JP2003200047A - Catalyst for exhaust gas purification - Google Patents

Catalyst for exhaust gas purification

Info

Publication number
JP2003200047A
JP2003200047A JP2002196299A JP2002196299A JP2003200047A JP 2003200047 A JP2003200047 A JP 2003200047A JP 2002196299 A JP2002196299 A JP 2002196299A JP 2002196299 A JP2002196299 A JP 2002196299A JP 2003200047 A JP2003200047 A JP 2003200047A
Authority
JP
Japan
Prior art keywords
noble metal
catalyst
exhaust gas
polycrystal
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002196299A
Other languages
Japanese (ja)
Other versions
JP3879992B2 (en
Inventor
Takaaki Kanazawa
孝明 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002196299A priority Critical patent/JP3879992B2/en
Publication of JP2003200047A publication Critical patent/JP2003200047A/en
Application granted granted Critical
Publication of JP3879992B2 publication Critical patent/JP3879992B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress particle growth of supported noble metal particles by preventing them from moving. <P>SOLUTION: A noble metal 2 is carried in at least mutual crystal boundaries 11 between grains 10 of a carrier consisting at least one of a metal hydroxide polycrystalline body and a metal oxide polycrystalline body. Since the noble metal 2 is in a state of being sandwiched between the grains 10, it is prevented from moving even under high temperature surroundings and the grains of the noble metal 2 are prevented from mutually coagulating so as to bring about growth of the grains. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車のエンジン
などからの排ガスを浄化する排ガス浄化用触媒に関し、
詳しくは耐久性に優れた排ガス浄化用触媒に関する。
TECHNICAL FIELD The present invention relates to an exhaust gas purifying catalyst for purifying exhaust gas from an automobile engine or the like,
Specifically, it relates to an exhaust gas purifying catalyst having excellent durability.

【0002】[0002]

【従来の技術】従来より、自動車の排ガス浄化用触媒と
して、CO及びHCの酸化とNOx の還元とを同時に行って排
気ガスを浄化する三元触媒が用いられている。このよう
な三元触媒としては、コーディエライトなどからなる耐
熱性基材にγ−アルミナからなる多孔質担体層を形成
し、その多孔質担体層に白金(Pt)、ロジウム(Rh)な
どの貴金属を担持させたものが広く知られている。
2. Description of the Related Art Conventionally, a three-way catalyst for purifying exhaust gas by simultaneously oxidizing CO and HC and reducing NO x has been used as an exhaust gas purifying catalyst for automobiles. As such a three-way catalyst, a porous carrier layer made of γ-alumina is formed on a heat resistant substrate made of cordierite, and platinum (Pt), rhodium (Rh), etc. are formed on the porous carrier layer. Those carrying a noble metal are widely known.

【0003】ところで近年、排ガス浄化用触媒の設置場
所がエンジンに近いマニホールド直下とされる傾向があ
り、また高速走行時には排ガス温度が高くなることか
ら、排ガス浄化用触媒は高温に晒される場合が多くなっ
ている。ところが従来の排ガス浄化用触媒では、高温の
排ガスによりγ−アルミナの熱劣化が進行し、これに伴
う貴金属の粒成長によって触媒活性点が減少するため触
媒性能が劣化するという不具合があった。
By the way, in recent years, the exhaust gas purifying catalyst tends to be installed immediately below the manifold close to the engine, and the exhaust gas temperature becomes high during high-speed traveling. Therefore, the exhaust gas purifying catalyst is often exposed to high temperatures. Has become. However, the conventional exhaust gas-purifying catalyst has a problem that the catalytic performance is deteriorated because the thermal deterioration of γ-alumina proceeds due to the high-temperature exhaust gas, and the catalyst active points are reduced due to the particle growth of the precious metal.

【0004】そこで、例えば特開平4-122441号公報に
は、予め熱処理されたアルミナを用いて貴金属を担持さ
せる排ガス浄化用触媒の製造方法が開示されている。こ
の製造方法によれば、アルミナは既に熱処理されている
ため、得られた排ガス浄化用触媒は高温の排ガスに晒さ
れても熱劣化がほとんど進行せず、貴金属の粒成長を防
止することができる。
Therefore, for example, Japanese Patent Application Laid-Open No. 4-122441 discloses a method for producing an exhaust gas purifying catalyst in which a noble metal is supported by using alumina which has been heat treated in advance. According to this manufacturing method, since the alumina has already been heat-treated, the resulting exhaust gas-purifying catalyst undergoes almost no thermal deterioration even when exposed to high-temperature exhaust gas, and can prevent grain growth of noble metals. .

【0005】また近年では、二酸化炭素の排出量を抑制
するために、酸素過剰の混合気を供給するリーンバーン
エンジンが主流になっている。しかしながら上記公報に
開示された製造方法で製造されたような排ガス浄化用触
媒では、酸素過剰のリーン雰囲気下で 800℃以上の高温
が作用した場合に貴金属の粒成長が著しく、触媒性能が
低下するという不具合があった。
In recent years, lean-burn engines, which supply an air-fuel mixture in excess of oxygen, have become the mainstream in order to suppress carbon dioxide emissions. However, in the exhaust gas-purifying catalyst produced by the production method disclosed in the above publication, when a high temperature of 800 ° C. or higher acts in a lean atmosphere with excess oxygen, the grain growth of the noble metal is remarkable and the catalytic performance deteriorates. There was a problem.

【0006】例えばアルミナ表面に担持されたPtは、高
温で酸素が共存する雰囲気においてはPtO2となり、気相
移動により拡散・凝集が促進される。そのため酸素過剰
のリーン雰囲気又はストイキ雰囲気では、高温に晒され
るとPtに粒成長が生じ表面積の低下により触媒性能が大
きく低下する。
For example, Pt supported on the surface of alumina becomes PtO 2 in an atmosphere where oxygen coexists at high temperature, and diffusion and aggregation are promoted by gas phase transfer. Therefore, in a lean atmosphere or stoichiometric atmosphere with excess oxygen, when exposed to high temperatures, grain growth occurs in Pt and the surface area decreases, resulting in a large decrease in catalyst performance.

【0007】そこで本願出願人は、特開平8-338897号公
報にみられるように、貴金属を担持した担体を非酸化性
雰囲気中にて 800℃以上で熱処理する製造方法を提案し
ている。この製造方法によれば、多孔質担体が焼結して
細孔が収縮するため、担持されている貴金属は多孔質担
体で緊密に取り囲まれる。したがってリーン雰囲気下で
高温が作用しても貴金属の移動が多孔質担体によって規
制されているため、貴金属の粒成長を抑制することがで
きる。
Therefore, the applicant of the present application has proposed a manufacturing method in which a carrier carrying a noble metal is heat-treated at 800 ° C. or higher in a non-oxidizing atmosphere, as disclosed in JP-A-8-338897. According to this manufacturing method, since the porous carrier is sintered and the pores are shrunk, the supported precious metal is tightly surrounded by the porous carrier. Therefore, since the movement of the noble metal is regulated by the porous carrier even when a high temperature acts in the lean atmosphere, the grain growth of the noble metal can be suppressed.

【0008】ところが特開平8-338897号公報に記載の製
造方法で製造された排ガス浄化用触媒であっても、大気
中など酸素過剰のリーン雰囲気下で 800℃を超える高温
が長時間作用すると、貴金属に粒成長が生じることが明
らかとなった。これは、細孔外に担持されている貴金属
粒子が物理的及び化学的に担体に固定されておらず、自
由に移動できることが原因であると考えられる。
However, even with the exhaust gas-purifying catalyst produced by the production method described in Japanese Patent Application Laid-Open No. 8-338897, when a high temperature exceeding 800 ° C. acts for a long time in a lean atmosphere with excess oxygen, such as in the air, It became clear that grain growth occurs in the precious metal. It is considered that this is because the noble metal particles supported outside the pores are not physically and chemically fixed to the carrier and can move freely.

【0009】[0009]

【発明が解決しようとする課題】本発明はこのような事
情に鑑みてなされたものであり、担持されている貴金属
粒子の移動を抑制することで粒成長を抑制できる排ガス
浄化用触媒とすることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances and provides an exhaust gas purifying catalyst capable of suppressing grain growth by suppressing the movement of supported noble metal particles. With the goal.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する本発
明の排ガス浄化用触媒の特徴は、金属水酸化物多結晶体
及び金属酸化物多結晶体の少なくとも一方よりなる担体
と、担体のグレインどうしの結晶境界に担持された貴金
属と、よりなることにある。
The features of the exhaust gas-purifying catalyst of the present invention for solving the above-mentioned problems are that a carrier comprising at least one of a metal hydroxide polycrystal and a metal oxide polycrystal, and a grain of the carrier. It consists of a noble metal supported on the crystal boundaries between them.

【0011】貴金属は担体の内部欠陥にも担持されてい
ることができる。
The noble metal can also be supported on internal defects of the carrier.

【0012】担体は、水酸化アルミニウム多結晶体及び
γ−アルミナを除くアルミナ多結晶体の少なくとも一方
であることが望ましく、α−アルミナであることが特に
望ましい。
The carrier is preferably at least one of aluminum hydroxide polycrystal and alumina polycrystal excluding γ-alumina, and particularly preferably α-alumina.

【0013】[0013]

【発明の実施の形態】本発明の排ガス浄化用触媒では、
貴金属は多結晶体からなる担体のグレインどうしの結晶
境界に担持されている。つまり貴金属はグレイン間に挟
み込まれた状態となっているので、高温時においても貴
金属粒子が移動するのが抑制され、貴金属粒子どうしが
凝集して粒成長するのが抑制される。したがって酸素過
剰のリーン雰囲気下で 800℃を超える高温が長時間作用
しても、貴金属は高分散状態を維持し活性点が多く存在
するため、本発明の排ガス浄化用触媒は高い活性が発現
される。
BEST MODE FOR CARRYING OUT THE INVENTION In the exhaust gas purifying catalyst of the present invention,
The noble metal is supported on the crystal boundaries between the grains of the support made of polycrystalline material. That is, since the noble metal is sandwiched between the grains, the noble metal particles are prevented from moving even at a high temperature, and the noble metal particles are prevented from agglomerating and growing. Therefore, even if a high temperature exceeding 800 ° C. is operated for a long time in a lean atmosphere with excess oxygen, the precious metal maintains a highly dispersed state and has many active sites, so the exhaust gas purifying catalyst of the present invention exhibits high activity. It

【0014】また多結晶体からなる担体中には、間隔の
狭いクラック状の内部欠陥が存在している場合が多い。
したがってこの内部欠陥にも貴金属を担持すれば、結晶
境界に担持した場合と同様の作用によって、高温時にお
ける貴金属の粒成長を抑制することができる。さらに内
部欠陥にも貴金属を担持することで、貴金属の担持量を
多くすることができ活性が向上する。
In many cases, crack-shaped internal defects having narrow intervals are present in the carrier made of a polycrystalline material.
Therefore, if the noble metal is also supported on this internal defect, grain growth of the noble metal at a high temperature can be suppressed by the same action as when the noble metal is supported on the crystal boundary. Further, by supporting the noble metal on the internal defects, the amount of the noble metal supported can be increased, and the activity is improved.

【0015】担体には、水酸化物多結晶体及び酸化物多
結晶体の少なくとも一方が用いられる。これらの多結晶
体は、例えば六角板状のグレインがいろいろの方位をも
って集合してなり、グレインどうしの結晶境界が多数存
在している。この結晶境界に貴金属を担持することで、
高温時における貴金属の粒成長を抑制することができ
る。
At least one of a hydroxide polycrystal and an oxide polycrystal is used for the carrier. In these polycrystals, for example, hexagonal plate-shaped grains are aggregated in various orientations, and there are many crystal boundaries between the grains. By supporting a noble metal on this crystal boundary,
It is possible to suppress grain growth of noble metal at high temperature.

【0016】このような担体としては、水酸化アルミニ
ウム多結晶体、α−アルミナ多結晶体、χ−アルミナ多
結晶体、θ−アルミナ多結晶体、シリカ多結晶体などを
用いることができる。中でも耐熱性に優れ、かつ不純物
の影響が少ないアルミナ系多結晶体が好ましい。なお水
酸化アルミニウム多結晶体は、加熱によりα−アルミナ
多結晶体あるいはχ−アルミナ多結晶体などとなる。
As such a carrier, aluminum hydroxide polycrystal, α-alumina polycrystal, χ-alumina polycrystal, θ-alumina polycrystal, silica polycrystal or the like can be used. Above all, an alumina-based polycrystal having excellent heat resistance and being less affected by impurities is preferable. The aluminum hydroxide polycrystal becomes α-alumina polycrystal or χ-alumina polycrystal when heated.

【0017】γ−アルミナはきわめて比表面積が大きい
ために、グレインどうしの結晶境界に貴金属を担持しよ
うとしても、貴金属は結晶境界以外にも多く担持されて
しまう。そして高温雰囲気では結晶境界以外に担持され
た貴金属に粒成長が生じ、活性が低下してしまう。した
がって本発明では、担体として用いられる多結晶体から
γ−アルミナを除いている。
Since γ-alumina has a very large specific surface area, even if an attempt is made to support a noble metal on the crystal boundaries between grains, a large amount of the noble metal is supported on other than the crystal boundaries. Then, in a high temperature atmosphere, grain growth occurs in the noble metal supported other than at the crystal boundaries, and the activity decreases. Therefore, in the present invention, γ-alumina is excluded from the polycrystal used as the carrier.

【0018】担体の粒径は、一次粒子で 0.5〜10μm、
二次粒子で5〜30μmの範囲が好ましい。粒径がこれら
の範囲より小さいと凝集しやすくなり、粒径がこれらの
範囲より大きくなると結晶界面が少なくなって結晶界面
に担持される貴金属の絶対量が不足するため、結果的に
耐久後の活性が低下するようになる。またグレインのア
スペクト比は、 0.5〜5の範囲が好ましい。グレインの
アスペクト比がこの範囲より小さいと凝集しやすくな
り、この範囲より大きくなると結晶界面が少なくなって
結晶界面に担持される貴金属の絶対量が不足するように
なる。
The particle size of the carrier is 0.5 to 10 μm as primary particles,
The range of secondary particles is preferably 5 to 30 μm. If the particle size is smaller than these ranges, aggregation tends to occur, and if the particle size is larger than these ranges, the crystal interface decreases and the absolute amount of the noble metal supported on the crystal interface becomes insufficient. It becomes less active. The grain aspect ratio is preferably in the range of 0.5 to 5. If the grain aspect ratio is smaller than this range, aggregation tends to occur, and if it is larger than this range, the crystal interface becomes small and the absolute amount of the noble metal supported on the crystal interface becomes insufficient.

【0019】貴金属としては、Pt,Rh,Pd,Ir,Ruなど
従来の排ガス浄化用触媒に用いられているものを用いる
ことができる。特に、高い触媒活性を有するものの粒成
長しやすいPtの場合に本発明は効果的である。また貴金
属の担持量は、担体に対して0.1重量%以上であり、好
ましくは 0.5〜20重量%である。担持量がこの範囲より
少ないと排ガス浄化用触媒としての活性が低すぎて実用
的でなく、この範囲より多く担持しても活性が飽和する
とともにコストが高騰してしまう。
As the noble metal, those used in conventional exhaust gas purifying catalysts such as Pt, Rh, Pd, Ir and Ru can be used. In particular, the present invention is effective in the case of Pt which has a high catalytic activity but is prone to grain growth. The amount of the noble metal supported is 0.1% by weight or more, preferably 0.5 to 20% by weight, based on the carrier. If the supported amount is less than this range, the activity as an exhaust gas purifying catalyst is too low to be practical, and if the supported amount is more than this range, the activity is saturated and the cost rises.

【0020】貴金属をグレインの結晶境界及び内部欠陥
に担持するには、貴金属薬液を用い毛細管現象を利用し
て担持することができる。この場合、担体に吸着しにく
い貴金属薬液を用いることが望ましい。吸着しやすい薬
液を用いると、グレインの結晶境界及び内部欠陥以外に
担持される貴金属が多くなり、それらが粒成長するとい
う不具合がある。
In order to support the noble metal on the crystal boundaries and internal defects of the grains, the noble metal can be supported by utilizing a capillary phenomenon using a noble metal chemical solution. In this case, it is desirable to use a precious metal chemical liquid that is difficult to be adsorbed on the carrier. If a chemical solution that is easily adsorbed is used, there is a problem that the amount of noble metal supported other than the crystal boundaries and internal defects of grains increases, and these particles grow.

【0021】なお本発明の排ガス浄化用触媒は、そのま
まで酸化触媒、三元触媒などとして利用することがで
き、さらにBaやKなどのNOx 吸蔵材を担持すればNOx
蔵還元型触媒として利用することができる。また貴金属
を担持する担体としては上記した多孔質体が必須である
ものの、場合によってはアルミナ、ジルコニア、セリ
ア、チタニアなど他の酸化物担体を併用してもよい。
The exhaust gas-purifying catalyst of the present invention can be used as it is as an oxidation catalyst, a three-way catalyst, etc., and if it carries a NO x storage material such as Ba or K, it will serve as a NO x storage reduction catalyst. Can be used. Although the above-mentioned porous body is essential as the carrier for supporting the noble metal, other oxide carriers such as alumina, zirconia, ceria, and titania may be used in combination depending on the case.

【0022】[0022]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples.

【0023】(実施例1)ボーキサイトを水酸化ナトリ
ウムで処理してアルミン酸ナトリウムとして溶かし、鉱
石中の不純物を沈殿させて分離した後、アルミン酸ナト
リウム溶液を加水分解した。得られた沈殿を乾燥させ、
水酸化アルミニウム多結晶体からなる粉末を得た。
Example 1 Bauxite was treated with sodium hydroxide to dissolve it as sodium aluminate, and impurities in the ore were precipitated and separated, and then the sodium aluminate solution was hydrolyzed. The precipitate obtained is dried,
A powder of aluminum hydroxide polycrystal was obtained.

【0024】この水酸化アルミニウム多結晶体は、平均
一次粒子径が8μm、平均二次粒子径が20μm、グレイ
ンは六角板状をなしそのアスペクト比は約2であった。
また400℃で焼成して AlO(OH)とした時の比表面積は 25
6m2/gであった。
The aluminum hydroxide polycrystal had an average primary particle diameter of 8 μm, an average secondary particle diameter of 20 μm, grains were hexagonal plate-like, and the aspect ratio was about 2.
The specific surface area of AlO (OH) after firing at 400 ℃ is 25
It was 6 m 2 / g.

【0025】この水酸化アルミニウム多結晶体からなる
粉末 120gに対し、所定濃度のジニトロジアンミン白金
水溶液の所定量を含浸させ、蒸発乾固後、大気中にて 1
20℃で2時間乾燥し 400℃で2時間焼成した。Ptの担持
量は2gである。得られた触媒粉末を圧粉成形して、
0.5mm〜 1.7mmのペレット触媒とした。
120 g of this aluminum hydroxide polycrystal powder was impregnated with a predetermined amount of a dinitrodiammineplatinum aqueous solution having a predetermined concentration, evaporated to dryness, and then dried in air.
It was dried at 20 ° C for 2 hours and calcined at 400 ° C for 2 hours. The amount of Pt supported is 2 g. The obtained catalyst powder is compacted,
The pellet catalyst was 0.5 mm to 1.7 mm.

【0026】上記で調製された触媒粉末の説明図を図1
に、後述の耐久試験と同様の試験後の触媒粉末のTEM
写真を図2に示す。図2は粉末を樹脂に埋めてFIBに
て薄くスライスした試料の写真である。灰色の部分は水
酸化アルミニウム多結晶体から形成されたχ−アルミナ
多結晶体であり、黒い点がPt粒子であって、図2におけ
る5mmが 100nmである。
An explanatory view of the catalyst powder prepared above is shown in FIG.
In addition, TEM of the catalyst powder after the same test as the durability test described below.
The photograph is shown in FIG. FIG. 2 is a photograph of a sample in which the powder is embedded in a resin and thinly sliced by FIB. The gray part is the χ-alumina polycrystal formed from the aluminum hydroxide polycrystal, the black dots are Pt particles, and 5 mm in FIG. 2 is 100 nm.

【0027】水酸化アルミニウム多結晶体1は六角板状
のグレイン10がいろいろの方位をもって集合してなり、
グレイン10どうしの結晶境界11が多数存在している。そ
して図2から、Pt粒子2は直線状に担持されているのが
確認され、Pt粒子2は結晶境界11に担持されていると考
えられる。
The aluminum hydroxide polycrystal 1 is composed of hexagonal plate-shaped grains 10 aggregated in various directions.
There are many crystal boundaries 11 between the grains 10. From FIG. 2, it was confirmed that the Pt particles 2 were supported linearly, and it is considered that the Pt particles 2 are supported on the crystal boundary 11.

【0028】(実施例2)実施例1の水酸化アルミニウ
ム多結晶体からなる粉末を1200℃で焼成してα化し、そ
れに実施例1と同様にしてPtを担持し、ペレット触媒と
した。このα−アルミナ多結晶体は、平均一次粒子径が
8μm、平均二次粒子径が20μm、比表面積は8m2
g、グレインは六角板状をなしそのアスペクト比は約2
であった。またTEM観察の結果、Ptは結晶境界に担持
されていることが確認された。
(Example 2) A powder of the aluminum hydroxide polycrystal of Example 1 was fired at 1200 ° C to be converted into α, and Pt was carried thereon in the same manner as in Example 1 to obtain a pellet catalyst. This α-alumina polycrystal has an average primary particle size of 8 μm, an average secondary particle size of 20 μm, and a specific surface area of 8 m 2 /
g, the grain has a hexagonal plate shape and its aspect ratio is about 2
Met. As a result of TEM observation, it was confirmed that Pt was supported on the crystal boundary.

【0029】(比較例)市販のγ−アルミナ粉末(「 M
I386」グレース(株)製)を用意し、実施例1と同様に
してPtを担持し、ペレット触媒とした。このγ−アルミ
ナ粉末は、平均一次粒子径(針状の長さ方向)が10nm、
平均二次粒子径が4μm、比表面積が 150〜 200m2/g
である。またTEM観察の結果、Ptは全体に均一に高分
散担持されていることが確認された。
Comparative Example Commercially available γ-alumina powder (“M
“I386” Grace Co., Ltd. was prepared, and Pt was loaded in the same manner as in Example 1 to obtain a pellet catalyst. This γ-alumina powder has an average primary particle diameter (needle length direction) of 10 nm,
Average secondary particle size 4μm, specific surface area 150-200m 2 / g
Is. As a result of TEM observation, it was confirmed that Pt was uniformly and highly dispersed and supported on the entire surface.

【0030】<試験・評価>実施例及び比較例のペレッ
ト触媒について、それぞれ大気中にて 800℃で5時間加
熱する耐久試験を行った。そして耐久試験後の各ペレッ
ト触媒を評価装置に配置し、表1に示すストイキ雰囲気
のモデルガス流通下にて、空間速度SV=40万/hで、 5
00℃×20分の前処理後20℃/分で連続昇温して、その間
のHC,CO及びNOx 浄化率を連続的に測定した。この結果
からHC,CO及びNOx の50%浄化温度を算出し、結果を図
3に示す。
<Test / Evaluation> Each of the pellet catalysts of Examples and Comparative Examples was subjected to a durability test of heating in air at 800 ° C. for 5 hours. Then, each pellet catalyst after the durability test was placed in the evaluation device, and under the model gas flow in the stoichiometric atmosphere shown in Table 1, at a space velocity SV of 400,000 / h, 5
After pretreatment at 00 ° C for 20 minutes, the temperature was continuously raised at 20 ° C / minute, and HC, CO and NO x purification rates during that period were continuously measured. From this result, 50% purification temperature of HC, CO and NO x was calculated, and the result is shown in FIG.

【0031】なお実施例1の触媒では、耐久試験によっ
て水酸化アルミニウムがχ−アルミナとなったが、水酸
化アルミニウム多結晶体の多結晶構造はそのまま維持さ
れていた。そして耐久試験後の各担体の比表面積は、χ
−アルミナ多結晶体が 100m2/g、α−アルミナ多結晶
体が1〜30m2/g、γ−アルミナが 150〜 200m2/gで
あった。
In the catalyst of Example 1, the aluminum hydroxide was changed to χ-alumina by the durability test, but the polycrystalline structure of the aluminum hydroxide polycrystal was maintained as it was. The specific surface area of each carrier after the durability test is χ
-Alumina polycrystal was 100 m 2 / g, α-alumina polycrystal was 1 to 30 m 2 / g, and γ-alumina was 150 to 200 m 2 / g.

【0032】[0032]

【表1】 [Table 1]

【0033】また耐久試験後の実施例1及び比較例のペ
レット触媒について、 Al2O3を溶かし、担持されている
Ptの粒径をTEMにて測定した。結果を図4に示す。
Further, the pellet catalysts of Example 1 and Comparative Example after the durability test were loaded with Al 2 O 3 dissolved therein.
The particle size of Pt was measured by TEM. The results are shown in Fig. 4.

【0034】図3より、比較例の触媒は耐久試験後の活
性が低いのに対し、各実施例の触媒は比表面積が小さい
にも関わらず耐久試験後にも高い活性を示している。ま
た、実施例1の触媒より実施例2の触媒の方が高い活性
を示している。そして図4から、比較例の触媒は耐久試
験後にPtが大きく粒成長しているのに対し、実施例1の
触媒は耐久試験後にもPtは微細な粒径を維持している。
From FIG. 3, the catalyst of the comparative example has a low activity after the durability test, while the catalysts of the respective examples show a high activity even after the durability test despite the small specific surface area. Further, the catalyst of Example 2 exhibits higher activity than the catalyst of Example 1. From FIG. 4, the catalyst of the comparative example shows large Pt particle growth after the durability test, whereas the catalyst of Example 1 maintains a fine Pt particle size even after the durability test.

【0035】すなわち比較例の触媒では、Ptの粒成長に
よって活性が低下したと認められ、実施例の触媒ではPt
の粒成長が抑制されたため活性の低下が抑制されたと認
められる。これは、多結晶体のグレインの結晶境界に貴
金属を担持した効果であることが明らかである。
That is, it was recognized that the activity of the catalyst of the comparative example was lowered by the grain growth of Pt, and that of the catalyst of the example was Pt.
It is considered that the decrease in the activity was suppressed because the grain growth of was suppressed. It is clear that this is an effect of supporting the noble metal on the crystal boundaries of the grains of the polycrystalline body.

【0036】(実施例3)実施例1と同様にして調製さ
れ、上記と同様に耐久試験を行った後の触媒粉末のTE
M写真を図5に示す。図5は粉末を樹脂に埋めてFIB
にて薄くスライスした試料の写真である。灰色の部分は
水酸化アルミニウム多結晶体から形成されたχ−アルミ
ナ多結晶体であり、黒い点がPt粒子であって、図5にお
ける5mmが100nmである。
(Example 3) TE of a catalyst powder prepared in the same manner as in Example 1 and subjected to the durability test as described above
The M photograph is shown in FIG. Fig. 5 shows FIB by filling powder with resin.
It is a photograph of a sample thinly sliced at. The gray part is the χ-alumina polycrystal formed from the aluminum hydroxide polycrystal, the black dots are Pt particles, and 5 mm in FIG. 5 is 100 nm.

【0037】図5から、直線状の隙間に担持されている
Pt粒子は結晶境界に担持されていると考えられ、その隙
間と交差するように担持されているPt粒子は内部欠陥に
担持されていると考えられる。
From FIG. 5, it is carried in a linear gap.
It is considered that the Pt particles are supported on the crystal boundary, and the Pt particles supported so as to intersect the gap are considered to be supported on the internal defect.

【0038】そして図5は図2と同一倍率の写真であ
り、図5のPt粒子の粒径は図2と同等であるので、内部
欠陥に担持されたPtも結晶境界に担持されたPtと同様に
粒成長が抑制されていることが明らかである。
FIG. 5 is a photograph at the same magnification as FIG. 2. Since the particle size of the Pt particles in FIG. 5 is the same as that in FIG. 2, the Pt supported on the internal defect is also the Pt supported on the crystal boundary. Similarly, it is clear that grain growth is suppressed.

【0039】[0039]

【発明の効果】すなわち本発明の排ガス浄化用触媒によ
れば、貴金属の粒成長が防止され、耐熱耐久性に優れて
いる。
[Effects of the Invention] That is, according to the catalyst for purifying exhaust gas of the present invention, the growth of precious metal particles is prevented and the heat resistance and durability are excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の触媒の模式的断面図である。FIG. 1 is a schematic sectional view of a catalyst of Example 1.

【図2】実施例1の触媒の粒子構造を示すTEM写真で
ある。
2 is a TEM photograph showing the particle structure of the catalyst of Example 1. FIG.

【図3】実施例及び比較例の触媒の耐久後の50%浄化温
度を示すグラフである。
FIG. 3 is a graph showing the 50% purification temperature after durability of the catalysts of Examples and Comparative Examples.

【図4】実施例及び比較例の触媒の耐久後のPt粒径を示
すグラフである。
FIG. 4 is a graph showing Pt particle size after durability of the catalysts of Examples and Comparative Examples.

【図5】実施例3の触媒の粒子構造を示すTEM写真で
ある。
5 is a TEM photograph showing the particle structure of the catalyst of Example 3. FIG.

【符号の説明】[Explanation of symbols]

1:水酸化アルミニウム多結晶体 2:Pt粒子
10:グレイン 11:結晶境界
1: Aluminum hydroxide polycrystal 2: Pt particles
10: Grain 11: Crystal boundary

フロントページの続き Fターム(参考) 4D048 AA06 AA13 AA18 AB05 BA03X BA30X BA31Y BA32Y BA33Y BA41X BB01 4G069 AA01 AA03 BA01A BA01B BB04A BC69A BC70A BC71A BC72A BC74A BC75A BC75B CA03 CA09 EA02Y EB18Y EC22X EC22Y Continued front page    F-term (reference) 4D048 AA06 AA13 AA18 AB05 BA03X                       BA30X BA31Y BA32Y BA33Y                       BA41X BB01                 4G069 AA01 AA03 BA01A BA01B                       BB04A BC69A BC70A BC71A                       BC72A BC74A BC75A BC75B                       CA03 CA09 EA02Y EB18Y                       EC22X EC22Y

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属水酸化物多結晶体及び金属酸化物多
結晶体の少なくとも一方よりなる担体と、該担体のグレ
インどうしの結晶境界に担持された貴金属と、よりなる
ことを特徴とする排ガス浄化用触媒。
1. Exhaust gas comprising: a carrier comprising at least one of a metal hydroxide polycrystal and a metal oxide polycrystal, and a noble metal carried on a crystal boundary between grains of the carrier. Purification catalyst.
【請求項2】 貴金属は前記担体の内部欠陥にも担持さ
れている請求項1に記載の排ガス浄化用触媒。
2. The exhaust gas-purifying catalyst according to claim 1, wherein the noble metal is also supported on internal defects of the carrier.
【請求項3】 前記担体は、水酸化アルミニウム多結晶
体及びγ−アルミナを除くアルミナ多結晶体の少なくと
も一方である請求項1又は請求項2に記載の排ガス浄化
用触媒。
3. The exhaust gas purifying catalyst according to claim 1 or 2, wherein the carrier is at least one of an aluminum hydroxide polycrystal and an alumina polycrystal excluding γ-alumina.
【請求項4】 前記担体はα−アルミナ多結晶体である
請求項3に記載の排ガス浄化用触媒。
4. The exhaust gas-purifying catalyst according to claim 3, wherein the carrier is an α-alumina polycrystal.
JP2002196299A 2001-10-22 2002-07-04 Exhaust gas purification catalyst Expired - Fee Related JP3879992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002196299A JP3879992B2 (en) 2001-10-22 2002-07-04 Exhaust gas purification catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001323323 2001-10-22
JP2001-323323 2001-10-22
JP2002196299A JP3879992B2 (en) 2001-10-22 2002-07-04 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2003200047A true JP2003200047A (en) 2003-07-15
JP3879992B2 JP3879992B2 (en) 2007-02-14

Family

ID=27666330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196299A Expired - Fee Related JP3879992B2 (en) 2001-10-22 2002-07-04 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3879992B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016193295A1 (en) * 2015-06-03 2016-12-08 IFP Energies Nouvelles Catalyst comprising a porous support, the pores of which contain metal particles having a "sea urchin" morphology
WO2023151688A1 (en) * 2022-02-14 2023-08-17 有研稀土高技术有限公司 Catalyst for loading noble metal on grain boundary and surface, preparation method therefor, and use thereof
WO2023151687A1 (en) * 2022-02-14 2023-08-17 有研稀土高技术有限公司 Grain boundary and surface-supported noble metal catalyst, and preparation method therefor and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016193295A1 (en) * 2015-06-03 2016-12-08 IFP Energies Nouvelles Catalyst comprising a porous support, the pores of which contain metal particles having a "sea urchin" morphology
FR3036979A1 (en) * 2015-06-03 2016-12-09 Ifp Energies Now CATALYST COMPRISING A POROUS CARRIER IN WHICH ARE METALLIC PARTICLES HAVING "OURSIN" TYPE MORPHOLOGY.
WO2023151688A1 (en) * 2022-02-14 2023-08-17 有研稀土高技术有限公司 Catalyst for loading noble metal on grain boundary and surface, preparation method therefor, and use thereof
WO2023151687A1 (en) * 2022-02-14 2023-08-17 有研稀土高技术有限公司 Grain boundary and surface-supported noble metal catalyst, and preparation method therefor and application thereof

Also Published As

Publication number Publication date
JP3879992B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
JP4006976B2 (en) Composite oxide powder, method for producing the same and catalyst
US8389435B2 (en) Metal oxide catalyst carrier particle and exhaust gas purification catalyst
JP4165442B2 (en) Metal oxide particles, production method thereof, and exhaust gas purification catalyst
JP4179299B2 (en) Catalyst carrier powder and exhaust gas purification catalyst
JP3575307B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH0838897A (en) Production of exhaust gas purifying catalyst
JPH10286462A (en) Catalyst of purifying exhaust gas
JP2007307485A (en) Nox storage reduction type catalyst
JP3297825B2 (en) Exhaust gas purification catalyst
JP5827567B2 (en) Method for producing catalyst carrier or catalyst
JP4165441B2 (en) Method for producing exhaust gas purification catalyst
JP2005314133A (en) Method for producing metal oxide particle
EP2177265A1 (en) Catalyst carrier and exhaust gas purifying catalyst
WO2020256058A1 (en) Catalyst material for methane removal
WO2007122917A1 (en) Exhaust gas purifying catalyst and method for producing same
JP2006205002A (en) Catalyst for cleaning exhaust gas
JPH064132B2 (en) Integrated catalyst carrier for exhaust gas purification
JP3879992B2 (en) Exhaust gas purification catalyst
JP2007301471A (en) Catalyst for cleaning exhaust gas
JP4830293B2 (en) Composite oxide, method for producing the same, and catalyst for purification of exhaust gas
JP4775953B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JP4259253B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2000051700A (en) Exhaust emission purifying catalyst and its production
JP2010269260A (en) Alumina carrier for exhaust gas purification catalyst, method of producing the alumina carrier, and catalyst for exhaust gas purification
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees