JPH0259155A - Method for continuously casting steel and submerged nozzle - Google Patents

Method for continuously casting steel and submerged nozzle

Info

Publication number
JPH0259155A
JPH0259155A JP21064688A JP21064688A JPH0259155A JP H0259155 A JPH0259155 A JP H0259155A JP 21064688 A JP21064688 A JP 21064688A JP 21064688 A JP21064688 A JP 21064688A JP H0259155 A JPH0259155 A JP H0259155A
Authority
JP
Japan
Prior art keywords
nozzle
molten steel
continuous casting
gas
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21064688A
Other languages
Japanese (ja)
Inventor
Tadama Nakada
中田 忠馬
Keiji Kobayashi
小林 敬二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP21064688A priority Critical patent/JPH0259155A/en
Publication of JPH0259155A publication Critical patent/JPH0259155A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/58Pouring-nozzles with gas injecting means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent stagnating phenomenon and to prevent the development of flaw and internal defect caused by enclosing inclusion by forming gas blowing-out hole to outer part at tip part of a submerged nozzle and blowing out inert gas toward both longitudinal sides of a mold by the specific quantity. CONSTITUTION:At the time of executing the continuous casting, two gas blowing-out holes 8' toward both longitudinal sides 13b, 13b of the mold 13 for continuous casting at the tip part 5 of the submerged nozzle 3 and gas flowing passage in the nozzle wall 9 are arranged. Then, the inert gas of 1-2l/ton of discharged molten steel 12 is blown out toward both longitudinal sides 13b, 13b of the mold 13 for continuous casting from two gas blowing-out holes 8', 8' to the outer part. By this method, the molten steel temp. in the mold 13 is uniformized and it is promoted that the inclusion in the molten steel 12 is caught in the molten powder 17 on the molten steel surface by floating up and separating.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋳造された鋳片に介在物の混入による疵や内
部欠陥が発生しないように、またこの鋳片を加工して製
品化する上で介在物の混入による表面疵を発生させず且
つ清浄度の高い高品質の製品を製造し得るように連続鋳
造することの出来る鋼の連続鋳造方法及びそれに使用す
る浸漬ノズルに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention aims at preventing the occurrence of flaws or internal defects due to the inclusion of inclusions in cast slabs, and processing these slabs into products. The present invention relates to a method for continuous casting of steel that can be continuously cast to produce high-quality products with high cleanliness without causing surface flaws due to the inclusion of inclusions, and an immersion nozzle used therein.

〔従来の技術〕[Conventional technology]

鋼の連続鋳造方法としては、取鍋の溶鋼をタンディツシ
ュに注入しこのタンディツシュ内の溶鋼を浸漬ノズルに
より連続鋳造用鋳型内に湯面を溶融パウダーで覆った状
態で連続的に注入しながら下方に引き出して連続鋳造す
る方法が一般に採用されている。
In the continuous casting method of steel, molten steel in a ladle is poured into a tundish, and the molten steel in the tundish is poured downward into a continuous casting mold using a submerged nozzle, with the molten metal surface covered with molten powder. A method of drawing and continuous casting is generally adopted.

以下、図面により従来の鋼の連続鋳造方法を説明する。Hereinafter, a conventional continuous casting method for steel will be explained with reference to the drawings.

第8図は連続鋳造工程の主要部を模型的に示す説明図、
第9図は連続鋳造に使用される従来の浸漬ノズルの1例
の縦断面図、第10図は第9図中のC−C線断面図、第
11図は従来の浸漬ノズルを使用して連続鋳造するとき
の連続鋳造用鋳型中の溶鋼流を示す平面説明図である。
Figure 8 is an explanatory diagram schematically showing the main parts of the continuous casting process;
Fig. 9 is a longitudinal cross-sectional view of an example of a conventional immersion nozzle used in continuous casting, Fig. 10 is a sectional view taken along the line C-C in Fig. 9, and Fig. 11 is a longitudinal cross-sectional view of an example of a conventional immersion nozzle used in continuous casting. FIG. 2 is an explanatory plan view showing a flow of molten steel in a continuous casting mold during continuous casting.

先ず、鋼の連続鋳造工程を一般的に概説する。First, we will provide a general overview of the continuous steel casting process.

第8図に示す如く、取鍋1からタンディツシュ2内に移
された溶鋼は、タンディツシュ2の下部に取り付けられ
ている浸漬ノズル3を経てその先端から連続鋳造用鋳型
13内に吐出され、吐出された溶鋼12はその表面部を
連続鋳造用鋳型13により冷却されて凝固殻12′を形
成しながら下方に移動せしめられ、次いで水スプレーを
行うスプレー帯14゜更に放冷帯15を経て引出しロー
ル16により下方に引き出され、所定寸法の鋳片12’
に切断される。
As shown in FIG. 8, the molten steel transferred from the ladle 1 into the tundish 2 passes through the immersion nozzle 3 attached to the lower part of the tundish 2, and is discharged from its tip into the continuous casting mold 13. The surface of the molten steel 12 is cooled by a continuous casting mold 13 to form a solidified shell 12' while being moved downward, and then passed through a spray zone 14° where water is sprayed, further passed through a cooling zone 15, and then transferred to a drawing roll 16. The cast slab 12' of a predetermined size is pulled out downward by the
is cut off.

この際、切断に至るまで鉛直方向に引き出すのでは設備
の高さが高くなるため、引抜方向を湾曲させて水平方向
に移動させている状態で切断する湾曲型連続鋳造設備が
多い。この間に溶鋼12は凝固殻12′の厚さを増して
いって切断までには中心部まで凝固を完了して鋳片12
′となるのである。浸漬ノズル3からの溶鋼12の吐出
量は、下方における引出し量に見合うように調整される
。連続鋳造用鋳型13中の溶鋼12の湯面ば上方より供
給される溶融パウダー17で覆われており、浸漬ノズル
3のノズル先端部5は溶融パウダー17を貫通して湯面
よりも下方に位置せしめられている。この溶融パウダー
17は場面における溶鋼の保温と酸化を抑制し、介在物
(主として主副原料から製鋼過程で発生混入する酸化物
2硫化物、窒化物、炭化物等の非金属物質)を捕捉して
鋼中へ混入することを防止し、連続鋳造用鋳型13と凝
固殻12′との間隙へ流入して鋳造中における急冷を防
止すると共に間隙間の潤滑を良好にすることによって鋳
片12′表面の割れを防止する等の効果を得るためのも
のであり、例えばC,BN、Cab、5in2等の組成
から成るものが使用される。
At this time, since the height of the equipment increases if the material is pulled out in the vertical direction until it is cut, many curved continuous casting equipments are used that cut the material while moving it in the horizontal direction with the drawing direction curved. During this time, the molten steel 12 increases the thickness of the solidified shell 12', and by the time it is cut, it has completely solidified to the center of the slab 12'.
'. The amount of molten steel 12 discharged from the immersion nozzle 3 is adjusted to match the amount of downward extraction. The surface of the molten steel 12 in the continuous casting mold 13 is covered with molten powder 17 supplied from above, and the nozzle tip 5 of the immersion nozzle 3 penetrates the molten powder 17 and is located below the molten metal surface. I'm being forced to do it. This molten powder 17 retains heat and suppresses oxidation of the molten steel in the process, and captures inclusions (non-metallic substances such as oxides, disulfides, nitrides, and carbides that are generated and mixed into the steelmaking process from main and auxiliary raw materials). The surface of the slab 12' is prevented from entering the steel, flows into the gap between the continuous casting mold 13 and the solidified shell 12', and prevents rapid cooling during casting, and improves the lubrication of the gap. This is to obtain an effect such as preventing cracking of the material, and for example, a material composed of C, BN, Cab, 5in2, etc. is used.

このような鋼の連続鋳造方法に使用されてきた従来の浸
漬ノズル3は、第9図に示す如くほぼ管状(寸法例とし
て、全長800〜900m+m e内径65〜75mm
、外径110〜130mm)を成していてその中空部の
ノズル孔4がノズル先端部5において端面で閉塞されて
おり、そして外周面の互に正反対の部位すなわち第10
図に示す如く直径の両端に当たる部位が開口して2つの
溶鋼吐出口6が形成されている。
The conventional immersion nozzle 3 used in such a continuous steel casting method has a substantially tubular shape as shown in FIG.
, an outer diameter of 110 to 130 mm), the hollow nozzle hole 4 is closed at the end face at the nozzle tip 5, and the 10th
As shown in the figure, two molten steel discharge ports 6 are formed by opening at both ends of the diameter.

この溶鋼吐出口6は溶鋼の′吐出口方向を斜め上方。This molten steel discharge port 6 is diagonally upward in the direction of the molten steel discharge port.

水平、斜め下方のいずれにとるかに従ってその方向に吐
出する形状に形成されており、第9図は斜め上向きのも
のを示している。ノズル基部7はタンディツシュ2に取
り付けられる。従来の浸漬ノズル3には前記の構成だけ
のものの他、第9図に示す如く更に内部ガス吹出し口8
がノズル基部7及びノズル先端部5を除くノズル孔4の
ほぼ全内面に設けられているものもある。この内部ガス
吹出し口8は次のように構成されている。すなわち第1
0図に示す如くノズル壁9内に周面に沿って内部吹出し
用スリット10(間隙の寸法例は1.5〜51m)が設
けられていると共に、この内部吹出し用スリットlOよ
り更に内側の壁が通気性耐火材9aの例えばAQ 20
3−5i(h系耐大物等で構成されて成っている。そし
てノズル基部7側のノズル壁9の外面であって連続鋳造
用鋳型13内の溶鋼12上の溶融パウダー17よりも上
方に位置する部分にガス供給プラグ11が設けられてい
て、このガス供給プラグ11に内部吹出し用スリット1
0が接続されている。
Depending on whether it is horizontal or diagonally downward, it is formed in a shape that discharges in that direction, and FIG. 9 shows one that is directed diagonally upward. The nozzle base 7 is attached to the tundish 2. In addition to the above configuration, the conventional immersion nozzle 3 also has an internal gas outlet 8 as shown in FIG.
In some cases, the nozzle hole 4 is provided on almost the entire inner surface of the nozzle hole 4 except for the nozzle base 7 and the nozzle tip 5. This internal gas outlet 8 is configured as follows. That is, the first
As shown in Figure 0, an internal blowout slit 10 (example gap size is 1.5 to 51 m) is provided in the nozzle wall 9 along the circumferential surface, and a wall further inside the internal blowout slit 10 is provided inside the nozzle wall 9. is the breathable refractory material 9a, for example AQ 20
3-5i (consisting of h-type heavy-duty material, etc.) and is located on the outer surface of the nozzle wall 9 on the side of the nozzle base 7 and above the molten powder 17 on the molten steel 12 in the continuous casting mold 13. A gas supply plug 11 is provided in the part where the
0 is connected.

次に上記従来の浸漬ノズル3を使用して鋼の連続鋳造を
行うときの連続鋳造用鋳型13内の状態を説明する。第
11図に示す如く連続鋳造用鋳型13の鋳込み部分の水
平断面形状はほぼ長方形(例えば長辺が1050mm 
テ短辺が200mm)を成シテいル(第8図の溶鋼12
は第11図の短辺13a側を正面にして見たものである
)。浸漬ノズル3は連続鋳造用鋳型13の上方に設置さ
れたタンディツシュ2の底部に前記長方形の連続鋳造用
鋳型13の中央に向けて且つ2つの溶鋼吐出口6を連続
鋳造用鋳型13の短辺13aに向けて取り付けられてお
り、そしてそのノズル先端部5を場面よりも下方に位置
せしめた状態で溶鋼12を吐出せしめると、第11図に
示す如く溶鋼12は浸漬ノズル3の溶鋼吐出口6.がら
連続鋳造用鋳型13の短辺13aに向かって吐出され、
矢印Xの如き溶鋼流を起しながら凝固して順次下方に引
き出されてゆく。浸漬ノズル3として内部ガス吹出し口
8の形成されているものを使用し、ガス供給プラグ11
から例えばアルゴン等の不活性ガスをノズル孔4を通過
する溶鋼12中に吹き出させながら連続鋳造すると、ノ
ズル孔4の内周面に溶鋼12中の介在物が主として付着
し固化してノズル孔14の径を細くしていき孔径内の溶
鋼12の流れを悪くし、遂にノズル孔詰り(ノズル閉塞
)を起す恐れはない。
Next, the state inside the continuous casting mold 13 when continuous casting of steel is performed using the conventional immersion nozzle 3 will be described. As shown in FIG. 11, the horizontal cross-sectional shape of the casting part of the continuous casting mold 13 is approximately rectangular (for example, the long side is 1050 mm).
molten steel 12 in Figure 8).
is viewed from the front with the short side 13a in FIG. 11). The immersion nozzle 3 is attached to the bottom of the tundish 2 installed above the continuous casting mold 13, and is directed toward the center of the rectangular continuous casting mold 13, and the two molten steel discharge ports 6 are connected to the short side 13a of the continuous casting mold 13. When the molten steel 12 is discharged with the nozzle tip 5 positioned below the scene, the molten steel 12 will flow to the molten steel discharge port 6. of the immersion nozzle 3, as shown in FIG. is discharged toward the short side 13a of the continuous casting mold 13,
The molten steel solidifies while producing a molten steel flow as indicated by arrow X, and is successively drawn downward. A submerged nozzle 3 with an internal gas outlet 8 is used, and a gas supply plug 11 is used.
When continuous casting is performed while blowing an inert gas such as argon into the molten steel 12 passing through the nozzle hole 4, inclusions in the molten steel 12 mainly adhere to the inner peripheral surface of the nozzle hole 4 and solidify. As the diameter of the hole is made smaller, the flow of the molten steel 12 within the hole becomes worse, and there is no risk of clogging the nozzle hole (nozzle blockage).

このような鋼の連続鋳造方法において、浸漬ノズル3か
ら吐出された溶鋼12の、流れには、(1)湯面が溶融
パウダー17と混合した状態で冷却固化することを防止
する、 (2)溶鋼12中に懸濁している介在物の浮上分離及び
湯面上の溶融パウダー17への捕捉を促進する、など鋳
片12#の清浄度を左右する作用のあることが知られて
いる。この溶鋼12流の作用を有効に働かせるために例
えば前記したように浸漬ノズル3として溶鋼12の吐出
方向が斜め上方となるように第9図の例の如く吐出口6
を形成して溶鋼12の主流が斜め上方の湯面に向かうよ
うに吐出する方法。
In such a continuous steel casting method, the flow of the molten steel 12 discharged from the immersion nozzle 3 includes (1) preventing the molten steel surface from cooling and solidifying in a state where it is mixed with the molten powder 17; (2) It is known that it has the effect of influencing the cleanliness of the slab 12#, such as promoting the flotation and separation of inclusions suspended in the molten steel 12 and their capture in the molten powder 17 on the molten metal surface. In order to make the effect of this flow of molten steel 12 work effectively, for example, as described above, the immersion nozzle 3 is used so that the discharge direction of the molten steel 12 is diagonally upward, and the discharge port 6 is used as shown in the example of FIG.
A method in which the main stream of molten steel 12 is discharged diagonally upward toward the molten metal surface.

吐出した溶鋼12の主流に対し遮壁を設けて溶鋼流を弱
勢分散させる方法などが採られている。
A method of dispersing the flow of molten steel by providing a barrier against the mainstream of the discharged molten steel 12 has been adopted.

しかしながら、従来の浸漬ノズル3の溶鋼吐出口6は浸
漬ノズル3の外周面と連続鋳造用鋳型13の内壁との距
離が長い方の短辺13a側に対面する側に設けられてい
るため、従来の技術では浸漬ノズル3と連続鋳造用鋳型
13の長辺13bとの間13cの溶鋼の流勢が最も弱く
てよどみ現象が起きていた。
However, since the molten steel discharge port 6 of the conventional immersion nozzle 3 is provided on the side facing the short side 13a, which is the longer distance between the outer peripheral surface of the immersion nozzle 3 and the inner wall of the continuous casting mold 13, In the above technique, the flow force of the molten steel in the region 13c between the immersion nozzle 3 and the long side 13b of the continuous casting mold 13 was the weakest, and a stagnation phenomenon occurred.

このようによどんでいる溶鋼12には溶鋼12中に懸濁
している介在物が集合し且つ成長して大型の介在物が形
成されるのである。そして溶鋼流の作用が有効に働かな
いので溶鋼12の温度は低下する。
In this stagnant molten steel 12, inclusions suspended in the molten steel 12 gather and grow to form large inclusions. Since the action of the molten steel flow does not work effectively, the temperature of the molten steel 12 decreases.

その結果、介在物が浮上出来ず溶鋼12中に巻き込まれ
たまま凝固して引き抜かれるため、鋳造された鋳片12
’の幅方向の中央部に介在物に起因した表面疵及び内部
欠陥が発生していた。このような現象によりは鋳片12
′に表面疵及び内部欠陥が特に発生し易いのは、特に鵠
やTiのかなり多量に含まれた鋼の場合、具体例として
5US321.5US405゜5US430LX、 5
US436L、 5US444.5US631. Al
5I409などのステンレス鋼等の場合に多いのである
。その結果、鋳片12′の手入れが増加し製造歩留の低
下を余儀無くされコスト高を招いていた欠点があった。
As a result, the inclusions cannot float up, solidify and are pulled out while being caught in the molten steel 12, so the cast slab 12
Surface flaws and internal defects caused by inclusions had occurred in the center of the width direction. Due to this phenomenon, the slab 12
Surface flaws and internal defects are particularly likely to occur in steels containing quite a large amount of moose and Ti, such as 5US321.5US405°5US430LX,
US436L, 5US444.5US631. Al
This is often the case with stainless steels such as 5I409. As a result, the maintenance of the slab 12' increases, which unavoidably lowers the production yield and increases costs.

また、このような鋳片121を更に加工して製品化する
上で、やはり介在物の混入に起因する表面疵が発生して
製造及び級別(検査)歩留を低下させコスト高を招くと
共に製品としての品質を低下させるなどの欠点があった
In addition, when such a slab 121 is further processed and manufactured into a product, surface flaws due to the inclusion of inclusions occur, reducing manufacturing and grading (inspection) yields, increasing costs, and reducing the quality of the product. There were drawbacks such as a decline in quality.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の課題は前記従来技術の欠点を解消し、連続鋳造
用鋳型13内の溶!W12のよどみ現象を防止して鋳片
12′の介在物混入による疵や内部欠陥を発生させるこ
とのない清浄度の高い鋼の連続鋳造を可能とさせること
にある。
The object of the present invention is to eliminate the drawbacks of the prior art described above, and to prevent melting in the continuous casting mold 13. The purpose is to prevent the stagnation phenomenon of W12 and to enable continuous casting of highly clean steel without causing flaws or internal defects due to inclusions in the slab 12'.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は種々検討した結果、浸漬ノズルの先端部に
外部ガス吹出し口を形成してそこから連続鋳造用鋳型の
両長辺に向けて不活性ガスを特定の量だけ吹き出させて
溶鋼流を積極的に起こさせることにより前記課題を解決
することが出来ることを究明して本発明を成した。
As a result of various studies, the present inventors formed an external gas outlet at the tip of the immersion nozzle and blew out a specific amount of inert gas from there toward both long sides of the continuous casting mold to flow the molten steel. The present invention was accomplished by discovering that the above-mentioned problem can be solved by actively causing the above problems.

以下、本発明に係る鋼の連続鋳造方法及び該方法の実施
に使用する浸漬ノズルを図面により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A continuous steel casting method according to the present invention and a submerged nozzle used to carry out the method will be explained below with reference to the drawings.

第1図は本発明に係る浸漬ノズルの1例の要部を示す縦
断面図、第2図は第1図の浸漬ノズルが外部ガス吹出し
口を連続鋳造用鋳型の両長辺に向けて不活性ガスを溶鋼
中に吹き出している状態を示す縦断面図、第3図及び第
4図はそれぞれ第1図中のA−A線及びB−B線断面図
、第5図は第2図の状態における連続鋳造用鋳型内の溶
鋼流を示す平面説明図、第6図はガス吹出し量と場面の
高さ変動との関係を示すグラフ、第7図はガス吹出し量
と鋳片表面の大型非金属介在物数との関係を示す図であ
る。
FIG. 1 is a vertical cross-sectional view showing the essential parts of an example of the immersion nozzle according to the present invention, and FIG. 2 is a vertical sectional view showing the main part of an example of the immersion nozzle according to the present invention, and FIG. 2 shows the immersion nozzle shown in FIG. 3 and 4 are sectional views taken along lines A-A and B-B in FIG. 1, respectively, and FIG. Fig. 6 is a graph showing the relationship between the amount of gas blown and the height fluctuation of the scene, and Fig. 7 is a graph showing the relationship between the amount of gas blown and the large non-contact surface of the slab surface. It is a figure showing the relationship with the number of metal inclusions.

本発明に係る鋼の連続鋳造方法においては、連続鋳造を
行うに当り、浸漬ノズル3の先端部5に連続鋳造用鋳型
13の両長辺13b、 13bに向く2つの外部ガス吹
出し口8′とノズル壁9内にガス流路とを設け、溶鋼1
2の吐出量1トン当り1〜2lの不活性ガスを前記2つ
の外部ガス吹出し口8′8′から連続鋳造用鋳型13の
両長辺13b、 13bに向けて吹き出させるのである
。この場合、従来技術で行っていたようにノズル基部7
及び先端部5を除くノズル孔4のほぼ全内面に内部ガス
吹出し口8が設けられている浸漬ノズル3に前記と同様
の内部ガス吹出し口8とガス流路とを設け、ノズル孔4
を通過する溶鋼12中に内部ガス吹出し口8から不活性
ガスを吹き出しながら外部ガス吹出し口8′からも不活
性ガスを吹き出させても良い。
In the continuous casting method for steel according to the present invention, when performing continuous casting, two external gas blow-off ports 8' are provided at the tip 5 of the immersion nozzle 3 facing both long sides 13b, 13b of the continuous casting mold 13. A gas flow path is provided in the nozzle wall 9, and the molten steel 1 is
1 to 2 liters of inert gas per ton of discharge amount is blown out from the two external gas outlets 8'8' toward both long sides 13b, 13b of the continuous casting mold 13. In this case, the nozzle base 7
The submerged nozzle 3 is provided with an internal gas outlet 8 on almost the entire inner surface of the nozzle hole 4 except for the tip 5, and is provided with an internal gas outlet 8 and a gas flow path similar to those described above.
While inert gas is blown out from the internal gas outlet 8 into the molten steel 12 passing through, the inert gas may also be blown out from the external gas outlet 8'.

このように不活性ガスを連続鋳造用鋳型13の両長辺1
3b側に吹き出させるのに好適に使用される本発明に係
る浸漬ノズル3を説明する。
In this way, the inert gas is applied to both long sides 1 of the continuous casting mold 13.
The immersion nozzle 3 according to the present invention, which is suitably used for blowing to the side 3b, will be described.

第1図及び第3図に示す如く、本発明に係る浸漬ノズル
3は、従来の浸漬ノズルの構成に加えてノズル先端部5
の2つの溶鋼吐出口6の両側の中間部位のノズル壁9に
外部ガス吹出し口8′が設けられている。この外部ガス
吹出し口8′は、ノズル壁9内に周面に沿ってクォータ
円筒状の外部吹出し用スリット10′が設けられている
と共にこの外部吹出し用スリット10’より外側の壁が
前記説明したものと同様の通気性耐火材9aで構成され
ている。この通気性耐火材9aと外部吹出し用スリット
10′との間隙寸法が1.5〜5 rrn 、通気性耐
火材9aの肉厚が8〜15mm程度が好ましい。
As shown in FIGS. 1 and 3, the submerged nozzle 3 according to the present invention has a nozzle tip 5 in addition to the structure of the conventional submerged nozzle.
An external gas outlet 8' is provided in the nozzle wall 9 at an intermediate portion on both sides of the two molten steel discharge ports 6. This external gas outlet 8' is provided with a quarter-cylindrical external blowing slit 10' along the circumferential surface in the nozzle wall 9, and the wall outside the external blowing slit 10' is as described above. It is made of a breathable fireproof material 9a similar to that of the original. It is preferable that the gap between the breathable refractory material 9a and the external blowing slit 10' be 1.5 to 5 rrn, and the thickness of the breathable refractory material 9a be about 8 to 15 mm.

ここより暫らく第1図を離れて説明すると、外部吹出し
用スリットlO′がノズル基部7側でノズル外面に設け
られたガス供給プラグ11にノズル壁9内に設けられた
ガス供給用スリットにより接続されており、外部から不
活性ガスが供給されるようになっている。このガス供給
用スリットは1間隙寸法が1.5〜5 m 、周方向の
幅が20〜50mのものが好ましい。再び第1図に戻っ
て説明する。浸漬プラグ3が内部ガス吹出し口8を備え
ているものである場合は、第1図及び第4図に示す如く
前記外部吹出し用スリット10’が前記内部ガス吹出し
口8を構成している内部吹出し用スリット10に直接又
は短いスリット(ガス供給用スリットの一部を成す)を
介して接続されていて、この内部吹出し用スリット10
が前記ガス供給用スリットの少なくとも一部を兼ねるよ
うに構成することが出来る。第1図では短いながらも専
用のガス供給用スリット10’が存在しており、若し内
部吹出し用スリット8が設けられていない場合は、この
ガス供給用スリット10’がガス供給プラグ11に接続
されるように延長されるもので゛ある。
Moving away from FIG. 1 for a moment, an external blowout slit lO' is connected to a gas supply plug 11 provided on the outer surface of the nozzle on the nozzle base 7 side by a gas supply slit provided in the nozzle wall 9. The inert gas is supplied from outside. The gas supply slit preferably has a gap size of 1.5 to 5 m and a circumferential width of 20 to 50 m. The explanation will be given by returning to FIG. 1 again. When the immersion plug 3 is equipped with an internal gas outlet 8, the internal gas outlet 8 is provided with the external outlet slit 10' as shown in FIGS. 1 and 4. The internal blowing slit 10 is connected directly or through a short slit (forming a part of the gas supply slit) to the internal blowing slit 10.
can be configured so that it also serves as at least a part of the gas supply slit. In FIG. 1, there is a dedicated gas supply slit 10', although it is short, and if the internal blowout slit 8 is not provided, this gas supply slit 10' is connected to the gas supply plug 11. It is something that can be extended so that it can be done.

以上に説明した本発明に係る浸漬ノズル3を使用して鋼
の連続鋳造を行うには、第2図に示す如く外部ガス吹出
し口8′を連続鋳造用鋳型13の長辺13b側に向く(
その場合当然に溶鋼吐出口6は短辺13a側に向いてい
る)ように当該連続鋳造用鋳型13の上方に設置された
タンディツシュ2の底部に取り付ける。そして第2図に
示す如く不活性ガスを外部ガス吹出し口8′から吹き出
させながら常法に従って鋼の連続鋳造を行うと、連続鋳
造用鋳型13内では第5図に示す如く、溶鋼I2の吐出
自体による矢印X方向の溶鋼流の他に、外部ガス吹出し
口8′からの不活性ガスの吹出しによって矢印Y方向の
溶鋼流が起って、浸漬ノズル3と連続鋳造用鋳型13の
両長辺13bとの間13cでのよどみ現象が解消される
のである。
In order to continuously cast steel using the immersion nozzle 3 according to the present invention described above, the external gas outlet 8' is directed toward the long side 13b of the continuous casting mold 13, as shown in FIG.
In that case, it is attached to the bottom of the tundish 2 installed above the continuous casting mold 13 so that the molten steel discharge port 6 naturally faces the short side 13a. Then, as shown in FIG. 2, when continuous casting of steel is carried out according to a conventional method while blowing out an inert gas from the external gas outlet 8', molten steel I2 is discharged in the continuous casting mold 13 as shown in FIG. In addition to the molten steel flow in the direction of the arrow X caused by the immersion nozzle 3 and the molten steel flow in the direction of the arrow Y due to the blowing of inert gas from the external gas outlet 8', the molten steel flows on both long sides of the immersion nozzle 3 and the continuous casting mold 13. This eliminates the stagnation phenomenon between 13c and 13b.

本発明の最も特徴とするところは、浸漬ノズル3の先端
部5から浸漬ノズル3と連続鋳造用鋳型13の長辺13
bとの間13cの溶[12中に不活性ガスを吹き出させ
ることであるが、この不活性ガスの吹出し量が多いと湯
面変動を起こして逆効果となり、逆に少ないと溶鋼12
のよどみ現象が解消されずに介在物の浮上分離を速やか
に促し溶融パウダー17への捕捉を促進し大型化を抑制
する効果が小さくなる。そこで本発明者等は不活性ガス
吹出し量を種々変更して試験した結果、溶鋼12の吐出
量1トン当りの外部へのガス吹出し量(Q/T)に対す
る場面の高さ変動及び得られた鋳片中の大型非金属介在
物数(試験方法はスラブ表面を2++v+切削した後に
鏡面仕上げをして100mm X 1020mmの面積
中に50−以上の大きさの地価が幾つあるかを目視によ
りamする方法)との関係について第6図及び第7図に
示すデータを得た。そして総合した結果として1.0〜
2.On / Tの間の外部へのガス吹出し量が場面変
動も少なく清浄な鋳片12’が得られることを知見した
のである。このような外部へのガス吹出し量の調節は種
々の常套手段によって行われるが、ガス供給用スリット
10′が内部吹出し用スリット10をも兼ねている場合
には内部ガス吹出し量にも影響するので、内外へ目標通
りの量がバランス良く吹き出されるように、ガス流路の
寸法(面積、長さ)やその屈折とか内外へのガス吹出し
口8,8′の寸法(面積、肉厚)とか内外へガスを吹き
出す通気性耐火材9aの気孔率とかによって生じる両背
圧を充分確認し、これらの寸法や気孔率を調節して行わ
れる。
The most characteristic feature of the present invention is that from the tip 5 of the immersion nozzle 3 to the long side 13 of the continuous casting mold 13.
The purpose is to blow out inert gas into the molten steel 12 between 13c and b, but if the amount of inert gas blown out is too large, it will cause fluctuations in the molten metal level and have the opposite effect.On the other hand, if there is too little, the molten steel
If the stagnation phenomenon is not resolved, the effect of preventing inclusions from increasing in size by promoting the rapid floating and separation of inclusions and promoting their capture in the molten powder 17 is reduced. Therefore, the inventors of the present invention conducted tests with various inert gas blowout amounts, and as a result, the height fluctuation of the scene and the obtained results were obtained with respect to the external gas blowout amount (Q/T) per 1 ton of molten steel 12 discharged. Number of large non-metallic inclusions in the slab (The test method is to cut the surface of the slab 2++v+, then give it a mirror finish, and visually check the number of inclusions with a size of 50- or more in an area of 100mm x 1020mm. The data shown in FIGS. 6 and 7 were obtained regarding the relationship with the method). And the overall result is 1.0~
2. It was discovered that the amount of gas blown to the outside during On/T has little variation in the scene, and a clean slab 12' can be obtained. Such adjustment of the amount of gas blown to the outside is performed by various conventional means, but if the gas supply slit 10' also serves as the slit 10 for internal blowing, the amount of gas blown out from the inside will also be affected. In order to blow out the target amount inward and outward in a well-balanced manner, the dimensions (area, length) of the gas flow path and its bending, and the dimensions (area, wall thickness) of the gas outlet 8, 8' inward and outward. This is done by thoroughly checking the back pressure caused by the porosity of the breathable refractory material 9a that blows gas out and out, and adjusting these dimensions and porosity.

〔作 用〕[For production]

従来Ti含有鋼(Ti含有量0.1〜1.0%程度)や
届含有鋼(U含有量0.1〜3.5%程度)の連続鋳造
において、浸漬ノズル3の内部ガス吹出し口8から不活
性ガスを吹き出させると得られる鋳片12’に不活性ガ
スの気泡による欠陥が発生すると言われている。これは
本発明に関して行われた数多くの検討結果から、浸漬ノ
ズル3のノズル孔4を通過中の流勢が強く溶鋼I2に多
量のガスを吹き出させる場合に溶鋼12に不活性ガスが
巻き込まれたまま凝固して鋳造されたり、また溶鋼12
に吐出した時にガス気泡の集合体が破烈し湯面変動を起
こして溶融パウダー17を巻き込んだまま凝固して鋳造
されたりするために鋳片12′にガス気泡や溶融パウダ
ーによる表面及び内部欠陥の発生頻度が高かったためで
あると考えられる。
In the conventional continuous casting of Ti-containing steel (Ti content of about 0.1 to 1.0%) and certified steel (U content of about 0.1 to 3.5%), the internal gas outlet 8 of the immersion nozzle 3 It is said that if an inert gas is blown out from the inert gas, defects will occur in the obtained slab 12' due to bubbles of the inert gas. This is based on the results of many studies conducted regarding the present invention, and it has been found that when the flow force passing through the nozzle hole 4 of the immersion nozzle 3 is strong and blows out a large amount of gas into the molten steel I2, inert gas is engulfed in the molten steel 12. It can be solidified and cast as it is, or it can be cast as molten steel.
When it is discharged, the aggregate of gas bubbles bursts, causing a fluctuation in the melt level, solidifying and casting with the molten powder 17 still involved, resulting in surface and internal defects in the slab 12' due to gas bubbles and molten powder. This is thought to be due to the high frequency of occurrence.

これに対し本発明は、溶鋼12の流勢か弱いところに場
面変動を僅かにしか起こさない程度の量の不活性ガスを
吹き出させるので、溶鋼12へのガスの巻き込みや気泡
の破烈はなく、従って何ら問題なくTiやMの含有鋼の
連続鋳造にも適用することが出来る。
In contrast, the present invention blows out an amount of inert gas that causes only a slight change in the scene where the flow of the molten steel 12 is weak, so there is no entrainment of gas into the molten steel 12 or the bursting of bubbles. Therefore, it can be applied to continuous casting of steel containing Ti or M without any problems.

そして本発明に係る浸漬ノズル3を用いた鋼の連続鋳造
では不活性ガスが吐出後の流勢か弱くなっている溶鋼1
2中(従来よどみ現象を起こしていたといころ)に吹き
出されるので、この部分の溶鋼12が場面へ向けて流れ
を生じせしめ加速するように作用する。そしてこの作用
による溶鋼流が吐出口6から吐出された溶鋼12流と作
用しあって適度な混り合いを起こす。このようにして吐
出された溶鋼12と外部ガス吹出し口8′から吹き出さ
れた不活性ガスによって生じた溶鋼12とが相乗的に作
用し合って連続鋳造用鋳型13内の溶鋼温度を均一化す
ると共に、従来吐出された溶鋼12流で集合していた溶
鋼12中の介在物を浮上分離させて湯面上の溶融パウダ
ー17に捕捉されるのを促進させてこれの大型化を抑制
させるのである。
In the continuous casting of steel using the immersion nozzle 3 according to the present invention, the flow force of the molten steel 1 is weakened after the inert gas is discharged.
Since the molten steel 12 in this area is blown out into the middle of the molten steel 12 (where stagnation has conventionally occurred), the molten steel 12 in this area acts to generate a flow toward the area and accelerate it. The molten steel flow resulting from this action interacts with the molten steel 12 flow discharged from the discharge port 6 to cause appropriate mixing. The molten steel 12 thus discharged and the molten steel 12 generated by the inert gas blown out from the external gas outlet 8' act synergistically to equalize the temperature of the molten steel in the continuous casting mold 13. At the same time, the inclusions in the molten steel 12 that conventionally aggregated in the discharged molten steel 12 flow are floated and separated, and are promoted to be captured in the molten powder 17 on the surface of the molten metal, thereby suppressing the increase in size of the inclusions. .

〔実施例〕〔Example〕

以下、本発明を実施例により更に具体的に説明する。 EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples.

本発明方法により湾曲型連続鋳造設備を用いて浸漬ノズ
ル3として、第1図〜第4図で説明した構造のものを使
用してTi含有鋼の連続鋳造を行って鋳片12’を製造
し、全部で200本の鋳片12′を熱間圧延してホット
コイルを製造した。
According to the method of the present invention, a slab 12' is manufactured by continuous casting of Ti-containing steel using a curved continuous casting equipment and using the immersion nozzle 3 having the structure explained in FIGS. 1 to 4. A total of 200 slabs 12' were hot rolled to produce hot coils.

浸漬ノズル3の不活性ガス噴出方法は、浸漬時の連続鋳
造用鋳型13内の場面より30m++下の位置から溶鋼
吐出口6の下縁までの間に外部ガス吹出し口8′を設け
、不活性ガスとしてアルゴンガスを用い、スラブの引抜
量1.5T/分に対してガス吹出し量を1.73 Q 
/分、すなわちスラブ1トン当り1.5Q/Tとした。
The method for blowing out inert gas from the immersion nozzle 3 is to provide an external gas blowout port 8' between a position 30m++ below the scene inside the continuous casting mold 13 during immersion and the lower edge of the molten steel discharge port 6, and Using argon gas as the gas, the gas blowout rate was 1.73Q for the slab pullout rate of 1.5T/min.
/min, that is, 1.5 Q/T per ton of slab.

また内部ガス吹出し口8から同じくアルゴンガスを1.
73 Q /分吹き出させた。
In addition, argon gas is also supplied from the internal gas outlet 8.
It blew out at 73 Q/min.

溶鋼12を吐出する方向は、第1図に示す如く溶鋼吐出
口6の形状が上向きのものを使用した。
The direction in which the molten steel 12 was discharged was such that the molten steel discharge port 6 had an upward shape as shown in FIG.

比較例として浸漬ノズル3として第9図で説明した構造
の従来のものを使用した他は同様にしてTi含有鋼の連
続鋳造を行った。
As a comparative example, continuous casting of Ti-containing steel was carried out in the same manner except that a conventional one having the structure explained in FIG. 9 was used as the immersion nozzle 3.

別表に、得られた各鋳片より製造したホットコイルの品
質結果を示す。表中の鋳片表面の地価数は前述した第7
図の大型非金属介在物数の測定方法と同様にして測定し
たものである。また不適中コイル数とはそのままで更に
製品化を続けることが出来ず、止むを得ず研摩等によっ
て表面疵を除去したコイル数を指す。表から、従来の浸
漬ノズル3を使用して従来方法で連続鋳造した場合は大
型の非金属介在物混入による鋳片の地価発生数及び不適
中コイルが多く、これに対して本発明方法による場合は
前記表面疵や不適中コイルはほとんど皆無に近い状態に
改善されたことが判る。
The attached table shows the quality results of hot coils manufactured from each of the obtained slabs. The land value number of the surface of the slab in the table is
The measurement was performed in the same manner as the method for measuring the number of large nonmetallic inclusions shown in the figure. In addition, the number of unsuitable coils refers to the number of coils that cannot be further commercialized as is, and for which surface flaws have been removed by polishing or the like. From the table, it can be seen that when continuous casting is performed by the conventional method using the conventional immersion nozzle 3, the number of unsuitable coils and the number of unsuitable coils are high due to the inclusion of large non-metallic inclusions, whereas in the case of the method of the present invention It can be seen that the surface flaws and unsuitable coils have been improved to almost zero.

表 〔発明の効果〕 以上説明したように本発明によれば以下に述べる効果が
得られる。
Table [Effects of the Invention] As explained above, according to the present invention, the following effects can be obtained.

(1)吐出された溶鋼の流勢か弱い連続鋳造用鋳型内の
溶鋼中に浸漬ノズルの先端部から不活性ガスを吹き出さ
せることにより、従来連続鋳造用鋳型内の溶鋼によどみ
現象を起こして介在物が集合し大型化したり、溶鋼温度
が低下していた溶鋼部分が皆無となる。
(1) By blowing out inert gas from the tip of the immersion nozzle into the molten steel in the continuous casting mold where the flow force of the discharged molten steel is weak, it causes a stagnation phenomenon in the molten steel in the conventional continuous casting mold. There are no molten steel parts where objects have gathered and become larger, and where the molten steel temperature has decreased.

(2)その結果、U造された鋳片には介在物に起因する
表面疵及び内部の欠陥はほとんど発生せず清浄度の高い
鋼が連続鋳造出来るい。従って(3) iii片の表面
手入れも減少し製造歩留を高めることが出来て、生産性
の向上及びコスト低減が可能となる。
(2) As a result, there are almost no surface flaws or internal defects caused by inclusions in the U-cast slabs, and highly clean steel can be continuously cast. Therefore, (3) the surface care of the iii piece can be reduced and the manufacturing yield can be increased, making it possible to improve productivity and reduce costs.

(4)このような鋳片を更に加工を続けて製品化する場
合においても、表面疵の研摩も減少し製造・級別歩留を
高めることが出来て、生産性の向上及びコスト低減が可
能となると共に製品そのものの品質を高めることが出来
る。
(4) Even when such slabs are further processed and manufactured into products, polishing of surface flaws is reduced and manufacturing and grading yields can be increased, making it possible to improve productivity and reduce costs. At the same time, the quality of the product itself can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る浸漬ノズルの1例の要部を示す縦
断面図、第2図は第1図の浸漬ノズルが外部ガス吹出し
口を連続鋳造用鋳型の両長辺に向けて不活性ガスを溶鋼
中に吹き出している状態を示す縦断面図、第3図及び第
4図はそれぞれ第1図中のA−A線及びB−B線断面図
、第5図は第2図の状態における連続鋳造用鋳型内の溶
鋼流を示す平面説明図、第6図はガス吹出し量と湯面の
高さ変動との関係を示すグラフ、第7図はガス吹出し量
と鋳片表面の大型非金属介在物数との関係を示す図、第
8図は連続鋳造工程の主要部を模型的に示す説明図、第
9図は連続鋳造に使用される従来の浸漬ノズルの1例の
縦断面図、第10図は第9図中のC−C線断面図、第1
1図は従来の浸漬ノズルを使用して鋼の連続鋳造すると
きの連続鋳造用鋳型中の溶鋼流を示す平面説明図である
。 図面中 1・・・・取鍋 2・・・・タンディツシュ 3・・・・浸漬ノズル 4・・・・ノズル孔 5・・・・ノズル先端部 6・・・・溶鋼吐出口 ア・・・・ノズル基部 8・・・・内部ガス吹出し口 8′・・・・外部ガス吹出し口 9・・・・ノズル壁 9a・・・・通気性耐火材 10・・・・内部吹出し用スリット 10′・・・・外部吹出し用スリット 10′・・・・ガス供給用スリット 11・・・・ガス供給プラグ 12・・・・溶鋼 12′・・・・凝固殻 12′・・・・鋳片 I3・・・・連続鋳造用鋳型 13a・・・・短辺 L3b・・・・長辺 13c・・・・浸漬ノズルと長辺との間14・・・・ス
プレー帯 15・・・・放冷帯 16・・・・引出しロール 17・・・・溶融パウダー 場面の高さ変動(mm)
FIG. 1 is a vertical cross-sectional view showing the essential parts of an example of the immersion nozzle according to the present invention, and FIG. 2 is a vertical sectional view showing the main part of an example of the immersion nozzle according to the present invention, and FIG. 2 shows the immersion nozzle shown in FIG. 3 and 4 are sectional views taken along lines A-A and B-B in FIG. 1, respectively, and FIG. Fig. 6 is a graph showing the relationship between the amount of gas blown out and the height fluctuation of the molten metal surface, and Fig. 7 shows the amount of gas blown out and the large size of the slab surface. A diagram showing the relationship with the number of nonmetallic inclusions, Figure 8 is an explanatory diagram schematically showing the main parts of the continuous casting process, and Figure 9 is a longitudinal cross-section of an example of a conventional immersion nozzle used in continuous casting. Figure 10 is a sectional view taken along the line C-C in Figure 9.
FIG. 1 is an explanatory plan view showing the flow of molten steel in a continuous casting mold when steel is continuously cast using a conventional immersion nozzle. In the drawings 1... Ladle 2... Tundish 3... Immersion nozzle 4... Nozzle hole 5... Nozzle tip 6... Molten steel discharge port a... Nozzle base 8...Internal gas outlet 8'...External gas outlet 9...Nozzle wall 9a...Breathable refractory material 10...Internal outlet slit 10'... ... Slit 10' for external blowing... Slit 11 for gas supply... Gas supply plug 12... Molten steel 12'... Solidified shell 12'... Slab I3... - Continuous casting mold 13a...Short side L3b...Long side 13c...Between the immersion nozzle and the long side 14...Spray zone 15...Cooling zone 16... ...Drawer roll 17...Height variation of molten powder scene (mm)

Claims (1)

【特許請求の範囲】 1 鋳込み部分の水平断面形状が長方形の連続鋳造用鋳
型の該長方形の中央に向けて、該連続鋳造用鋳型の上方
に設置されたタンデイツシユの底部に取り付けられたほ
ぼ管状の浸漬ノズルの先端部を連続鋳造用鋳型中で溶融
パウダーにより覆われた湯面よりも下方に位置せしめた
状態で浸漬ノズルの中空部のノズル孔が先端部で連続鋳
造用鋳型の両短辺に向けて開口した2つの溶鋼吐出口か
ら前記両短辺に向けて溶鋼を吐出しながら連続鋳造用鋳
型の下端から表面部の凝固した鋳片を下方に引き出して
連続鋳造するに当り、浸漬ノズルの先端部に連続鋳造用
鋳型の両長辺に向く2つの外部ガス吹出し口とノズル壁
内にガス供給路とを設け、溶鋼吐出量1トン当り1〜2
lの不活性ガスを前記2つの外部ガス吹出し口から連続
鋳造用鋳型の両長辺に向けて吹き出させることを特徴と
する鋼の連続鋳造方法。 2 浸漬ノズルの基部及び先端部を除くノズル孔のほぼ
全内周面に内部ガス吹出し口が設けられている浸漬ノズ
ルの先端部に外部ガス吹出し口とノズル壁内にガス供給
路とを設け、ノズル孔を通過する溶鋼中に内部ガス吹出
し口から不活性ガスを吹き出させながら外部ガス吹出し
口からも不活性ガスを吹き出させる請求項1に記載の鋼
の連続鋳造方法。 3 ほぼ管状を成すノズルのその中空部のノズル孔(4
)がノズル先端部(5)において端面で閉塞され外周面
の互に正反対の部位で開口して2つの溶鋼吐出口(6)
が形成されている浸漬ノズルにおいて、ノズル先端部(
5)の前記2つの溶鋼吐出口(6)の両側ノズル壁(9
)の中間部位のノズル壁(9)内に周面に沿つて外部吹
出し用スリット(10′)が設けられていると共に該外
部吹出し用スリット(10′)より外側のノズル壁(9
)が通気性耐火材(9a)で構成された外部ガス吹出し
口(8′)が設けられており、前記外部吹出し用スリッ
ト(10′)がノズル基部(7)側のノズル外面に設け
られたガス供給プラグ(11)にノズル壁(9)内に設
けられたガス供給用スリット(10″)により接続され
ていることを特徴とする浸漬ノズル(3)。 4 ノズル基部(7)及び先端部(5)を除くほぼ全ノ
ズル壁(9)内に周面に沿つて内部吹出し用スリット(
10)が設けられていると共に該内部吹出し用スリット
(10)より内側のノズル壁(9)が通気性耐火材(9
a)で構成されて内部ガス吹出し口(8)が設けられて
いて前記内部吹出し用スリット(10)がノズル基部(
7)側でノズル壁(9)の外面に設けられたガス供給プ
ラグ(11)に接続されており、前記内部吹出し用スリ
ット(10)がガス供給用スリット(10″)の少なく
とも一部を構成している請求項3に記載の浸漬ノズル(
3)。
[Scope of Claims] 1. A continuous casting mold whose casting part has a rectangular horizontal cross-sectional shape, and a substantially tubular tube attached to the bottom of a tundish installed above the continuous casting mold, facing toward the center of the rectangle. With the tip of the immersion nozzle positioned below the molten metal surface covered with molten powder in the continuous casting mold, the nozzle hole in the hollow part of the immersion nozzle touches both short sides of the continuous casting mold with the tip. During continuous casting, the molten steel is discharged toward both short sides from the two molten steel discharge ports that are open toward the side, and the solidified slab on the surface is drawn downward from the lower end of the continuous casting mold. Two external gas outlets facing both long sides of the continuous casting mold are provided at the tip, and a gas supply path is provided within the nozzle wall to achieve a flow rate of 1 to 2 gas per ton of molten steel.
A continuous casting method for steel, characterized in that 1 of inert gas is blown out from the two external gas outlets toward both long sides of a continuous casting mold. 2. An internal gas outlet is provided on almost the entire inner circumferential surface of the nozzle hole excluding the base and tip of the immersed nozzle. An external gas outlet and a gas supply path are provided in the nozzle wall at the tip of the immersed nozzle, 2. The continuous steel casting method according to claim 1, wherein the inert gas is blown out from an internal gas outlet while the inert gas is blown out from an external gas outlet into the molten steel passing through the nozzle hole. 3 The nozzle hole in the hollow part of the almost tubular nozzle (4
) is closed at the end face at the nozzle tip (5) and opened at mutually opposite parts of the outer peripheral surface to form two molten steel discharge ports (6).
In the immersion nozzle where the nozzle tip (
5), both nozzle walls (9) of the two molten steel discharge ports (6)
) is provided with a slit (10') for external blowing along the circumferential surface in the nozzle wall (9) at the middle part of the nozzle wall (9) outside the slit (10') for external blowing.
) is provided with an external gas outlet (8') made of a breathable fireproof material (9a), and the external gas outlet slit (10') is provided on the outer surface of the nozzle on the nozzle base (7) side. An immersed nozzle (3) characterized in that it is connected to a gas supply plug (11) by a gas supply slit (10'') provided in the nozzle wall (9). 4. Nozzle base (7) and tip Internal blow-off slits (
10), and the nozzle wall (9) inside the internal blowing slit (10) is made of breathable fireproof material (9).
a) is provided with an internal gas outlet (8), and the internal gas outlet slit (10) is connected to the nozzle base (
7) is connected to a gas supply plug (11) provided on the outer surface of the nozzle wall (9), and the internal blow-off slit (10) constitutes at least a part of the gas supply slit (10''). The immersion nozzle according to claim 3 (
3).
JP21064688A 1988-08-26 1988-08-26 Method for continuously casting steel and submerged nozzle Pending JPH0259155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21064688A JPH0259155A (en) 1988-08-26 1988-08-26 Method for continuously casting steel and submerged nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21064688A JPH0259155A (en) 1988-08-26 1988-08-26 Method for continuously casting steel and submerged nozzle

Publications (1)

Publication Number Publication Date
JPH0259155A true JPH0259155A (en) 1990-02-28

Family

ID=16592756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21064688A Pending JPH0259155A (en) 1988-08-26 1988-08-26 Method for continuously casting steel and submerged nozzle

Country Status (1)

Country Link
JP (1) JPH0259155A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007030929A (en) * 2005-07-27 2007-02-08 Dainippon Printing Co Ltd Lid member
JP2007229798A (en) * 2006-03-03 2007-09-13 Nippon Steel Corp Nozzle for continuous casting
CN101943655A (en) * 2010-08-16 2011-01-12 华中科技大学 On-line corrosion detector for reinforced concrete and method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126631A (en) * 1978-03-27 1979-10-02 Aikoh Co Dipping nozzle for steel casting
JPS61172663A (en) * 1985-01-28 1986-08-04 Kawasaki Steel Corp Prevention of longitudinal crack of continuously cast steel ingot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126631A (en) * 1978-03-27 1979-10-02 Aikoh Co Dipping nozzle for steel casting
JPS61172663A (en) * 1985-01-28 1986-08-04 Kawasaki Steel Corp Prevention of longitudinal crack of continuously cast steel ingot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007030929A (en) * 2005-07-27 2007-02-08 Dainippon Printing Co Ltd Lid member
JP2007229798A (en) * 2006-03-03 2007-09-13 Nippon Steel Corp Nozzle for continuous casting
CN101943655A (en) * 2010-08-16 2011-01-12 华中科技大学 On-line corrosion detector for reinforced concrete and method thereof

Similar Documents

Publication Publication Date Title
RU2203771C2 (en) Immersible nozzle
JPH0259155A (en) Method for continuously casting steel and submerged nozzle
JPH02187240A (en) Submerged nozzle for high speed continuous casting
JP2018051598A (en) Bottom pouring ingot-making equipment
JP5172432B2 (en) Continuous casting method of ultra low carbon steel or low carbon steel using grooved immersion nozzle
JP2001001115A (en) Continuous casting method of steel
JPH04220148A (en) Molten steel supplying nozzle
US20200038943A1 (en) Shroud for billet casting
JP3365362B2 (en) Continuous casting method
JP4320043B2 (en) Continuous casting method of medium and high carbon steel using submerged dammed nozzle
JP4896599B2 (en) Continuous casting method of low carbon steel using dipping nozzle with dimple
JP5020778B2 (en) Continuous casting method of medium and high carbon steel using immersion nozzle with drum type weir
JP2007331003A (en) Continuous casting method for low carbon steel, using immersion nozzle with weir-type reservoir
JPH0422538A (en) Method for continuously casting beam blank
JP2001347348A (en) Immersion nozzle for continuous casting
JP2603402B2 (en) Continuous casting method of defect-free slab using straight immersion nozzle
JP4494550B2 (en) Method for controlling flow of molten steel in mold
JP3817209B2 (en) Continuous casting method for stainless steel slabs to prevent surface and internal defects
JP2008000810A (en) Method for continuously casting high carbon steel using immersion nozzle with gate type pouring basin
JP2004209512A (en) Continuous casting method and immersion nozzle
JP2007301609A (en) Continuous casting method for steel
JP2001087843A (en) Immersion nozzle for continuous casting
JP2017177195A (en) Soaking nozzle
JPH02207950A (en) Submerged nozzle for continuous casting
JP2750320B2 (en) Continuous casting method using static magnetic field