乱
方向が不安定となり、第2ジェット流の水流範囲に必ず
しも散乱せず、第1ジェット流の散乱流が第2ジェット
流により安定して吸収されないことも多い。
However, in this dual-jet mold system, the outlets for outflowing the first jet stream 13 and the outlets for outflowing the second jet stream 14 are provided alternately, and between the collision points of the first jet stream 13. Since the collision point of the second jet stream 14 exists in the lower center part of the first jet stream 13 when the scattering direction of the first jet stream 13 from the ingot surface is not within the water flow range of the second jet stream 14, the scattered first jet stream 14 There is a problem that the scattered flow 15 of the flow 13 cannot be absorbed. If the surface of the slab with a rectangular cross section is highly uneven, or if the surface has a curved surface, such as a billet with a circular cross section or an ingot with an irregular cross section, the scattering direction of the first jet flow becomes unstable and Often, the jet flow does not necessarily scatter in the water flow range, and the scattered flow of the first jet flow is often not stably absorbed by the second jet flow.

【0009】[0009]

【発明が解決しようとする課題】本発明は、デュアルジ
ェット鋳型を用いる連続鋳造方式における上記従来の問
題を解消するためになされたものであり、その目的は、
冷却水の散乱流を確実に吸収して、鋳塊の冷却に再利用
することができ、大掛かりな設備投資や煩雑な鋳造条件
制御の必要なしに、安定した鋳塊の冷却強化を図ること
を可能とするアルミニウム鋳塊の連続鋳造方法を提案す
ることにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems in the continuous casting method using a dual jet mold, and its purpose is to:
The scattered flow of cooling water can be reliably absorbed and reused for cooling the ingot, and it is possible to achieve stable cooling and strengthening of the ingot without the need for large-scale capital investment and complicated control of casting conditions. It is to propose a continuous casting method of an aluminum ingot which enables the continuous casting.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の請求項1によるアルミニウム鋳塊の連続鋳
造方法は、鋳型上部から溶湯を供給し、鋳型下方におい
て冷却水を供給して、凝固した鋳塊を鋳型下部から引き
出すアルミニウム鋳塊の連続鋳造において、鋳型下方に
おける冷却水の供給は上下2段で行われ、上段で供給さ
れた冷却水のうち鋳塊表面で散乱した冷却水は全て下段
で供給された冷却水により吸収されて鋳塊の冷却に再利
用されることを特徴とする。
A method for continuously casting an aluminum ingot according to claim 1 of the present invention for achieving the above object comprises supplying a molten metal from an upper part of a mold and a cooling water below a mold. In continuous casting of an aluminum ingot that draws the solidified ingot from the lower part of the mold, the cooling water is supplied to the lower part of the mold in two stages, the cooling water scattered in the ingot surface among the cooling water supplied in the upper stage. Are all absorbed by the cooling water supplied in the lower stage and reused for cooling the ingot.

【0011】請求項2によるアルミニウム鋳塊の連続鋳
造方法は、請求項1において、前記上段で供給される冷
却水は鋳型に設けられた孔状の吐出口から流出するジェ
ット流の形態であり、下段で供給される冷却水は、鋳型
に設けられたスリットから流出する水膜流の形態である
ことを特徴とする。
According to a second aspect of the present invention, in the continuous casting method for an aluminum ingot, in the first aspect, the cooling water supplied in the upper stage is in the form of a jet stream flowing out from a hole-shaped discharge port provided in the mold, The cooling water supplied in the lower stage is characterized in that it is in the form of a water film flow that flows out from a slit provided in the mold.

【0012】[0012]

【発明の実施の形態】本発明においては、鋳型下方にお
ける冷却水の供給を上下2段で行ない、上段で供給され
る冷却水のうち鋳塊表面で散乱した冷却水は全て下段で
供給された冷却水により吸収されて鋳塊の冷却に再利用
されるよう構成したもので、上段で供給される冷却水を
吸収するために、下段で供給される冷却水を水膜流の形
態で流出させる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, cooling water is supplied below the mold in two stages, upper and lower stages, and among the cooling water supplied in the upper stage, all the cooling water scattered on the surface of the ingot is supplied in the lower stage. It is configured to be absorbed by cooling water and reused for cooling the ingot. In order to absorb the cooling water supplied in the upper stage, the cooling water supplied in the lower stage flows out in the form of a water film flow. .

【0013】好ましい実施態様としては、図1(a)
(b)に示すように、上段で供給される冷却水は鋳型1
に設けられた孔(ホール)状の吐出口17から流出する
ジェット流13の形態とし、下段で供給される冷却水
は、鋳型1に設けられたスリット18から流出する水膜
流16の形態とする。
A preferred embodiment is shown in FIG.
As shown in (b), the cooling water supplied in the upper stage is the mold 1
In the form of a jet stream 13 flowing out from a hole-shaped discharge port 17 provided in the mold 1, the cooling water supplied in the lower stage has a form of a water film stream 16 flowing out from a slit 18 provided in the mold 1. To do.

【0014】この方式によれば、上段から急角度で流出
するジェット流13により、鋳塊の高冷却が達成され、
ジェット流13の散乱流15は、鋳型1のスリット18
から流出する水膜流16によって全て捕捉吸収され、再
度鋳塊の冷却に利用されることができ、さらに冷却強化
を図ることができる。
According to this method, high cooling of the ingot is achieved by the jet stream 13 flowing out from the upper stage at a steep angle.
The scattered flow 15 of the jet flow 13 is the slit 18 of the mold 1.
All of them are captured and absorbed by the water film flow 16 flowing out of the cooling water, and can be reused for cooling the ingot, so that the cooling can be further strengthened.

【0015】本発明によれば、上段から流出するジェッ
ト流13をさらに急角度化して、一層の冷却強化を行っ
ても、それらの散乱流15は確実に下段から流出する水
膜流16によって全て捕捉吸収されることが可能であ
る。
According to the present invention, even if the jet stream 13 flowing out from the upper stage is made into a steeper angle to further strengthen the cooling, those scattered flows 15 are surely made by the water film flow 16 flowing out from the lower stage. It can be captured and absorbed.

【0016】本発明の方法においては、矩形断面のスラ
ブにおいて表面の凹凸が激しい場合や、円形断面のビレ
ットや異形断面の鋳塊のように、表面が曲面をなす場合
に、ジェット流13の散乱方向が不安定となっても、散
乱流15は確実に下段から流出する水膜流16によって
全て捕捉吸収されるから、円柱状ビレットや異形ビレッ
トの連続鋳造に効果的に適用することができる。
According to the method of the present invention, the jet stream 13 is scattered when the surface of the slab having a rectangular cross section is highly uneven, or when the surface has a curved surface such as a billet having a circular cross section or an ingot having an irregular cross section. Even if the direction becomes unstable, the scattered flow 15 is surely captured and absorbed by the water film flow 16 flowing out from the lower stage, so that it can be effectively applied to the continuous casting of a cylindrical billet or a deformed billet.

【0017】[0017]

【実施例】実施例1、比較例1 JIS 5182アルミニウム合金を、1100mm×
500mmの鋳塊断面サイズの鋳塊に連続鋳造した。鋳
型には、上段からジェット流を流出させるための吐出口
(ホール)、下段から水膜流(実施例)、ジェット流
(比較例)を流出させるためのスリットの幅および角
度、および孔(ホール)状吐出口のホール径、ホールピ
ッチおよびホール角度を表1に示す条件で形成した。鋳
造条件を表1に示す。なお、鋳造温度は690〜710
℃に調整し、有効鋳型長さは60〜70mmとした。
[Example] Example 1, Comparative Example 1 JIS 5182 aluminum alloy 1100mm ×
Continuous casting was performed into an ingot having a cross-sectional size of 500 mm. The mold has a discharge port (hole) for letting out a jet flow from the upper stage, a water film flow (Example) and a width and angle of a slit for letting out a jet flow (Comparative Example), and a hole (hole). The hole diameter, the hole pitch, and the hole angle of the () -shaped discharge port were formed under the conditions shown in Table 1. The casting conditions are shown in Table 1. The casting temperature is 690 to 710.
The temperature was adjusted to ° C, and the effective mold length was set to 60 to 70 mm.

【0018】冷却水の散乱状態(散乱の有無)を観察
し、鋳塊表面における冷却強度(冷却水の衝突点から3
00mm下部までの平均熱伝達係数)を、比較例の試験
材No.9の標準的な鋳型で得られる冷却強度の比とし
て求めた。また、鋳造定常期における鋳塊圧延面(11
00mm幅の面)中央部の表面(鋳肌)より30mm内
部における凝固時の冷却速度(液相線温度から固相線温
度までに要する時間)を測定し、鋳造後の鋳塊に生じた
割れを観察した。結果を表2に示す。
The scattered state of the cooling water (whether scattered or not) was observed, and the cooling strength on the surface of the ingot (3 from the collision point of the cooling water) was observed.
The average heat transfer coefficient up to the lower part of 00 mm) is the test material No. of the comparative example. It was determined as the ratio of the cooling strengths obtained with 9 standard molds. In addition, the ingot rolling surface (11
00 mm width surface) The cooling rate during solidification (time required from the liquidus temperature to the solidus temperature) within 30 mm from the surface of the central part (cast surface) was measured, and cracks occurred in the ingot after casting. Was observed. The results are shown in Table 2.

【0019】[0019]

【表1】 《表注》試験材No. 9 〜10は図3(b) に示す鋳型を使用するもの 試験材No.11 〜12は図4に示すデュアルジェット鋳型を使用するもので 、上段は第1ジェット流13を流出するホール形態、下段は第2ジェット 流14を流出するホール形態[Table 1] << Table Note >> Test materials Nos. 9 to 10 use the mold shown in Fig. 3 (b) Test materials Nos. 11 to 12 use the dual jet mold shown in Fig. 4, the upper stage being the first jet Hole form outflowing stream 13, lower stage is hole outflowing second jet flow 14

【0020】[0020]

【表2】 [Table 2]

【0021】表2に示すように、本発明に従う試験材N
o.1〜8は、冷却水の散乱流の捕捉吸収効果により十
分に高い冷却強度が得られ、その結果、インゴットの冷
却速度が大きくなってインゴット表面及び内部の凝固組
織が微細化され、鋳塊品質が向上した。さらに、冷却強
化により凝固殻が厚肉化されたため、高速鋳造時にも割
れや湯漏れトラブル無く、鋳造が可能となった。
As shown in Table 2, test material N according to the present invention
o. In Nos. 1 to 8, a sufficiently high cooling strength is obtained due to the trapping and absorption effect of the scattered flow of cooling water, and as a result, the cooling rate of the ingot is increased and the solidified structure of the ingot surface and inside is refined, resulting in ingot quality Has improved. Furthermore, because the solidified shell is thickened by cooling strengthening, it is possible to cast without cracking or molten metal leakage trouble during high speed casting.

【0022】これに対して、従来方式による試験材N
o.9〜12は、散乱流により鋳塊表面における冷却強
度が低く、鋳塊の割れ不良率も高い。
On the other hand, the test material N according to the conventional method is used.
o. In Nos. 9 to 12, the cooling strength on the surface of the ingot was low due to the scattered flow, and the crack failure rate of the ingot was high.

【0023】[0023]

【発明の効果】本発明によれば、冷却水の散乱流を捕捉
吸収して、鋳塊の冷却に再度有効に適用できるため、鋳
塊の冷却強度が増加し、その結果、鋳塊表面および内部
品質が向上し、割れや湯漏れトラブルの発生も低減され
る。また、冷却強度の増加に伴い高速鋳造化が可能とな
り、生産性の向上が可能となる。
According to the present invention, the scattered flow of the cooling water can be captured and absorbed, and can be effectively applied to the cooling of the ingot again, so that the cooling strength of the ingot is increased, and as a result, the ingot surface and The internal quality is improved and the occurrence of cracks and hot water leaks is reduced. In addition, as the cooling strength increases, high-speed casting becomes possible and productivity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の連続鋳造方法における冷却形態を示す
一部断面図である。
FIG. 1 is a partial cross-sectional view showing a cooling mode in a continuous casting method of the present invention.

【図2】従来のアルミニウム鋳塊の連続鋳造方式を示す
一部断面図である。
FIG. 2 is a partial cross-sectional view showing a conventional continuous casting method for an aluminum ingot.

【図3】従来の連続鋳造方法における冷却形態を示す一
部断面図である。
FIG. 3 is a partial cross-sectional view showing a cooling mode in a conventional continuous casting method.

【図4】デュアル・ジェット方式の冷却形態を示す一部
断面図である。
FIG. 4 is a partial cross-sectional view showing a cooling mode of a dual jet system.

【符号の説明】[Explanation of symbols]

1 鋳型 2 スパウト 3 フロート 4 溶湯 5 冷却水 6 鋳塊 7 スリット 8 水膜流 9 ホール(ホール状吐出口) 10 ジェット流 11 鋳塊表面 12 散乱流 13 第1ジェット流 14 第2ジェット流 15 散乱流 16 水膜流 17 ホール(ホール状吐出口) 18 スリット 1 mold 2 spouts 3 floats 4 molten metal 5 cooling water 6 ingot 7 slits 8 water film flow 9 holes (hole discharge port) 10 Jet stream 11 Ingot surface 12 Scattered flow 13 First jet stream 14 Second jet stream 15 Scattered flow 16 Water film flow 17 holes (hole-shaped outlet) 18 slits

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 典史 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Norifumi Hayashi             Sumitomo Light Gold 5-11-3 Shimbashi, Minato-ku, Tokyo             Inside the industry

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋳型上部から溶湯を供給し、鋳型下方に
おいて冷却水を供給して、凝固した鋳塊を鋳型下部から
引き出すアルミニウム鋳塊の連続鋳造において、鋳型下
方における冷却水の供給は上下2段で行われ、上段で供
給された冷却水のうち鋳塊表面で散乱した冷却水は全て
下段で供給された冷却水により吸収されて鋳塊の冷却に
再利用されることを特徴とするアルミニウム鋳塊の連続
鋳造方法。
1. In continuous casting of an aluminum ingot, in which molten metal is supplied from the upper part of the mold, cooling water is supplied below the mold, and a solidified ingot is drawn out from the lower part of the mold, the cooling water is supplied below and below the mold. Aluminum, characterized in that the cooling water scattered in the ingot surface among the cooling water supplied in the upper stage is absorbed by the cooling water supplied in the lower stage and reused for cooling the ingot. Continuous casting method for ingots.
【請求項2】 前記上段で供給される冷却水は、鋳型に
設けられた孔状の吐出口から流出するジェット流の形態
であり、下段で供給される冷却水は、鋳型に設けられた
スリットから流出する水膜流の形態であることを特徴と
する請求項1記載のアルミニウム鋳塊の連続鋳造方法。
2. The cooling water supplied in the upper stage is in the form of a jet stream flowing out from a hole-shaped discharge port provided in the mold, and the cooling water supplied in the lower stage is a slit provided in the mold. The method for continuous casting of an aluminum ingot according to claim 1, wherein the method is in the form of a water film flow flowing out of the aluminum ingot.
JP2002009682A 2002-01-18 2002-01-18 Continuous casting method of aluminum ingot Expired - Fee Related JP3765535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002009682A JP3765535B2 (en) 2002-01-18 2002-01-18 Continuous casting method of aluminum ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002009682A JP3765535B2 (en) 2002-01-18 2002-01-18 Continuous casting method of aluminum ingot

Publications (2)

Publication Number Publication Date
JP2003211255A true JP2003211255A (en) 2003-07-29
JP3765535B2 JP3765535B2 (en) 2006-04-12

Family

ID=27647625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002009682A Expired - Fee Related JP3765535B2 (en) 2002-01-18 2002-01-18 Continuous casting method of aluminum ingot

Country Status (1)

Country Link
JP (1) JP3765535B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103008580A (en) * 2012-12-27 2013-04-03 西南铝业(集团)有限责任公司 Crystallizer
CN103008585A (en) * 2012-12-27 2013-04-03 西南铝业(集团)有限责任公司 High-intensity water cooled crystallizer
JP2015503452A (en) * 2012-01-10 2015-02-02 コンステリウム フランス Double jet cooling system for vertical semi-continuous casting mold.
JP2020062678A (en) * 2018-10-19 2020-04-23 昭和電工株式会社 Continuous metal casting device and method
US10960462B2 (en) 2019-02-28 2021-03-30 Showa Denko K.K. Production method and production apparatus of continuously cast metal rod
US10974315B2 (en) 2019-02-28 2021-04-13 Showa Denko K.K. Production method and production apparatus of continuously cast metal rod

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101844209B (en) * 2010-06-07 2012-09-26 苏州有色金属研究院有限公司 Cooling water angle adjustable crystallizer for aluminium alloy casting
JP6560838B1 (en) * 2019-02-12 2019-08-14 株式会社神戸製鋼所 Continuous casting mold, continuous casting apparatus, and continuous casting method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138045U (en) * 1989-04-14 1990-11-19
JPH06114514A (en) * 1992-10-05 1994-04-26 Showa Alum Corp Method for continuously casting aluminum
JPH09308945A (en) * 1996-05-20 1997-12-02 Kobe Steel Ltd Vertical type continuous casting method of aluminum alloy slab
JPH10500629A (en) * 1994-02-25 1998-01-20 ワグスタッフ インコーポレイテッド Direct cooling type metal casting method and apparatus
JPH10180418A (en) * 1996-12-24 1998-07-07 Kobe Steel Ltd Vertical continuous casting method for rectangular cross section aluminum alloy cast slab, and mold therefor
JPH11179490A (en) * 1997-12-24 1999-07-06 Kobe Steel Ltd Vertical type continuous casting method for al or al alloy slab

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138045U (en) * 1989-04-14 1990-11-19
JPH06114514A (en) * 1992-10-05 1994-04-26 Showa Alum Corp Method for continuously casting aluminum
JPH10500629A (en) * 1994-02-25 1998-01-20 ワグスタッフ インコーポレイテッド Direct cooling type metal casting method and apparatus
JPH09308945A (en) * 1996-05-20 1997-12-02 Kobe Steel Ltd Vertical type continuous casting method of aluminum alloy slab
JPH10180418A (en) * 1996-12-24 1998-07-07 Kobe Steel Ltd Vertical continuous casting method for rectangular cross section aluminum alloy cast slab, and mold therefor
JPH11179490A (en) * 1997-12-24 1999-07-06 Kobe Steel Ltd Vertical type continuous casting method for al or al alloy slab

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015503452A (en) * 2012-01-10 2015-02-02 コンステリウム フランス Double jet cooling system for vertical semi-continuous casting mold.
CN103008580A (en) * 2012-12-27 2013-04-03 西南铝业(集团)有限责任公司 Crystallizer
CN103008585A (en) * 2012-12-27 2013-04-03 西南铝业(集团)有限责任公司 High-intensity water cooled crystallizer
JP2020062678A (en) * 2018-10-19 2020-04-23 昭和電工株式会社 Continuous metal casting device and method
JP7190324B2 (en) 2018-10-19 2022-12-15 昭和電工株式会社 Metal continuous casting apparatus and continuous casting method
US10960462B2 (en) 2019-02-28 2021-03-30 Showa Denko K.K. Production method and production apparatus of continuously cast metal rod
US10974315B2 (en) 2019-02-28 2021-04-13 Showa Denko K.K. Production method and production apparatus of continuously cast metal rod

Also Published As

Publication number Publication date
JP3765535B2 (en) 2006-04-12

Similar Documents

Publication Publication Date Title
JP2003211255A (en) Method for continuously casting aluminum cast block
JP2008030069A (en) Molten metal continuous casting method
FI98795C (en) Cooling process for continuous casting and its shape
Antonyuk et al. Titanium alloys for aircraft industry of Ukraine.
JP3671872B2 (en) Continuous casting method of steel
JPS61193755A (en) Electromagnetic stirring method
JP3277858B2 (en) Continuous casting method of beam blank
JP2001001115A (en) Continuous casting method of steel
JP7397499B2 (en) Molten metal casting method using impact pad in tundish
JP2003170251A (en) Immersion nozzle
CN2362624Y (en) Submerged type pouring head for continuous casting thin sheet blank
RU2381086C1 (en) Method of continuous casting of rectangular steel ingots
JPH10128506A (en) Immersion nozzle for continuous casting
JP2003290880A (en) Mold for casting non-ferrous metal
JP2001321901A (en) Method for continuously casting steel
JPH0518743U (en) Immersion nozzle for continuous casting with shield cylinder
RU2188099C1 (en) Refractory nozzle
JPH09192800A (en) Immersion nozzle for continuous casting
JP2002219561A (en) Immersion nozzle
JP3505053B2 (en) Immersion nozzle for thin-wall wide cast slab continuous casting
JPH0259155A (en) Method for continuously casting steel and submerged nozzle
Campbell Filling and Feeding Systems for Cast Irons
JP2023178223A (en) Continuous casting method for steel
JP2002079355A (en) Method for continuously casting steel
JP2004098127A (en) Method for continuously casting high quality stainless steel cast slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3765535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees