JPH064132B2 - Integrated catalyst carrier for exhaust gas purification - Google Patents

Integrated catalyst carrier for exhaust gas purification

Info

Publication number
JPH064132B2
JPH064132B2 JP61082285A JP8228586A JPH064132B2 JP H064132 B2 JPH064132 B2 JP H064132B2 JP 61082285 A JP61082285 A JP 61082285A JP 8228586 A JP8228586 A JP 8228586A JP H064132 B2 JPH064132 B2 JP H064132B2
Authority
JP
Japan
Prior art keywords
catalyst
alumina
carrier
catalyst carrier
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61082285A
Other languages
Japanese (ja)
Other versions
JPS62241552A (en
Inventor
隆男 河合
良一郎 相原
真康 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYATARA KOGYO KK
Original Assignee
KYATARA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYATARA KOGYO KK filed Critical KYATARA KOGYO KK
Priority to JP61082285A priority Critical patent/JPH064132B2/en
Publication of JPS62241552A publication Critical patent/JPS62241552A/en
Publication of JPH064132B2 publication Critical patent/JPH064132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、炭化水素(HC)、一酸化炭素(CO)、および酸
化窒素(NOx)の無害化に使用するための一体型触媒担体
に関し、特に、自動車排気ガスおよび固定型エンジン排
気ガスの浄化に使用する触媒担体に関する。
Description: TECHNICAL FIELD The present invention relates to an integrated catalyst carrier for use in detoxification of hydrocarbon (HC), carbon monoxide (CO), and nitric oxide (NO x ). In particular, the present invention relates to a catalyst carrier used for purifying automobile exhaust gas and stationary engine exhaust gas.

[従来の技術] 一体型構造担体(モノリス担体)には、材質、形状、製
法につき各種あるが、一般的にはコーニング社製、日本
碍子株式会社製のコーディエライト質、角型セルのモノ
リス担体が多く使用されている。このコーディエライト
質モノリス担体は、比表面積が約1m2/gと非常に小さ
いので、貴金属のような触媒金属を担持しても、担体表
面上へ分散させることができない。その結果、初期性
能、耐久性能がともに劣る触媒しか得られず、このまま
担体として使用するには実用性がない。そこで従来、上
記欠点を解決するために、モノリス担体に、活性アルミ
ナ被膜を形成せしめ、比表面積を増大させて触媒金属の
分散性を向上させ、性能を良好にすることが行なわれて
いる。
[Prior Art] There are various types of monolithic structured carriers (materials, shapes, and manufacturing methods), but generally they are cordierite-made and rectangular cell monoliths manufactured by Corning Incorporated and Nippon Insulators Co., Ltd. Carriers are often used. Since this cordierite monolithic carrier has a very small specific surface area of about 1 m 2 / g, it cannot be dispersed on the surface of the carrier even if it carries a catalytic metal such as a noble metal. As a result, only a catalyst having poor initial performance and durability is obtained, and it is not practical to use it as a carrier as it is. Therefore, in order to solve the above-mentioned drawbacks, conventionally, an active alumina coating is formed on the monolith carrier to increase the specific surface area to improve the dispersibility of the catalyst metal and improve the performance.

従来、このアルミナ被膜に使用される活性アルミナは、
特公昭56−27295号公報にみるごとく、約50m2
/g以上の比表面積を有しており、一般的にα,θ−ア
ルミナを除く、活性アルミナ種をさしている。さらに、
その後、特開昭54−148187号公報におけるよう
に、δ−アルミナが主体でχ,γ,κ,θ,ρ−アルミ
ナが一部という構成のものが示され、又、特開昭58−
30333号公報においてはα−アルミナとアルミナゾ
ルの1000℃以下の焼成による触媒担体の製法が示さ
れている。1000℃以下の焼成ではアルミナゾルは無
定形を示すのでこの製法によれば、アルミナ被膜はα−
アルミナのみのX線回折結果を示す。
Conventionally, the activated alumina used for this alumina coating is
As shown in Japanese Examined Patent Publication No. 56-27295, about 50 m 2
It has a specific surface area of / g or more and generally refers to activated alumina species excluding α, θ-alumina. further,
After that, as disclosed in JP-A-54-148187, a structure in which δ-alumina is mainly contained and χ, γ, κ, θ, ρ-alumina is partly disclosed, and JP-A-58-58 is also shown.
Japanese Patent No. 30333 discloses a method for producing a catalyst carrier by firing α-alumina and alumina sol at 1000 ° C or lower. Alumina sol exhibits an amorphous form when fired at 1000 ° C. or less, so according to this production method, the alumina coating has an α-
The X-ray-diffraction result of only alumina is shown.

[発明が解決しようとする問題点] 従来の自動車排ガス浄化用触媒に対する要求性能は、触
媒入口ガス温度の上限が800℃前後となっていたこと
から、800℃までの熱耐久性があることであった。し
かしながら、最近の触媒取付け位置の排気管上流部への
移動や高速走行での使用を重視することから、触媒入口
ガス温度の上限が上昇して、900℃前後となってお
り、触媒温度は1000℃程度になっていると考えられ
る。その結果、従来それほど重視されていなかった高温
耐久性が最近、とくに、問題視されるようになった。従
って、従来技術による触媒では、高温耐久性が不十分で
ある。この理由を推測するに、特公昭56−27295
号公報や、特開昭54−148187号公報に示される
活性アルミナ種では、1000℃の高温下では、結晶が
変態を起こし、新品状態では、触媒金属が高分散に担持
されていたにもかかわらず、結果的に、触媒金属のシン
タリングが助長されるものと考えられる。又、特開昭5
8−30333号の発明においては、あらかじめ100
0℃でも結晶が変態しないα−アルミナを使用している
為、その点については良いものと考えられるが、もとも
と、比表面積が、1m2/g以下と低いα−アルミナに、
触媒金属を担持するため高分散に担持されず、性能が不
十分であると考えられる。
[Problems to be Solved by the Invention] Since the upper limit of the catalyst inlet gas temperature is around 800 ° C, the required performance of the conventional automobile exhaust gas purifying catalyst is that the catalyst has thermal durability up to 800 ° C. there were. However, since the recent movement of the catalyst mounting position to the upstream portion of the exhaust pipe and the use at high speed are emphasized, the upper limit of the catalyst inlet gas temperature rises to around 900 ° C., and the catalyst temperature is 1000 ° C. It is thought that the temperature is around ℃. As a result, high-temperature durability, which has not been so much emphasized in the past, has recently become particularly problematic. Therefore, the catalyst according to the prior art has insufficient high temperature durability. To infer the reason for this, Japanese Patent Publication No.
In the activated alumina species disclosed in JP-A-54-148187 and JP-A-54-148187, the crystal undergoes transformation at a high temperature of 1000 ° C., and in the new state, the catalyst metal is supported in a highly dispersed state. Therefore, it is considered that the sintering of the catalytic metal is promoted as a result. Also, JP-A-5
In the invention of 8-30333, 100
Since α-alumina whose crystal does not transform even at 0 ° C is used, it is considered to be good in that respect, but originally, α-alumina having a low specific surface area of 1 m 2 / g or less
Since the catalyst metal is supported, the catalyst metal is not supported in high dispersion and the performance is considered to be insufficient.

[問題点を解決するための手段] 本発明者らは、上記従来技術の問題点を解決すべく鋭意
研究を行なった結果、従来の触媒に比べ、高温耐久性に
すぐれた排ガス浄化用触媒となり得る触媒担体を提供す
ることに成功した。
[Means for Solving Problems] As a result of intensive studies to solve the problems of the above-mentioned conventional techniques, the present inventors have found that the exhaust gas-purifying catalyst is superior in high temperature durability to conventional catalysts. We have succeeded in providing a catalyst carrier that can be obtained.

すなわちこの発明の排ガス浄化用一体型触媒担体は、触
媒金属を担持するための基材上のアルミナコートの活性
アルミナが、X線回折によって同定しうる、α−アルミ
ナおよびθ−アルミナを含み、かつδ−アルミナ、γ−
アルミナ、κ−アルミナ、χ−アルミナおよびρ−アル
ミナから選ばれた少くとも1種を含んだ混合物である。
That is, the integrated catalyst carrier for exhaust gas purification according to the present invention comprises activated alumina having an alumina coat on a substrate for supporting a catalytic metal, which contains α-alumina and θ-alumina, which can be identified by X-ray diffraction, and δ-alumina, γ-
It is a mixture containing at least one selected from alumina, κ-alumina, χ-alumina and ρ-alumina.

この発明において、基材として用いるモノリス担体は、
コージェライト、ムライト等であり、基材の形態は三
角,四角及び波形のセル構造のものがよい。
In this invention, the monolith carrier used as the substrate is
Cordierite, mullite, etc., and the base material preferably has a triangular, square, or corrugated cell structure.

なお、本発明の触媒担体に担持される触媒金属として
は、白金,パラジウムおよびロジウムのうちの少くとも
一種を用いるのが好ましい。
As the catalyst metal supported on the catalyst carrier of the present invention, it is preferable to use at least one of platinum, palladium and rhodium.

[作用] 本発明の触媒担体の活性アルミナは、α−アルミナおよ
びθ−アルミナを含み、かつδ−アルミナ、γ−アルミ
ナ、κ−アルミナ、χ−アルミナおよびρ−アルミナの
うちの少くとも一種を含んだ混合物である。
[Function] The activated alumina of the catalyst carrier of the present invention contains α-alumina and θ-alumina, and contains at least one of δ-alumina, γ-alumina, κ-alumina, χ-alumina and ρ-alumina. It is a mixture containing.

本発明の触媒担体は、十分な比表面積を有するため、十
分に高分散に触媒金属が担持され、それにより高性能の
触媒を与える。しかも、高温下での使用においても、ア
ルミナの結晶変態の触媒金属への影響が小さいので、十
分に耐久性を有する触媒を提供し得るものと考えられ
る。
Since the catalyst carrier of the present invention has a sufficient specific surface area, the catalyst metal is supported in a sufficiently high dispersion, thereby providing a high-performance catalyst. Moreover, even when used under high temperature, the influence of the crystal modification of alumina on the catalyst metal is small, and therefore it is considered that a catalyst having sufficient durability can be provided.

本発明の触媒担体においては、50m2/g以上の比表面
積を有する活性アルミナであるδ,γ,κ,χ,ρ−ア
ルミナのうちいずれかが十分に存在するので、低比表面
積のαまたはθ−アルミナが存在しても十分な比表面積
(約30m2/g以上)を有する触媒担体が得られ、しか
もその担体に貴金属を十分に高分散に担持することがで
きる。さらに高温下において、貴金属がほとんど担持さ
れていないα−またはθ−アルミナが含まれているため
に、アルミナの変態による貴金属への影響が少く、また
貴金属が高分散に担持されているため貴金属間の粒成長
も少く、十分な耐久性を有する触媒を提供し得るものと
考えられる。
In the catalyst carrier of the present invention, one of δ, γ, κ, χ, ρ-alumina, which is an activated alumina having a specific surface area of 50 m 2 / g or more, is sufficiently present, and therefore, α having a low specific surface area or Even if θ-alumina is present, a catalyst carrier having a sufficient specific surface area (about 30 m 2 / g or more) can be obtained, and a noble metal can be supported on the carrier in a sufficiently high dispersion. Furthermore, at high temperature, since the α- or θ-alumina, in which the precious metal is hardly supported, is contained, the influence of the transformation of alumina on the precious metal is small, and since the precious metal is supported in a highly dispersed state, the It is considered that the catalyst can provide a catalyst having sufficient durability and a small grain growth.

[実施例] 実施例1 平均粒子形15μで比表面積が約100m2/gの活性ア
ルミナ粉末1kgと、この粉末を空気中1200℃で3時
間焼成したアルミナ粉末(比表面積が5m2/g以下を示
した)1kgと、硝酸アルミニウム9水和物120gと、
イオン交換水580gと、日産化学社製アルミナゾル(商
品名AS-200)1400gとをヤマト製ラポスターラーで
3時間以上混合攪拌し、スラリーを調製した。このスラ
リーはpH4.1で、粘度はB型粘度計で320c.p.s.であ
った。
Example 1 1 kg of activated alumina powder having an average particle size of 15μ and a specific surface area of about 100 m 2 / g and alumina powder obtained by firing this powder at 1200 ° C. for 3 hours (having a specific surface area of 5 m 2 / g or less) 1 kg, and 120 g of aluminum nitrate nonahydrate,
580 g of ion-exchanged water and 1400 g of alumina sol (trade name AS-200) manufactured by Nissan Chemical Co., Ltd. were mixed and stirred for 3 hours or more with a LaPoster manufactured by Yamato to prepare a slurry. The slurry had a pH of 4.1 and a viscosity of 320 c.ps as measured by a Brookfield viscometer.

次に400個セル/インチ2を有する円筒形状のコージ
ェライトで形成されるハニカム状モノリス担体(日本碍
子社製で直径93mm、長さ100mm、体積0.679)を
水中に浸し、十分に吸水させたのち取り出し、セル内に
残った水を空気流で吹きはらった。先に調製したスラリ
ー中に、この吸水させた担体を15分間浸漬してから取
り出し、セル内の過剰のスラリーを空気流を用いて吹き
はらった。このようにしてスラリーが付着した担体を、
5時間乾燥して、さらに電気炉を用いて空気中700℃
で1時間焼成して68gのコーティング被膜を担体に形
成させた。このようなコーティング操作をくり返し全量
で135gの被膜を担体に形成させ、触媒担体を得た。
この担体の被膜をけずり落し、これをX線回折すると、
γ,θ,δさらにα−アルミナが検出された。
Next, a honeycomb-shaped monolithic carrier (diameter 93 mm, length 100 mm, volume 0.679, manufactured by Nippon Insulators Co., Ltd.) formed of a cylindrical cordierite having 400 cells / inch 2 was immersed in water to sufficiently absorb water. It was taken out and the water remaining in the cell was blown with an air stream. This water-absorbed carrier was immersed in the previously prepared slurry for 15 minutes and then taken out, and the excess slurry in the cell was blown with an air stream. In this way, the carrier with the slurry attached,
After drying for 5 hours, 700 ° C in air using an electric furnace
After baking for 1 hour, 68 g of coating film was formed on the carrier. The coating operation was repeated to form a total of 135 g of coating film on the carrier to obtain a catalyst carrier.
When the coating of this carrier is scraped off and this is X-ray diffracted,
γ, θ, δ and α-alumina were detected.

つぎに、この触媒担体を白金アンミン水溶液中に浸漬
し、触媒担体に触媒金属の白金を吸着させたのち、80
℃で温風乾燥を1時間行って、さらに250℃で1時間
乾燥し、引きつづき塩化ロジウム水溶液中に触媒担体を
浸漬させて触媒担体に触媒金属のロジウムを吸着させた
のち、80℃で温風乾燥を行い触媒Aを得た。この触媒
の貴金属量を定量分析すると白金が1.0g/−触媒、
ロジウムが0.1g/−触媒であった。
Next, this catalyst carrier was immersed in an aqueous solution of platinum ammine to adsorb the catalytic metal platinum, and then 80
Drying with warm air at ℃ for 1 hour, then further drying at 250 ℃ for 1 hour, and then immersing the catalyst carrier in the rhodium chloride aqueous solution to adsorb the catalyst metal rhodium on the catalyst carrier, then heat at 80 ℃. Air drying was performed to obtain catalyst A. Quantitative analysis of the amount of precious metal in this catalyst showed that platinum was 1.0 g / -catalyst,
Rhodium was 0.1 g / -catalyst.

実施例2 平均粒子径16μで比表面積が約50m2/gの活性アル
ミナ粉末1kgと、実施例1で用いた1200℃焼成アル
ミナ粉末(比表面積が5m2/g以下)1kgと、硝酸アル
ミニウム9水和物120gと、イオン交換水530g
と、日産化学社製アルミナゾル(商品名AS-200)140
0gとを、ヤマト型ラポスターラーで3時間以上混合攪
拌し、スラリーを調製した。このスラリーはpH4.1で、
粘度はB型粘度計で280c.p.s.であった。
Example 2 1 kg of activated alumina powder having an average particle size of 16 μ and a specific surface area of about 50 m 2 / g, 1200 kg of 1200 ° C. calcined alumina powder (specific surface area of 5 m 2 / g or less) used in Example 1, and aluminum nitrate 9 120 g of hydrate and 530 g of deionized water
Alumina sol (trade name AS-200) manufactured by Nissan Chemical Co., Ltd. 140
0 g was mixed and stirred with a Yamato-type Laposterer for 3 hours or more to prepare a slurry. This slurry has a pH of 4.1,
The viscosity was 280 c.ps with a Brookfield viscometer.

このようにして調製したスラリーを用いて、実施例1と
同様にモノリス担体にコーティング被膜を形成させ、触
媒担体を得た。その被膜をX線回折するとθ,δさらに
α−アルミナが検出された。
Using the slurry thus prepared, a coating film was formed on the monolith carrier in the same manner as in Example 1 to obtain a catalyst carrier. When the coating was subjected to X-ray diffraction, θ, δ and α-alumina were detected.

つぎに実施例1同様に、この触媒担体に触媒金属の白金
およびロジウムを吸着させ、触媒Bを得た。この白金量
およびロジウム量は、分析の結果実施例1と同じ1.0g
Pt/−触媒、0.1gRh/−触媒であった。
Next, in the same manner as in Example 1, the catalyst metals platinum and rhodium were adsorbed on this catalyst carrier to obtain catalyst B. The amount of platinum and the amount of rhodium were 1.0 g, which was the same as in Example 1 as a result of the analysis.
It was Pt / -catalyst and 0.1 gRh / -catalyst.

実施例3 住友アルミニウム製錬社製のアルミナ(商品名KHA 46)
を安川製作所製バイブロミルにより微粉砕して平均粒子
径が12μの活性アルミナ粉末(この比表面積は約12
0m2/gであった)1kgと、実施例1で用いた1200
℃焼成アルミナ粉末(比表面積が5m2/g以下)1
kgと、硝酸アルミニウム9水和物120gと、イオン交
換水580gと、アルミナゾル(商品名AS-200)1400
gとをヤマト製ラボスターラーで3時間以上混合攪拌し
スラリーを調製した。このスラリーはpH4.5で粘度は4
10c.p.sであった。このように調製したスラリを用い
て、実施例1と同様にモノリス担体にコーティング被膜
を形成させ、触媒担体を得た。この被膜をX線回折する
とκ,χ,ρ,θ,δ,α−アルミナが検出された。
Example 3 Alumina (trade name KHA 46) manufactured by Sumitomo Aluminum Smelting Co., Ltd.
Was finely pulverized with a vibro mill manufactured by Yasukawa Seisakusho, and activated alumina powder with an average particle diameter of 12μ (this specific surface area is about 12
1 kg, which was 0 m 2 / g) and 1200 used in Example 1.
℃ calcined alumina powder (specific surface area 5 m 2 / g or less) 1
kg , 120 g of aluminum nitrate nonahydrate, 580 g of ion-exchanged water, alumina sol (trade name AS-200) 1400
g was mixed and stirred with a Yamato lab stirrer for 3 hours or more to prepare a slurry. This slurry has a pH of 4.5 and a viscosity of 4
It was 10 c.ps. Using the slurry thus prepared, a coating film was formed on the monolith carrier in the same manner as in Example 1 to obtain a catalyst carrier. X-ray diffraction of this coating detected κ, χ, ρ, θ, δ, α-alumina.

つぎに実施例1同様に、この触媒担体に触媒金属の白金
およびロジウムを吸着させ、触媒Cを得た。定量分析の
結果、実施例1と同様の白金およびロジウム量であっ
た。
Next, in the same manner as in Example 1, the catalyst metals platinum and rhodium were adsorbed on this catalyst carrier to obtain catalyst C. As a result of the quantitative analysis, the amounts of platinum and rhodium were the same as in Example 1.

実施例4 平均粒子径15μで比表面積が約100m2/gの活性アル
ミナ粉末400gと、実施例1で用いた1200℃焼成
アルミナ粉末(比表面積が5m2/g以下)1600g
と、硝酸アルミニウム9水和物120gと、イオン交換
水580gと、アルミナゾル(商品名AS-200)1400
gとをヤマト製ラボスターラーで3時間以上混合攪拌
し、スラリーを調製した。このスラリーはpH4.2で粘度
はB型粘度計で265c.p.sであった。このように調製
したスラリーを用いて、実施例1と同様にモノリス担体
にコーティング被膜を形成させ、触媒担体を得た。その
被膜をX線回折すると実施例1と同様にγ,θ,δ,さ
らにα−アルミナが検出された。次に実施例1と同様に
触媒担体に触媒金属の白金およびロジウムを吸着させ、
触媒Dを得た。定量分析の結果、実施例1と同様の白金
およびロジウム量であった。
Example 4 400 g of activated alumina powder having an average particle diameter of 15 μm and a specific surface area of about 100 m 2 / g, and 1,600 g of 1200 ° C. calcined alumina powder used in Example 1 (specific surface area of 5 m 2 / g or less)
120 g of aluminum nitrate nonahydrate, 580 g of ion-exchanged water, and alumina sol (trade name AS-200) 1400
g was mixed and stirred with a Yamato Lab Stirrer for 3 hours or more to prepare a slurry. This slurry had a pH of 4.2 and a viscosity of 265 c.ps as measured by a Brookfield viscometer. Using the slurry thus prepared, a coating film was formed on the monolith carrier in the same manner as in Example 1 to obtain a catalyst carrier. When the coating was subjected to X-ray diffraction, γ, θ, δ and α-alumina were detected as in Example 1. Next, in the same manner as in Example 1, the catalyst metals platinum and rhodium were adsorbed on the catalyst carrier,
Catalyst D was obtained. As a result of the quantitative analysis, the amounts of platinum and rhodium were the same as in Example 1.

比較例1 平均粒子径15μで比表面積が約100m2/gの活性ア
ルミナ粉末2kgと、硝酸アルミニウム9水和物120g
と、イオン交換水580gと、アルミナゾル(商品名AS
-200)1400gとをヤマト製ラボスターラーで3時間
以上混合攪拌しスラリーを調製した。このスラリーはpH
4.0で粘度はB型粘度計で300c.p.sであった。このよ
うに調製したスラリーを用いて、実施例1と同様にモノ
リス担体にコーティング被膜を形成させ、触媒担体を得
た。この被膜をX線回折するとγ−アルミナのみが検出
された。
Comparative Example 1 2 kg of activated alumina powder having an average particle diameter of 15 μ and a specific surface area of about 100 m 2 / g, and 120 g of aluminum nitrate nonahydrate
And 580 g of ion-exchanged water and alumina sol (trade name AS
-200) and 1400 g were mixed and stirred with a Yamato Lab Stirrer for 3 hours or more to prepare a slurry. This slurry has a pH
At 4.0 the viscosity was 300 c.ps on a B type viscometer. Using the slurry thus prepared, a coating film was formed on the monolith carrier in the same manner as in Example 1 to obtain a catalyst carrier. When this coating was subjected to X-ray diffraction, only γ-alumina was detected.

次に実施例1と同様に触媒金属の白金を1.0g/−触
媒さらにロジウムを0.1g/−触媒、触媒担体に吸着
させ、触媒Eを得た。
Next, as in Example 1, 1.0 g / -catalyst of catalytic metal and 0.1 g / -rhodium of rhodium were adsorbed on the catalyst carrier to obtain catalyst E.

比較例2 平均粒子径16μで比表面積が50m2/gの活性アルミ
ナ粉末2kgと、硝酸アルミニウム9水和物120gと、
イオン交換水530gと、アルミナゾル(商品名AS-20
0)1400gとを、実施例1と同様に混合攪拌し、ス
ラリーを調製した。このスラリーを用いて実施例1と同
様にモノリス担体にコーティング被膜を形成させて触媒
担体を得た。この担体の被膜をX線回折するとθ,δ−
アルミナが検出された。次に実施例1と同様に白金を1.
0g/−触媒、ロジウムを0.1g/−触媒、触媒担体
に吸着させ、触媒Fを得た。
Comparative Example 2 2 kg of activated alumina powder having an average particle diameter of 16 μ and a specific surface area of 50 m 2 / g, and 120 g of aluminum nitrate nonahydrate,
530g of deionized water and alumina sol (trade name AS-20
0) 1400 g was mixed and stirred in the same manner as in Example 1 to prepare a slurry. Using this slurry, a coating film was formed on the monolith carrier in the same manner as in Example 1 to obtain a catalyst carrier. X-ray diffraction of the coating of this carrier results in θ, δ-
Alumina was detected. Then, platinum was added to 1.
Catalyst F was obtained by adsorbing 0 g / -catalyst and rhodium on 0.1 g / -catalyst and a catalyst carrier.

比較例3 実施例3で用いたアルミナ(商品名KHA-46)を微粉砕し
た活性アルミナ粉末(平均粒子径12μで比表面積が12
0m2/g)2kgと、硝酸アルミニウム9水和物120g
と、イオン交換水580gと、アルミナゾル(商品名AS
-200)1400gとを実施例1と同様に混合攪拌してス
ラリーを調製した。このスラリーを用いて実施例1と同
様にモノリス担体にコーティング被膜を形成させて触媒
担体を得た。この担体の被膜をX線回折するとκ,χ,
ρ−アルミナが検出された。次に実施例1と同様に白金
を1.0g/−触媒、ロジウムを0.1g/−触媒、触媒
担体に吸着させ、触媒Gを得た。
Comparative Example 3 Activated alumina powder obtained by finely pulverizing the alumina (trade name KHA-46) used in Example 3 (having an average particle diameter of 12 μ and a specific surface area of 12).
0 m 2 / g) 2 kg and aluminum nitrate nonahydrate 120 g
And 580 g of ion-exchanged water and alumina sol (trade name AS
-200) and 1400 g were mixed and stirred in the same manner as in Example 1 to prepare a slurry. Using this slurry, a coating film was formed on the monolith carrier in the same manner as in Example 1 to obtain a catalyst carrier. X-ray diffraction of the coating of this carrier gives κ, χ,
ρ-alumina was detected. Then, platinum was adsorbed on 1.0 g / -catalyst and rhodium on 0.1 g / -catalyst in the same manner as in Example 1 to obtain a catalyst G.

比較例4 平均粒子径15μで比表面積が約100m2/gの活性ア
ルミナ粉末を1200℃で3時間焼成したアルミナ粉末
(比表面積が5m2/g以下)2kgと、硝酸アルミニウム
9水和物120gと、イオン交換水580gとアルミナ
ゾル(商品名AS-200)1400gとを実施例1と同様に
混合攪拌してスラリーを調製した。
Comparative Example 4 2 kg of alumina powder (specific surface area of 5 m 2 / g or less) obtained by firing activated alumina powder having an average particle diameter of 15 μ and a specific surface area of about 100 m 2 / g for 3 hours at 1200 ° C. and 120 g of aluminum nitrate nonahydrate. Then, 580 g of ion-exchanged water and 1400 g of alumina sol (trade name AS-200) were mixed and stirred in the same manner as in Example 1 to prepare a slurry.

このスラリーを用いて実施例1と同様にモノリス担体に
コーティング被膜を形成させて触媒担体を得た。この担
体の被膜をX線回折するとθ,α−アルミナが検出し
た。次に実施例1と同様に白金を1.0g/−触媒、ロ
ジウムを0.1g/−触媒、触媒担体に吸着させて触媒
Hを得た。
Using this slurry, a coating film was formed on the monolith carrier in the same manner as in Example 1 to obtain a catalyst carrier. When the coating film of this carrier was subjected to X-ray diffraction, θ, α-alumina was detected. Next, platinum was adsorbed on 1.0 g / -catalyst and rhodium on 0.1 g / -catalyst in the same manner as in Example 1 to obtain a catalyst H.

上記実施例1〜4および比較例1〜4で得られた触媒A
〜Hにつき、原料アルミナの種類および被膜のアルミナ
の形態につき第1表にまとめて示した。
Catalyst A obtained in Examples 1 to 4 and Comparative Examples 1 to 4 above
.About.H, the types of raw material alumina and the form of alumina in the coating are summarized in Table 1.

実施例5および比較例5 実施例1および比較例1において、得られた触媒担体の
夫々を塩化パラジウム水溶液に浸漬し、さらに水素化ホ
ウ素ナトリウムによる還元処理を行ったのち、白金アン
ミン水溶液および塩化ロジウム水溶液に浸漬して、白
金、パラジウム、ロジウムを触媒担体にそれぞれ0.5g
/−触媒、0.5g/−触媒、0.1g/−触媒吸着さ
せ、触媒を得た。
Example 5 and Comparative Example 5 In Example 1 and Comparative Example 1, each of the obtained catalyst carriers was immersed in an aqueous solution of palladium chloride, and further subjected to reduction treatment with sodium borohydride, and then an aqueous solution of platinum ammine and rhodium chloride. Immerse in an aqueous solution to add 0.5g each of platinum, palladium and rhodium to the catalyst carrier.
/ -Catalyst, 0.5 g / -catalyst, 0.1 g / -catalyst was adsorbed to obtain a catalyst.

実施例6および比較例6 実施例1および比較例1で得られた触媒担体の夫々を、
塩化パラジウム水溶液に浸漬し、さらに水素化ホウ素ナ
トリウムによる還元処理を行ったのち、塩化ロジウム水
溶液に浸漬して、パラジウム、ロジウムを触媒担体にそ
れぞれ1.0g/−触媒、0.1g/−触媒吸着させ、触
媒を得た。
Example 6 and Comparative Example 6 Each of the catalyst carriers obtained in Example 1 and Comparative Example 1 was
After being immersed in an aqueous solution of palladium chloride and further subjected to a reduction treatment with sodium borohydride, it is immersed in an aqueous solution of rhodium chloride to adsorb palladium and rhodium on the catalyst carrier at 1.0 g / -catalyst and 0.1 g / -catalyst, respectively. A catalyst was obtained.

触媒耐久性能評価試験結果 耐久試験条件は、排気量3800ccのエンジンにて回転
数3300rpm、ブーストー100mmHg、触媒入ガス温
度890℃、空燃比(A/F)14.5で、50時間触媒を排
気ガスにさらすという条件である。このようにして、耐
久した触媒の性能の評価は、排気量1600ccのエンジ
ンにて、回転数2600rpm、ブーストー360mmHg、
触媒入ガス温度460℃、A/F14.5なる条件で耐久後
の触媒に排気ガスを通じ、炭化水素(HC)、一酸化炭素(C
O)、窒素酸化物(NOx)に対する浄化率を算出することに
より行った。これらの結果を第2表に示した。
Catalyst durability performance evaluation test results The durability test conditions are as follows: engine speed of 3800cc, engine speed 3300rpm, boost 100mmHg, catalyst inlet gas temperature 890 ° C, air-fuel ratio (A / F) 14.5, catalyst exposed to exhaust gas for 50 hours. Is the condition. In this way, the evaluation of the performance of a durable catalyst was carried out on an engine with a displacement of 1600 cc, a rotation speed of 2600 rpm, a boost of 360 mmHg,
Exhaust gas is passed through the catalyst after endurance under the conditions of catalyst inlet gas temperature of 460 ° C and A / F of 14.5, and hydrocarbon (HC), carbon monoxide (C
It was performed by calculating the purification rate for O) and nitrogen oxides (NOx). The results are shown in Table 2.

[発明の効果] 以上の結果から明白のように、本発明の触媒担体は、同
一の触媒金属を担持した従来の触媒担体と比較して、高
温耐久性において非常にすぐれた触媒性能を発揮するこ
とができる。
[Effects of the Invention] As is clear from the above results, the catalyst carrier of the present invention exhibits very excellent catalytic performance in high temperature durability as compared with the conventional catalyst carrier carrying the same catalyst metal. be able to.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基材上のコート層に含有される活性アルミ
ナが、α−アルミナおよびθ−アルミナを含み、かつδ
−アルミナ、γ−アルミナ、κ−アルミナ、χ−アルミ
ナおよびρ−アルミナから選ばれた少くとも1種を含ん
だ混合物からなることを特徴とする排ガス浄化用一体型
触媒担体。
1. The activated alumina contained in the coating layer on the substrate comprises α-alumina and θ-alumina, and δ
An integrated catalyst carrier for exhaust gas purification, which comprises a mixture containing at least one selected from alumina, γ-alumina, κ-alumina, χ-alumina and ρ-alumina.
JP61082285A 1986-04-11 1986-04-11 Integrated catalyst carrier for exhaust gas purification Expired - Fee Related JPH064132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61082285A JPH064132B2 (en) 1986-04-11 1986-04-11 Integrated catalyst carrier for exhaust gas purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61082285A JPH064132B2 (en) 1986-04-11 1986-04-11 Integrated catalyst carrier for exhaust gas purification

Publications (2)

Publication Number Publication Date
JPS62241552A JPS62241552A (en) 1987-10-22
JPH064132B2 true JPH064132B2 (en) 1994-01-19

Family

ID=13770248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61082285A Expired - Fee Related JPH064132B2 (en) 1986-04-11 1986-04-11 Integrated catalyst carrier for exhaust gas purification

Country Status (1)

Country Link
JP (1) JPH064132B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69421796T2 (en) * 1993-09-29 2000-03-09 Honda Motor Co Ltd CATALYST FOR CONTROLLING THE EXHAUST GAS EMISSION AND METHOD FOR THE PRODUCTION THEREOF
US5534475A (en) * 1994-03-02 1996-07-09 Instituto Mexicano Del Petroleo Catalytically active ceramic monoliths for the reduction of leaded gasoline fueled engine pollutants and the production thereof
JP4311918B2 (en) 2002-07-09 2009-08-12 ダイハツ工業株式会社 Method for producing perovskite complex oxide
AU2003281203A1 (en) * 2002-07-09 2004-01-23 Cataler Corporation Catalyst for clarifying exhaust gas
JP4263542B2 (en) * 2002-10-11 2009-05-13 ダイハツ工業株式会社 Method for producing exhaust gas purification catalyst
JP4546046B2 (en) * 2002-10-11 2010-09-15 ダイハツ工業株式会社 Exhaust gas purification catalyst
JP5340211B2 (en) * 2010-03-25 2013-11-13 日立Geニュークリア・エナジー株式会社 Boiling water nuclear power plant
WO2012029090A1 (en) * 2010-08-31 2012-03-08 日立Geニュークリア・エナジー株式会社 Nuclear waste gas recombination catalyst and recombiner
JP5607742B2 (en) * 2010-08-31 2014-10-15 日立Geニュークリア・エナジー株式会社 Nuclear exhaust gas recombination catalyst and recombiner
CN102553596B (en) 2010-12-10 2013-07-31 中国石油天然气股份有限公司 Method for preparing catalyst coating on metal substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235642A (en) * 1984-05-07 1985-11-22 Toyota Motor Corp Preparation of monolithic catalyst for purifying exhaust gas

Also Published As

Publication number Publication date
JPS62241552A (en) 1987-10-22

Similar Documents

Publication Publication Date Title
JP4292005B2 (en) Exhaust gas purification catalyst composition
KR950003111B1 (en) Catalyst support and catalyst for engine flue gas treatment, and process for their production
US5202299A (en) Catalytic washcoat for treatment of diesel exhaust
KR20010043393A (en) Catalytic Material Having Improved Conversion Performance
WO2005102524A1 (en) Metal oxide particle, production process thereof and exhaust gas purifying catalyst
JP2003126694A (en) Catalyst for cleaning exhaust gas
JPH10277394A (en) Automobile exhaust gas catalyst and its preparation
EP1722889A1 (en) Exhaust gas purifying catalyst, metal oxide particle and production process thereof
WO2005102516A1 (en) Exhaust gas purifying catalyst and production process thereof
JPH064132B2 (en) Integrated catalyst carrier for exhaust gas purification
JP4045002B2 (en) Composite oxide and exhaust gas purification catalyst using the same
JPS62282641A (en) Production of catalyst for purifying exhaust gas
JPH0578378B2 (en)
JP3362532B2 (en) Exhaust gas purification catalyst and method for producing the same
WO2021075316A1 (en) Exhaust gas purification catalyst, exhaust gas purification method, and method for producing exhaust gas purification catalyst
JPH0582258B2 (en)
JP2000051700A (en) Exhaust emission purifying catalyst and its production
JP3309711B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH0578379B2 (en)
JPS6320036A (en) Production of catalyst for purifying exhaust gas
JP3879992B2 (en) Exhaust gas purification catalyst
JP3156577B2 (en) Material for exhaust gas purification catalyst and method for producing the same
JP3878766B2 (en) Catalyst carrier and exhaust gas purification catalyst
JPS6377545A (en) Catalyst for purifying exhaust gas
JPH0573461B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees