JPH11179490A - Vertical type continuous casting method for al or al alloy slab - Google Patents

Vertical type continuous casting method for al or al alloy slab

Info

Publication number
JPH11179490A
JPH11179490A JP35486397A JP35486397A JPH11179490A JP H11179490 A JPH11179490 A JP H11179490A JP 35486397 A JP35486397 A JP 35486397A JP 35486397 A JP35486397 A JP 35486397A JP H11179490 A JPH11179490 A JP H11179490A
Authority
JP
Japan
Prior art keywords
mold
slab
cooling water
cooling
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35486397A
Other languages
Japanese (ja)
Inventor
Kenji Tokuda
健二 徳田
Shojiro Oya
正二郎 大家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP35486397A priority Critical patent/JPH11179490A/en
Publication of JPH11179490A publication Critical patent/JPH11179490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the warp in the bottom part of a slab and the constriction in the short length part at the initial stage of casting by executing the cooling with the ordinary laminar flow and spraying, etc., in two stages of the direct cooling just below a mold and the cooling with the secondary cooling device below the mold and specifying injecting positions of the cooling water into the slab. SOLUTION: Molten Al or Al alloy is supplied from the upper part of the mold opened at the upper surface and the lower surface and cooled and solidified in the mold and also, continuously, draw out from the lower end of the mold to cast the slab having rectangular cross section. At this time, at least at the initial stage of casting, together with the direct injection of the cooling water from the lower end of the mold, the cooling with the injection of secondary cooling water in the secondary cooling device arranged below the mold is executed and also, the conical bottom or the hitting position onto the slab surface of the secondary cooling water from the secondary cooling device is regulated to the lower position in the range of 10-120 mm from the position directly hit with the cooling water from the lower end of the mold.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Al(アルミニウ
ム)又はAl合金(以下単にAlと言う)スラブの縦型
連続鋳造方法に関するものであって、詳しくは、断面矩
形状のAlスラブの半連続鋳造における鋳造初期の鋳塊
割れや湯漏れなどのトラブルを防止する技術に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical continuous casting method for Al (aluminum) or Al alloy (hereinafter simply referred to as "Al") slabs, and more particularly, to a semi-continuous Al slab having a rectangular cross section. The present invention relates to a technique for preventing troubles such as ingot cracking and molten metal leakage at the early stage of casting in casting.

【0002】[0002]

【従来の技術】図2に示すように、Alスラブの半連続
鋳造は、長辺部21と短辺部22とで形成された矩形状の開
口23を有する鋳型24を用い、その鋳型24の下開口部を底
台25で閉塞させた状態で溶湯Mの注入を開始し、鋳型内
壁面26及び鋳型下端からの直接冷却水27により冷却、凝
固させ、底台25を連続的に下降させることにより行われ
る。なお図2は、Alスラブの半連続鋳造方法を説明す
るための鋳型部分の長辺部中央より左半分を断面で示す
説明図であって、aは鋳造開始直後、bは鋳造初期の状
態を示す。
2. Description of the Related Art As shown in FIG. 2, semi-continuous casting of an Al slab uses a mold 24 having a rectangular opening 23 formed by a long side 21 and a short side 22. Injecting the molten metal M in a state where the lower opening is closed by the bottom 25, cooling and solidifying with the cooling water 27 directly from the inner wall surface 26 of the mold and the lower end of the mold, and continuously lowering the bottom 25. It is performed by FIG. 2 is an explanatory view showing a cross section of the left half from the center of the long side of the mold portion for explaining the semi-continuous casting method of the Al slab. Show.

【0003】ところで、上記Alスラブの半連続鋳造に
おいては、鋳造開始直後(図2a参照)、スラブSは鋳
型24に注入された溶湯Mが鋳型内壁面26及び底台25から
の冷却によって形成されていくが、底台25が下降し、ス
ラブSが鋳型24から完全に抜け出た時点(図2b参照)
においては、スラブSは鋳型下端からの直接冷却水27に
よる急激な冷却が開始される。このように鋳造初期にお
いては、スラブSの冷却が不連続となるため、スラブS
に急激な熱応力が発生し、スラブSが変形し、図3に示
すようにスラブSの底部28に反り、及び短尺部29にくび
れが発生する。特に、スラブSのサイズが大型の場合
や、スラブSの短尺部29と長尺部30の縦横比が大きな場
合には変形が大きくなり、鋳型短辺部22において、鋳型
24とスラブSとに隙間31が生じ、その隙間31からの溶湯
漏れ、あるいは凝固殻の再溶解による溶湯漏れの危険が
生じる。また、変形時の凝固殻の強度が不十分な場合
は、スラブSの底部28に割れが発生する場合がある。
In the semi-continuous casting of the Al slab, immediately after the casting is started (see FIG. 2A), the slab S is formed by cooling the molten metal M poured into the mold 24 from the inner wall surface 26 and the bottom 25 of the mold. At the time when the base 25 is lowered and the slab S is completely removed from the mold 24 (see FIG. 2B).
In, rapid cooling of the slab S by the direct cooling water 27 from the lower end of the mold is started. As described above, since the cooling of the slab S is discontinuous in the early stage of the casting, the slab S
Then, a rapid thermal stress is generated, the slab S is deformed, and the bottom 28 of the slab S is warped and the short portion 29 is narrowed as shown in FIG. In particular, when the size of the slab S is large, or when the aspect ratio between the short portion 29 and the long portion 30 of the slab S is large, the deformation becomes large, and
A gap 31 is formed between 24 and the slab S, and there is a danger of molten metal leaking from the gap 31 or molten metal leaking due to re-melting of the solidified shell. If the strength of the solidified shell during deformation is insufficient, cracks may occur in the bottom 28 of the slab S.

【0004】上記鋳造初期の諸問題の解決の方法として
は、鋳型下端からの直接冷却水に気体を混入する方法、
直接冷却水を間欠的に供給する方法、直接冷却水をミス
ト化してミスト冷却を行う方法、底台の形状の適正化に
よる方法、鋳型内壁面に断熱材を設置しておき、鋳塊
(スラブ)と共に鋳型から除去する方法(特開昭60−22
7947号公報)などが提案されている。
[0004] As a method of solving the above-mentioned problems in the early stage of casting, there are a method of mixing a gas into cooling water directly from a lower end of a mold,
Intermittent direct supply of cooling water, mist cooling by direct cooling water mist, method of optimizing the shape of the base, heat insulating material is installed on the inner wall surface of the mold, and the ingot (slab) ) And a method of removing from the mold (Japanese Patent Laid-Open No.
No. 7947) has been proposed.

【0005】[0005]

【発明が解決しようとする課題】上記鋳型下端からの直
接冷却水に気体を混入する方法、及び直接冷却水を間欠
的に供給する方法は、スラブに対する冷却能力を連続的
に制御でき、非常に優れた方法であるが、いずれも、あ
る程度の初期投資が必要であること、冷却水の清浄度が
要求されること、などの理由により、実操業に導入する
ことは容易ではない。また、直接冷却水をミスト化して
ミスト冷却を行う方法は、設備が煩雑となることが予想
され、実操業への適用は困難であると考えられる。ま
た、底台の形状の適正化、及び鋳型内壁面に断熱材を設
置する方法は、容易に導入でき、且つ、ある程度の効果
を有するため、有効に活用することが可能であるが、前
記直接冷却水に気体を混入する方法などと比較すると、
その効果は比較的小さく、スラブサイズが大型である場
合などは上述した諸問題は完全には解決されない。
The method of mixing gas directly into the cooling water from the lower end of the mold and the method of intermittently supplying the direct cooling water can continuously control the cooling capacity for the slab, and are extremely Although these methods are excellent, they are not easy to introduce into actual operation due to reasons such as the need for some initial investment and the required cleanliness of cooling water. In addition, the method of performing mist cooling by directly converting the cooling water into mist is expected to complicate the equipment, and is considered to be difficult to apply to actual operation. In addition, the method of optimizing the shape of the base and the method of installing the heat insulating material on the inner wall surface of the mold can be easily introduced and have a certain effect, so that it can be effectively utilized. Compared with the method of mixing gas into cooling water,
The effect is relatively small, and when the slab size is large, the above-mentioned problems cannot be completely solved.

【0006】本発明は、上記の如き事情に基づいてなし
たものであって、その目的は、鋳造初期におけるスラブ
底部の反り、及び短尺部のくびれを低減し得るAl又は
Al合金スラブの縦型連続鋳造方法を提供するものであ
る。
The present invention has been made based on the above-mentioned circumstances, and an object of the present invention is to provide a vertical Al or Al alloy slab capable of reducing the warpage of the slab bottom and the constriction of the short part in the early stage of casting. A continuous casting method is provided.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに鋭意検討した結果、直接冷却水への気体混入、直接
冷却水の間欠的供給あるいはミスト化を行うこと無く、
通常のラミナー流やスプレーなどによる冷却を、鋳型直
下の直接冷却と鋳型下方の二次冷却装置による冷却との
2段階で行い、且つ、同冷却水のスラブへの噴射位置を
調節することにより非常に大きな効果が得られることを
見出し、ここに本発明を完成した。
Means for Solving the Problems As a result of intensive studies to achieve the above object, it has been found that without mixing gas directly into the cooling water, intermittent supply of the direct cooling water or mist formation,
Cooling by ordinary laminar flow or spraying is performed in two stages: direct cooling directly below the mold and cooling by a secondary cooling device below the mold, and by adjusting the injection position of the same cooling water to the slab, And found that a great effect was obtained, and completed the present invention.

【0008】すなわち、本発明は、Al又はAl合金の
溶湯を、上面及び下面の開放されている鋳型の上方より
供給し、鋳型内にて冷却、凝固させるとともに、鋳型下
端より連続的に引き出して断面矩形状のスラブを鋳造す
る縦型連続鋳造方法において、少なくとも鋳造初期の段
階において、鋳型下端からの直接冷却水噴出と併せて、
鋳型下方に配設された二次冷却装置からの二次冷却水噴
出による冷却を行うとともに、その二次冷却装置からの
二次冷却水の底台又はスラブ表面に当たる位置が、鋳型
下端からの直接冷却水の当たる位置よりも10〜 120mmの
範囲内で下方にあることを特徴とするAl又はAl合金
スラブの縦型連続鋳造方法、を要旨とするものである。
That is, according to the present invention, a molten metal of Al or an Al alloy is supplied from above a mold having open upper and lower surfaces, cooled and solidified in the mold, and continuously drawn from the lower end of the mold. In the vertical continuous casting method for casting a slab having a rectangular cross section, at least in the initial stage of casting, in conjunction with direct cooling water jetting from the lower end of the mold,
While cooling by jetting secondary cooling water from the secondary cooling device arranged below the mold, the position of the secondary cooling water from the secondary cooling device that hits the bottom or slab surface is directly from the lower end of the mold. A vertical continuous casting method of an Al or Al alloy slab, which is located below a position where cooling water is applied within a range of 10 to 120 mm.

【0009】そして、上記本発明に係るAl又はAl合
金スラブの縦型連続鋳造方法においては、鋳造開始前の
鋳型に底台が装入されている状態において、断熱材が、
長辺部中央部を中心として少なくとも長辺部の半分以上
の長さで、且つ40〜 150mmの高さで鋳型内壁面に貼付さ
れてあってもよい。
[0009] In the vertical continuous casting method for Al or Al alloy slab according to the present invention, the heat insulating material is provided in a state where the base is inserted in the mold before the start of casting.
It may be affixed to the inner wall surface of the mold with a length of at least half of the long side centered on the long side center and a height of 40 to 150 mm.

【0010】以下、本発明について詳細に説明する。上
述したように、鋳造初期のスラブの変形は鋳造初期の直
接冷却開始時の急激な冷却により発生する熱応力に起因
するものであり、このスラブの変形を抑制するために
は、直接冷却による急激な冷却の変化を低減する、
熱応力発生時における変形抵抗を増大させる、の2つの
方法が考えられる。
Hereinafter, the present invention will be described in detail. As described above, the deformation of the slab in the early stage of casting is caused by the thermal stress generated by rapid cooling at the start of direct cooling in the early stage of casting. Reduce the cooling changes
There are two methods of increasing the deformation resistance when a thermal stress is generated.

【0011】これまでスラブ変形の抑制効果が大である
とされている、冷却水に気体を混入する方法、冷却水を
間欠的に供給する方法、あるいはミスト冷却を行う方法
などは、いずれも上記の考えに基づき、鋳造初期にお
いて冷却効率を大幅に低減したものである。従って、鋳
造初期に生成される凝固殻は非常に薄く、鋳造条件の変
化、あるいは、冷却水噴出孔の詰まりなどの何らかの異
常発生時などにおいては、溶湯漏れの危険が生じる。
The method of mixing gas into cooling water, the method of intermittently supplying cooling water, the method of performing mist cooling, and the like, all of which have been considered to have a large effect of suppressing slab deformation, have been described above. Based on this idea, the cooling efficiency is greatly reduced in the early stage of casting. Therefore, the solidified shell formed in the early stage of casting is very thin, and there is a danger of molten metal leakage when the casting conditions are changed or when some abnormality such as clogging of the cooling water ejection hole occurs.

【0012】そこで、本発明では、上記の考えに基づ
き、少なくとも鋳造初期の段階において、鋳型下端から
の直接冷却水噴出と併せて、鋳型下方に配設された二次
冷却装置からの二次冷却水噴出による冷却を行うととも
に、その二次冷却装置からの二次冷却水の底台又はスラ
ブ表面に当たる位置が、鋳型下端からの直接冷却水の当
たる位置よりも10〜 120mmの範囲内で下方としたもので
ある。このようにすると、鋳型下方の二次冷却装置から
の冷却により、鋳型から抜け出る前の底台やスラブが従
来方法よりも冷却されることとなる。従って、鋳造開始
時、鋳型下部における直接冷却水噴射位置近傍でのスラ
ブ自体の温度が低下しているため、直接冷却開始時の急
激な冷却が低減されるとともに、スラブ底部近傍部にお
いて、従来の鋳型下端からの冷却のみの場合よりも凝固
殻が厚く生成されており、スラブ底部の反りに対する変
形抵抗が増大し、スラブ底部の反りと同時にくびれが低
減される。また、このようにスラブ底部の反りやくびれ
が低減されることから、スラブ底部の割れ、又は/及
び、溶湯漏れの危険が低減でき、歩留り及び生産性の向
上が期待できる。
Therefore, in the present invention, based on the above idea, at least at the initial stage of casting, the secondary cooling from the secondary cooling device disposed below the mold is performed together with direct cooling water jetting from the lower end of the mold. While performing cooling by water jetting, the position where the secondary cooling water from the secondary cooling device hits the bottom or the surface of the slab is 10 to 120 mm below the position where the cooling water hits directly from the lower end of the mold. It was done. In this case, the base and the slab before coming out of the mold are cooled by the cooling from the secondary cooling device below the mold as compared with the conventional method. Therefore, at the start of casting, the temperature of the slab itself in the vicinity of the direct cooling water injection position at the lower part of the mold is reduced, so that rapid cooling at the start of direct cooling is reduced, and the conventional method is used in the vicinity of the slab bottom. The solidified shell is formed thicker than in the case of only cooling from the lower end of the mold, the deformation resistance against the warpage of the slab bottom increases, and the constriction is reduced simultaneously with the warpage of the slab bottom. Further, since the warpage and constriction of the slab bottom are reduced in this manner, the risk of cracking of the slab bottom and / or leakage of molten metal can be reduced, and improvement in yield and productivity can be expected.

【0013】そして、上記作用効果を効果的に得るため
には、二次冷却装置からの二次冷却水の底台又はスラブ
表面に当たる位置は、鋳型下端からの直接冷却水の当た
る位置よりも10〜 120mmの範囲内で下方とすることがよ
い。その理由は、10mm未満である場合は、冷却の形態と
しては、従来の鋳型下端からのみの冷却の場合とほぼ同
等であり、熱応力の緩和、凝固殻の厚さの拡大ははかれ
ず、反りの形成を抑制する効果が小さいため、一方、 1
20mmを超えた場合は、鋳型下方からの冷却ポイント近傍
の冷却に及ぼす影響が小さくなり、スラブ底部の反り発
生時における熱応力の緩和が不十分となるとともに、底
部近傍の凝固殻生成も不十分となるためである。
In order to effectively obtain the above-mentioned effects, the position where the secondary cooling water from the secondary cooling device hits the base or the surface of the slab is 10 times shorter than the position where the cooling water directly hits from the lower end of the mold. It is preferable that the distance be within the range of 120 mm. The reason is that if it is less than 10 mm, the form of cooling is almost the same as the case of cooling only from the lower end of the conventional mold, the thermal stress is not relaxed, the thickness of the solidified shell is not increased, On the other hand, 1
If it exceeds 20 mm, the influence on the cooling near the cooling point from below the mold will be small, and the thermal stress at the time of warpage of the bottom of the slab will not be sufficiently relaxed, and the solidification shell formation near the bottom will be insufficient. This is because

【0014】また、本発明では、鋳造開始前の鋳型に底
台が装入されている状態において、断熱材を、長辺部中
央部を中心として少なくとも長辺部の半分以上の長さ
で、且つ40〜 150mmの高さで鋳型内壁面に貼付してもよ
い。このように断熱材を貼付することで、直接冷却水に
よる熱応力の発生時期を断熱材の高さ分だけ遅らせるこ
とができ、更に、熱応力発生時期以前に二次冷却水によ
り、断熱材に被覆されたスラブ下部を十分に冷却するこ
とができるため、スラブ底部の熱応力を緩和できるとと
もに、熱応力発生時期にはスラブ底部近傍の凝固殻の厚
さの拡大をはかることができ、これにより段落番号〔0
012〕に述べた作用効果(スラブ底部の反りに対する
変形抵抗の増大など)を、より効果的に得ることができ
る。しかし、鋳型内壁面に貼付する断熱材の長さが長辺
部中央部を中心として長辺部の半分未満であったり、高
さが40mm未満の場合は、熱応力の緩和、凝固殻の厚さの
拡大に対する効果が期待できず、貼付の意味が無くな
る。また、高さが 150mmを超える場合には、鋳型内壁面
への設置上問題が生じる場合があるため好ましくない。
従って、断熱材は、より好ましくは長辺部中央部を中心
として少なくとも長辺部の半分以上の長さで、40〜 100
mmの高さで鋳型内壁面に貼付するのがよい。
Further, in the present invention, in a state where the base is inserted into the mold before the start of casting, the heat insulating material is provided with a length of at least half of the long side centered on the center of the long side, Moreover, it may be attached to the inner wall surface of the mold at a height of 40 to 150 mm. By attaching the heat insulating material in this way, it is possible to delay the timing of the thermal stress caused by the direct cooling water by the height of the heat insulating material. Since the coated lower part of the slab can be sufficiently cooled, the thermal stress at the bottom of the slab can be reduced, and the thickness of the solidified shell near the bottom of the slab can be increased at the time of thermal stress generation, Paragraph number [0
012] (such as an increase in deformation resistance against warpage of the slab bottom) can be more effectively obtained. However, if the length of the heat insulating material attached to the inner wall of the mold is less than half of the long side centered on the center of the long side, or if the height is less than 40 mm, the thermal stress is relaxed and the thickness of the solidified shell is reduced. The effect on the expansion of the size cannot be expected, and the meaning of sticking is lost. On the other hand, when the height exceeds 150 mm, there is a case where a problem occurs in installation on the inner wall surface of the mold, which is not preferable.
Therefore, the heat insulating material is more preferably at least half the length of the long side centered on the center of the long side, and 40 to 100
It is good to stick on the inner wall of the mold at the height of mm.

【0015】また、上記 断熱材としては、一般的には
グラスクロスと呼ばれる開口率が30%前後のフィルタ状
の耐火繊維布や、アルミニウム箔などが使用されるが、
断熱効果を有し、鋳型に貼付できるものであればいかな
る材料でも使用可能である。
As the heat insulating material, a filter-like refractory fiber cloth generally called glass cloth having an opening ratio of about 30%, an aluminum foil, or the like is used.
Any material can be used as long as it has a heat insulating effect and can be attached to a mold.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照して説明する。図1は、本発明に係るAl又はAl
合金スラブの縦型連続鋳造方法を適用した鋳型部分の長
辺部中央より左半分を断面で示す説明図であって、aは
鋳造開始直後、bは鋳造初期の状態を示す。図におい
て、1は鋳型、2は二次冷却装置を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows Al or Al according to the present invention.
It is explanatory drawing which shows the left half from the center of the long side part of the casting mold part to which the vertical continuous casting method of the alloy slab was applied, a shows the state immediately after casting start, b shows the state of the early stage of casting. In the figure, 1 indicates a mold and 2 indicates a secondary cooling device.

【0017】鋳型1は、長辺部3と短辺部4とで形成さ
れた矩形状の開口5を有する。長辺部3と短辺部4は、
内部に内壁面6を冷却する冷却水の通路7を有するとと
もに、内壁面6の下端に直接冷却水8のための噴出孔9
が開けられている。
The mold 1 has a rectangular opening 5 formed by a long side 3 and a short side 4. The long side 3 and the short side 4
A cooling water passage 7 for cooling the inner wall surface 6 is provided inside, and a jet hole 9 for the cooling water 8 is directly provided at a lower end of the inner wall surface 6.
Is open.

【0018】二次冷却装置2は、鋳型1から引き出され
てくるスラブSを囲むように設けられた矩形リング状の
ヘッダ10と、そのヘッダ10にスラブSの表面に向けて設
けられたノズル11とを備えて構成されている。そして、
本発明方法の適用に際しては、ヘッダ10は、ノズル11か
ら噴出された二次冷却水12がスラブSの表面に当たる位
置が、鋳型1からの直接冷却水8が当たる位置よりも、
距離L(10〜 120mm)だけ下方となるように調節されて
設けられている。
The secondary cooling device 2 includes a rectangular ring-shaped header 10 provided so as to surround the slab S drawn from the mold 1, and a nozzle 11 provided on the header 10 toward the surface of the slab S. It is comprised including. And
When the method of the present invention is applied, the header 10 is such that the position where the secondary cooling water 12 ejected from the nozzle 11 hits the surface of the slab S is higher than the position where the cooling water 8 directly from the mold 1 hits.
It is provided so as to be adjusted downward by a distance L (10 to 120 mm).

【0019】従って、上記構成において、鋳型1の下開
口部を底台13で閉塞させ、鋳型内冷却と共に直接冷却水
8の噴出、及び二次冷却装置2からの二次冷却水12の噴
出を行いながら、溶湯Mの鋳型1への注入を開始する
と、二次冷却装置2からの冷却により、鋳型1から抜け
出る前の底台13やスラブSが従来方法よりも冷却されて
おり、これにより、鋳型1を抜け出る前のスラブSの底
部近傍の温度が低下しているため、直接冷却水8及び二
次冷却装置2からの二次冷却水12による急激な冷却が低
減されるとともに、スラブSの底部近傍部の凝固殻も、
従来の鋳型下端からの冷却のみの場合よりも厚く生成さ
れており、スラブSの底部の反りに対する変形抵抗が増
大し、スラブSの底部の反りと同時にくびれが低減さ
れ、溶湯漏れなどの危険が低減される。
Therefore, in the above configuration, the lower opening of the mold 1 is closed by the bottom base 13, so that the cooling water 8 is jetted directly together with the cooling in the mold and the secondary cooling water 12 is jetted from the secondary cooling device 2. When the injection of the molten metal M into the mold 1 is started while performing, the base 13 and the slab S before exiting from the mold 1 are cooled by the cooling from the secondary cooling device 2 as compared with the conventional method. Since the temperature in the vicinity of the bottom of the slab S before exiting the mold 1 is reduced, the rapid cooling by the direct cooling water 8 and the secondary cooling water 12 from the secondary cooling device 2 is reduced, and the slab S is cooled. The solidified shell near the bottom also
It is generated thicker than in the case of only cooling from the lower end of the conventional mold, the deformation resistance against the warpage of the bottom of the slab S is increased, the constriction is reduced at the same time as the warpage of the bottom of the slab S, and there is a danger of molten metal leakage and the like. Reduced.

【0020】また、上記構成において、図1aに二点鎖
線で示すように、鋳型1の内壁面6に沿って断熱材14を
貼付してもよい。このように断熱材14を貼付しても、断
熱材14が十分冷却されていることで、直接冷却水8によ
る熱応力発生時期にはスラブSの凝固殻の厚さの拡大が
はかれるとともに、鋳型1を抜け出た後は断熱材14が直
接冷却水8及び二次冷却装置2からの二次冷却水12によ
る急激な冷却を緩和することができ、上記段落番号〔0
019〕に説明した作用効果を、より効果的に得ること
ができる。
In the above structure, a heat insulating material 14 may be attached along the inner wall surface 6 of the mold 1 as shown by a two-dot chain line in FIG. 1A. Even if the heat insulating material 14 is attached in this manner, the heat insulating material 14 is sufficiently cooled, so that the thickness of the solidified shell of the slab S can be increased at the time of thermal stress generation by the direct cooling water 8 and the mold 1, the heat insulating material 14 can alleviate rapid cooling by the direct cooling water 8 and the secondary cooling water 12 from the secondary cooling device 2;
[019] The effects described in [19] can be obtained more effectively.

【0021】[0021]

【実施例】上記図1に示す構成の鋳型を用いて JIS3004
合金を溶解、鋳造し、厚み 600mm×幅1500×長さ1000mm
のスラブを製造した。鋳造初期(長さで 200mmまで)の
鋳造速度は30mm/min 、その後の定常時は50mm/min と
した。また、断熱材を用いた例においては、断熱材とし
てグラスクロス(開口面積20%)を用いた。
[Embodiment] JIS3004 is used by using the mold having the structure shown in FIG.
Melting and casting alloy, thickness 600mm x width 1500 x length 1000mm
Slab was manufactured. The casting speed was 30 mm / min at the beginning of casting (up to 200 mm in length), and 50 mm / min during steady state thereafter. In the example using a heat insulating material, glass cloth (opening area 20%) was used as the heat insulating material.

【0022】上記鋳造における鋳型下端と鋳型下方から
の鋳塊への噴射位置の間隔(距離L)、断熱材の貼付条
件、及び鋳造結果を表1に示す。なお、鋳造開始前の鋳
型内に底台をセットした際のと底台との重複距離は10mm
とし、また、断熱材の貼付は下端が底台の縁に当たるよ
うに貼付した。また、反り量とくびれ量は、得られたス
ラブ底の図3に示す部位を測定した。
Table 1 shows the distance (distance L) between the lower end of the casting mold and the injection position from the lower part of the casting mold to the ingot, the conditions for attaching the heat insulating material, and the casting results. The overlap distance between the base and the base when the base is set in the mold before the start of casting is 10 mm
In addition, the heat insulating material was stuck so that the lower end hit the edge of the bottom stand. In addition, the amount of warpage and the amount of necking were measured at the site shown in FIG. 3 on the obtained slab bottom.

【0023】[0023]

【表1】 [Table 1]

【0024】表1から明らかなように、比較例1では距
離L= 5mmと短いため、鋳型から抜け出た直後に、鋳型
からの直接冷却水と二次冷却装置からの二次冷却水によ
る急激な冷却加わり、スラブの反り量及びくびれが大き
く、また底部に割れが、スラブの短尺部に微小な湯漏れ
がそれぞれ認められた。また、比較例4では距離L=15
0mmと長いため、鋳型から抜け出るまでの鋳型及び底台
の冷却が不十分で、鋳型から抜け出た直後の鋳型からの
直接冷却水による急激な冷却加わり、スラブの反り量及
びくびれが大きく、また底部に微小な割れ、スラブの短
尺部に微小な湯漏れがそれぞれ認められた。また、比較
例6は、比較例1と同じく距離L= 5mmと短くした上
で、断熱材を鋳型内に貼付したもので、比較例1及び4
よりもスラブの反り量及びくびれは小さかったが、絶対
量は依然として大きく、またスラブの短尺部に微小な湯
漏れが認められた。このような比較例に対して、本発明
例2、3及び5はいずれもスラブの反り量及びくびれが
小さく、また底部の割れ、湯漏れのいずれも認められ
ず、良好に鋳造ができた。
As is clear from Table 1, the distance L in Comparative Example 1 was as short as 5 mm, so that immediately after the mold was removed from the mold, the sudden cooling by the direct cooling water from the mold and the secondary cooling water from the secondary cooling device occurred. Upon cooling, the amount of warpage and constriction of the slab was large, cracks were found at the bottom, and minute leakage of hot water was found at the short part of the slab. In Comparative Example 4, the distance L = 15
Because of the long length of 0 mm, the cooling of the mold and the bottom base until the mold exits is insufficient, and rapid cooling by direct cooling water from the mold immediately after exiting the mold adds a large amount of slab warpage and constriction. And a small leak of water in the short part of the slab. In Comparative Example 6, as in Comparative Example 1, the distance L was reduced to 5 mm, and a heat insulating material was attached to the mold.
Although the warp amount and constriction of the slab were smaller than those of the slab, the absolute amount was still large, and a minute leak of hot water was observed in a short portion of the slab. In contrast to such comparative examples, all of Examples 2, 3 and 5 of the present invention were small in the amount of warpage and constriction of the slab, and neither cracks at the bottom nor leakage of the molten metal were observed, and the casting was successfully performed.

【0025】[0025]

【発明の効果】以上説明したように、本発明に係るAl
又はAl合金スラブの縦型連続鋳造方法によれば、スラ
ブ底部の反り、くびれが低減でき、それに伴い、スラブ
の割れが低減し、歩留りの向上が期待できるとともに、
鋳造初期の湯漏れの危険も減少し、安全性、生産性の向
上が期待できる。
As described above, according to the present invention, the Al
Or according to the vertical continuous casting method of the Al alloy slab, warpage of the bottom of the slab, constriction can be reduced, with it, cracking of the slab is reduced, and improvement in yield can be expected,
The danger of molten metal leakage at the beginning of casting is reduced, and safety and productivity can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るAl又はAl合金スラブの縦型連
続鋳造方法を適用した鋳型部分の長辺部中央より左半分
を断面で示す説明図であって、aは鋳造開始直後、bは
鋳造初期の状態を示す。
FIG. 1 is an explanatory view showing a cross section of a left half from a center of a long side portion of a mold portion to which a vertical continuous casting method of an Al or Al alloy slab according to the present invention is applied. This shows the initial state of casting.

【図2】従来のAlスラブの半連続鋳造方法を説明する
ための鋳型部分の長辺部中央より左半分を断面で示す説
明図であって、aは鋳造開始直後、bは鋳造初期の状態
を示す。
FIG. 2 is an explanatory view showing a cross section of a left half from a center of a long side of a mold portion for explaining a conventional semi-continuous casting method of an Al slab. Is shown.

【図3】スラブ底部の反り、短尺部のくびれの説明図で
ある。
FIG. 3 is an explanatory view of warpage of a slab bottom portion and constriction of a short portion.

【符号の説明】[Explanation of symbols]

1:鋳型 2:二次冷却装置
3:長辺部 4:短辺部 5:開口
6:内壁面 7:冷却水の通路 8:直接冷却水
9:噴出孔 10:ヘッダ 11:ノズル 1
2:冷却水 13:底台 14:断熱材 L:鋳型下端からの直接冷却水と二次冷却装置からの二
次冷却水との底台又はスラブ表面での間隔(距離) M:溶湯 S:スラブ
1: Mold 2: Secondary cooling device
3: Long side 4: Short side 5: Opening
6: Inner wall 7: Cooling water passage 8: Direct cooling water
9: Vent hole 10: Header 11: Nozzle 1
2: Cooling water 13: Bottom stand 14: Insulating material L: Distance (distance) between the direct cooling water from the lower end of the mold and the secondary cooling water from the secondary cooling device on the bottom or slab surface M: Molten metal S: Slab

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Al又はAl合金の溶湯を、上面及び下
面の開放されている鋳型の上方より供給し、鋳型内にて
冷却、凝固させるとともに、鋳型下端より連続的に引き
出して断面矩形状のスラブを鋳造する縦型連続鋳造方法
において、少なくとも鋳造初期の段階において、鋳型下
端からの直接冷却水噴出と併せて、鋳型下方に配設され
た二次冷却装置からの二次冷却水噴出による冷却を行う
とともに、その二次冷却装置からの二次冷却水の底台又
はスラブ表面に当たる位置が、鋳型下端からの直接冷却
水の当たる位置よりも10〜 120mmの範囲内で下方にある
ことを特徴とするAl又はAl合金スラブの縦型連続鋳
造方法。
1. A molten metal of Al or an Al alloy is supplied from above a mold having open upper and lower surfaces, cooled and solidified in the mold, and continuously drawn out from the lower end of the mold to form a rectangular cross section. In the vertical continuous casting method for casting a slab, at least at the initial stage of casting, in combination with direct cooling water injection from the lower end of the mold, cooling by secondary cooling water injection from a secondary cooling device disposed below the mold. And the position where the secondary cooling water from the secondary cooling device hits the bottom or the surface of the slab is 10 to 120 mm below the position where the cooling water hits directly from the lower end of the mold. Vertical continuous casting method of Al or Al alloy slab to be used.
【請求項2】 請求項1記載のAl又はAl合金スラブ
の縦型連続鋳造方法において、鋳造開始前の鋳型に底台
が装入されている状態において、断熱材が、長辺部中央
部を中心として少なくとも長辺部の半分以上の長さで、
且つ40〜 150mmの高さで鋳型内壁面に貼付されているA
l又はAl合金スラブの縦型連続鋳造方法。
2. In the vertical continuous casting method of Al or Al alloy slab according to claim 1, in a state where the base is inserted in the mold before the start of casting, the heat insulating material is applied to the center of the long side portion. At least half of the long side as the center,
A attached to the inner wall of the mold at a height of 40 to 150 mm
Vertical continuous casting method for 1 or Al alloy slab.
JP35486397A 1997-12-24 1997-12-24 Vertical type continuous casting method for al or al alloy slab Pending JPH11179490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35486397A JPH11179490A (en) 1997-12-24 1997-12-24 Vertical type continuous casting method for al or al alloy slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35486397A JPH11179490A (en) 1997-12-24 1997-12-24 Vertical type continuous casting method for al or al alloy slab

Publications (1)

Publication Number Publication Date
JPH11179490A true JPH11179490A (en) 1999-07-06

Family

ID=18440424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35486397A Pending JPH11179490A (en) 1997-12-24 1997-12-24 Vertical type continuous casting method for al or al alloy slab

Country Status (1)

Country Link
JP (1) JPH11179490A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211255A (en) * 2002-01-18 2003-07-29 Sumitomo Light Metal Ind Ltd Method for continuously casting aluminum cast block

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211255A (en) * 2002-01-18 2003-07-29 Sumitomo Light Metal Ind Ltd Method for continuously casting aluminum cast block

Similar Documents

Publication Publication Date Title
PL222793B1 (en) Method for the oriented crystallization of gas turbine blades and the device for producing castings of the gas turbine blades with oriented and monocrystalline structure
EP1531020B1 (en) Method for casting a directionally solidified article
AU660081B2 (en) Cooling method and apparatus for continuous casting and its mold
JPH03243247A (en) Horizontal type continuous casting method for hoop cast metal and apparatus thereof
JP2721281B2 (en) Cooling method and mold for continuous casting
JPH11179490A (en) Vertical type continuous casting method for al or al alloy slab
JP3765535B2 (en) Continuous casting method of aluminum ingot
JPH115144A (en) Continuous casting of beam blank
JP4113967B2 (en) Metal ingot casting apparatus and casting method
JPH11170014A (en) Horizontal continuous casting machine
US7011140B1 (en) Gas enhanced controlled cooling ingot mold
JP3668245B1 (en) Transverse continuous casting method and continuous casting apparatus for magnesium slab or magnesium alloy slab
JPH0952155A (en) Method for heat-holding sliding gate for tundish in continuous casting equipment and device therefor
JPH08206806A (en) Vertical type continuous casting method of large cross sectional cast bloom
JP2003290880A (en) Mold for casting non-ferrous metal
JPH06210402A (en) Method for continuously casting aluminum
JPS62187556A (en) Continuous casting method
JPH11104794A (en) Continuous casting of beam blank
JPH11197801A (en) Vertical type continuous casting method for al or al alloy slab
JPH07227653A (en) Method and device for reducing shrinkage hole in continuous casting
JPH1177261A (en) Production of aluminum or aluminum alloy cast block
JP4201653B2 (en) Method for producing aluminum alloy
Campbell Castings: Ten Rules for Good Castings
JPH1147886A (en) Mold for continuous casting
RU2342220C2 (en) Cooling technique of ingot-forming equipment