JPH02187240A - Submerged nozzle for high speed continuous casting - Google Patents

Submerged nozzle for high speed continuous casting

Info

Publication number
JPH02187240A
JPH02187240A JP284189A JP284189A JPH02187240A JP H02187240 A JPH02187240 A JP H02187240A JP 284189 A JP284189 A JP 284189A JP 284189 A JP284189 A JP 284189A JP H02187240 A JPH02187240 A JP H02187240A
Authority
JP
Japan
Prior art keywords
holes
mold
distance
nozzle
discharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP284189A
Other languages
Japanese (ja)
Other versions
JPH0628778B2 (en
Inventor
Masaru Washio
勝 鷲尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP284189A priority Critical patent/JPH0628778B2/en
Publication of JPH02187240A publication Critical patent/JPH02187240A/en
Publication of JPH0628778B2 publication Critical patent/JPH0628778B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a cast slab having high quality by having rectangular opening part sideward for each discharging hole and having the specific relations of distance between upper and lower discharging holes, length of the mold, position and throughput in the nozzle for the submerged nozzle providing one pair of the discharging holes at upper and lower parts in both sides to axis of the nozzle body. CONSTITUTION:In order to execute high speed continuous casting, which the throughout becomes more than the prescribed quantity, the four-holes types submerged nozzle, which the max. discharging flow speed thereof does not become large even if the discharging flow speed of the molten steel is increased but the uniform flow speed distribution is obtd., is effective. However, in such a four-holes type submerged nozzle, the distance X from upper end of the upper discharging holes 2a to the molten steel surface is necessary to short and develops involving of mold powder. Each of the discharging holes 2, 3 at upper and lower parts in the four-holes submerged nozzle is made to the rectangular opening shape sideward and has the specific relation between the distance (l) between the opening holes, the length L of the mold, the distance Z from upper end of the mold to the meniscus and 1/4 of the throughput for the four-holes nozzles. By this method, even if the throughput of the molten metal is high, the cast slab having high quality without entrapment of the mold powder can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、スループットが3.5 ト:、/+min
以上の高速連続鋳造に際して用いるに好適な浸漬ノズル
に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention has a throughput of 3.5 g:, /+min.
The present invention relates to an immersion nozzle suitable for use in the above-described high-speed continuous casting.

(従来の技術) 従来、連続鋳造では溶鋼を再酸化させることなくモール
ド内に供給するためや、モールド内に持ち込まれた介在
物の浮上促進あるいは鋳片の引き抜きの際におけるブレ
ークアウト防止のため浸漬ノズルが使用されてきたが、
ここに例えば2孔弐の浸漬ノズルにおいて溶鋼の吐出流
量を2〜3ト。
(Conventional technology) Conventionally, in continuous casting, immersion was used to feed molten steel into the mold without reoxidizing it, to promote the levitation of inclusions brought into the mold, and to prevent breakout when drawing slabs. Although nozzles have been used,
Here, for example, the discharge flow rate of molten steel is set to 2 to 3 tons using a two-hole immersion nozzle.

/minから4.0〜6.0 ’、 / min ヘと
増大させ、生産性の向上を図ろうとする場合にモールド
パウダーの巻き込みが避けられず、これによる溶鋼の清
浄度の著しい低下を余儀なくされた。
When trying to improve productivity by increasing the speed from 4.0 to 6.0'/min to 4.0 to 6.0'/min, mold powder is unavoidably dragged into the molten steel, resulting in a significant drop in the cleanliness of the molten steel. Ta.

モールドパウダーの巻き込みは、浸漬ノズルの吐出口に
おける流速が、その下端で最も大きく一方その上端では
逆に負の流速分布を示し、吐出口の上下で不均一な流速
分布になっていること(第3図(a)参照)によるもの
で、これに関する先行文献として、特開昭61−150
756号公報には、溶鋼の吐出流量に応じてノズルの吐
出角度を変更する技術が、また特開昭49−65328
号公報にはノズル流出口の断面積を拡大して溶鋼の吐出
速度を低下させる技術がそれぞれ開示されている。
The entrainment of mold powder is caused by the fact that the flow velocity at the discharge port of the immersion nozzle is highest at the lower end, while it shows a negative flow velocity distribution at the upper end, resulting in an uneven flow velocity distribution above and below the discharge port (Fig. 3(a)), and as a prior document related to this, Japanese Patent Application Laid-Open No. 1983-150
No. 756 discloses a technique for changing the discharge angle of a nozzle according to the discharge flow rate of molten steel, and Japanese Patent Application Laid-Open No. 49-65328
Each of the publications discloses a technique for reducing the discharge speed of molten steel by increasing the cross-sectional area of the nozzle outlet.

(発明が解決しようとする課題) ところで溶鋼の吐出流量に応じて浸漬ノズルの吐出角度
を変更する場合にはモールドパウダーの巻き込みを抑制
できる利点がある反面、モールド内における介在物の浮
上が全く期待出来ず却って鋼の清浄度を劣化させるうれ
いがあり、一方ノズルの流出口を拡大する場合には、流
出口からメニスカスに至るまでの距離が短くなるので溶
鋼流によるモールドパウダーの巻き込みは避けがたい。
(Problem to be solved by the invention) By the way, when changing the discharge angle of the immersion nozzle according to the discharge flow rate of molten steel, there is an advantage of suppressing the entrainment of mold powder, but on the other hand, it is completely expected that inclusions in the mold will float. On the other hand, when enlarging the nozzle outlet, the distance from the outlet to the meniscus becomes shorter, so entrainment of mold powder by the flow of molten steel must be avoided. sea bream.

ここにノズルの浸漬深さを従来よりも深くして上記の問
題に対処する試みもあるが、この場合、溶鋼の流れが鋳
型よりも下方になるのでブレークアウトの危険性が高い
Some attempts have been made to address the above problem by making the immersion depth of the nozzle deeper than before, but in this case, there is a high risk of breakout because the flow of molten steel is below the mold.

鋳型内に注入した溶鋼の清浄度を劣化させることましに
とくにスループットが3.5 ト)/min以上になる
高速連続鋳造を実現できる新規な浸漬ノズルを提案する
ことがこの発明の目的である。
It is an object of the present invention to propose a new immersion nozzle that can realize high-speed continuous casting with a throughput of 3.5 tons/min or more without degrading the cleanliness of the molten steel injected into the mold.

(課題を解決するための手段) この発明は、ノズル本体の軸心を左右に挟む上下一対の
吐出口を備える浸漬ノズルにおいて、各吐出口は何れも
横長の開口形状を有しかつ上下各吐出口間の開口距離l
が、モールド長さし、4孔ノズルのスループントy4、
モールド上端からメニスカスに至るまでの距離Zとして
、N<L−Z64ya  370になることを特徴とす
る高速連続鋳造用浸漬ノズルである。
(Means for Solving the Problems) The present invention provides an immersion nozzle equipped with a pair of upper and lower discharge ports sandwiching the axis of the nozzle body on the left and right sides, in which each discharge port has a horizontally long opening shape, and the upper and lower discharge ports each have a horizontally elongated opening shape. Opening distance l between exits
However, the mold length is 4-hole nozzle throughput Y4,
This immersion nozzle for high-speed continuous casting is characterized in that the distance Z from the upper end of the mold to the meniscus satisfies N<L-Z64ya 370.

第1図に、この発明に従う浸漬ノズルのとくに先端部の
縦断面を拡大して模式的に示し、図中1はノズル本体、
2は主吐出口、3は下吐出口であり、主吐出口2および
下吐出口3は、第2図に示すように何れも横長の開口形
状を有しこれらの開口距離l(主吐出口2の上端から下
吐出口3の下端までの距離)は、モールド長さし、4孔
ノズルにおけるスルーブツトy4、モールド上端からメ
ニスカスに至までの距離Zとして、f<L−Z−64y
、 −370になる。
FIG. 1 schematically shows an enlarged vertical cross section of the immersion nozzle according to the present invention, particularly at the tip, and in the figure 1 indicates the nozzle body;
2 is a main discharge port, 3 is a lower discharge port, and the main discharge port 2 and the lower discharge port 3 both have a horizontally long opening shape as shown in FIG. The distance from the upper end of 2 to the lower end of lower discharge port 3) is the mold length, throughbutt y4 in a 4-hole nozzle, and distance Z from the upper end of the mold to the meniscus, f<L-Z-64y
, becomes -370.

(作 用) スループットが3.5 ト:、/min以上になる高速
連続鋳造を行うためには、第3図(b)に示すように溶
鋼の吐出流量を増大させてもノズルの最大吐出流速が大
きくならずしかも均一な流速分布を得ることができる4
孔式の浸漬ノズルを用いることが極めて有効である。
(Function) In order to perform high-speed continuous casting with a throughput of 3.5 g/min or more, as shown in Figure 3(b), even if the discharge flow rate of molten steel is increased, the maximum discharge flow rate of the nozzle must be 4. A uniform flow velocity distribution can be obtained without increasing the flow rate.
It is extremely effective to use a hole-type submerged nozzle.

ところでこのような浸漬ノズルでは、第4回に示すよう
にと(に鋳型の高さLに制限がある場合に、ブレイクア
ウトの発生を避けるため主吐出口2aの上端からメニス
カスに至までの距離Xを短くせざるおえずモールドパウ
ダーの吸い込みを生じることがあった。
By the way, with such a submerged nozzle, as shown in Part 4, if there is a limit to the height L of the mold, the distance from the upper end of the main discharge port 2a to the meniscus must be adjusted to avoid breakout. It was necessary to shorten X, which sometimes caused mold powder to be sucked in.

そこでこの発明では、4孔弐浸漬ノズルにおける上下の
各吐出口を横長の開口形状を有するものとし、これらの
吐出口の開口距離lをf < L −Z64ya  3
70とすることによって初期した目的を有利に達成した
Therefore, in this invention, each of the upper and lower discharge ports in the four-hole two-immersion nozzle has a horizontally elongated opening shape, and the opening distance l of these discharge ports is f < L −Z64ya 3
70, the initial objective was advantageously achieved.

ここに上下吐出口の開口距離iをf<L−Z−64ya
  370としたのは、通常の連続鋳造(2孔式浸漬ノ
ズルを使用した場合、第5図参照)においては、モール
ドパウダーの吸い込み指数Iは吐出口の上端からメニス
カスに至るまでの距離X (ffim)とスルーブツト
y t  (ト>/win)からx==yt  X/8
0  −  (1)で与えられる。
Here, the opening distance i of the upper and lower discharge ports is f<L-Z-64ya
370 because in normal continuous casting (when a two-hole immersion nozzle is used, see Figure 5), the mold powder suction index I is the distance from the top of the discharge port to the meniscus X (ffim ) and throughput yt (g>/win), x==yt X/8
It is given by 0 − (1).

またモールドパウダーの吸い込み指数Iとスライム抽出
量mg7kgの関係を第6図に示すが、鋳片の品質を確
保するためには、スライム抽出量を0.031Ig/k
g  以下に、また吸い込み指数■を1.0以下にする
必要がある。
Figure 6 shows the relationship between the suction index I of the mold powder and the amount of slime extracted (mg7kg).
g or less, and the suction index (■) must be 1.0 or less.

上記(1)式において様々なスループットに対応させる
ためには吐出口の上端からメニスカスに至までの距離X
を変更することによって容易に対応できる。
In equation (1) above, in order to accommodate various throughputs, the distance from the upper end of the discharge port to the meniscus
This can be easily addressed by changing the .

一方、吐出口の下端からモールドの下端までの距離Mと
ブレイクアウトの発生率の関係を示す第7図から明らか
なように、とくに吐出口の下端からモールドの下端まで
の距離Mが450mm以下ではブレイクアウトが多発す
る。
On the other hand, as is clear from FIG. 7, which shows the relationship between the distance M from the lower end of the discharge port to the lower end of the mold and the incidence of breakout, especially when the distance M from the lower end of the discharge port to the lower end of the mold is 450 mm or less, Breakouts occur frequently.

このため浸漬ノズルにおけるXの値は、1>3’2  
X/80  より、 80 (yz −1) <X とする必要がある。
Therefore, the value of X in the immersion nozzle is 1>3'2
From X/80, it is necessary to satisfy 80 (yz -1) <X.

ここで、4孔式の浸漬ノズルの場合には、主吐出口2の
スルーブツトがy2に対応し、また4孔弐浸漬ノズルで
の最大吐出流が2礼式浸漬ノズルの0.8倍程度(第8
図参照)であるので、 yt =0.8  ya   とし、 上記Xは、X >80(0,8y4−1 )  ・・・
(2)とする必要がある。
In the case of a 4-hole submerged nozzle, the throughput of the main discharge port 2 corresponds to y2, and the maximum discharge flow of the 4-hole submerged nozzle is approximately 0.8 times that of the 2-hole submerged nozzle (the 8
(see figure), so yt = 0.8 ya, and the above X is X>80(0,8y4-1)...
It is necessary to do (2).

つぎに、4孔弐の浸漬ノズルにおける開口距離!はモー
ルドの長さしとするとブレークアウトの発生限界より、 L−(X+Z+j2) >450であり、ここにf<L
−(X+Z+450)・・・(3)従って開口距離!は
、(2)および(3)より、f<L  Z  64)’
4 370 となる。
Next, the opening distance for a 4-hole immersion nozzle! is the length of the mold, and from the limit of breakout occurrence, L-(X+Z+j2) > 450, where f<L
-(X+Z+450)...(3) Therefore, the aperture distance! From (2) and (3), f<L Z 64)'
4 370.

なお吐出口の開口形状については上記した開口距離ρの
条件を満足しかつ所望の吐出流量になるものであればい
かなる形状であってもよい。また吐出口の吐出角度は反
転流防止のため下向きに15〜45°とするのが好まし
い。
Note that the opening shape of the discharge port may be any shape as long as it satisfies the above-mentioned condition of the opening distance ρ and provides a desired discharge flow rate. Further, the discharge angle of the discharge port is preferably 15 to 45 degrees downward in order to prevent reverse flow.

(実施例) 上掲第1図に示した4孔式の浸漬ノズル(ノズル内径d
ニア0mm、吐出口形状:4角(サイズ60×70mm
))をもちいて成分組成がC: 0.0018%、Mn
:0.08%、  P : 0.020%、  S :
0.015%になる溶鋼(極低C鋼)の連続鋳造を表−
1の条件に従って行い、その際の溶鋼のスライム介在物
量、モールドパウダーの吸い込み指数について調査した
。なお、比較のため従来の2礼式浸漬ノズル、4孔式浸
漬ノズルをもちいた場合についても同様の調査を行った
(Example) The four-hole immersion nozzle shown in Figure 1 above (nozzle inner diameter d
Near 0mm, outlet shape: 4 squares (size 60 x 70mm
)), the component composition is C: 0.0018%, Mn
: 0.08%, P: 0.020%, S:
Continuous casting of 0.015% molten steel (ultra low C steel) is shown below.
The amount of slime inclusions in the molten steel and the suction index of the mold powder were investigated. For comparison, a similar investigation was conducted using a conventional two-hole type immersion nozzle and a four-hole type immersion nozzle.

その結果を表−1に併せて示す。The results are also shown in Table-1.

ごの発明に従う浸漬ノズルを用いた連続鋳造では、溶鋼
のスループットが3.5 ト>/min以上であるにも
かかわらず非常に良好な結果を得ることができた。
Continuous casting using the immersion nozzle according to the invention of 1997 was able to yield very good results even though the throughput of molten steel was 3.5 tons/min or more.

(発明の効果) この発明によれば、連続鋳造において溶鋼のスループッ
トを高めてもモールドパウダーなどを巻き込むことがな
く品質の高い鋳片を得ることができる。
(Effects of the Invention) According to the present invention, even when the throughput of molten steel is increased in continuous casting, a high-quality slab can be obtained without involving mold powder or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に従う浸漬ノズルの構成説明図、 第2図はこの発明に従う浸漬ノズルの要部拡大図、 第3図(a)(b)は2孔式浸漬ノズルと4礼式浸漬ノ
ズルにおける溶鋼の流速分布および吐出速度を比較して
示した図、 第4図は4孔式浸漬ノズルの縦断面図、第5図は2孔式
浸漬ノズルの縦断面図、第6図は吸い込み指数■とスラ
イム抽出量の関係グラフ、 第7図はモールドの下端から吐出口の下端に至までの距
離Mとブレークアウトの発生率の関係グラフ、 第8図は従来の浸漬ノズルの最大吐出流とこの発明に従
う浸漬ノズルの最大吐出流を比較したグラフである。 ■・・・ノズル本体、    2・・・上吐出口3・・
・下吐出口     !・・・開口距離L・・・モール
ド長さ y4・・・4孔ノズルのスルーブツト Z・・・モールド上端からメニスカスに至るまでの距離
Oつ Rさd 履 第4図 第5図 第6図 第7図 M−fL−(z+x+1ツノ 第8図 d (mm/sec〕
Fig. 1 is an explanatory diagram of the configuration of the immersion nozzle according to the present invention, Fig. 2 is an enlarged view of the main parts of the immersion nozzle according to the invention, and Fig. 3 (a) and (b) are the two-hole type immersion nozzle and the four-hole type immersion nozzle. Figure 4 is a longitudinal cross-sectional view of a four-hole immersion nozzle, Figure 5 is a longitudinal cross-sectional view of a two-hole immersion nozzle, and Figure 6 is a diagram showing a comparison of the flow velocity distribution and discharge speed of molten steel. Figure 7 is a graph showing the relationship between the distance M from the lower end of the mold to the lower end of the discharge port and the incidence of breakout, and Figure 8 is the relationship between the maximum discharge flow of a conventional immersion nozzle and this amount. 1 is a graph comparing the maximum discharge flow of submerged nozzles according to the invention. ■... Nozzle body, 2... Upper discharge port 3...
・Lower outlet! ...Opening distance L...Mold length y4...Through butt Z of 4-hole nozzle...Distance from the upper end of the mold to the meniscus O x R d Figure 4 Figure 5 Figure 6 Fig. 7 M-fL-(z+x+1 horn Fig. 8 d (mm/sec)

Claims (1)

【特許請求の範囲】 1、ノズル本体の軸心を左右に挟む上下一対の吐出口を
備える浸漬ノズルにおいて、 各吐出口は何れも横長の開口形状を有しか つ上下吐出口間の開口距離lが、モールド長さL(mm
)、4孔ノズルにおけるスループットy_4(トン/m
in)、モールド上端からメニスカスに至るまでの距離
Z(mm)として、l<L−Z−64y_4−370に
なることを特徴とする高速連続鋳造用浸漬ノズル。
[Claims] 1. In a submerged nozzle equipped with a pair of upper and lower discharge ports sandwiching the axis of the nozzle body on the left and right sides, each discharge port has a horizontally elongated opening shape, and the opening distance between the upper and lower discharge ports is l. However, the mold length L (mm
), throughput y_4 (t/m
in), a distance Z (mm) from the upper end of the mold to the meniscus, which satisfies l<L-Z-64y_4-370.
JP284189A 1989-01-11 1989-01-11 Immersion nozzle for high speed continuous casting Expired - Lifetime JPH0628778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP284189A JPH0628778B2 (en) 1989-01-11 1989-01-11 Immersion nozzle for high speed continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP284189A JPH0628778B2 (en) 1989-01-11 1989-01-11 Immersion nozzle for high speed continuous casting

Publications (2)

Publication Number Publication Date
JPH02187240A true JPH02187240A (en) 1990-07-23
JPH0628778B2 JPH0628778B2 (en) 1994-04-20

Family

ID=11540637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP284189A Expired - Lifetime JPH0628778B2 (en) 1989-01-11 1989-01-11 Immersion nozzle for high speed continuous casting

Country Status (1)

Country Link
JP (1) JPH0628778B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344900A (en) * 2003-05-20 2004-12-09 Nippon Steel Corp Dipping nozzle and continuous casting method using the same
JP2006198655A (en) * 2005-01-20 2006-08-03 Nippon Steel Corp Porous immersion nozzle, and continuous casting method using the same
JP2007319923A (en) * 2006-06-05 2007-12-13 Nippon Steel Corp Continuous casting method for molten steel
JP2007326144A (en) * 2006-06-09 2007-12-20 Kurosaki Harima Corp Immersion nozzle
JP2008229702A (en) * 2007-03-23 2008-10-02 Kobe Steel Ltd Method for revealing solidified shell thickness in s print
CN102361712A (en) * 2009-03-25 2012-02-22 新日本制铁株式会社 Immersion nozzle for continuous casting

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344900A (en) * 2003-05-20 2004-12-09 Nippon Steel Corp Dipping nozzle and continuous casting method using the same
JP2006198655A (en) * 2005-01-20 2006-08-03 Nippon Steel Corp Porous immersion nozzle, and continuous casting method using the same
JP2007319923A (en) * 2006-06-05 2007-12-13 Nippon Steel Corp Continuous casting method for molten steel
JP2007326144A (en) * 2006-06-09 2007-12-20 Kurosaki Harima Corp Immersion nozzle
JP2008229702A (en) * 2007-03-23 2008-10-02 Kobe Steel Ltd Method for revealing solidified shell thickness in s print
CN102361712A (en) * 2009-03-25 2012-02-22 新日本制铁株式会社 Immersion nozzle for continuous casting

Also Published As

Publication number Publication date
JPH0628778B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
EP2842658A1 (en) Submerged nozzle of continuous casting apparatus
JP6129435B1 (en) Continuous casting method
KR101087318B1 (en) Method for manufacture of ultra-low carbon steel slab
JP4681399B2 (en) Steel continuous casting method
JPH02187240A (en) Submerged nozzle for high speed continuous casting
JP2012020294A (en) Method for changing immersion depth of immersion nozzle
JP3566904B2 (en) Steel continuous casting method
JP6331757B2 (en) Equipment for continuous casting of steel
JP2018051598A (en) Bottom pouring ingot-making equipment
JP3817209B2 (en) Continuous casting method for stainless steel slabs to prevent surface and internal defects
JP2001129645A (en) Immersion nozzle for continuous casting and continuous casting method
JPH0259155A (en) Method for continuously casting steel and submerged nozzle
JP2001087843A (en) Immersion nozzle for continuous casting
JP4444034B2 (en) Immersion nozzle for continuous casting and method of pouring a mold for continuous casting using this immersion nozzle for continuous casting
JP4494550B2 (en) Method for controlling flow of molten steel in mold
JP2004106021A (en) Method for casting molten stainless steel using vertical-bending type continuous caster
JPH04220148A (en) Molten steel supplying nozzle
JP2004098082A (en) Method for casting molten stainless steel performing electromagnetic stirring
JP2010274321A (en) Tundish for continuous casting
JP2004283848A (en) Immersion nozzle for continuous casting of steel
JP3866068B2 (en) Continuous casting method of high cleanliness steel
JP2901983B2 (en) Immersion nozzle for continuous casting
JP2008030089A (en) Immersion nozzle for continuously casting molten steel and continuous casting method
JP2023178223A (en) Continuous casting method for steel
JP2004209512A (en) Continuous casting method and immersion nozzle