JP2003197214A - SEPARATOR PLATE MATERIAL MADE OF HIGH STRENGTH Ni GROUP ALLOY FOR SOLID HIGH POLYMER FUEL CELL, HIGH IN CONTACT SURFACE CONDUCTIVITY FOR LONG PERIOD OF TIME - Google Patents

SEPARATOR PLATE MATERIAL MADE OF HIGH STRENGTH Ni GROUP ALLOY FOR SOLID HIGH POLYMER FUEL CELL, HIGH IN CONTACT SURFACE CONDUCTIVITY FOR LONG PERIOD OF TIME

Info

Publication number
JP2003197214A
JP2003197214A JP2001397164A JP2001397164A JP2003197214A JP 2003197214 A JP2003197214 A JP 2003197214A JP 2001397164 A JP2001397164 A JP 2001397164A JP 2001397164 A JP2001397164 A JP 2001397164A JP 2003197214 A JP2003197214 A JP 2003197214A
Authority
JP
Japan
Prior art keywords
separator plate
plate material
contact surface
fuel cell
long period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001397164A
Other languages
Japanese (ja)
Other versions
JP3867573B2 (en
Inventor
Koichi Kita
晃一 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001397164A priority Critical patent/JP3867573B2/en
Publication of JP2003197214A publication Critical patent/JP2003197214A/en
Application granted granted Critical
Publication of JP3867573B2 publication Critical patent/JP3867573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator plate material made of a high strength Ni group alloy for a solid high polymer fuel cell, which has contact surface conductivity over a long period of time. <P>SOLUTION: The above separator plate material of the solid high polymer type fuel cell, which is constituted by pressing and assembling a plurality of power generating modules while piling it up mutually, which has the structure that the separator plate material, in which the anode is sandwiched on one side surface of a solid high polymer electrolyte film and while contacting this, a fuel gas flow way is formed, and on the other side surface of it, the separator plate material, in which, the cathode is sandwiched, and while contacting this, an oxidizing gas flow way is formed, is constituted with the Ni group alloy, which has the composition, which consists of containing Fe: 25 to 35%, Cr: 15 to 25%, Ti: 0.1 to 3%, and B: 0.01 to 1%, by mass % and the remainder that has Ni and unavoidable impurities, and the organization, which has the metallic boride distributed in decentralized distribution on a foundation of austenite. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、すぐれた接面通
電性を経時的低下なく、長期に亘って発揮し、かつ高強
度を有し、燃料電池の軽量化および小型化に不可欠の薄
肉化を可能とする固体高分子形燃料電池(以下、単に燃
料電池という)のNi基合金製セパレータ板材に関する
ものである。 【0002】 【従来の技術】従来、一般に上記燃料電池が、図1,2
に示される通り、単セルと呼ばれる単一発電モジュール
を複数個重ね合わせて圧接組み立てた構造をもち、かつ
前記単セルが、固体高分子電解質膜の一方側面に、アノ
ード(水素極)を挟んでセパレータ板材が当接され、ま
た前記固体高分子電解質膜の他方側面には、カソード
(酸素極または空気極)を挟んで、同じくセパレータ板
材が当接され、さらに前記セパレータ板材における前記
アノードとの当接面には燃料ガス流路、前記カソードと
の当接面には酸化ガス流路が形成された構造をもつこと
はよく知られるところである。また、上記の燃料電池
は、セパレータ板材のアノード側に形成された燃料ガス
流路を通常約80℃の水素ガスが流れ、同カソード側の
酸化ガス流路を同じく約80℃の大気と燃料電池の反応
生成物である水蒸気との混合ガスが流れることによって
発電機能を発揮することも知られている。さらに、上記
の通り燃料電池のセパレータ板材のカソード当接面は、
約80℃の水蒸気と大気との混合ガスからなる酸化性ガ
ス流に曝されるが、このカソード当接面に酸化膜が形成
されるようになると、接面通電性が著しく低下して、電
池機能低下の原因となることから、セパレータ板材の形
成にはすぐれた耐食性を有する各種の材料が用いられて
おり、かかる材料の中で、良好な耐食性を示す材料とし
て、質量%(以下、%は質量%を示す)で、 Fe:25〜35%、 Cr:15〜25%、 を含有し、残りがNiと不可避不純物からなる組成を有
するオーステナイト単相組織のNi基合金が注目され、
このNi基合金で形成された燃料電池のセパレータ板材
が提案されている。 【0003】 【発明が解決しようとする課題】一方、近年の燃料電池
の高性能化に対する要求は強く、これに伴い、これの構
造部材であるセパレータ板材は一段と苛酷な腐食条件下
での使用を余儀なくされる傾向にあるが、上記の耐食性
の良好な従来Ni基合金製セパレータ板材の場合でも、
苛酷な腐食条件下では耐食性が不十分であるため経時的
に接面通電性が低下し、比較的短時間で使用寿命に至る
のが避けられず、さらに燃料電池の軽量化および小型化
に対する要求も強く、この結果セパレータ板材にも薄肉
化が強く求められているが、これをあまり薄肉化する
と、上記の通り単セルの相互間の接触抵抗を低くする、
すなわち良好な接面通電性を確保する目的で、通常2〜
3MPa程度の圧力で締め付け圧接された状態で実用に
供されることと相俟って、強度不足が原因で、塑性変形
してしまい、十分満足な薄肉化を図ることができないの
が現状である。 【0004】 【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、特に耐食性の良好な上記の従来
Ni基合金製セパレータ板材に着目し、これの一段の耐
食性向上および強度向上を図るべく研究を行なった結
果、前記従来Ni基合金製セパレータ板材を構成するN
i基合金に合金成分としてTiおよびB(硼素)を含有
させて、 Fe:25〜35%、 Cr:15〜25%、 Ti:0.1〜3%、 B:0.01〜1%、 を含有し、残りがNiと不可避不純物からなる組成をも
つものとしたNi基合金でセパレータ板材を構成する
と、この結果のNi基合金製セパレータ板材は、これを
構成するNi基合金がオーステナイトの素地に長さ方向
の径で0.5〜10μm程度の寸法を有する金属硼化物
が分散分布した組織をもつものとなり、前記金属硼化物
は素地のオーステナイトに比して上記の酸化ガス流路雰
囲気で著しくすぐれた耐食性を発揮し、かつ導電性のす
ぐれたものであることから、前記素地のオーステナイト
の酸化が進行し、素地部分の接面通電性が経時的に低下
するようになっても、前記金属硼化物によって、すぐれ
た接面通電性が長期に亘って確保されるようになり、さ
らにTiおよびB成分の素地固溶によって素地強度が著
しく向上し、実用に際して付加される単セルの締め付け
圧接圧力下においてもすぐれた耐塑性変形性を示す、と
いう研究結果を得たのである。 【0005】この発明は、上記の研究結果に基づいてな
されたものであって、固体高分子電解質膜の一方側面
に、アノードを挟んで、これに当接して燃料ガス流路が
形成されたセパレータ板材が、同他方側面には、カソー
ドを挟んで、これに当接して酸化ガス流路が形成された
セパレータ板材が配置された構造の単一発電モジュール
を複数個重ね合わせて圧接組み立てしてなる燃料電池に
おいて、前記セパレータ板材を、 Fe:25〜35%、 Cr:15〜25%、 Ti:0.1〜3%、 B:0.01〜1%、 を含有し、残りがNiと不可避不純物からなる組成、並
びにオーステナイトの素地に金属硼化物が分散分布した
組織を有するNi基合金で構成してなる、すぐれた接面
通電性を長期に亘って発揮する燃料電池の高強度Ni基
合金製セパレータ板材に特徴を有するものである。 【0006】つぎに、この発明のセパレータ板材におい
て、これを構成するNi基合金の組成を上記の通りに定
めた理由を説明する。 (a)Fe Fe成分には、NiおよびCr成分と共に素地のオース
テナイトを形成し、圧延加工性を向上させると共に、耐
食性および導電性のすぐれた金属硼化物を形成し、これ
が素地に分散分布することによってすぐれた接面通電性
を長期に亘って保持する作用があるが、その含有量が2
5%未満では前記の作用に所望の向上効果が得られず、
一方その含有量が35%を越えると耐食性が急激に低下
するようになることから、その含有量を25〜35%と
定めた。 【0007】(b)Cr Cr成分には、上記の通りNiおよびFeと共に素地の
オーステナイトを形成し、前記素地の耐食性を向上させ
るほか、同じく素地に分散分布する金属硼化物を形成し
て、すぐれた接面通電性を長期に亘って保持する作用が
あるが、その含有量が15%未満では前記の作用に所望
の向上効果が得られず、一方その含有量が25%を越え
ると圧延加工性が低下するようになることから、その含
有量を15〜25%と定めた。 【0008】(c)Ti Ti成分には、その一部が素地のオーステナイトに固溶
して、強度を向上させ、かつその主要部分は上記の通り
金属硼化物を形成して接面通電性の向上に寄与するほ
か、前記金属硼化物の形成を促進する作用があるが、そ
の含有量が0.1%未満では前記の作用に所望の向上効
果が得られず、一方その含有量が3%を越えると圧延加
工性が低下するようになることから、その含有量を0.
1〜3%と定めた。 【0009】(d)B B成分には、その僅かな一部が素地に固溶して、素地の
強度向上に寄与するが、その大部分は上記の通り素地に
長さ方向の径で0.5〜10μmの寸法で分散分布する
耐食性および導電性のすぐれた金属硼化物を形成して、
接面通電性の経時的低下を抑制し、長期に亘ってすぐれ
た発電機能を保持する作用があるが、その含有量が0.
01%未満では金属硼化物の形成が不十分で前記の作用
に所望の効果が得られず、一方その含有量が1%を越え
ると、金属硼化物の形成が多くなり過ぎて圧延加工性に
低下傾向が現れるようになることから、その含有量を
0.01〜1%と定めた。 【0010】 【発明の実施の形態】つぎに、この発明のセパレータ板
材を実施例により具体的に説明する。原料として、いず
れも純度が99.9%以上の高純度のNi材、Fe材、
Cr材、Ti材、およびNi−B母合金材(B:17%
含有)を用い、真空高周波誘導溶解装置で溶解し、それ
ぞれ所定の成分組成をもった溶湯を調整し、これを水冷
銅鋳型に鋳造して厚さ:5mmの板状インゴットとし、
この板状インゴットに1200℃の圧延開始温度での熱
間圧延を繰り返し4回施して、厚さ:2mmの熱延板と
し、ついで前記熱延板に1150℃に10分間保持後水
冷の溶体化処理と500℃に10分間保持後空冷の焼戻
し処理を施し、酸洗した後、冷間加工にて厚さが1mm
から0.1mmづつ減少して0.1mmまでの10種類
の板材を形成し、これらの冷延板に500℃に10分間
保持後空冷の熱処理を施し、酸洗した状態で、50mm
×50mmの板材を切り出し、この板材の中央部にプレ
ス加工にて燃料ガス流路および酸化ガス流路に相当する
幅:5mm×深さ:3mmの溝を5mm間隔で4本平行
して形成することによりそれぞれ表1,2に示される成
分組成をもったNi基合金で構成された本発明セパレー
タ板材1〜17および従来セパレータ板材1〜9を製造
した。 【0011】なお、この結果得られた各種のセパレータ
板材について、その組織を走査型電子顕微鏡(1000
倍)を用いて観測したところ、本発明セパレータ板材1
〜はいずれもオーステナイトの素地に長さ方向の径で
0.5〜10μmの寸法を有する金属硼化物が分散分布
した組織を示し、また、従来セパレータ板材1〜21は
いずれもオーステナイト単相からなる組織を示した。 【0012】ついで、上記の各種セパレータ板材の強度
を評価する目的で、上記の厚さの異なる10種類のセパ
レータ板材を、それぞれ平面寸法:150mm×150
mm、厚さ:3mmのステンレス鋼板で上下方向から挟
んで水平に設置した状態で、これに上方より燃料電池を
構成する単セルの圧接組み立て圧力に相当する4MPa
の面圧を付加し、1分間保持後に取り出し、セパレータ
板材におけるプレス成形溝に塑性変形が発生する板厚
(塑性変形発生板厚)を測定した。この測定結果を表
1,2に示した。 【0013】また、上記の各種セパレータ板材の接面通
電性について、その経時変化を評価する目的で、上記の
厚さが1mmの各種セパレータ板材から寸法が30mm
×30mmの試験片を切り出し、この試験片表面に圧縮
空気ノズルを用いて0.5MPaの圧力で180番の粒
度をもった炭化珪素砥粒を吹き付け、表面に微細な凹凸
を形成して、接触表面積の増大を図り、この表面を30
℃の20%HCl水溶液で1分間エッチング処理した
後、沸騰したイオン交換水で十分に洗浄し、完全に乾燥
した状態で、セパレータ板材の酸化ガス流路が曝される
酸化性雰囲気と同等の雰囲気、すなわち80℃の大気飽
和水蒸気雰囲気中に1000時間、2000時間、およ
び3000時間放置の腐食試験を行い、腐食試験後の接
触電気抵抗値を測定した。なお、接触電気抵抗値は、上
記試験片:2枚を1組とし、これを厚さ:0.3mmの
カーボンペーパーを挟んで重ね合わせ、この重ね合わせ
た試験片を油圧プレスにて上下面から3MPaの圧力で
加圧した状態で15Aの直流電流を流し、前記試験片相
互間の電位差を測定し、この測定電位差から接触電気抵
抗値を算出した。この結果も表1,2に示した。この場
合、接触電気抵抗値の低い方がセパレータ板材の表面に
おける腐食試験後の接面通電性がすぐれていることを示
し、これとは反対に腐食試験後の接触電気抵抗値が高く
なればなるほど接面通電性が低いことを示すものであ
る。 【表1】 【0014】 【表2】 【0015】 【発明の効果】表1,2に示される結果から、本発明セ
パレータ板材1〜17は、いずれもオーステナイトの素
地に分散分布する耐食性および導電性のすぐれた金属硼
化物の存在によって、素地のオーステナイトが酸化し
て、この部分での接面通電性が低下しても、前記金属硼
化物を通して良好な接面通電性を長期に亘って確保する
ことができ、さらに合金成分として含有するTiおよび
Bの素地への固溶によって高強度が確保されることか
ら、薄肉化しても塑性変形が発生し難いのに対して、前
記金属硼化物の形成がなく、TiおよびBの素地への固
溶もない従来セパレータ板材1〜9においては、オース
テナイト単相の酸化による全面的酸化膜の形成によって
接面通電性が経時的に低下し、接触電気抵抗値の経時的
増大は避けられず、さらに強度不足が原因で塑性変形し
易く、満足な薄肉化を図ることができないことが明かで
ある。上述のように、この発明のセパレータ板材は、す
ぐれた接面通電性を長期に亘って発揮し、かつ薄肉化を
可能とする高強度を有しているので、燃料電池の高性能
化、並びに軽量化および小型化に大いに寄与するもので
ある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell which exhibits excellent contact surface electrical conductivity over a long period of time without deterioration over time and has high strength. The present invention relates to a separator plate made of a Ni-based alloy for a polymer electrolyte fuel cell (hereinafter, simply referred to as a fuel cell) which enables a reduction in thickness which is indispensable for weight reduction and size reduction. 2. Description of the Related Art Conventionally, in general, the above-mentioned fuel cell is shown in FIGS.
As shown in the above, a single power generation module called a single cell has a structure in which a plurality of single power generation modules are stacked and pressed and assembled, and the single cell is sandwiched on one side of a solid polymer electrolyte membrane with an anode (hydrogen electrode) interposed therebetween. A separator plate is in contact with the separator, and the other side of the solid polymer electrolyte membrane is also in contact with a separator plate across a cathode (an oxygen electrode or an air electrode). It is well known that a fuel gas passage is formed on the contact surface, and an oxidizing gas passage is formed on the contact surface with the cathode. Further, in the above fuel cell, a hydrogen gas at about 80 ° C. normally flows through a fuel gas flow path formed on the anode side of the separator plate, and an oxidizing gas flow path on the cathode side is connected to the air at about 80 ° C. It is also known that a power generation function is exhibited by flowing a mixed gas with water vapor, which is a reaction product of the above. Furthermore, as described above, the cathode contact surface of the fuel cell separator plate is
The cathode is exposed to an oxidizing gas flow of a mixed gas of steam and air at about 80 ° C. When an oxide film is formed on the cathode contact surface, the contact surface conductivity is significantly reduced, and the battery Various materials having excellent corrosion resistance are used for forming the separator plate material because it causes deterioration of the function. Among such materials, as a material showing good corrosion resistance, mass% (hereinafter,% is In addition, the Ni-based alloy having an austenitic single phase structure, which contains Fe: 25 to 35% and Cr: 15 to 25%, and has a balance of Ni and unavoidable impurities, has been noted.
A fuel cell separator plate made of this Ni-based alloy has been proposed. On the other hand, there is a strong demand for higher performance of fuel cells in recent years, and accordingly, separator plates, which are structural members of the fuel cells, are required to be used under severer corrosion conditions. Although there is a tendency to be forced, even in the case of the conventional Ni-based alloy separator plate having good corrosion resistance,
Insufficient corrosion resistance under severe corrosive conditions, the electrical conductivity of the contact surface decreases over time, and inevitably leads to a shorter service life in a relatively short time. Also, as a result, the separator plate is also strongly required to be reduced in thickness.However, if the thickness is reduced too much, the contact resistance between the single cells is reduced as described above.
That is, for the purpose of ensuring good contact surface conduction,
With the fact that it is practically used in a state of being tightened and pressed at a pressure of about 3 MPa, plastic deformation occurs due to insufficient strength, and it is not possible to achieve a sufficiently satisfactory thinning. . [0004] Accordingly, the present inventors have proposed:
In view of the above, the above-described conventional Ni-based alloy separator plate material having particularly good corrosion resistance was focused on, and as a result of conducting research to improve the corrosion resistance and the strength of the conventional Ni-based alloy separator, N that constitutes the plate material
Ti and B (boron) are contained as alloy components in the i-base alloy, Fe: 25 to 35%, Cr: 15 to 25%, Ti: 0.1 to 3%, B: 0.01 to 1%, When the separator plate is composed of a Ni-based alloy having a composition consisting of Ni and unavoidable impurities, the resulting Ni-based alloy separator plate has a Ni-based alloy comprising an austenitic base material. Has a structure in which metal borides having a size of about 0.5 to 10 μm in a length direction are dispersed and distributed, and the metal borides are more susceptible to the above-mentioned oxidizing gas flow path atmosphere than the base austenite. Since it exhibits extremely excellent corrosion resistance and has excellent conductivity, the oxidation of the austenite of the base material progresses, and even if the contact surface electrical conductivity of the base material decreases over time, metal The boride ensures excellent contact surface conduction for a long period of time. Further, the base strength is significantly improved by solid solution of Ti and B components. The research results show that the material exhibits excellent plastic deformation resistance even below. The present invention has been made based on the above research results, and has a separator in which a fuel gas channel is formed on one side of a solid polymer electrolyte membrane with an anode interposed therebetween and in contact with the anode. The plate member is formed by laminating a plurality of single power generation modules each having a structure in which a separator plate member having an oxidizing gas passage formed in contact with the cathode material is sandwiched on the other side surface, and is pressed and assembled. In the fuel cell, the separator plate material contains Fe: 25 to 35%, Cr: 15 to 25%, Ti: 0.1 to 3%, and B: 0.01 to 1%, with the remainder being inevitable with Ni. A high-strength Ni-base alloy for a fuel cell that exhibits excellent contact surface conduction over a long period of time and is composed of a Ni-base alloy having a composition of impurities and a structure in which metal boride is dispersed and distributed in an austenite base. Those characterized by a separator plate. Next, the reason why the composition of the Ni-base alloy constituting the separator plate of the present invention is determined as described above will be described. (A) Fe In the Fe component, a base austenite is formed together with the Ni and Cr components to improve rolling workability and form a metal boride having excellent corrosion resistance and conductivity, which is dispersed and distributed in the base. Has the effect of maintaining excellent contact surface electrical conductivity for a long period of time.
If it is less than 5%, a desired improvement effect cannot be obtained in the above-mentioned action,
On the other hand, if the content exceeds 35%, the corrosion resistance rapidly decreases, so the content is set to 25 to 35%. (B) Cr For the Cr component, as described above, the base austenite is formed together with Ni and Fe to improve the corrosion resistance of the base, and also the metal boride dispersed and distributed in the base is formed. However, if the content is less than 15%, a desired improvement effect cannot be obtained in the above-mentioned action, while if the content exceeds 25%, the rolling process is performed. The content is determined to be 15 to 25% because the property is lowered. (C) Ti A part of the Ti component forms a solid solution with the austenite of the base material to improve the strength, and the main part forms a metal boride as described above to form a contact surface with a conductive material. In addition to contributing to the improvement, there is an effect of promoting the formation of the metal boride, but if the content is less than 0.1%, the desired effect cannot be obtained in the above-mentioned effect, while the content is 3%. If the content exceeds 0.1%, the rolling processability will decrease.
It was determined as 1-3%. (D) BB A small part of the B component forms a solid solution in the matrix and contributes to the improvement of the strength of the matrix, but most of the B component has a diameter of 0 in the length direction as described above. Forming metal boride with excellent corrosion resistance and conductivity distributed in a size of 0.5 to 10 μm,
It has the effect of suppressing the deterioration over time of the electrical conductivity of the contact surface and maintaining an excellent power generation function over a long period of time.
If the content is less than 01%, the formation of metal borides is insufficient and the above-mentioned effects cannot be obtained, and if the content exceeds 1%, the formation of metal borides becomes too large, resulting in poor rollability. Since the tendency to decrease appears, the content is set to 0.01 to 1%. Next, the separator plate of the present invention will be specifically described with reference to examples. As raw materials, high-purity Ni and Fe materials each having a purity of 99.9% or more,
Cr material, Ti material, and Ni-B mother alloy material (B: 17%
), And melted with a vacuum high-frequency induction melting device to prepare a molten metal having a predetermined component composition, and cast this into a water-cooled copper mold to form a plate-shaped ingot having a thickness of 5 mm.
This plate-shaped ingot was repeatedly subjected to hot rolling at a rolling start temperature of 1200 ° C. four times to obtain a hot-rolled sheet having a thickness of 2 mm, and then held at 1150 ° C. for 10 minutes and then cooled with water. After treatment and holding at 500 ° C. for 10 minutes, an air-cooled tempering treatment was performed, and after pickling, the thickness was 1 mm by cold working.
From 10 mm to 0.1 mm by 0.1 mm at a time, and these cold-rolled sheets were kept at 500 ° C. for 10 minutes, subjected to air-cooling heat treatment, and pickled to a thickness of 50 mm.
A 50 mm x 50 mm plate is cut out, and four grooves having a width of 5 mm and a depth of 3 mm corresponding to the fuel gas flow path and the oxidizing gas flow path are formed in parallel at the center of the plate at 5 mm intervals. In this way, separator plates 1 to 17 of the present invention and conventional separator plates 1 to 9 each made of a Ni-based alloy having a component composition shown in Tables 1 and 2 were produced. The structures of the various separator plates obtained as a result were examined with a scanning electron microscope (1000
2), the separator plate material 1 of the present invention was observed.
Indicates a structure in which metal borides having a size of 0.5 to 10 μm in a length direction are dispersed and distributed in an austenite base, and conventional separator plate materials 1 to 21 are each composed of an austenite single phase. The organization showed. Next, for the purpose of evaluating the strength of the above-mentioned various separator plates, the above-mentioned 10 types of separator plates having different thicknesses were each subjected to a plane dimension of 150 mm × 150 mm.
mm, thickness: 4 MPa corresponding to the pressure for assembling a single cell constituting a fuel cell from above in a state where the stainless steel plate is horizontally sandwiched between 3 mm stainless steel plates from above and below.
The sheet pressure was applied, and the sheet was taken out after holding for 1 minute, and the sheet thickness at which plastic deformation occurred in the press-formed groove of the separator sheet (plastic deformation occurrence sheet thickness) was measured. The measurement results are shown in Tables 1 and 2. In order to evaluate the change with time of the contact surface electrical conductivity of the above-mentioned various separator plates, the size of the above-mentioned various separator plates having a thickness of 30 mm was evaluated.
A test piece of × 30 mm was cut out, and silicon carbide abrasive grains having a grain size of 180 were sprayed on the surface of the test piece using a compressed air nozzle at a pressure of 0.5 MPa to form fine irregularities on the surface, and contact was made. In order to increase the surface area,
Atmosphere equivalent to the oxidizing atmosphere to which the oxidizing gas flow path of the separator plate is exposed after etching for 1 minute with a 20% HCl aqueous solution of 20 ° C., thoroughly washed with boiling ion-exchanged water, and completely dried. That is, a corrosion test was performed for 1000 hours, 2000 hours, and 3000 hours in an atmosphere of saturated water vapor at 80 ° C., and the contact electric resistance after the corrosion test was measured. In addition, the contact electric resistance value was set as a set of the above test pieces: two pieces, and they were superposed on each other with a 0.3 mm thick carbon paper sandwiched therebetween. A DC current of 15 A was passed in a state where the test piece was pressurized at a pressure of 3 MPa, a potential difference between the test pieces was measured, and a contact electric resistance value was calculated from the measured potential difference. The results are also shown in Tables 1 and 2. In this case, the lower the contact electric resistance value indicates that the contact surface electrical conductivity after the corrosion test on the surface of the separator plate material is excellent, and conversely, the higher the contact electric resistance value after the corrosion test, the higher the contact electric resistance value becomes. This indicates that the contact surface conductivity is low. [Table 1] [Table 2] According to the results shown in Tables 1 and 2, all of the separator plates 1 to 17 of the present invention are formed by the presence of a metal boride having excellent corrosion resistance and conductivity which is dispersed and distributed in an austenitic base material. Even if the austenite of the base material is oxidized and the contact surface electrical conductivity at this portion decreases, good contact surface electrical conductivity can be ensured for a long time through the metal boride, and further contained as an alloy component. Since high strength is ensured by solid solution of Ti and B in the base material, plastic deformation hardly occurs even if the thickness is reduced, but the metal boride is not formed, and Ti and B In the conventional separator plates 1 to 9 having no solid solution, the entire surface oxide film is formed by the oxidation of the austenite single phase, so that the contact surface conductivity decreases with time and the contact electric resistance value does not increase with time. It is clear that plastic deformation tends to occur due to insufficient strength, and satisfactory thinning cannot be achieved. As described above, the separator plate material of the present invention exhibits excellent contact surface electrical conductivity for a long period of time, and has high strength that enables thinning. This greatly contributes to weight reduction and miniaturization.

【図面の簡単な説明】 【図1】燃料電池の概略斜視図である。 【図2】燃料電池の一部分解斜視図である。[Brief description of the drawings] FIG. 1 is a schematic perspective view of a fuel cell. FIG. 2 is a partially exploded perspective view of the fuel cell.

Claims (1)

【特許請求の範囲】 【請求項1】 固体高分子電解質膜の一方側面に、アノ
ードを挟んで、これに当接して燃料ガス流路が形成され
たセパレータ板材が、同他方側面には、カソードを挟ん
で、これに当接して酸化ガス流路が形成されたセパレー
タ板材が配置された構造の単一発電モジュールを複数個
重ね合わせて圧接組み立てしてなる固体高分子形燃料電
池において、上記セパレータ板材を、質量%で、 Fe:25〜35%、 Cr:15〜25%、 Ti:0.1〜3%、 B:0.01〜1%、 を含有し、残りがNiと不可避不純物からなる組成、並
びにオーステナイトの素地に金属硼化物が分散分布した
組織を有するNi基合金で構成したことを特徴とする、
すぐれた接面通電性を長期に亘って発揮する固体高分子
形燃料電池の高強度Ni基合金製セパレータ板材。
Claims: 1. A separator plate having a fuel gas passage formed in contact with one side of an anode on one side of a solid polymer electrolyte membrane, and a cathode on the other side of the solid polymer electrolyte membrane. In a polymer electrolyte fuel cell, a plurality of single power generation modules each having a structure in which a separator plate member in which an oxidizing gas flow path is formed in contact with and sandwiching the same are superimposed and assembled by pressure welding. The plate material contains, by mass%, Fe: 25 to 35%, Cr: 15 to 25%, Ti: 0.1 to 3%, and B: 0.01 to 1%, with the balance being Ni and inevitable impurities. Characterized by comprising a Ni-based alloy having a structure in which a metal boride is dispersed and distributed in an austenitic base,
A high-strength Ni-based alloy separator plate material for polymer electrolyte fuel cells that exhibits excellent contact surface conductivity over a long period of time.
JP2001397164A 2001-12-27 2001-12-27 High-strength Ni-based alloy separator plate material for polymer electrolyte fuel cells that exhibits excellent contact surface conductivity over a long period of time Expired - Fee Related JP3867573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001397164A JP3867573B2 (en) 2001-12-27 2001-12-27 High-strength Ni-based alloy separator plate material for polymer electrolyte fuel cells that exhibits excellent contact surface conductivity over a long period of time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001397164A JP3867573B2 (en) 2001-12-27 2001-12-27 High-strength Ni-based alloy separator plate material for polymer electrolyte fuel cells that exhibits excellent contact surface conductivity over a long period of time

Publications (2)

Publication Number Publication Date
JP2003197214A true JP2003197214A (en) 2003-07-11
JP3867573B2 JP3867573B2 (en) 2007-01-10

Family

ID=27603045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001397164A Expired - Fee Related JP3867573B2 (en) 2001-12-27 2001-12-27 High-strength Ni-based alloy separator plate material for polymer electrolyte fuel cells that exhibits excellent contact surface conductivity over a long period of time

Country Status (1)

Country Link
JP (1) JP3867573B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302713A (en) * 2004-03-18 2005-10-27 Jfe Steel Kk Metal material for energizing member, fuel cell separator using it and fuel cell
KR100669318B1 (en) 2004-11-25 2007-01-15 삼성에스디아이 주식회사 Metal separator for fuel cell system and method for preparing the same and fuel cell system comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302713A (en) * 2004-03-18 2005-10-27 Jfe Steel Kk Metal material for energizing member, fuel cell separator using it and fuel cell
KR100669318B1 (en) 2004-11-25 2007-01-15 삼성에스디아이 주식회사 Metal separator for fuel cell system and method for preparing the same and fuel cell system comprising the same

Also Published As

Publication number Publication date
JP3867573B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
EP1235290B1 (en) Stainless steel separator for fuel cells, method for making the same, and solid polymer fuel cell including the same
JP5434807B2 (en) Method for adjusting surface roughness of stainless steel for polymer electrolyte fuel cell
KR101597721B1 (en) Titanium material for solid polymer fuel cell separators, method for producing same, and solid polymer fuel cell using same
KR100858572B1 (en) Metal material for fuel cell, fuel cell using the same and method for producing the material
JP2001032056A (en) Stainless steel for conductive parts and solid high polymer type fuel battery
JP3904690B2 (en) Low temperature fuel cell separator
JP3908359B2 (en) Low temperature fuel cell separator
JP5152193B2 (en) Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell
JP2003223904A (en) Separator for fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2004149920A (en) Stainless steel for separator of solid polymer fuel cell and its manufacturing method, and solid polymer fuel cell using that stainless steel
JP2000328200A (en) Austenitic stainless steel for conductive electric parts and fuel battery
JP3908358B2 (en) Low temperature fuel cell separator
JP4967398B2 (en) Stainless steel suitable for polymer electrolyte fuel cell and its separator
JP3922154B2 (en) Stainless steel for polymer electrolyte fuel cell separator, method for producing the same, and polymer electrolyte fuel cell
JPH11219713A (en) Separator for low-temperature fuel cell
JP4133323B2 (en) Press separator for fuel cell
JP4967397B2 (en) Stainless steel suitable for polymer electrolyte fuel cell and its separator
JP4967831B2 (en) Ferritic stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
JP2000309854A (en) Austenitic stainless steel for current-carrying electric parts, and fuel cell
JP4930222B2 (en) Austenitic stainless steel for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
JP2004269969A (en) Separator for solid polymer type fuel cell and manufacturing method therefor
JP5217755B2 (en) Stainless steel for fuel cell separator and fuel cell separator
JP2003197214A (en) SEPARATOR PLATE MATERIAL MADE OF HIGH STRENGTH Ni GROUP ALLOY FOR SOLID HIGH POLYMER FUEL CELL, HIGH IN CONTACT SURFACE CONDUCTIVITY FOR LONG PERIOD OF TIME
JP2005166276A (en) Stainless steel for solid polymer fuel cell separator, the solid polymer fuel cell separator using the same, and solid polymer fuel cell
JP3864771B2 (en) Corrosion-resistant Ni-base alloy separator plate for high-strength polymer electrolyte fuel cells that can be thinned

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees