JP2003193126A - Method for cooling steel material - Google Patents

Method for cooling steel material

Info

Publication number
JP2003193126A
JP2003193126A JP2001398840A JP2001398840A JP2003193126A JP 2003193126 A JP2003193126 A JP 2003193126A JP 2001398840 A JP2001398840 A JP 2001398840A JP 2001398840 A JP2001398840 A JP 2001398840A JP 2003193126 A JP2003193126 A JP 2003193126A
Authority
JP
Japan
Prior art keywords
cooling
steel material
steel
cooling device
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001398840A
Other languages
Japanese (ja)
Other versions
JP4126908B2 (en
Inventor
Yukio Fujii
幸生 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2001398840A priority Critical patent/JP4126908B2/en
Publication of JP2003193126A publication Critical patent/JP2003193126A/en
Application granted granted Critical
Publication of JP4126908B2 publication Critical patent/JP4126908B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cooling a steel material uniformly in its longitudinal direction. <P>SOLUTION: In this method for cooling the steel material by vibrating the steel material in the horizontal direction or vibrating a cooling apparatus in the horizontal direction, the moving amount of the oscillation is controlled to satisfy an inequality ä(N+0.5)×P<L<(N+0.9)×P <L<SB>0</SB>-L<SB>k</SB>, wherein P is nozzle pitch in the cooling apparatus, N is positive integral number containing, L<SB>o</SB>is length of the cooling apparatus and L<SB>k</SB>is length of the steel material}. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、形鋼や厚鋼板等の
鋼材を冷却装置内でオシレーションする冷却方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling method for oscillating a steel material such as shaped steel or thick steel plate in a cooling device.

【0002】[0002]

【従来の技術】近年、建築等の鋼構造物に使用される鋼
材に対して、高強度化や高靭性化が求められている。さ
らに建築物の柱材や梁材として用いられるH形鋼におい
ては、耐震性を向上させるために、低YR化に対する要
望も高まっている。これらの材質要求を満足させるた
め、H形鋼の製造方法として、圧延と冷却とを組み合わ
せた制御圧延・制御冷却が普及しつつある。このH形鋼
の冷却において、低温まで冷却する場合やフランジの厚
いH形鋼を加速冷却する場合等で長時間に亘り冷却する
とき、H形鋼を冷却装置内でオシレーション(往復運
動)させて冷却する方法が一般的である。
2. Description of the Related Art In recent years, steel materials used for steel structures such as construction have been required to have higher strength and higher toughness. Further, in the H-section steel used as a pillar material or a beam material for buildings, there is an increasing demand for a low YR in order to improve the earthquake resistance. In order to satisfy these material requirements, controlled rolling and controlled cooling in which rolling and cooling are combined are becoming popular as a method for manufacturing H-section steel. When cooling the H-section steel to a low temperature or when accelerating cooling the H-section steel with a thick flange for a long time, the H-section steel is oscillated (reciprocating motion) in the cooling device. The general method is to cool it.

【0003】また、厚板の加速冷却においても、同様の
目的で冷却装置内で鋼板を前後進させるオシレーション
冷却方法が採用されている。
Further, also in the accelerated cooling of thick plates, an oscillation cooling method in which a steel plate is moved forward and backward in a cooling device is adopted for the same purpose.

【0004】オシレーション冷却の他の目的は、厚板や
形鋼の冷却装置では、特に下面の冷却においてテーブル
ロールの配置や下部構造強度等からノズルを配置できる
ピッチに限界があり、冷却が不均一になる部分が発生す
るため、この冷却むらをできるだけ小さくすることであ
る。
Another purpose of the oscillation cooling is that in a cooling device for thick plates and shaped steels, there is a limit to the pitch at which nozzles can be arranged due to the arrangement of table rolls, the strength of the lower structure, etc., especially in the cooling of the lower surface, and cooling is not possible. Since a uniform portion is generated, this uneven cooling is to be minimized.

【0005】形鋼や厚鋼板をオシレーションしながら冷
却する場合、先進していた動きが止まり、逆方向に後進
するまでの間の形鋼や厚鋼板の先端部と後端部が停止す
る位置が、間隔を置いて配置されたノズル列のどの部分
にくるかによって冷却の均一度が一定にならないという
問題が生じる。
When cooling the shaped steel or thick steel plate while oscillating, the position where the leading end and the rear end of the shaped steel or thick steel plate stop until the advanced movement stops and the vehicle moves backward in the opposite direction. However, there arises a problem that the cooling uniformity is not constant depending on which part of the nozzle rows arranged at intervals.

【0006】被冷却材が一定ピッチLで設けられた冷却
ノズルの上をオシレーションしながら冷却されていると
き、被冷却材の先端が一定距離移動し、一旦停止し、次
に逆方向に動き出す。このある方向の動きから一旦停止
し再び動き出すまでの間、ノズル直下で停止した部分は
停止中冷却され続けて過冷却され、丁度ノズルとノズル
の中間に停止した部分は冷却されないので冷却不足とな
る。このように先進から減速し、停止し、方向を変えて
加速して後進するときにノズル列のどこに停止するかに
よって鋼材各部の冷却が不均一となる。
When the material to be cooled is being cooled while oscillating on the cooling nozzles provided at a constant pitch L, the tip of the material to be cooled moves for a certain distance, temporarily stops, and then starts moving in the opposite direction. . From this movement in a certain direction until it stops and starts again, the part stopped just below the nozzle continues to be cooled while it is stopped and is supercooled, and the part just stopped between the nozzle and the nozzle is not cooled, resulting in insufficient cooling. . In this way, the cooling of each part of the steel material becomes non-uniform depending on where the nozzle row is stopped when the vehicle decelerates from the advanced position, stops, changes direction, accelerates and moves backward.

【0007】H形鋼や厚板等の鋼材のオシレーション冷
却方法に関して、従来技術として、特開昭59−182
921号には、鋼板をオシレーション冷却する際、オシ
レーション折返し位置を前回以前の折返し位置と異なる
ように制御して、冷却ムラをなくして鋼板の長手方向を
均一に冷却する方法が示されている。
Japanese Patent Application Laid-Open No. 59-182 discloses a conventional method of cooling an H-shaped steel plate, a steel plate and other steel materials with oscillation.
No. 921 shows a method of cooling the steel sheet by oscillation so that the oscillation folding back position is controlled to be different from the previous folding back position to eliminate cooling unevenness and uniformly cool the steel sheet in the longitudinal direction. There is.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記し
た従来技術の方法は、下面冷却について検討されたもの
で、ハースロールに接している鋼板の位置が常に一定に
ならないようにオシレーション折り返し位置を制御する
技術であり、ノズル間での冷却の不均一性については何
ら検討されていない。
However, the above-mentioned method of the prior art has been studied for lower surface cooling, and the oscillation folding back position is controlled so that the position of the steel plate in contact with the hearth roll is not always constant. However, the non-uniformity of cooling between nozzles has not been studied at all.

【0009】本発明は、上記のような従来技術の問題点
を解決し、鋼材長さ方向を均一に冷却するための鋼材の
冷却方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide a steel material cooling method for uniformly cooling the steel material in the length direction.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
めの本発明の鋼材の冷却方法は以下のような特徴を有す
る。
The method for cooling steel according to the present invention for solving the above problems has the following features.

【0011】(1)鋼材を水平方向にオシレーションさ
せて冷却するか、または冷却装置を水平方向にオシレー
ションさせて鋼材を冷却する際に、前記オシレーション
移動量Lを下式(1)とするように制御することを特徴
とする鋼材の冷却方法。 (N+0.5)×P<L<(N+0.9)×P<L0−Lk…(1) ここで、P:冷却装置のノズルピッチ、N:0を含む正
の整数、L0:冷却装置長さ、Lk:鋼材長さ (2)鋼材を水平方向にオシレーションさせて冷却する
か、または冷却装置を水平方向にオシレーションさせて
鋼材を冷却する際に、下式(1)を満足する最大の正の
整数NをNmaxとしたときに、前記オシレーションLを
下式(2)とするように制御することを特徴とする上記
(1)に記載の鋼材の冷却方法。 (N+0.5)×P<L<(N+0.9)×P<L0−Lk…(1) (Nmax+0.5)×P<L<(Nmax+0.9)×P<L0−Lk …(2) ここで、P:冷却装置のノズルピッチ、Nmax:上記
(1)式を満足する最大の0を含む正の整数、N:0を
含む正の整数、L0:冷却装置長さ、Lk:鋼材長さ
(1) When the steel material is horizontally oscillated for cooling or the cooling device is horizontally oscillated for cooling the steel material, the oscillation movement amount L is expressed by the following equation (1). A method for cooling a steel material, which is characterized in that (N + 0.5) × P <L <(N + 0.9) × P <L 0 −L k (1) Here, P is a nozzle pitch of the cooling device, a positive integer including N: 0, L 0 : Cooling device length, L k : Steel product length (2) When the steel product is horizontally oscillated for cooling, or when the cooling device is horizontally oscillated for cooling the steel product, the following formula (1) is used. When the maximum positive integer N that satisfies the above condition is set to Nmax, the oscillation L is controlled so as to satisfy the following formula (2). (N + 0.5) × P <L <(N + 0.9) × P <L 0 −L k (1) (Nmax + 0.5) × P <L <(Nmax + 0.9) × P <L 0 −L k (2) where P is the nozzle pitch of the cooling device, Nmax is a positive integer including 0, which is the maximum that satisfies the above formula (1), N is a positive integer including 0 , and L 0 is the cooling device length. , L k : Steel length

【0012】[0012]

【発明の実施の形態】図1〜図4は、本発明の鋼材の冷
却方法の一実施形態を示すものである。
1 to 4 show an embodiment of a method for cooling steel according to the present invention.

【0013】図1は、冷却装置に鋼材の搬送方向にノズ
ルが複数配列したときの冷却水噴射パターンの一例を示
すグラフであり、鋼材上面の水量分布をモデル化したも
のである。図中の三角形は冷却装置のノズル位置を示
す。図1では冷却装置のノズルピッチをPとして、冷却
装置長さL0はL0=8P、鋼材長さLkはLk=4Pであ
る。横軸は冷却装置内の位置(x)を示し、縦軸は冷却
装置内位置(x)における水量分布y=g(x)を示
す。ここでxは、冷却装置の長手方向の任意の位置であ
る。
FIG. 1 is a graph showing an example of a cooling water jetting pattern when a plurality of nozzles are arranged in the cooling device in the steel material conveying direction, and is a model of the water amount distribution on the upper surface of the steel material. The triangles in the figure indicate the nozzle positions of the cooling device. In FIG. 1, the nozzle pitch of the cooling device is P, the cooling device length L 0 is L 0 = 8P, and the steel material length L k is L k = 4P. The horizontal axis represents the position (x) in the cooling device, and the vertical axis represents the water amount distribution y = g (x) at the position (x) in the cooling device. Here, x is an arbitrary position in the longitudinal direction of the cooling device.

【0014】本冷却装置は、ノズル直下での水量分布を
100%としたとき、ノズル間で50%の水量分布が得
られるようなノズル配置のものを用いた。この冷却装置
内で、鋼材を距離2Pだけオシレーションさせて冷却
し、その場合の水量分布の変化を検討した。
The cooling device used has a nozzle arrangement such that 50% of the water amount distribution can be obtained between the nozzles when the water amount distribution immediately below the nozzles is 100%. In this cooling device, the steel material was oscillated by a distance of 2P and cooled, and the change in the water amount distribution in that case was examined.

【0015】図2は、鋼材がオシレーション移動量2P
だけ移動したときの、鋼材のある位置における水量分布
を時系列的に示すもので、図2(a)は図1における位
置(a)、図2(b)は図1における位置(b)の水量
分布である。ここで、T1はオシレーション時の停止時
間、T2はオシレーション移動時間である。図2(a)
から、(a)の位置における水量分布の時間平均値は7
6.3%である。一方、図2(b)から、(b)の位置
における水量分布の時間平均値は92.9%である。
FIG. 2 shows that the steel material has an oscillation movement amount of 2P.
2A shows the water amount distribution at a certain position of the steel material in a time series when only the position is moved. FIG. 2A shows the position (a) in FIG. 1 and FIG. 2B shows the position (b) in FIG. It is the water distribution. Here, T1 is a stop time at the time of oscillation, and T2 is an oscillation movement time. Figure 2 (a)
Therefore, the time average value of the water quantity distribution at the position of (a) is 7
It is 6.3%. On the other hand, from FIG. 2B, the time average value of the water amount distribution at the position of FIG. 2B is 92.9%.

【0016】図3は、当該冷却装置により鋼材をオシレ
ーション冷却したときの鋼材の全ての位置における図2
に示す水量分布曲線(冷却曲線)の時間平均値h(z)
を示すグラフである。ここでzは、鋼材の長手方向の任
意の位置である。
FIG. 3 shows FIG. 2 at all positions of the steel material when the steel material is oscillated and cooled by the cooling device.
Time average value h (z) of the water amount distribution curve (cooling curve) shown in
It is a graph which shows. Here, z is an arbitrary position in the longitudinal direction of the steel material.

【0017】具体的には、h(z)z=aは図1の冷却水
噴射パターンを例えば鋼材内の位置(z)から(鋼材内
の位置(z)+移動時間T2×移動速度V)位置まで積
分したものを(移動時間T2+停止時間T1)で時間平
均したもので下式(3)で示すものである。
More specifically, h (z) z = a is obtained from the position (z) in the steel material (position (z) in steel material + moving time T2 × moving speed V) in the cooling water injection pattern of FIG. The result of integration up to the position is time-averaged by (moving time T2 + stopping time T1), and is shown by the following formula (3).

【0018】 h(z)=[2×∫z z+T2*V g(x)dx+T1×{g(z)+g(z+ T2×V)}]/{(T1+T2)×2}…(3) 図3は鋼材の水量分布曲線(冷却曲線)の時間平均値に
最大値および最小値があることを示している。つまり、
図1の鋼材内の位置(a)における水量分布曲線の時間
平均値が最小の76.3%となり、鋼材内の位置(b)
における水量分布曲線の時間平均値が最大の92.9%
となる。
H (z) = [2 × ∫z z + T2 * V g (x) dx + T1 × {g (z) + g (z + T2 × V)}] / {(T1 + T2) × 2} ... (3) FIG. 3 shows that the time average value of the water amount distribution curve (cooling curve) of the steel material has the maximum value and the minimum value. That is,
The time average value of the water amount distribution curve at the position (a) in the steel material of FIG. 1 becomes the minimum of 76.3%, and the position (b) in the steel material
92.9% of the time average value of the water distribution curve in
Becomes

【0019】図3はオシレーション移動量を2Pとした
ときの水量分布の一例であるが、オシレーション移動量
を0から4Pまで変化させた場合について、図3と同様
の水量分布曲線を求め、そのときの水量分布の時間平均
値の最大と最小を求めた。図4は、横軸にオシレーショ
ン移動量、縦軸に水量分布の時間平均値の最大と最小の
差を時間平均値h(z)のバラツキとしてプロットした
ものである。図4でオシレ−ション移動量が2Pのとき
は、図3より92.9−76.3=16.6%となる。
FIG. 3 shows an example of the water amount distribution when the amount of oscillation movement is 2P. When the amount of oscillation movement is changed from 0 to 4P, the same water amount distribution curve as in FIG. 3 is obtained. The maximum and minimum of the time average of the water distribution at that time were obtained. In FIG. 4, the horizontal axis represents the amount of oscillation movement, and the vertical axis represents the difference between the maximum and minimum time average values of the water amount distribution, which are plotted as variations in the time average value h (z). In FIG. 4, when the oscillation movement amount is 2P, 92.9-76.3 = 16.6% from FIG.

【0020】図4は右下がりの曲線となり、均一冷却を
行うには水量分布曲線の時間平均値h(z)のバラツキ
値を最小にすればよく、そのためにはオシレーション移
動量Lは大きいほどよいことがわかる。また、オシレー
ション移動量Lがノズルピッチの0.8倍の位置でバラ
ツキが最低となる部分が存在する。すなわち、オシレー
ション移動量L=(N+0.8)Pのとき、バラツキ値
は最小となり鋼材長手方向で均一な冷却を行うことがで
きる(ここでN:0を含む正の整数)。
FIG. 4 shows a downward sloping curve, and in order to perform uniform cooling, the variation value of the time average value h (z) of the water amount distribution curve should be minimized. For that purpose, the larger the oscillation movement amount L is, I know it's good. Further, there is a portion where the variation is the minimum when the oscillation movement amount L is 0.8 times the nozzle pitch. That is, when the oscillation movement amount L = (N + 0.8) P, the variation value becomes the minimum and uniform cooling can be performed in the longitudinal direction of the steel material (here, a positive integer including N: 0).

【0021】さらに、設備制約の範囲内、すなわち(L
0−Lk)以下(ここでL0:冷却装置長さ、Lk:鋼材長
さ)でNを最大とすることにより、水量分布曲線の時間
平均値h(z)のバラツキ値を最小にすることができ
る。
Further, within the range of equipment constraints, that is, (L
0− L k ) or less (where L 0 : cooling device length, L k : steel material length) maximizes N to minimize the variation value of the time average value h (z) of the water amount distribution curve. can do.

【0022】図5および図6は、本発明の鋼材の冷却方
法の他の実施形態を示すもので、図1に比べてノズルの
形状が異なった場合の例である。図5は冷却装置に鋼材
の搬送方向にノズルが複数配列したときの冷却水噴射パ
ターンg(x)の他の例を示すグラフ、図6は、オシレ
ーション移動量を0から4Pまで変化させた場合につい
て、横軸にオシレーション移動量、縦軸に水量分布の時
間平均値の最大と最小の差を時間平均値h(z)のバラ
ツキとしてプロットしたものである。
FIGS. 5 and 6 show another embodiment of the steel material cooling method according to the present invention, which is an example in which the shape of the nozzle is different from that in FIG. FIG. 5 is a graph showing another example of the cooling water injection pattern g (x) when a plurality of nozzles are arranged in the cooling device in the conveying direction of the steel material, and FIG. 6 changes the oscillation movement amount from 0 to 4P. In this case, the horizontal axis represents the amount of oscillation movement, and the vertical axis represents the difference between the maximum and minimum time average values of the water amount distribution, which are plotted as variations in the time average value h (z).

【0023】図6は図4と同様に右下がりの曲線とな
り、均一冷却を行うにはオシレーション移動量Lは大き
いほどよいことがわかる。また、オシレーション移動量
Lがノズルピッチの0.8倍の位置でバラツキが最低と
なる部分が存在する。すなわち、オシレーション移動量
L=(N+0.8)Pのとき、バラツキ値は最小となり
鋼材長手方向で均一な冷却を行うことができる(ここで
N:0を含む正の整数)。
Similar to FIG. 4, FIG. 6 shows a downward-sloping curve, and it can be seen that the larger the oscillation movement amount L is, the better for uniform cooling. Further, there is a portion where the variation is minimum when the oscillation movement amount L is 0.8 times the nozzle pitch. That is, when the oscillation movement amount L = (N + 0.8) P, the variation value becomes the minimum and uniform cooling can be performed in the longitudinal direction of the steel material (here, a positive integer including N: 0).

【0024】図7および図8は、本発明の鋼材の冷却方
法の他の実施形態を示すもので、図1、図5に比べてノ
ズルの噴射角度が異なった場合の例である。図7は冷却
装置に鋼材の搬送方向にノズルが複数配列したときの冷
却水噴射パターンg(x)の他の例を示すグラフ、図8
は、オシレーション移動量を0から4Pまで変化させた
場合について、横軸にオシレーション移動量、縦軸に水
量分布の時間平均値の最大と最小の差を時間平均値h
(z)のバラツキとしてプロットしたものである。
FIGS. 7 and 8 show another embodiment of the steel material cooling method according to the present invention, which is an example in which the spray angle of the nozzle is different from that in FIGS. 1 and 5. FIG. 7 is a graph showing another example of the cooling water jetting pattern g (x) when a plurality of nozzles are arranged in the cooling device in the conveying direction of the steel material, FIG.
Is the time average value h when the oscillation movement amount is changed from 0 to 4P, the horizontal axis represents the oscillation movement amount, and the vertical axis represents the difference between the maximum and minimum time average values of the water amount distribution.
It is plotted as the variation of (z).

【0025】図8から、オシレーション移動量Lがノズ
ルピッチの0.6倍の位置でバラツキが最低となる部分
が存在する。すなわち、オシレーション移動量L=(N
+0.6)Pのとき、バラツキ値は最小となり鋼材長手
方向で均一な冷却を行うことができる(ここでN:0を
含む正の整数)。
From FIG. 8, there is a portion where the variation is the minimum when the oscillation movement amount L is 0.6 times the nozzle pitch. That is, the oscillation movement amount L = (N
+0.6) P, the variation value becomes the minimum, and uniform cooling can be performed in the longitudinal direction of the steel material (here, a positive integer including N: 0).

【0026】なお、上記はいずれも鋼材をオシレーショ
ンする場合についての検討結果であるが、冷却装置を同
じ距離オシレーションさせても同様の結果を得ることが
できる。
Although the above is the result of examination on the case where the steel material is oscillated, the same result can be obtained even if the cooling device is oscillated at the same distance.

【0027】鋼材の冷却において、図1、図5、図7に
示す冷却水噴射パターンg(x)はその代表的なもので
あるから、オシレーション移動量の最適値は、図8より
得られたオシレーション移動量を下限値に、図4および
図6より得られたオシレーション移動量を上限値とすれ
ばよい。即ち、鋼材を水平方向にオシレーションさせて
冷却するか、または冷却装置を水平方向にオシレーショ
ンさせて鋼材を冷却する際に、このオシレーション移動
量Lを下式(4)とするように制御すれば、鋼材長手方
向で均一な冷却を行うことができる。 (N+0.6)×P<L<(N+0.8)×P<L0−Lk…(4) ここで、最適なオシレーション移動量は、移動時間T2
と停止時間T1の値により微小量変化する。停止時間T
1を常識的な範囲(数秒)で計算すると10%以内の誤
差になることが確認された。よって、(4)式を以下の
(1)式のように修正することで全ての冷却パターンに
対応することができる。 (N+(0.6−0.1))×P<L<(N+(0.8+0.1))×P <L0−Lk…(1) 即ち、(N+0.5)×P<L<(N+0.9)×P<L0−Lk…(1) さらに好ましくは、上式(1)を満足する最大の0を含
む正の整数NをNmaxとしたときに、このオシレーショ
ン移動量Lを下式(2)とするように制御すればよい。 (Nmax+0.5)×P<L<(Nmax+0.9)×P<L0−Lk …(2)
In cooling the steel material, the cooling water injection pattern g (x) shown in FIGS. 1, 5 and 7 is a typical one. Therefore, the optimum value of the amount of oscillation movement can be obtained from FIG. The oscillation movement amount may be set as the lower limit value, and the oscillation movement amount obtained from FIGS. 4 and 6 may be set as the upper limit value. That is, when the steel material is oscillated in the horizontal direction for cooling, or when the cooling device is oscillated in the horizontal direction for cooling the steel material, the oscillation movement amount L is controlled to be the following expression (4). By doing so, it is possible to perform uniform cooling in the longitudinal direction of the steel material. (N + 0.6) × P <L <(N + 0.8) × P <L 0 −L k (4) Here, the optimum oscillation movement amount is the movement time T2.
And a minute amount changes depending on the value of the stop time T1. Stop time T
It was confirmed that when 1 was calculated within a common sense range (several seconds), the error was within 10%. Therefore, all the cooling patterns can be dealt with by modifying the equation (4) as the following equation (1). (N + (0.6−0.1)) × P <L <(N + (0.8 + 0.1)) × P <L 0 −L k (1) That is, (N + 0.5) × P <L <(N + 0.9) × P <L 0 −L k (1) More preferably, when Nmax is a positive integer N including 0, which is the maximum that satisfies the above expression (1), this oscillation movement is performed. The quantity L may be controlled so as to satisfy the following expression (2). (Nmax + 0.5) × P <L <(Nmax + 0.9) × P <L 0 −L k (2)

【0028】[0028]

【実施例】仕上圧延機後面に設けられた冷却装置を用い
て、形鋼を水平方向にオシレーションさせて冷却した。
Example A shaped steel was oscillated in a horizontal direction and cooled using a cooling device provided on the rear surface of a finishing rolling mill.

【0029】冷却装置の長さは36mで、下面の冷却
は、ロールピッチ1.8mで、各ロール間に2列の冷却
ノズルヘッダーが配列され、各列のノズルヘッダーには
幅方向に2個のスプレーノズルが相対して配置されてい
る。長手方向には合計40列のヘッダーが並んでいる。
一方、上面の冷却は、下面の冷却位置と対向位置にあっ
て、長手方向には0.9mピッチで40列の冷却ヘッダ
ーが配置され、冷却ヘッダーの各列には幅方向に2個の
ノズルが設けられている。 この冷却装置で仕上圧延後
の長さ32mのH572×510×60×80のH形鋼
を冷却した。冷却条件は0.8m/秒の搬送速度でオシ
レーションさせながら120秒間冷却した。
The cooling device has a length of 36 m, the lower surface is cooled at a roll pitch of 1.8 m, and two rows of cooling nozzle headers are arranged between the rolls. Two nozzles in each row are arranged in the width direction. Spray nozzles are arranged opposite to each other. A total of 40 rows of headers are arranged in the longitudinal direction.
On the other hand, the cooling of the upper surface is in a position facing the cooling position of the lower surface, and 40 rows of cooling headers are arranged at a pitch of 0.9 m in the longitudinal direction, and each row of the cooling header has two nozzles in the width direction. Is provided. With this cooling device, H-section steel of H572 × 510 × 60 × 80 having a length of 32 m after finish rolling was cooled. The cooling condition was cooling for 120 seconds while oscillating at a conveying speed of 0.8 m / sec.

【0030】オシレーション移動量Lは(1)式より
(N+0.5)×P<L<(N+0.9)×P<4とな
る。すなわち、オシレーション移動量Lを0.5P<L
<0.9P、1.5P<L<1.9P、2.5P<L<
2.9P、3.5P<L<3.9Pのいずれかとするよ
うに制御すれば、最も冷却効率がよくなる。
The oscillation movement amount L is (N + 0.5) × P <L <(N + 0.9) × P <4 from the equation (1). That is, the oscillation movement amount L is 0.5P <L
<0.9P, 1.5P <L <1.9P, 2.5P <L <
If the control is made to be either 2.9P or 3.5P <L <3.9P, the cooling efficiency will be the best.

【0031】また、(1)式を満足する最大の0を含む
正の整数NをNmaxとするとNmax=3となることより、
オシレーション移動量は好ましくは3.5P=3.15
m<L<3.9P=3.51mとするように制御すれ
ば、最も冷却効率がよくなる。
If Nmax is a positive integer N including the maximum 0 that satisfies the equation (1), then Nmax = 3.
The amount of oscillation movement is preferably 3.5P = 3.15
If the control is performed so that m <L <3.9P = 3.51 m, the cooling efficiency becomes highest.

【0032】ここで、オシレーション移動量LをN=1
のときのL=1.6m(1.8P)とした場合と比較例
としてオシレーション移動量LをL=1.8m(2P)
とした場合とでオシレーション冷却後の形鋼の1ノズル
ピッチ分の長手方向温度分布を測定した。その結果を併
せて図9に示す。
Here, the oscillation movement amount L is N = 1.
When L = 1.6 m (1.8 P) and as a comparative example, the oscillation movement amount L is L = 1.8 m (2 P).
In this case, the temperature distribution in the longitudinal direction for one nozzle pitch of the shaped steel after cooling by oscillation was measured. The results are also shown in FIG.

【0033】図9によれば、比較例ではオシレーション
移動量LをL=1.8mとした場合の形鋼の温度分布
(点線で示す)は長手方向に±10℃の範囲であるのに
対して、本発明例ではオシレーション移動量LをL=
1.6mとした場合の形鋼の温度分布(実線で示す)は
長手方向に±5℃の範囲であり、本発明法によりオシレ
ーション冷却が効率よく安定的に行われていることが判
る。
According to FIG. 9, in the comparative example, the temperature distribution (shown by the dotted line) of the shaped steel when the oscillation movement amount L is L = 1.8 m is in the range of ± 10 ° C. in the longitudinal direction. On the other hand, in the example of the present invention, the oscillation movement amount L is L =
The temperature distribution of the shaped steel (shown by the solid line) in the case of 1.6 m is in the range of ± 5 ° C. in the longitudinal direction, and it can be seen that the oscillation cooling is efficiently and stably performed by the method of the present invention.

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
鋼材を長時間に亘り冷却するとき、冷却後に温度むらが
少なく、安定して効率よく冷却できるので高品質な鋼材
が安価に得られる。
As described above, according to the present invention,
When cooling a steel material for a long time, there is little temperature unevenness after cooling and stable and efficient cooling is possible, so a high-quality steel material can be obtained at a low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の鋼材の冷却方法の一実施形態を示すも
ので、冷却装置に鋼材の搬送方向にノズルが複数配列し
たときの冷却水噴射パターンの一例を示すグラフ
FIG. 1 is a graph showing an embodiment of a steel material cooling method of the present invention, showing an example of a cooling water injection pattern when a plurality of nozzles are arranged in a cooling device in a steel material conveyance direction.

【図2】本発明の鋼材の冷却方法の一実施形態を示すも
ので、鋼材がオシレーション移動量2Pだけ移動したと
きの、鋼材のある位置における水量分布を時系列的に示
すもので、図2(a)は図1における位置(a)、図2
(b)は図1における位置(b)の水量分布
FIG. 2 shows an embodiment of a method for cooling a steel product according to the present invention, which shows a water amount distribution at a certain position of the steel product in time series when the steel product moves by an oscillation movement amount 2P. 2 (a) is the position (a) in FIG.
(B) is the water quantity distribution at position (b) in FIG.

【図3】本発明の鋼材の冷却方法の一実施形態を示すも
ので、当該冷却装置により鋼材をオシレーション冷却し
たときの鋼材の全ての位置における図2に示す水量分布
曲線(冷却曲線)の時間平均値h(z)を示すグラフ
FIG. 3 shows an embodiment of a method for cooling a steel product according to the present invention, and shows the water amount distribution curve (cooling curve) shown in FIG. 2 at all positions of the steel product when the steel product is oscillated and cooled by the cooling device. Graph showing time average value h (z)

【図4】本発明の鋼材の冷却方法の一実施形態を示すも
ので、オシレーション移動量を0から4Pまで変化させ
た場合について、オシレーション移動量と水量分布の時
間平均値の最大と最小の差(時間平均値h(z)のバラ
ツキ)との関係を示すグラフ
FIG. 4 shows an embodiment of the method for cooling a steel product according to the present invention, in which the maximum and minimum of the time average value of the oscillation movement amount and the water amount distribution when the oscillation movement amount is changed from 0 to 4P. Graph showing the relationship with the difference of (the variation of the time average value h (z))

【図5】本発明の鋼材の冷却方法の他の実施形態を示す
もので、冷却装置に鋼材の搬送方向にノズルが複数配列
したときの冷却水噴射パターンの他の例を示すグラフ
FIG. 5 shows another embodiment of the steel material cooling method of the present invention, and is a graph showing another example of the cooling water injection pattern when a plurality of nozzles are arranged in the cooling device in the steel material conveyance direction.

【図6】本発明の鋼材の冷却方法の他の実施形態を示す
もので、オシレーション移動量を0から4Pまで変化さ
せた場合について、オシレーション移動量と水量分布の
時間平均値の最大と最小の差(時間平均値h(z)のバ
ラツキ)との関係を示すグラフ
FIG. 6 shows another embodiment of the method for cooling a steel product according to the present invention, showing the maximum time average value of oscillation movement amount and water amount distribution when the oscillation movement amount is changed from 0 to 4P. Graph showing the relationship with the minimum difference (variation of time average value h (z))

【図7】本発明の鋼材の冷却方法の他の実施形態を示す
もので、冷却装置に鋼材の搬送方向にノズルが複数配列
したときの冷却水噴射パターンの他の例を示すグラフ
FIG. 7 is a graph showing another embodiment of the steel material cooling method of the present invention, showing another example of the cooling water jetting pattern when a plurality of nozzles are arranged in the steel material conveying direction in the cooling device.

【図8】本発明の鋼材の冷却方法の他の実施形態を示す
もので、オシレーション移動量を0から4Pまで変化さ
せた場合について、オシレーション移動量と水量分布の
時間平均値の最大と最小の差(時間平均値h(z)のバ
ラツキ)との関係を示すグラフ
FIG. 8 shows another embodiment of the method for cooling a steel product according to the present invention, in which the oscillation movement amount and the maximum time average value of the water amount distribution are changed when the oscillation movement amount is changed from 0 to 4P. Graph showing the relationship with the minimum difference (variation of time average value h (z))

【図9】オシレーション冷却後の本発明例と比較例の形
鋼の1ノズルピッチ分の長手方向温度分布を示すグラフ
FIG. 9 is a graph showing the temperature distribution in the longitudinal direction for one nozzle pitch of the shaped steels of the present invention example and comparative example after oscillation cooling.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼材を水平方向にオシレーションさせて
冷却するか、または冷却装置を水平方向にオシレーショ
ンさせて鋼材を冷却する際に、前記オシレーション移動
量Lを下式(1)とするように制御することを特徴とす
る鋼材の冷却方法。 (N+0.5)×P<L<(N+0.9)×P<L0−Lk…(1) ここで、P:冷却装置のノズルピッチ、N:0を含む正
の整数、L0:冷却装置長さ、Lk:鋼材長さ
1. When the steel material is horizontally oscillated for cooling or when the cooling device is horizontally oscillated for cooling the steel material, the oscillation movement amount L is represented by the following formula (1). A method for cooling a steel material, which is characterized in that: (N + 0.5) × P <L <(N + 0.9) × P <L 0 −L k (1) Here, P is a nozzle pitch of the cooling device, a positive integer including N: 0, L 0 : Cooling device length, L k : Steel material length
【請求項2】 鋼材を水平方向にオシレーションさせて
冷却するか、または冷却装置を水平方向にオシレーショ
ンさせて鋼材を冷却する際に、下式(1)を満足する最
大の正の整数NをNmaxとしたときに、前記オシレーシ
ョンLを下式(2)とするように制御することを特徴と
する請求項1に記載の鋼材の冷却方法。 (N+0.5)×P<L<(N+0.9)×P<L0−Lk…(1) (Nmax+0.5)×P<L<(Nmax+0.9)×P<L0−Lk …(2) ここで、P:冷却装置のノズルピッチ、Nmax:上記
(1)式を満足する最大の0を含む正の整数、N:0を
含む正の整数、L0:冷却装置長さ、Lk:鋼材長さ
2. When a steel material is oscillated in a horizontal direction for cooling or a cooling device is oscillated in a horizontal direction for cooling the steel material, a maximum positive integer N satisfying the following expression (1) is satisfied. The method for cooling a steel product according to claim 1, wherein the oscillation L is controlled so as to satisfy the following formula (2) when Nmax is Nmax. (N + 0.5) × P <L <(N + 0.9) × P <L 0 −L k (1) (Nmax + 0.5) × P <L <(Nmax + 0.9) × P <L 0 −L k (2) where P is the nozzle pitch of the cooling device, Nmax is a positive integer including 0, which is the maximum that satisfies the above formula (1), N is a positive integer including 0 , and L 0 is the cooling device length. , L k : Steel length
JP2001398840A 2001-12-28 2001-12-28 Steel cooling method Expired - Fee Related JP4126908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001398840A JP4126908B2 (en) 2001-12-28 2001-12-28 Steel cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001398840A JP4126908B2 (en) 2001-12-28 2001-12-28 Steel cooling method

Publications (2)

Publication Number Publication Date
JP2003193126A true JP2003193126A (en) 2003-07-09
JP4126908B2 JP4126908B2 (en) 2008-07-30

Family

ID=27604116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001398840A Expired - Fee Related JP4126908B2 (en) 2001-12-28 2001-12-28 Steel cooling method

Country Status (1)

Country Link
JP (1) JP4126908B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181891A1 (en) * 2015-05-14 2016-11-17 Jfeスチール株式会社 Method for producing steel material, apparatus for cooling steel material, and steel material
US9593393B2 (en) 2012-02-06 2017-03-14 Jfe Steel Corporation Rail heat treatment device and rail heat treatment method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101510548B1 (en) * 2013-11-01 2015-04-08 주식회사 포스코 Apparatus for quenching of rolled steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9593393B2 (en) 2012-02-06 2017-03-14 Jfe Steel Corporation Rail heat treatment device and rail heat treatment method
WO2016181891A1 (en) * 2015-05-14 2016-11-17 Jfeスチール株式会社 Method for producing steel material, apparatus for cooling steel material, and steel material
JPWO2016181891A1 (en) * 2015-05-14 2017-09-07 Jfeスチール株式会社 Steel manufacturing method, steel cooling device, and steel
CN107614708A (en) * 2015-05-14 2018-01-19 杰富意钢铁株式会社 The manufacture method of steel, the cooling device of steel and steel
AU2016260101B2 (en) * 2015-05-14 2019-03-07 Jfe Steel Corporation Method for producing steel material, apparatus for cooling steel material, and steel material
AU2016260101B9 (en) * 2015-05-14 2019-03-28 Jfe Steel Corporation Method for producing steel material, apparatus for cooling steel material, and steel material

Also Published As

Publication number Publication date
JP4126908B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
US4371149A (en) Apparatus for cooling sheet steel by water spraying
JP2008100256A (en) Equipment and method for cooling steel sheet
JP2003193126A (en) Method for cooling steel material
JP2764167B2 (en) Direct Patenting Apparatus and Method for Hot Rolled Ring Wire
JPS6035974B2 (en) Cooling method for high-temperature plate-shaped objects
JP4398898B2 (en) Thick steel plate cooling device and method
JP4858411B2 (en) Steel cooling method
JP2001262220A (en) Method for cooling steel material
KR100527064B1 (en) Injection nozzle and Method for manufacturing strip wire using it
JP4091934B2 (en) Thick steel plate cooling method
JP4478083B2 (en) Steel plate top and bottom uniform cooling system
JP2011011221A (en) Cooling device for hot-rolled steel sheet and controlling method for the same device, and device and method for manufacturing hot-rolled steel sheet
JP3368853B2 (en) Shaped steel cooling system
JP3368856B2 (en) Angle iron cooling equipment
JP2019081198A (en) Manufacturing method and manufacturing equipment of steel material
JP4061286B2 (en) Metal plate cooling device and cooling method
JP2005238252A (en) Method and system for cooling h steel
JP3617418B2 (en) Shaped steel cooling method and apparatus
JP2001129607A (en) Method of and device for manufacturing-shaped steel
JP2007260748A (en) Facility and method for cooling wide flange shape steel
JPH09287026A (en) Method for hot treatment of metal bar material and cooling device
JP2001047102A (en) Manufacture of h-shape steel
JPS60221115A (en) Cooling method of steel plate
JPS61193717A (en) Uniform cooling method of steel plate
JPH07252538A (en) Method for cooling thin steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080505

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4126908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees