JP3617418B2 - Shaped steel cooling method and apparatus - Google Patents

Shaped steel cooling method and apparatus Download PDF

Info

Publication number
JP3617418B2
JP3617418B2 JP2000192942A JP2000192942A JP3617418B2 JP 3617418 B2 JP3617418 B2 JP 3617418B2 JP 2000192942 A JP2000192942 A JP 2000192942A JP 2000192942 A JP2000192942 A JP 2000192942A JP 3617418 B2 JP3617418 B2 JP 3617418B2
Authority
JP
Japan
Prior art keywords
cooling
water
injection
header
shape steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000192942A
Other languages
Japanese (ja)
Other versions
JP2002011514A (en
Inventor
誠 中世古
晃夫 藤林
幸生 藤井
操 槙ノ原
鶴和 有村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000192942A priority Critical patent/JP3617418B2/en
Publication of JP2002011514A publication Critical patent/JP2002011514A/en
Application granted granted Critical
Publication of JP3617418B2 publication Critical patent/JP3617418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、H形鋼等の垂直面、又は垂直に近い面上を冷却する形鋼の冷却方法及びその装置に関し、特に、その冷却装置の冷却媒体に冷却水等の液体媒体を用いるにあたって、均一冷却をおこなうための冷却装置の構造に関するものである。
【0002】
【従来の技術】
従来より、熱間圧延中、又は熱間圧延後の高温鋼材面に冷却媒体として冷却水を用いて冷却することは行われており、かつ熱間鋼材を搬送しながら冷却を行うことも行われていた。
【0003】
また、H形鋼フランジ冷却では形状制御のためのスプレー群による冷却が行われてきたが、近年、形鋼を含む鋼材の機械的性質、加工性、溶接性を向上させるための加速冷却手段には、高冷却能、均一冷却が求められ、その手段の一つとして、箱型に形成した冷却装置の冷却面側の板に数ミリの噴射孔を多数あけ、その箱型の冷却装置に冷却水等を流し込んで噴射孔から冷却水等を噴射させる多孔板噴流タイプの冷却装置(以下、多孔板冷却装置と呼ぶ)が使われている。尚、この多孔板冷却装置は柱状噴流冷却装置と呼ばれることもある。
そして、多孔板冷却装置を用いたH形鋼のフランジ冷却技術としては、特開平9−10820号公報に開示されたような「形鋼の冷却方法及びその装置」があった。
【0004】
【発明が解決しようとする課題】
しかしながら、特開平9−10820号公報に記載のものは、H形鋼を冷却するにあたり、H形鋼の両脇に設置された多孔板冷却装置から冷却媒体として冷却水等を垂直面であるH形鋼のフランジに対して噴射している。
一般にH形鋼のフランジは150〜300[mm]、また極厚H形鋼のフランジは400〜500[mm]以上あり、冷却装置の冷却面の高さは必然的に500[mm]以上となる。ところが、垂直面を冷却する多孔板冷却装置の冷却面が高くなると以下に説明するような問題点があった。
【0005】
図7は従来の多孔板冷却装置から噴射された冷却水の流れを模式的に示した図である。
図において、1はH形鋼、2は多孔板冷却装置、3は多孔板冷却装置2の噴射孔、4は送水管、5は冷却水の流線、7はバルブである。
図7に示すように、従来の多孔板冷却装置2では、上端側の冷却水の噴射が弱まってしまい、冷却水が下端側の冷却水の噴射に比べ、H形鋼1の上端のフランジにあたらなくなる。このままで冷却を行うと冷却後のフランジ温度は、図8の6に示すような温度分布となり、フランジ上下で温度偏差が生じてしまい、製品の形状不良や強度不足等の原因となっていた。
【0006】
また、多孔板冷却装置2の上端側に冷却水があたらなくなるのは、噴射圧が足りないためによるものである。そのため、冷却水等の供給を増加させれば、噴射圧は高まりフランジ上部まで冷却することが可能であるが、それでもそのときの噴射圧が不十分だと、フランジ上端に比べてフランジ下端の噴射水の流速が速いため、図3に示すような冷却ムラに起因したフランジ上下の温度備差が生じていた。また、実際には、設備制約の範囲から大量に冷却水を噴射することは不経済であった。
【0007】
このように、従来では、H形鋼のフランジ等の垂直面を冷却する多孔板冷却装置で均一冷却するためには、最低必要な噴射圧が不明であり、また、冷却水等の供給が制限される場合は、多孔板冷却装置で均一冷却を実現することが不可能であった。
【0008】
本発明は、高強度・高靭性の形鋼を安価に製造するため、形鋼のフランジ外面から均一に加速冷卸することができる形鋼冷却方法及びその装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明に係る形鋼冷却方法は、垂直面あるいは垂直に近い面を有する形鋼の熱間圧延工程において、多数の噴射孔を設けた水冷ヘッダに冷却水を供給し、複数の噴射孔から冷却水を噴射して形鋼のフランジを水冷する形鋼冷却方法であって、水冷ヘッダの各面から噴射される最大噴射量に対する最小噴射量の噴射割合が、80%以上となるように、水冷ヘッダへの噴射圧力又は水冷ヘッダの分割高さを設定するものである。
【0010】
また、本発明に係る形鋼冷却方法は、垂直面あるいは垂直に近い面を有する形鋼の熱間圧延工程において、多数の噴射孔を設けた水冷ヘッダに冷却水を供給し、複数の噴射孔から冷却水を噴射して形鋼のフランジを水冷する形鋼冷却方法であって、水冷ヘッダの最下面から噴射される冷却水の噴射量に対する、水冷ヘッダの形鋼の冷却最上面高さにおける噴射量の噴射割合が、80%以上となるように噴射圧力を設定するものである。
【0011】
また、本発明に係る形鋼冷却方法は、垂直面あるいは垂直に近い面を有する形鋼の熱間圧延工程において、多数の噴射孔を設けた水冷ヘッダに冷却水を供給し、複数の噴射孔から冷却水を噴射して形鋼のフランジを水冷する形鋼冷却方法であって、予め水冷ヘッダに供給する冷却水の噴射圧力を設定し、その設定された噴射圧力により、水冷ヘッダの最下面から噴射される冷却水の噴射量に対する、水冷ヘッダのある冷却面における噴射量の噴射割合が、80%となる冷却面高さ以下の範囲内で、分割高さを設定し、その分割高さにより水冷ヘッダを多段に分割するものである。
【0012】
また、本発明に係る形鋼冷却装置は、垂直面あるいは垂直に近い面を有する形鋼の熱間圧延工程において、多数の噴射孔を設けた水冷ヘッダに冷却水を供給し、複数の噴射孔から冷却水を噴射して形鋼のフランジを水冷する形鋼冷却装置であって、水冷ヘッダの最下面から噴射される冷却水の噴射量に対する、水冷ヘッダの形鋼の冷却最上面高さにおける噴射量の噴射割合が、80%以上となる噴射圧力の冷却水を、水冷ヘッダへ供給する手段を備えるものである。
【0013】
また、本発明に係る形鋼冷却装置は、垂直面あるいは垂直に近い面を有する形鋼の熱間圧延工程において、多数の噴射孔を設けた水冷ヘッダに冷却水を供給し、複数の噴射孔から冷却水を噴射して形鋼のフランジを水冷する形鋼冷却装置であって、最低必要噴射圧力を min[ MPa ] 、冷却水の密度をρ [ kg/m 3 ]、重力加速度を [ m/s 2 ]、形鋼の冷却最上面の高さを [ ]として、水冷ヘッダに、下式により求められる min[ MPa ] 以上の噴射圧力の冷却水を供給する手段を備えるものである。
Pmin =ρ×g×h×2/1000000
【0014】
また、本発明に係る形鋼冷却装置は、垂直面あるいは垂直に近い面を有する形鋼の熱間圧延工程において、多数の噴射孔を設けた水冷ヘッダに冷却水を供給し、複数の噴射孔から冷却水を噴射して形鋼のフランジを水冷する形鋼の冷却装置であって、予め水冷ヘッダに供給する冷却水の噴射圧力を設定し、その設定された噴射圧力により、水冷ヘッダの最下面から噴射される冷却水の噴射量に対する、水冷ヘッダのある冷却面における噴射量の噴射割合が、80%となる冷却面高さ以下の範囲内で、水冷ヘッダを多段に分割する手段と、分割された水冷ヘッダの各部に設定された噴射圧力の冷却水を供給する手段とを備えるものである。
【0015】
また、本発明に係る形鋼冷却装置は、垂直面あるいは垂直に近い面を有する形鋼の熱間圧延工程において、多数の噴射孔を設けた水冷ヘッダに冷却水を供給し、複数の噴射孔から冷却水を噴射して形鋼のフランジを水冷する形鋼の冷却装置であって、予め水冷ヘッダに供給する冷却水の噴射圧力を設定し、 max[ ]を水冷ヘッダを分割したときの1段当たりの最大の高さ、Pj [ MPa ] を設定された噴射圧力、冷却水の密度をρ [ kg/m 3 ] 重力加速度を [ m/s 2 ]として、水冷ヘッダを、下式により求められる max[ ]以下の範囲内で、水冷ヘッダを多段に分割する手段と、分割された水冷ヘッダの各部に設定された噴射圧力の冷却水を供給する手段とを備えるものである。
hmax =Pj/(2×ρ×g)×1000000
【0016】
【発明の実施の形態】
まず、本発明の形鋼の冷却装置による形鋼の冷却の概要について説明する。
本発明者らは、H形鋼等のフランジ垂直面を均一に冷却するための、噴射圧と多孔板冷却装置の噴射孔である多孔板面、及び噴射指数との関係を調査し、図2に示すような結果を得た。
ここで、噴射指数は最下面から噴射される冷却水の量を100[%]としたときのそれぞれの位置での噴射割合である。
図2に示すように、被冷却面の高さが高くなると噴射指数が低下することがわかる。
【0017】
また、図3は噴射指数と温度偏差の関係を説明するグラフであり、各H形鋼フランジサイズ(フランジ幅500[mm]、フランジ幅300[mm]、フランジ幅150[mm])における噴射指数と均一冷却度の関係を示したものである。
図3に示すように、噴射指数が80[%]以上においては、H形鋼のフランジの上下平均温度差が±20[℃]以内となっており、また、この上下平均温度差では、H形鋼の仕上がり時の曲がりが小さいことが分かった。
【0018】
このことから、本発明者らは、多孔板冷却装置による冷却時に、噴射指数が80[%]以上となる噴射圧を確保するか、又は噴射圧が決まっているときは噴射指数が80[%]以上となるように、多孔板冷却装置の冷却ヘッダーを分割すれば良いことを発見した。
【0019】
たとえば、多孔板冷却装置の高さが500[mm]の場合は、図2に示すように、噴射圧は約0.010[MPa]以上を確保すれば、噴射指数が80[%]以上となり均一冷却が可能である。
また、噴射圧が0.002[MPa]に制限される場合においては、図2に示すように、多孔板冷却装置の分割間隔を1段あたり100[mm]又は100[mm]以下とすれば均一冷却が可能であり、例えば、1段あたり100[mm]とした場合で多孔板冷却装置の高さが500[mm]必要となる場合は、高さ方向に5段設置し、均等に冷却液を配分することにより、どの部分でも噴射指数を80[%]以上確保でき均一冷却が可能である。
【0020】
そこで、本発明者らは、下記の式1に示すような、H形鋼等の多孔板面の高さをh[m]としたときに、噴射指数が80[%]となるのに必要となる冷却媒体の噴射圧(Pmin[MPa])を定める式を求めた。
したがって、この式1により算出される噴射圧(Pmin[MPa])以上の圧力設定を行えば、均一冷却が可能となる。
【0021】
Pmin=ρ×g×h×2/1000000 …(1)
但し、
ρは冷却水の密度(=1000[kg/m])
gは重力加速度(=9.80665[m/s])
である。
【0022】
また、下記の式2に示すような、必要とされる水量密度、あるいは確保される冷却水量及び噴射孔の口径と個数から、噴射圧(P[MPa])が一定の条件下で、均一冷却を可能とする噴射指数80[%]を確保できる多孔板1段当たりの水冷面高さ(hmax[m])を定める式を求めた。
したがって、この式2により算出される高さ(hmax[m])以下に1段あたりの高さ設定を行えば、均一冷却が可能となる。
【0023】
hmax=P/(2×ρ×g)×1000000 …(2)
但し、
ρは冷却水の密度(=1000[kg/m])
gは重力加速度(=9.80665[m/s])
である。
【0024】
実施の形態1.
この実施の形態は、上記の式1を用いて、噴射指数が80[%]となるのに必要となる冷却媒体の噴射圧(Pmin[MPa])を定め、この噴射圧(Pmin[MPa])に基づいて、形鋼の冷却装置の各部を構成するようにしたものである。
図1は本発明の一実施の形態に係る形鋼の冷却装置の構成を示す図である。
図において、1は被冷却物であるH形鋼、2は多孔板冷却装置、3は多孔板冷却装置の噴射孔、9は搬送ロールである。
多孔板冷却装置2は図示しない仕上げ圧延機の後方20[m]から、長さ50[m]、高さ0.5[m]で、搬送ラインの両側に設置されている。
【0025】
次に、この実施の形態の処理手順について説明する。
図4はこの実施の形態の処理手順を示すフローチャートである。
まず、冷却面の高さh[m]を決定する(S100)。
例えば、H形鋼のサイズは、幅612[mm]、高さ490[mm]、ウェブ厚み40[mm]、フランジ厚み80[mm]で、必要冷却高さ(h)は0.5[m]である。
【0026】
そして、式1を用いて最低必要噴射圧力(Pmin[MPa])を算出する(S101)。
例えば、必要冷却高さ(h)=0.5[m]では、最低必要噴射圧力(Pmin[MPa])は、

Figure 0003617418
となり、
Pmin=約0.0098[MPa]となる。
【0027】
そして、S101で算出された最低必要噴射圧力(Pmin[MPa])に基づいて、多孔板冷却装置2からの噴射圧力(Pj[MPa])を決定し、噴射圧力(Pj[MPa])から下記の式3により噴射速度(Vj[m/s])を決定する(S102)。
【0028】
Vj=√(2000000×(Pj−Pζ)/ρ) …(3)
但し、
ρは冷却水の密度(=1000[kg/m])
Pζは圧力損失[MPa]
である。
【0029】
例えば、Pmin=0.0098[MPa]の場合、Pmin以上の噴射圧力ということで、Pj=0.012[MPa]に決定。
そのときの噴射速度(Vj[m/s])は、圧力損失(Pζ[MPa])を0.0002[MPa]として、
Figure 0003617418
となり、
Vj=約4.85[m/s]となる。
なお、圧力損失Pζは0[MPa]とおいても差し支えない。
【0030】
そして、噴射孔口径(Dj[m])と噴射孔密度(Nj[個/m])を決定し、そのときの水量密度(qw[l/min・m])を下記の式4により確認する(S103)。
【0031】
qw=Vj×(Dj/2)×π×Nj×60000 …(4)
但し、πは円周率である。
【0032】
例えば、噴射孔口径(Dj[m])は直径0.003[m]、噴射孔密度(Nj[個/m])は500[個/m]と決定し、そのときの水量密度(qw[l/min・m])は、
Figure 0003617418
となり、
qw=約1030[l/min・m]となる。
【0033】
そして、必要最低水量密度(qw min[l/min・m])を確認し、水量密度(qw[l/min・m])が必要最低水量密度(qw min[l/min・m])以上か否かを判断する(S104)。
そして、S104で水量密度(qw[l/min・m])が必要最低水量密度(qw min[l/min・m])に満たないと判断されれば、能力不能としてS102に戻り、噴射圧を増大させる。
例えば、冷却能力から必要な最低水量密度(qw min[l/min・m])は1000[l/min・m]であり、qw>qw minであるので、冷却能力は満足している。
【0034】
そして、水冷装置長さ(L[m])と冷却装置高さ(hc[m])から下記の式5により全冷却水量(Q[t/h])を確認し、設備制約範囲外か否かを判断する(S105)。
S105で、設備制約範囲外と判断されれば、S103に戻り、噴射孔・噴射孔密度を調整する。
【0035】
Q=qw×L×hc×0.06 …(5)
【0036】
例えば、水冷装置長さ(L=50[m]×2、両側に設置のため)、冷却装置高さ(hc=0.5[m])から、全冷却水量(Q[t/h])は、
Figure 0003617418
となり、
Q=3090[t/h]となる。
この全冷却水量(Q[t/h])は、本設備の能力範囲内であった。
【0037】
そして、全水量と噴射圧量を参考に、配管とバルブのサイズを決定する(S106)。
【0038】
以上の手順をもって製作した多孔板冷却装置2に、仕上げ圧延後のフランジ上平均温度810[℃]、フランジ下平均温度814[℃]のほぼ上下均一温度のH形鋼1を、25[mpm]の速度で、通過冷却を行った。冷却時間は約120秒である。
その結果、復熱後のフランジ上平均温度は508[℃]、フランジ下平均温度は505[℃]と均一冷却が行われ、フンランジ上下の平均温度差は3[℃]であった。放冷後のH形鋼には上下曲がり等の変形は無く、かつフランジ強度も上下で同じ値だった。
【0039】
実施の形態2.
この実施の形態は、上記の式2を用いて、必要とされる水量密度、あるいは確保される冷却水量及び噴射孔の口径と個数から、噴射圧(P[MPa])が一定の条件下で、均一冷却を可能とする噴射指数80[%]を確保できる多孔板1段当たりの水冷面高さ(hmax[m])を定め、この水冷面高さ(hmax[m])に基づいて、形鋼の冷却装置の各部を構成するようにしたものである。
図5は本発明の他の実施の形態に係る形鋼の冷却装置の構成を示す図である。図において、1は被冷却物であるH形鋼、2は多孔板冷却装置、3は多孔板冷却装置の噴射孔、4は送水管、5は冷却水の流線、7はバルブ、8は仕切り板である。
【0040】
多孔板冷却装置2は図示しない仕上げ圧延機の後方20[m]から、長さ50[m]、高さ0.5[m]で、搬送ラインの両側に設置されている。また、被冷却物となるH形鋼のサイズは、幅612[mm]、高さ490[mm]、ウェブ厚み40[mm]、フランジ厚み80[mm]で、必要冷却高さ(h)は0.5[m]である。
【0041】
次に、この実施の形態の処理手順について説明する。
図6はこの実施の形態の処理手順を示すフローチャートである。
まず、必要最低水量密度を冷却能力から1000[l/min・m]と決定する(S110)。
そして、噴射孔口径(Dj[m])と噴射孔密度(Nj[個/m])を決定し、そのときの噴射速度(Vj[m/s])を下記の式6により確認する(S111)。
【0042】
Vj=qw/((Dj/2)×π×Nj×60000) …(6)
但し、πは円周率である。
【0043】
例えば、噴射孔口径(Dj[m])は直径0.004[m]、噴射孔密度(Nj[個/m])は500[個/m]と決定し、そのときの噴射速度(Vj[m/s])は、
Figure 0003617418
となり、
Vj=約2.65[m/s]となる。
【0044】
そして、噴射速度(Vj[m/s])から噴射圧力(Pj[MPa])を下記の式7により求める(S112)。
Pj=ρ×Vj/2000000+Pζ …(7)
但し、
ρは冷却水の密度(=1000[kg/m])
Pζは圧力損失[MPa]
である。
【0045】
例えば、圧力損失(Pζ[MPa])を0.0002[MPa]として、
Figure 0003617418
となり、
Pj=約0.0037[MPa]となる。
なお、圧力損失(Pζ[MPa])は0[MPa]とおいても差し支えない。
【0046】
そして、上記の式2により、噴射圧力(Pj[MPa])から最大分割高さ(hmax[m])を求め、必要冷却高さ(h[m])と最大分割高さ(hmax[m])を比較し、分割の必要性を判断する(S113)。
例えば、噴射圧力Pj=0.0037のときの、最大分割高さ(hmax[m])は、
Figure 0003617418
となり、
hmax=約0.189[m]となった。
【0047】
そして、h=0.5[m]なので、h>hmaxとなり、必要冷却高さ(h[m])の方が、最大分割高さ(hmax[m])よりも大きくなっているため、多孔板冷却装置2を分割(多段化)する必要があると判断する。
【0048】
そして、水冷装置長さ(L[m])と冷却装置高さ(hc[m])から下記の式8により全冷却水量(Q[t/h])を確認し、設備制約範囲外か否かを判断する(S114)。
S114で、設備制約範囲外と判断されれば、S111に戻り、噴射孔・噴射孔密度を調整する。
【0049】
Q=qw×L×hc×0.06 …(8)
【0050】
例えば、水冷装置長さ(L=50[m]×2、両側に設置のため)、冷却装置高さ(hc=0.5[m])から、全冷却水量(Q[t/h])は、
Figure 0003617418
となり、
Q=3000[t/h]となる。
この全冷却水量(Q[t/h])は、本設備の能力範囲内であった。
【0051】
そして、最大分割高さ(hmax[m])以下となるように、分割距離(hb[m])を決定し、分割距離(hb[m])と必要冷却高さ(h[m])から分割の段数(Nb[m])を決定する(S115)。
例えば、hmax=0.189[m]の場合、hmax以下の分割距離ということで、hb=0.1[m]に決定し、必要冷却高さ(h[m])=0.5[m]なので、段数(Nb[段])を5段、1段当たりの送水量を600[t/h]とし、各段の間に仕切り板8を設置する。
【0052】
そして、段数と1段当たりの送水量から配管とバルブのサイズを決定する(S116)。
【0053】
以上の手順をもって製作した多孔板冷却装置2に、仕上げ圧延後のフランジ上平均温度約826[℃]、フランジ下平均温度約832[℃]のほぼ上下均一温度のH形鋼1を、20[mpm]の速度で、通過冷却を行った。冷却時間は約150秒である。
その結果、復熱後のフランジ上平均温度は約492[℃]、フランジ下平均温度は約494[℃]と均一冷却が行われ、フランジ上下の平均温度差は2[℃]であった。放冷後のH形鋼には上下曲がり等の変形は無く、かつフランジ強度も上下で同じで値であった。
【0054】
次に、本発明に対する比較例として、仕上げ圧延機の後方20[m]から設置され、長さ50[m]、高さ0.5[m]の搬送ラインの両側に設置された図7に示すような従来の多孔板冷却装置を用いて比較試験を行った結果について説明する。多孔板例脚装置の噴射孔口径は直径0.004[m]、噴射孔密度は約500[個/m]で、これに冷却水量3200[t/h]を供給し、水量密度は約1070[l/min・m]であり、水量密度から得られる冷却能力としては十分であった。
【0055】
そして、そのときの得られた噴射圧は0.0042[MPa]であった。
なお、この噴射圧より上記式2で求められる最大分割高さは0.21[m]である。
【0056】
また、被冷却物となるH形鋼のサイズは幅612[mm]、高さ490[mm]、ウェブ厚み40[mm]、フランジ厚み80[mm]で、本比較例の多孔板型冷却装置に仕上げ圧延後のフランジ上平均温度約833[℃]、フランジ下平均温度約836[℃]のほぼ上下均一温度のH形鋼を該多孔板冷却装置に、20[mpm]の速度で、通過冷却を行った。冷却時間は約150秒である。
【0057】
その結果、復熱後の温度分布は図8に示すように、フランジ上平均温度は約723[℃]、フランジ下平均温度は約434[℃]と上下の温度差が289[℃]発生し、放冷後のH形鋼は10[m]あたり、0.7[m]の上下曲がりが生じ、形状不良となった。また、フランジ強度もフランジ上部の強度が不足していた。
【0058】
なお、実施の形態1、2では、H形鋼の冷却の例で説明したが、垂直面あるいは垂直に近い面を有する鋼材の冷却に適用することもできる。
【0059】
【発明の効果】
以上のように、本発明によれば、水冷ヘッダの最下面から噴射される冷却水の噴射量に対する、水冷ヘッダの形鋼の冷却最上面高さにおける噴射量の噴射割合が、80%以上となるように噴射圧力を設定し、また、予め水冷ヘッダに供給する冷却水の噴射圧力を設定し、その設定された噴射圧力により、水冷ヘッダの最下面から噴射される冷却水の噴射量に対する、水冷ヘッダのある冷却面における噴射量の噴射割合が、80%となる冷却面高さ以下の範囲内で、分割高さを設定し、その分割高さにより水冷ヘッダを多段に分割するようにしたので、多数の噴射孔が設けたれた水冷ヘッダによる形鋼の均一冷却が可能となり、機械的性質、加工性、溶接性を大幅に向上させることができるという効果を有する。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る形鋼の冷却装置の構成を示す図である。
【図2】冷却面の高さと各噴射圧における噴射指数を説明するためのグラフである。
【図3】噴射指数と温度偏差の関係を説明するためのグラフである。
【図4】実施の形態1の処理手順を示すフローチャートである。
【図5】本発明の他の実施の形態に係る形鋼の冷却装置の構成を示す図である。
【図6】実施の形態2の処理手順を示すフローチャートである。
【図7】従来の多孔板冷却装置から噴射された冷却水の流れを模式的に示した図である。
【図8】不均一冷却時の冷却後のH形鋼のフランジ温度分布を示す概略図である。
【符号の説明】
1 H形鋼
2 多孔板冷却装置
3 多孔板冷却装置の噴射孔
4 送水管
5 冷却水の流線
6 フランジ温度分布
7 バルブ
8 仕切り板
9 搬送ロール[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for cooling a shape steel that cools a vertical surface such as an H-section steel or a surface close to vertical, and in particular, when a liquid medium such as cooling water is used as a cooling medium for the cooling apparatus. The present invention relates to a structure of a cooling device for performing uniform cooling.
[0002]
[Prior art]
Conventionally, the hot steel surface during hot rolling or after hot rolling is cooled with cooling water as a cooling medium, and cooling is also performed while conveying the hot steel material. It was.
[0003]
In H-shaped steel flange cooling, cooling by spray groups for shape control has been performed, but in recent years, as an accelerated cooling means for improving the mechanical properties, workability, and weldability of steel materials including shape steel. High cooling capacity and uniform cooling are required. As one of the means, a number of injection holes of several millimeters are made in the plate on the cooling surface side of the cooling device formed in the box shape, and the box type cooling device is cooled. A perforated plate jet type cooling device (hereinafter referred to as a perforated plate cooling device) that uses water or the like to inject cooling water or the like from an injection hole is used. In addition, this perforated plate cooling device may be called a columnar jet cooling device.
As a flange cooling technique for H-section steel using a perforated plate cooling apparatus, there has been a "section steel cooling method and apparatus" as disclosed in JP-A-9-10820.
[0004]
[Problems to be solved by the invention]
However, in the one described in Japanese Patent Laid-Open No. 9-10820, in cooling the H-section steel, H or the like is a vertical surface using cooling water as a cooling medium from a perforated plate cooling device installed on both sides of the H-section steel. Spraying on flange of shape steel.
Generally, the flange of H-shaped steel is 150 to 300 [mm], the flange of extremely thick H-shaped steel is 400 to 500 [mm] or more, and the height of the cooling surface of the cooling device is inevitably 500 [mm] or more. Become. However, when the cooling surface of the perforated plate cooling device for cooling the vertical surface becomes high, there are problems as described below.
[0005]
FIG. 7 is a diagram schematically showing the flow of cooling water sprayed from a conventional perforated plate cooling device.
In the figure, 1 is an H-shaped steel, 2 is a perforated plate cooling device, 3 is an injection hole of the perforated plate cooling device 2, 4 is a water supply pipe, 5 is a flow line of cooling water, and 7 is a valve.
As shown in FIG. 7, in the conventional perforated plate cooling device 2, the injection of the cooling water on the upper end side is weakened, and the cooling water is applied to the flange on the upper end of the H-section steel 1 as compared with the injection of the cooling water on the lower end side. It will disappear. When cooling is performed as it is, the temperature of the flange after cooling becomes a temperature distribution as shown in 6 of FIG. 8, and temperature deviation occurs above and below the flange, causing a product shape defect and insufficient strength.
[0006]
Moreover, the reason why the cooling water does not exist on the upper end side of the perforated plate cooling device 2 is that the injection pressure is insufficient. Therefore, if the supply of cooling water or the like is increased, the injection pressure increases and it is possible to cool down to the upper part of the flange. However, if the injection pressure at that time is still insufficient, the injection at the lower end of the flange is higher than the upper end of the flange. Since the flow rate of water was fast, there was a temperature difference between the upper and lower flanges due to uneven cooling as shown in FIG. In practice, it has been uneconomical to inject a large amount of cooling water from the range of equipment restrictions.
[0007]
Thus, conventionally, in order to perform uniform cooling with a perforated plate cooling device that cools a vertical surface such as a flange of H-shaped steel, the minimum required injection pressure is unknown, and the supply of cooling water or the like is limited. In such a case, it was impossible to achieve uniform cooling with a perforated plate cooling device.
[0008]
SUMMARY OF THE INVENTION An object of the present invention is to provide a method and apparatus for cooling a shape steel capable of uniformly accelerating and cooling from the outer surface of the flange of the shape steel in order to produce a high strength and high toughness shape steel at a low cost.
[0009]
[Means for Solving the Problems]
The shape steel cooling method according to the present invention supplies cooling water to a water-cooled header provided with a number of injection holes in a hot rolling process of a shape steel having a vertical surface or a surface close to vertical, and cools from a plurality of injection holes. A shape-cooling method in which water is jetted to cool the flange of the shape steel, and the water-cooling is performed so that the injection ratio of the minimum injection amount to the maximum injection amount injected from each surface of the water-cooled header is 80% or more. The injection pressure to the header or the divided height of the water-cooled header is set.
[0010]
Further, the method for cooling a shape steel according to the present invention supplies cooling water to a water-cooled header provided with a plurality of injection holes in a hot rolling process of a shape steel having a vertical surface or a surface close to vertical, and a plurality of injection holes. A cooling method for injecting cooling water from the bottom surface of the shape steel of the water-cooled header with respect to the amount of cooling water injected from the bottom surface of the water-cooled header. The injection pressure is set so that the injection ratio of the injection amount is 80% or more.
[0011]
Further, the method for cooling a shape steel according to the present invention supplies cooling water to a water-cooled header provided with a plurality of injection holes in a hot rolling process of a shape steel having a vertical surface or a surface close to vertical, and a plurality of injection holes. Is a shape steel cooling method in which cooling water is jetted from the shape steel flange to cool the shape steel flange, and a cooling water injection pressure to be supplied to the water cooling header is set in advance, and the lowermost surface of the water cooling header is determined by the set injection pressure. The split height is set so that the injection ratio of the injection amount on the cooling surface with the water-cooling header to the injection amount of the cooling water injected from the cooling surface height is 80% or less. Thus, the water-cooled header is divided into multiple stages.
[0012]
Further, the shape steel cooling device according to the present invention supplies cooling water to a water-cooled header provided with a large number of injection holes in a hot rolling process of a shape steel having a vertical surface or a surface close to vertical, and a plurality of injection holes A cooling device for injecting cooling water from the bottom of the structural steel flange, which cools the flange of the structural steel, at the height of the cooling top surface of the structural steel of the water-cooled header with respect to the amount of cooling water injected from the bottom surface of the water-cooling header A means for supplying cooling water having an injection pressure at which the injection ratio of the injection amount is 80% or more to the water-cooled header is provided.
[0013]
Further, the shape steel cooling device according to the present invention supplies cooling water to a water-cooled header provided with a large number of injection holes in a hot rolling process of a shape steel having a vertical surface or a surface close to vertical, and a plurality of injection holes Is a shape steel cooling device that injects cooling water from the shape steel flange to cool the shape steel flange. The minimum required injection pressure is P min [ MPa ] , the cooling water density is ρ [ kg / m 3 ] , and the gravitational acceleration is g [ m / s 2 ] , where the height of the cooling top surface of the shape steel is h [ m ] , the water cooling header is provided with means for supplying cooling water having an injection pressure equal to or higher than P min [ MPa ] obtained by the following formula Is.
Pmin = ρ × g × h × 2 / 1,000,000
[0014]
Further, the shape steel cooling device according to the present invention supplies cooling water to a water-cooled header provided with a large number of injection holes in a hot rolling process of a shape steel having a vertical surface or a surface close to vertical, and a plurality of injection holes A cooling device for a shape steel that injects cooling water from the shape and flanges of the shape steel, and sets the injection pressure of the cooling water to be supplied to the water-cooling header in advance, and sets the injection pressure of the water-cooling header by the set injection pressure. Means for dividing the water-cooled header in multiple stages within a range where the injection amount of the injection amount on the cooling surface with the water-cooled header with respect to the injection amount of the cooling water injected from the lower surface is 80% or less of the cooling surface height; And means for supplying cooling water having an injection pressure set to each part of the divided water-cooled header.
[0015]
Further, the shape steel cooling device according to the present invention supplies cooling water to a water-cooled header provided with a large number of injection holes in a hot rolling process of a shape steel having a vertical surface or a surface close to vertical, and a plurality of injection holes Is a shape steel cooling device that injects cooling water from the shape steel flange and sets the injection pressure of the cooling water supplied to the water-cooled header in advance and divides the water-cooled header by h max [ m ] The maximum height per stage, Pj [ MPa ] as the injection pressure, cooling water density as ρ [ kg / m 3 ] , gravity acceleration as g [ m / s 2 ] , Provided with means for dividing the water-cooled header in multiple stages within the range of h max [ m ] or less determined by the following formula, and means for supplying cooling water with the injection pressure set to each part of the divided water-cooled header It is.
hmax = Pj / (2 × ρ × g) × 1000000
[0016]
DETAILED DESCRIPTION OF THE INVENTION
First, the outline of the cooling of the shape steel by the shape steel cooling device of the present invention will be described.
The present inventors investigated the relationship between the injection pressure, the perforated plate surface that is the injection hole of the perforated plate cooling device, and the injection index for uniformly cooling the flange vertical surface such as H-shaped steel. The result as shown in FIG.
Here, the injection index is an injection ratio at each position when the amount of cooling water injected from the lowermost surface is 100%.
As shown in FIG. 2, it can be seen that the injection index decreases as the height of the surface to be cooled increases.
[0017]
FIG. 3 is a graph for explaining the relationship between the injection index and the temperature deviation. The injection index for each H-shaped steel flange size (flange width 500 [mm], flange width 300 [mm], flange width 150 [mm]). It shows the relationship between and the degree of uniform cooling.
As shown in FIG. 3, when the injection index is 80 [%] or more, the vertical average temperature difference of the flange of the H-section steel is within ± 20 [° C.]. It was found that the bending at the time of finishing the shape steel was small.
[0018]
Therefore, the present inventors secure an injection pressure at which the injection index becomes 80 [%] or more during cooling by the perforated plate cooling device, or the injection index is 80 [% when the injection pressure is determined. It was discovered that the cooling header of the perforated plate cooling device may be divided so as to achieve the above.
[0019]
For example, when the height of the perforated plate cooling device is 500 [mm], as shown in FIG. 2, if the injection pressure is about 0.010 [MPa] or more, the injection index is 80 [%] or more. Uniform cooling is possible.
Further, when the injection pressure is limited to 0.002 [MPa], as shown in FIG. 2, if the dividing interval of the perforated plate cooling device is set to 100 [mm] or 100 [mm] or less per stage. Uniform cooling is possible. For example, if the height of the perforated plate cooling device is 500 [mm] when it is set to 100 [mm] per stage, five stages are installed in the height direction to cool evenly. By distributing the liquid, an injection index of 80 [%] or more can be secured at any portion, and uniform cooling is possible.
[0020]
Therefore, the present inventors need to have an injection index of 80 [%] when the height of the perforated plate surface of H-section steel or the like is h [m] as shown in the following formula 1. The formula which determines the injection pressure (Pmin [MPa]) of the cooling medium to become is obtained.
Therefore, uniform cooling can be achieved by setting a pressure equal to or higher than the injection pressure (Pmin [MPa]) calculated by Equation (1).
[0021]
Pmin = ρ × g × h × 2 / 1,000,000 (1)
However,
ρ is the density of cooling water (= 1000 [kg / m 3 ])
g is gravitational acceleration (= 9.80665 [m / s 2 ])
It is.
[0022]
Further, as shown in the following equation 2, uniform cooling is performed under the condition that the injection pressure (P [MPa]) is constant from the required water density, or the amount of cooling water to be secured and the diameter and number of injection holes. The formula for determining the water-cooled surface height (hmax [m]) per stage of the perforated plate capable of securing an injection index of 80 [%] capable of achieving the above was determined.
Therefore, uniform cooling is possible if the height per stage is set below the height (hmax [m]) calculated by Equation 2.
[0023]
hmax = P / (2 × ρ × g) × 1000000 (2)
However,
ρ is the density of cooling water (= 1000 [kg / m 3 ])
g is gravitational acceleration (= 9.80665 [m / s 2 ])
It is.
[0024]
Embodiment 1 FIG.
In this embodiment, the above-described Expression 1 is used to determine the injection pressure (Pmin [MPa]) of the cooling medium necessary for the injection index to be 80 [%], and this injection pressure (Pmin [MPa]). ), Each part of the shape steel cooling device is configured.
FIG. 1 is a diagram showing a configuration of a shape steel cooling device according to an embodiment of the present invention.
In the figure, 1 is an H-shaped steel that is an object to be cooled, 2 is a perforated plate cooling device, 3 is an injection hole of the perforated plate cooling device, and 9 is a transport roll.
The perforated plate cooling device 2 has a length of 50 [m] and a height of 0.5 [m] from the rear 20 [m] of a finish rolling mill (not shown), and is installed on both sides of the conveying line.
[0025]
Next, the processing procedure of this embodiment will be described.
FIG. 4 is a flowchart showing the processing procedure of this embodiment.
First, the height h [m] of the cooling surface is determined (S100).
For example, the size of the H-shaped steel is 612 [mm] in width, 490 [mm] in height, 40 [mm] in web thickness, 80 [mm] in flange thickness, and the required cooling height (h) is 0.5 [m]. ].
[0026]
And the minimum required injection pressure (Pmin [MPa]) is calculated using Formula 1 (S101).
For example, at the required cooling height (h) = 0.5 [m], the minimum required injection pressure (Pmin [MPa]) is
Figure 0003617418
And
Pmin = about 0.0098 [MPa].
[0027]
And based on the minimum required injection pressure (Pmin [MPa]) calculated by S101, the injection pressure (Pj [MPa]) from the perforated plate cooling apparatus 2 is determined, and the following is calculated from the injection pressure (Pj [MPa]). The injection speed (Vj [m / s]) is determined by Equation 3 (S102).
[0028]
Vj = √ (2000000 × (Pj−Pζ) / ρ) (3)
However,
ρ is the density of cooling water (= 1000 [kg / m 3 ])
Pζ is the pressure loss [MPa]
It is.
[0029]
For example, in the case of Pmin = 0.0098 [MPa], Pj is determined to be 0.012 [MPa] because the injection pressure is Pmin or higher.
The injection speed (Vj [m / s]) at that time is such that the pressure loss (Pζ [MPa]) is 0.0002 [MPa]
Figure 0003617418
And
Vj = about 4.85 [m / s].
The pressure loss Pζ may be set to 0 [MPa].
[0030]
Then, the injection hole diameter (Dj [m]) and the injection hole density (Nj [pieces / m 2 ]) are determined, and the water density at that time (qw [l / min · m]) is confirmed by the following formula 4. (S103).
[0031]
qw = Vj × (Dj / 2) 2 × π × Nj × 60000 (4)
Here, π is the circumference ratio.
[0032]
For example, the injection hole diameter (Dj [m]) is determined to be 0.003 [m] in diameter, and the injection hole density (Nj [piece / m 2 ]) is set to 500 [piece / m 2 ], and the water density ( qw [l / min · m]) is
Figure 0003617418
And
qw = about 1030 [l / min · m].
[0033]
Then, the necessary minimum water density (qw min [l / min · m]) is confirmed, and the water density (qw [l / min · m]) is equal to or greater than the necessary minimum water density (qw min [l / min · m]). Whether or not (S104).
If it is determined in S104 that the water density (qw [l / min · m]) is less than the required minimum water density (qw min [l / min · m]), the process returns to S102 as incapability and the injection pressure Increase.
For example, the minimum water density required for cooling capacity (qw min [l / min · m]) is 1000 [l / min · m], and qw> qw min, so that the cooling capacity is satisfied.
[0034]
Then, the total cooling water amount (Q [t / h]) is confirmed by the following formula 5 from the water cooling device length (L [m]) and the cooling device height (hc [m]). Is determined (S105).
If it is determined in S105 that it is outside the equipment restriction range, the process returns to S103, and the injection hole / injection hole density is adjusted.
[0035]
Q = qw × L × hc × 0.06 (5)
[0036]
For example, the total cooling water amount (Q [t / h]) from the length of the water cooling device (L = 50 [m] × 2, for installation on both sides) and the cooling device height (hc = 0.5 [m]) Is
Figure 0003617418
And
Q is 3090 [t / h].
This total amount of cooling water (Q [t / h]) was within the capacity range of this equipment.
[0037]
Then, the sizes of the pipes and valves are determined with reference to the total water amount and the injection pressure amount (S106).
[0038]
In the perforated plate cooling device 2 manufactured by the above-described procedure, the H-section steel 1 having an approximately uniform upper and lower temperature of an average temperature 810 [° C.] on the flange and an average temperature 814 [° C.] under the flange after finish rolling is 25 [mpm]. Passing cooling was performed at a speed of The cooling time is about 120 seconds.
As a result, the average temperature on the flange after recuperation was 508 [° C.], the average temperature under the flange was 505 [° C.], and uniform cooling was performed, and the average temperature difference between the top and bottom of the funnel was 3 [° C.]. The H-shaped steel after cooling was not deformed such as bending up and down, and the flange strength was the same value in the vertical direction.
[0039]
Embodiment 2. FIG.
In this embodiment, the above equation (2) is used, under the condition that the injection pressure (P [MPa]) is constant from the required water density, the amount of cooling water to be secured, and the diameter and number of injection holes. The water cooling surface height (hmax [m]) per stage of the perforated plate that can ensure an injection index of 80 [%] that enables uniform cooling is determined, and based on this water cooling surface height (hmax [m]), Each part of the shape steel cooling device is configured.
FIG. 5 is a diagram showing a configuration of a shape steel cooling device according to another embodiment of the present invention. In the figure, 1 is an H-shaped steel which is an object to be cooled, 2 is a perforated plate cooling device, 3 is an injection hole of the perforated plate cooling device, 4 is a water supply pipe, 5 is a flow line of cooling water, 7 is a valve, 8 is It is a partition plate.
[0040]
The perforated plate cooling device 2 has a length of 50 [m] and a height of 0.5 [m] from the rear 20 [m] of a finish rolling mill (not shown), and is installed on both sides of the conveying line. The size of the H-shaped steel to be cooled is 612 [mm] in width, 490 [mm] in height, 40 [mm] in web thickness, 80 [mm] in flange thickness, and the required cooling height (h) is 0.5 [m].
[0041]
Next, the processing procedure of this embodiment will be described.
FIG. 6 is a flowchart showing the processing procedure of this embodiment.
First, the necessary minimum water density is determined as 1000 [l / min · m] from the cooling capacity (S110).
Then, the injection hole diameter (Dj [m]) and the injection hole density (Nj [piece / m 2 ]) are determined, and the injection speed (Vj [m / s]) at that time is confirmed by the following formula 6 ( S111).
[0042]
Vj = qw / ((Dj / 2) 2 × π × Nj × 60000) (6)
Here, π is the circumference ratio.
[0043]
For example, the injection hole diameter (Dj [m]) is determined to be 0.004 [m] in diameter, and the injection hole density (Nj [pieces / m 2 ]) is set to 500 [pieces / m 2 ], and the injection speed ( Vj [m / s]) is
Figure 0003617418
And
Vj = about 2.65 [m / s].
[0044]
Then, the injection pressure (Pj [MPa]) is obtained from the injection speed (Vj [m / s]) by the following equation (S112).
Pj = ρ × Vj 2/2000000 + Pζ ... (7)
However,
ρ is the density of cooling water (= 1000 [kg / m 3 ])
Pζ is the pressure loss [MPa]
It is.
[0045]
For example, the pressure loss (Pζ [MPa]) is set to 0.0002 [MPa]
Figure 0003617418
And
Pj = about 0.0037 [MPa].
The pressure loss (Pζ [MPa]) may be set to 0 [MPa].
[0046]
Then, the maximum divided height (hmax [m]) is obtained from the injection pressure (Pj [MPa]) by the above formula 2, and the required cooling height (h [m]) and the maximum divided height (hmax [m]) are obtained. ) To determine the necessity of division (S113).
For example, the maximum divided height (hmax [m]) when the injection pressure Pj = 0.0037 is
Figure 0003617418
And
hmax = about 0.189 [m].
[0047]
Since h = 0.5 [m], h> hmax, and the required cooling height (h [m]) is larger than the maximum division height (hmax [m]). It is determined that the plate cooling device 2 needs to be divided (multi-stage).
[0048]
Then, the total cooling water amount (Q [t / h]) is confirmed by the following formula 8 from the water cooling device length (L [m]) and the cooling device height (hc [m]). Is determined (S114).
If it is determined in S114 that it is outside the equipment restriction range, the process returns to S111 and the injection hole / injection hole density is adjusted.
[0049]
Q = qw × L × hc × 0.06 (8)
[0050]
For example, the total cooling water amount (Q [t / h]) from the length of the water cooling device (L = 50 [m] × 2, for installation on both sides) and the cooling device height (hc = 0.5 [m]) Is
Figure 0003617418
And
Q = 3000 [t / h].
This total amount of cooling water (Q [t / h]) was within the capacity range of this equipment.
[0051]
Then, the division distance (hb [m]) is determined so as to be equal to or less than the maximum division height (hmax [m]), and from the division distance (hb [m]) and the required cooling height (h [m]). The number of divisions (Nb [m]) is determined (S115).
For example, in the case of hmax = 0.189 [m], it is determined that hb = 0.1 [m] because the division distance is equal to or less than hmax, and the required cooling height (h [m]) = 0.5 [m] Therefore, the number of stages (Nb [stage]) is 5 stages, the amount of water supplied per stage is 600 [t / h], and the partition plate 8 is installed between each stage.
[0052]
Then, the sizes of the pipes and valves are determined from the number of stages and the amount of water supplied per stage (S116).
[0053]
In the perforated plate cooling device 2 manufactured by the above procedure, the H-section steel 1 having an approximately uniform upper and lower temperature of about 826 [° C.] on-flange average temperature and about 832 [° C.] on-flange average temperature after finish rolling is 20 [ The cooling was performed at a speed of mpm]. The cooling time is about 150 seconds.
As a result, the average temperature on the flange after reheating was about 492 [° C.], the average temperature under the flange was about 494 [° C.], and uniform cooling was performed, and the average temperature difference between the top and bottom of the flange was 2 [° C.]. The H-shaped steel after cooling was not deformed such as bending up and down, and the flange strength was the same up and down.
[0054]
Next, as a comparative example for the present invention, FIG. 7 is installed from both sides of a conveying line having a length of 50 [m] and a height of 0.5 [m] installed from the rear 20 [m] of the finish rolling mill. The results of a comparative test using a conventional perforated plate cooling apparatus as shown will be described. The diameter of the injection hole of the perforated plate example leg device is 0.004 [m], the injection hole density is about 500 [piece / m 2 ], the cooling water amount 3200 [t / h] is supplied to this, and the water amount density is about It was 1070 [l / min · m], which was sufficient as the cooling capacity obtained from the water density.
[0055]
And the injection pressure obtained at that time was 0.0042 [MPa].
In addition, the maximum division | segmentation height calculated | required by said Formula 2 from this injection pressure is 0.21 [m].
[0056]
The size of the H-shaped steel to be cooled is 612 [mm] in width, 490 [mm] in height, 40 [mm] in web thickness, and 80 [mm] in flange thickness. After the finish rolling, the H-shaped steel having an average temperature above the flange of about 833 [° C.] and an average temperature under the flange of about 836 [° C.] is passed through the perforated plate cooling device at a speed of 20 [mpm]. Cooling was performed. The cooling time is about 150 seconds.
[0057]
As a result, as shown in FIG. 8, the temperature distribution after recuperation is such that the average temperature on the flange is about 723 [° C.], the average temperature on the flange is about 434 [° C.], and the temperature difference between the top and bottom is 289 [° C.]. In addition, the H-shaped steel after being allowed to cool was bent up and down by 0.7 [m] per 10 [m], resulting in poor shape. Further, the strength of the flange upper portion was insufficient as well.
[0058]
In the first and second embodiments, the example of cooling the H-shaped steel has been described. However, the present invention can also be applied to cooling a steel material having a vertical surface or a surface close to vertical.
[0059]
【The invention's effect】
As described above, according to the present invention, the injection ratio of the injection amount at the cooling top surface height of the shape steel of the water-cooled header to the injection amount of cooling water injected from the bottom surface of the water-cooled header is 80% or more. The injection pressure is set so as to be, and the injection pressure of the cooling water supplied to the water-cooled header is set in advance. With the set injection pressure, the injection amount of the cooling water injected from the lowermost surface of the water-cooling header, The split height is set so that the injection ratio of the injection amount on the cooling surface with the water-cooled header is 80% or less, and the water-cooled header is divided into multiple stages according to the split height. Therefore, uniform cooling of the shape steel by the water-cooled header provided with a large number of injection holes is possible, and the mechanical properties, workability, and weldability can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a shape steel cooling device according to an embodiment of the present invention.
FIG. 2 is a graph for explaining a cooling surface height and an injection index at each injection pressure.
FIG. 3 is a graph for explaining a relationship between an injection index and a temperature deviation.
FIG. 4 is a flowchart illustrating a processing procedure according to the first embodiment.
FIG. 5 is a diagram showing a configuration of a shape steel cooling device according to another embodiment of the present invention.
FIG. 6 is a flowchart illustrating a processing procedure according to the second embodiment.
FIG. 7 is a view schematically showing the flow of cooling water sprayed from a conventional perforated plate cooling device.
FIG. 8 is a schematic diagram showing a flange temperature distribution of H-shaped steel after cooling during non-uniform cooling.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 H-section steel 2 Perforated plate cooling device 3 Injection hole 4 of perforated plate cooling device 5 Water supply pipe 5 Flow line of cooling water 6 Flange temperature distribution 7 Valve 8 Partition plate 9 Transport roll

Claims (7)

垂直面あるいは垂直に近い面を有する形鋼の熱間圧延工程において、多数の噴射孔を設けた水冷ヘッダに冷却水を供給し、前記複数の噴射孔から冷却水を噴射して前記形鋼のフランジを水冷する形鋼冷却方法であって、
前記水冷ヘッダの各面から噴射される最大噴射量に対する最小噴射量の噴射割合が、80%以上となるように、前記水冷ヘッダへの噴射圧力又は前記水冷ヘッダの分割高さを設定することを特徴とする形鋼冷却方法。
In a hot rolling process of a shape steel having a vertical surface or a surface close to vertical, cooling water is supplied to a water-cooled header provided with a plurality of injection holes, and cooling water is injected from the plurality of injection holes to A shape-cooling method for cooling a flange with water,
The injection pressure to the water-cooled header or the divided height of the water-cooled header is set so that the injection ratio of the minimum injection amount to the maximum injection amount injected from each surface of the water-cooled header is 80% or more. A featured shape steel cooling method.
垂直面あるいは垂直に近い面を有する形鋼の熱間圧延工程において、多数の噴射孔を設けた水冷ヘッダに冷却水を供給し、前記複数の噴射孔から冷却水を噴射して前記形鋼のフランジを水冷する形鋼冷却方法であって、
前記水冷ヘッダの最下面から噴射される冷却水の噴射量に対する、前記水冷ヘッダの前記形鋼の冷却最上面高さにおける噴射量の噴射割合が、80%以上となるように噴射圧力を設定することを特徴とする形鋼冷却方法。
In a hot rolling process of a shape steel having a vertical surface or a surface close to vertical, cooling water is supplied to a water-cooled header provided with a plurality of injection holes, and cooling water is injected from the plurality of injection holes to A shape-cooling method for cooling a flange with water,
The injection pressure is set such that the injection ratio of the injection amount at the cooling top surface height of the shape steel of the water-cooled header to the injection amount of cooling water injected from the bottom surface of the water-cooled header is 80% or more. A method for cooling a shape steel, characterized in that.
垂直面あるいは垂直に近い面を有する形鋼の熱間圧延工程において、多数の噴射孔を設けた水冷ヘッダに冷却水を供給し、前記複数の噴射孔から冷却水を噴射して前記形鋼のフランジを水冷する形鋼冷却方法であって、
予め前記水冷ヘッダに供給する冷却水の噴射圧力を設定し、その設定された噴射圧力により、前記水冷ヘッダの最下面から噴射される冷却水の噴射量に対する、前記水冷ヘッダのある冷却面における噴射量の噴射割合が、80%となる冷却面高さ以下の範囲内で、分割高さを設定し、その分割高さにより前記水冷ヘッダを多段に分割することを特徴とする形鋼冷却方法。
In a hot rolling process of a shape steel having a vertical surface or a surface close to vertical, cooling water is supplied to a water-cooled header provided with a plurality of injection holes, and cooling water is injected from the plurality of injection holes to A shape-cooling method for cooling a flange with water,
The injection pressure of the cooling water supplied to the water-cooling header is set in advance, and the injection on the cooling surface with the water-cooling header with respect to the injection amount of the cooling water injected from the lowermost surface of the water-cooling header by the set injection pressure A shape steel cooling method, wherein a division height is set within a range of a cooling surface height equal to or less than a cooling surface height at which the injection ratio of the amount is 80%, and the water-cooled header is divided into multiple stages according to the division height.
垂直面あるいは垂直に近い面を有する形鋼の熱間圧延工程において、多数の噴射孔を設けた水冷ヘッダに冷却水を供給し、前記複数の噴射孔から冷却水を噴射して前記形鋼のフランジを水冷する形鋼冷却装置であって、
前記水冷ヘッダの最下面から噴射される冷却水の噴射量に対する、前記水冷ヘッダの前記形鋼の冷却最上面高さにおける噴射量の噴射割合が、80%以上となる噴射圧力の冷却水を、前記水冷ヘッダへ供給する手段を備えることを特徴とする形鋼の冷却装置。
In a hot rolling process of a shape steel having a vertical surface or a surface close to vertical, cooling water is supplied to a water-cooled header provided with a plurality of injection holes, and cooling water is injected from the plurality of injection holes to A shape steel cooling device for cooling the flange with water,
Cooling water with an injection pressure at which the injection ratio of the injection amount at the cooling uppermost surface height of the shape steel of the water-cooled header with respect to the injection amount of cooling water injected from the lowermost surface of the water-cooled header is 80% or more, A section steel cooling device comprising means for supplying to the water-cooled header.
垂直面あるいは垂直に近い面を有する形鋼の熱間圧延工程において、多数の噴射孔を設けた水冷ヘッダに冷却水を供給し、前記複数の噴射孔から冷却水を噴射して前記形鋼のフランジを水冷する形鋼冷却装置であって、
最低必要噴射圧力を min[ MPa ] 、冷却水の密度をρ [ kg/m 3 ]、重力加速度を [ m/s 2 ]、形鋼の冷却最上面の高さをh[m]として、前記水冷ヘッダに、下式により求められる min[ MPa ] 以上の噴射圧力の冷却水を供給する手段を備えることを特徴とする形鋼の冷却装置。
Pmin =ρ×g×h×2/1000000
In a hot rolling process of a shape steel having a vertical surface or a surface close to vertical, cooling water is supplied to a water-cooled header provided with a plurality of injection holes, and cooling water is injected from the plurality of injection holes to A shape steel cooling device for cooling the flange with water,
The minimum required injection pressure is P min [ MPa ] , the density of cooling water is ρ [ kg / m 3 ] , the acceleration of gravity is g [ m / s 2 ] , and the height of the cooling top surface of the shape steel is h [m]. A cooling apparatus for shape steel, comprising means for supplying cooling water having an injection pressure equal to or higher than P min [ MPa ] obtained by the following equation to the water-cooled header.
Pmin = ρ × g × h × 2 / 1,000,000
垂直面あるいは垂直に近い面を有する形鋼の熱間圧延工程において、多数の噴射孔を設けた水冷ヘッダに冷却水を供給し、前記複数の噴射孔から冷却水を噴射して前記形鋼のフランジを水冷する形鋼の冷却装置であって、
予め前記水冷ヘッダに供給する冷却水の噴射圧力を設定し、その設定された噴射圧力により、前記水冷ヘッダの最下面から噴射される冷却水の噴射量に対する、前記水冷ヘッダのある冷却面における噴射量の噴射割合が、80%となる冷却面高さ以下の範囲内で、前記水冷ヘッダを多段に分割する手段と、
分割された前記水冷ヘッダの各部に前記設定された噴射圧力の冷却水を供給する手段とを備えることを特徴とする形鋼の冷却装置。
In a hot rolling process of a shape steel having a vertical surface or a surface close to vertical, cooling water is supplied to a water-cooled header provided with a plurality of injection holes, and cooling water is injected from the plurality of injection holes to A shape cooling device for cooling a flange with water,
The injection pressure of the cooling water supplied to the water-cooling header is set in advance, and the injection on the cooling surface with the water-cooling header with respect to the injection amount of the cooling water injected from the lowermost surface of the water-cooling header by the set injection pressure Means for dividing the water-cooled header in multiple stages within a range of the cooling surface height of 80% or less,
And a means for supplying cooling water having the set injection pressure to each of the divided water-cooling headers.
垂直面あるいは垂直に近い面を有する形鋼の熱間圧延工程において、多数の噴射孔を設けた水冷ヘッダに冷却水を供給し、前記複数の噴射孔から冷却水を噴射して前記形鋼のフランジを水冷する形鋼の冷却装置であって、
予め前記水冷ヘッダに供給する冷却水の噴射圧力を設定し、 max[ ]を水冷ヘッダを分割したときの1段当たりの最大の高さ、Pj [ MPa ]を設定された噴射圧力、冷却水の密度をρ [ kg/m 3 ]、重力加速度を [ m/s 2 ] して、前記水冷ヘッダを、下式により求められるhmax[m]以下の範囲内で、前記水冷ヘッダを多段に分割する手段と、
分割された前記水冷ヘッダの各部に前記設定された噴射圧力の冷却水を供給する手段とを備えることを特徴とする形鋼の冷却装置。
hmax =Pj/(2×ρ×g)×1000000
In a hot rolling process of a shape steel having a vertical surface or a surface close to vertical, cooling water is supplied to a water-cooled header provided with a plurality of injection holes, and cooling water is injected from the plurality of injection holes to A shape cooling device for cooling a flange with water,
The injection pressure of the cooling water supplied to the water-cooled header is set in advance, h max [ m ] is the maximum height per stage when the water-cooled header is divided, Pj [ MPa ] is the set injection pressure, cooling the density of water ρ [kg / m 3], the gravitational acceleration as the g [m / s 2], the water cooling headers, in hmax [m] or less of the range determined by the following equation, the water cooled header Means for dividing into multiple stages;
A section steel cooling device, comprising: means for supplying cooling water having the set injection pressure to each of the divided water-cooled headers.
hmax = Pj / (2 × ρ × g) × 1000000
JP2000192942A 2000-06-27 2000-06-27 Shaped steel cooling method and apparatus Expired - Fee Related JP3617418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000192942A JP3617418B2 (en) 2000-06-27 2000-06-27 Shaped steel cooling method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000192942A JP3617418B2 (en) 2000-06-27 2000-06-27 Shaped steel cooling method and apparatus

Publications (2)

Publication Number Publication Date
JP2002011514A JP2002011514A (en) 2002-01-15
JP3617418B2 true JP3617418B2 (en) 2005-02-02

Family

ID=18692011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000192942A Expired - Fee Related JP3617418B2 (en) 2000-06-27 2000-06-27 Shaped steel cooling method and apparatus

Country Status (1)

Country Link
JP (1) JP3617418B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4682669B2 (en) * 2005-03-31 2011-05-11 Jfeスチール株式会社 H-shaped steel cooling equipment and cooling method
JP4760102B2 (en) * 2005-04-08 2011-08-31 Jfeスチール株式会社 H-shaped steel cooling equipment and cooling method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2719219B2 (en) * 1990-06-21 1998-02-25 新日本製鐵株式会社 H-section flange cooling system
JP2564190Y2 (en) * 1993-07-30 1998-03-04 川崎製鉄株式会社 Shaped steel cooling system
JP3218931B2 (en) * 1995-06-30 2001-10-15 日本鋼管株式会社 Method and apparatus for cooling section steel
JP2002001414A (en) * 2000-06-22 2002-01-08 Nkk Corp Method and apparatus for cooling h-section steel

Also Published As

Publication number Publication date
JP2002011514A (en) 2002-01-15

Similar Documents

Publication Publication Date Title
JP5614040B2 (en) Manufacturing equipment and manufacturing method for thick steel plate
KR101227213B1 (en) Cooling system and cooling method of rolling steel
EP2540407B1 (en) Steel plate cooling system and steel plate cooling method
CN105817594B (en) Found curved segment cold control device and control method by force in micro-alloyed steel continuous casting slab corner
WO2008035510A1 (en) Cooling method of steel plate
JPWO2011001934A1 (en) Hot rolled steel sheet cooling apparatus, cooling method, manufacturing apparatus, and manufacturing method
JP5515483B2 (en) Thick steel plate cooling equipment and cooling method
JP5673530B2 (en) Hot rolled steel sheet cooling apparatus, cooling method, manufacturing apparatus, and manufacturing method
KR101481616B1 (en) Apparatus for cooling strip
KR101691020B1 (en) Method and facility for manufacturing steel plate
JP3617418B2 (en) Shaped steel cooling method and apparatus
WO2003026813A1 (en) Method and device for cooling steel sheet
JP5531852B2 (en) Method for determining refrigerant flow rate
EP2979770B1 (en) Thick steel plate manufacturing device and manufacturing method
JPH11347629A (en) Straightening and cooling device for high temperature steel plate and its straightening and cooling method
JP4398898B2 (en) Thick steel plate cooling device and method
JP5928412B2 (en) Steel plate vertical cooling device and method for producing hot dip galvanized steel plate using the same
JP5663848B2 (en) Hot-rolled steel sheet cooling device and operation control method thereof
KR100527064B1 (en) Injection nozzle and Method for manufacturing strip wire using it
KR101028801B1 (en) Device for manufacturing high strength wires and the method thereof
JP5515440B2 (en) Thick steel plate cooling equipment and cooling method thereof
JP5760613B2 (en) Thick steel plate descaling equipment and descaling method
JP5387093B2 (en) Thermal steel sheet cooling equipment
CN111093850A (en) Cooling device and cooling method for steel material
JPH1157837A (en) Cooling device for high temperature metallic plate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees