JP4858411B2 - Steel cooling method - Google Patents

Steel cooling method Download PDF

Info

Publication number
JP4858411B2
JP4858411B2 JP2007287520A JP2007287520A JP4858411B2 JP 4858411 B2 JP4858411 B2 JP 4858411B2 JP 2007287520 A JP2007287520 A JP 2007287520A JP 2007287520 A JP2007287520 A JP 2007287520A JP 4858411 B2 JP4858411 B2 JP 4858411B2
Authority
JP
Japan
Prior art keywords
cooling
steel
steel material
nozzle
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007287520A
Other languages
Japanese (ja)
Other versions
JP2009113067A (en
Inventor
裕 鹿野
晶 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007287520A priority Critical patent/JP4858411B2/en
Publication of JP2009113067A publication Critical patent/JP2009113067A/en
Application granted granted Critical
Publication of JP4858411B2 publication Critical patent/JP4858411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、とりわけ、ウエブの座屈を防止するために、フランジを外面から冷却する、フランジ厚さに比べてウエブ厚さの薄い薄肉ウエブH形鋼や、強度ならびに靭性を確保するために、フランジ及びウエブを冷却する、極厚H形鋼などの形鋼の冷却に有効な冷却方法に関するものである。 In particular, the present invention cools the flange from the outer surface in order to prevent the buckling of the web. the flange and web to cool, but about the effective cooling how to cool the shaped steel such as extremely thick H-section steel.

軽量でかつ断面性能を高くするため、ウエブ厚さを薄くし、フランジ厚さを厚くした薄肉ウエブH形鋼では、近年、フランジとウエブの板厚比が3.0程度のものがある。このような薄肉ウエブH形鋼の場合、熱間圧延と自然冷却による通常の製造では、前記厚さの違いによるフランジとウエブの冷却速度の相違により温度差が生じて内部応力が発生し、ウエブの座屈が発生する。   In recent years, thin web H-section steels with a thin web thickness and a thick flange thickness to reduce the weight and increase the cross-sectional performance include a flange-web thickness ratio of about 3.0. In the case of such a thin-walled H-shaped steel, in normal production by hot rolling and natural cooling, a temperature difference is generated due to a difference in cooling speed between the flange and the web due to the difference in thickness, and an internal stress is generated. Buckling occurs.

この内部応力の発生を防止するためには、フランジとウエブの冷却時の温度差を小さくする必要があり、そのための手段として、1) フランジを水冷する、2) ウエブを加熱する、3) 前記1) と2) を併用する、の3つが考えられる。   In order to prevent the occurrence of this internal stress, it is necessary to reduce the temperature difference during cooling of the flange and the web. As means for that, 1) water-cool the flange, 2) heat the web, 3) the above-mentioned There are three possible combinations: 1) and 2).

しかしながら、設備費やランニングコスト、あるいは温度制御技術の容易さや製造コストなどの点より、一般にはH形状での圧延中にフランジ外面のみを水冷する方式が採用されている。   However, from the viewpoints of equipment cost, running cost, ease of temperature control technology, manufacturing cost, etc., generally a method of cooling only the outer surface of the flange during rolling in the H shape is adopted.

このようなH形鋼の冷却手段としては、たとえばフランジ外面に、進行方向に向かって斜めに冷却水を噴射するもの(特許文献1)、上下、左右、前後移動が可能な複数の冷却水ノズルを、H形鋼の形状、寸法変化に応じたガイド移動調整可能にしたもの(特許文献2)、フランジ外面を、幅方向に均一な実効水量密度分布が得られるように強制的に冷却するもの(特許文献3)など、多く提案されている。
特開昭49−43810号公報 特開昭60−221524号公報 特開平2−92413号公報
As such H-shaped steel cooling means, for example, one that injects cooling water obliquely toward the traveling direction on the outer surface of the flange (Patent Document 1), a plurality of cooling water nozzles that can move up and down, left and right, and back and forth. That can adjust the guide movement according to the shape and dimensional change of the H-shaped steel (Patent Document 2), and forcibly cooling the flange outer surface so as to obtain a uniform effective water density distribution in the width direction (Patent Document 3) and many others have been proposed.
JP 49-43810 A JP 60-221524 A JP-A-2-92413

一方、近年、建築用部材に対する耐震性の要望が強まり、柱材や梁材用に強度や靭性に優れた極厚H形鋼が求められ、その製造に際し、高強度・高靭性の鋼材の一般的な制御方法である制御圧延や制御冷却が適用されている。   On the other hand, in recent years, there has been a growing demand for earthquake resistance for building materials, and ultra-thick H-shaped steels with excellent strength and toughness are required for column and beam materials. Controlled rolling and controlled cooling, which are typical control methods, are applied.

このうち制御圧延は、1000℃以上に加熱したスラブやCCBB(continuous casting beam blank)素材を、一旦、中程度の厚みまで粗圧延し、その後、鋼板の温度が未再結晶温度域、あるいはその近傍の温度域のときに最終の仕上げ圧延を行うものである。一方、制御冷却は、圧延後加速冷却によってAr3温度以上から500℃程度まで冷却し、強度を確保するものである。   Of these, controlled rolling is roughly rolling a slab or CCBB (continuous casting beam blank) material heated to 1000 ° C. or more to a medium thickness, and then the temperature of the steel sheet is at or near the non-recrystallization temperature range. The final finish rolling is performed in the temperature range. On the other hand, controlled cooling is performed by cooling from the Ar3 temperature to about 500 ° C. by accelerated cooling after rolling to ensure strength.

この極厚H形鋼の制御冷却を行うための冷却装置として、フランジ内面に冷却ノズルを配設してフランジ内面を冷却するものが、特許文献4や特許文献5で開示されている。
特開平6−297028号公報 特開平7−108316号公報
Patent Document 4 and Patent Document 5 disclose a cooling device for controlling the cooling of the extremely thick H-shaped steel by disposing a cooling nozzle on the flange inner surface to cool the flange inner surface.
JP-A-6-297028 JP-A-7-108316

しかしながら、これら特許文献4、5で開示された冷却装置は、フランジ内面を冷却するノズルが極厚H形鋼と接近して配置されるので、H形鋼の上下方向の反り、左右曲がりや、搬送中のH形鋼のズレによって、前記ノズルがH形鋼と衝突するおそれがある。   However, in the cooling devices disclosed in Patent Documents 4 and 5, since the nozzle for cooling the flange inner surface is arranged close to the extremely thick H-section steel, the vertical curvature of the H-section steel, the left and right bends, There is a possibility that the nozzle collides with the H-shaped steel due to the deviation of the H-shaped steel being conveyed.

そこで、出願人は、特許文献6において、ウエブ内幅の小さい形鋼であっても、冷却ノズル同士の干渉や、形鋼と冷却装置との衝突を回避しつつ、フランジおよびフィレットの内面を効果的に冷却でき、かつ冷却水の噴射により落下したスケールのノズルなどへの堆積を防止できる形鋼の冷却装置および冷却方法を開示した。
特開2003−19510号公報
Therefore, in Patent Document 6, even if the shape steel with a small web inner width is used, the applicant effectively uses the inner surfaces of the flange and fillet while avoiding interference between cooling nozzles and collision between the shape steel and the cooling device. An apparatus and method for cooling a shape steel that can be cooled automatically and prevent deposition on a nozzle or the like of a scale that has fallen due to injection of cooling water has been disclosed.
JP 2003-19510 A

以上説明した従来の冷却装置を用いた冷却方法では、被冷却材である形鋼の寸法に応じて、冷却ノズルの噴射方向(噴射角度)や冷却ノズルを備えた冷却ヘッダー管の段数を調整することで非冷却材の冷却範囲を適正化し、一旦設定した冷却ノズルの噴射方向は、被冷却材の寸法が変更されない限り変更されないのが一般的である。   In the cooling method using the conventional cooling device described above, the injection direction (injection angle) of the cooling nozzle and the number of stages of the cooling header pipe provided with the cooling nozzle are adjusted according to the size of the shape steel as the material to be cooled. Thus, the cooling range of the non-cooling material is optimized, and the cooling nozzle injection direction once set is generally not changed unless the dimension of the material to be cooled is changed.

これに対し、出願人は、水冷後の形状不良を防止するため、H形鋼のフランジ表面のフランジ幅方向温度分布をフランジ冷却前に測定し、この測定分布に基づき冷却ノズルの高さ又は冷却水の噴射角度を予め調整して冷却する方法を、特許文献7で開示している。
特開平9−295003号公報
On the other hand, the applicant measured the flange width direction temperature distribution on the flange surface of the H-shaped steel before cooling the flange in order to prevent the shape defect after water cooling, and based on this measurement distribution, the height or cooling of the cooling nozzle Patent Document 7 discloses a method of cooling by adjusting the water injection angle in advance.
JP-A-9-295003

しかしながら、以上の従来技術は、いずれも限られた冷却ノズルで、鋼材の搬送方向と直交する断面における鉛直方向(以下、鋼材の幅方向とも言う。)の冷却を行うので、個々の冷却ノズルの冷却域間の冷却能が低くなる。また、個々の冷却ノズルの冷却域内でも冷却能は均一ではなく強弱が存在するので、たとえ鋼材の冷却前の幅方向温度分布が均一であっても、冷却後の幅方向温度分布は均一ではなく、幾つかの起伏(凹凸)のある温度分布となるのが一般的である。   However, each of the above prior arts is a limited cooling nozzle and cools in the vertical direction (hereinafter also referred to as the width direction of the steel material) in a cross section orthogonal to the steel material conveyance direction. Cooling capacity between cooling zones is reduced. In addition, the cooling capacity is not uniform within the cooling zone of each cooling nozzle, and there is strength, so even if the temperature distribution in the width direction before cooling of the steel material is uniform, the temperature distribution in the width direction after cooling is not uniform. Generally, the temperature distribution has several undulations (unevenness).

一例として図9に、極厚H形鋼(H498mm×B432mm×tw45mm×tf70mm、引張強度は490MPa級)の仕上げ圧延後、フランジ内外面の水冷前後のフランジ外表面温度分布を実測した結果を実線で示す。   As an example, Fig. 9 shows the results of measurement of the outer surface temperature distribution of the flange outer surface before and after water cooling on the inner and outer surfaces of the flange after the finish rolling of an extremely thick H-section steel (H498mm x B432mm x tw45mm x tf70mm, tensile strength is 490MPa class). Show.

この場合、フランジ外面の冷却には、フラットスプレーノズルを鋼材の搬送方向に多数配置した冷却ヘッダー管を4段配置し、フランジ内面及びフィレット部の冷却には、同様の冷却ヘッダー管を2段配置した冷却装置を使用して行った。なお、同図に破線で示す温度分布と断面内の温度分布(マップ表示)は、シミュレーション結果を示したものである。   In this case, four stages of cooling header pipes with many flat spray nozzles arranged in the steel conveying direction are arranged for cooling the outer surface of the flange, and two stages of similar cooling header pipes are arranged for cooling the inner surface of the flange and the fillet. The cooling device was used. The temperature distribution indicated by the broken line and the temperature distribution in the cross section (map display) in the same figure show the simulation results.

このような冷却による鋼材表面の温度ムラを抑制するために、例えば多くの小径の孔を板状ガイドに設けた冷却装置が、特許文献8に開示されている。
特開2006−281220号公報
In order to suppress the temperature unevenness on the steel surface due to such cooling, for example, a cooling device in which many small-diameter holes are provided in a plate-like guide is disclosed in Patent Document 8.
JP 2006-281220 A

しかしながら、特許文献8で開示された冷却装置は、多額の設備投資を伴うほか、冷却水の噴射孔が小径ゆえに目詰りしやすく、しかも多数の噴射孔を備えるために設備のメンテナンスに経費がかかり、実用的でない。   However, the cooling device disclosed in Patent Document 8 requires a large amount of capital investment, and since the cooling water injection holes are small in diameter, the cooling device is easily clogged. In addition, since there are a large number of injection holes, the maintenance of the equipment is expensive. Not practical.

本発明が解決しようとする問題点は、特許文献8で開示された鋼材表面の温度ムラを抑制する冷却方法では、多額の設備投資を伴うほか、冷却水の噴射孔が目詰りしやすく、しかも設備のメンテナンスに経費がかかり、実用的でないという点である。   The problem to be solved by the present invention is that the cooling method for suppressing temperature unevenness on the surface of the steel material disclosed in Patent Document 8 involves a large amount of capital investment, and the cooling water injection holes are easily clogged. The equipment is expensive to maintain and is not practical.

発明者は、多数の冷却ノズルを備えた多段の冷却ヘッダー管を用いて鋼材を冷却する際に、個々の冷却ノズルによる冷却域を、冷却ヘッダー管又は冷却ノズルを、鋼材の幅方向に正逆回動又は往復移動することで従来技術における問題点を解決できるのではないかと考えた。   When the steel material is cooled using a multi-stage cooling header pipe provided with a large number of cooling nozzles, the inventor reverses the cooling area by the individual cooling nozzles, the cooling header pipe or the cooling nozzle in the width direction of the steel material. We thought that the problem in the prior art could be solved by rotating or reciprocating.

そして、多数の冷却ノズルを備えた多段の冷却ヘッダー管からなる冷却装置を用いて極厚H形鋼を水冷する際に、極厚H形鋼の搬送中に前記冷却ヘッダー管を所定量正逆回動させることで、図8に示す個々の冷却ノズルによる水冷域の冷却能力(水量密度)のムラを抑制できることを見出した。   Then, when the ultra-thick H-section steel is water-cooled using a cooling device comprising a multi-stage cooling header pipe provided with a large number of cooling nozzles, the cooling header pipe is moved forward and backward by a predetermined amount during the transport of the extra-thick H-section steel. It was found that by rotating, unevenness in the cooling capacity (water density) in the water-cooled region by the individual cooling nozzles shown in FIG. 8 can be suppressed.

本発明の鋼材の冷却方法は、上記知見に基づいてなされたものであり、
限られた個数のノズル、限られた段数の冷却ヘッダー管であっても、鋼材の幅方向の冷却ムラを抑制することを可能にするために、
少なくとも1本の冷却ヘッダー管に設けた、少なくとも1個の冷却ノズルから、搬送中の鋼材に向けて冷却媒体を噴射して冷却する方法において、
鋼材の搬送方向と直交する断面において、前記冷却ノズルから噴射する冷却媒体の、鋼材と平行な方向の到達位置が変化可能なように、
前記の冷却ヘッダー管又は冷却ノズルを、所定の角度だけ正逆回動又は鋼材と平行な方向に往復移動させつつ冷却することを最も主要な特徴としている。
The method for cooling a steel material of the present invention is based on the above knowledge,
In order to make it possible to suppress uneven cooling in the width direction of the steel material even with a limited number of nozzles and a limited number of cooling header pipes,
In a method of cooling by injecting a cooling medium from at least one cooling nozzle provided in at least one cooling header pipe toward a steel material being conveyed,
In a cross section orthogonal to the steel material conveyance direction, so that the arrival position of the cooling medium sprayed from the cooling nozzle in the direction parallel to the steel material can be changed,
The main feature is that the cooling header pipe or the cooling nozzle is cooled while being rotated forward and backward by a predetermined angle or reciprocating in a direction parallel to the steel material.

また、発明者は、前記冷却ノズルや冷却ヘッダー管の回動速度又は移動速度が遅すぎるとかえって冷却能力(水量密度)のムラが増すほか、回動速度又は移動速度を必要以上に速くしても冷却能力のムラ抑制の点では差が認められないこと、つまり鋼材の搬送速度との関係において適切な回動速度又は移動速度が存在することを見出し、本発明のさらに望ましい形態を成立させた。   Further, the inventor increases the rotation speed or movement speed more than necessary in addition to increasing the unevenness of the cooling capacity (water density) if the rotation speed or movement speed of the cooling nozzle or the cooling header pipe is too slow. However, it was found that there is no difference in terms of suppressing the unevenness of the cooling capacity, that is, there is an appropriate rotation speed or movement speed in relation to the conveyance speed of the steel material, and a further desirable form of the present invention was established. .

すなわち、前記本発明の鋼材の冷却方法において、
前記鋼材の搬送速度をVL、冷却ノズルから噴射した冷却媒体による鋼材と平行な方向の冷却長さをW、冷却ノズル1個当たりの鋼材の搬送方向における冷却ゾーン長さをSLとした場合、
前記冷却ノズルを、
W≧(W/SL)・VL
で表される速度VWで正逆回動又は往復移動させるのである。
That is, in the method for cooling a steel material of the present invention,
If the conveying speed V L of the steel, cooling the length of the steel and parallel to the direction by the injected cooling medium from the cooling nozzles is W, the cooling zone length in the conveyance direction of the steel product per cooling nozzle was S L ,
The cooling nozzle,
V W ≧ (W / S L ) ・ V L
The forward / reverse rotation or reciprocation is performed at a speed V W represented by

本発明によれば、TMCP(熱加工制御)型極厚H形鋼などの形鋼に代表される鋼材を、冷却ノズルで冷却する際に、高額の設備投資を行わずに、鋼材の寸法が変化しても、冷却ムラを抑制して、性能の断面内ばらつきを抑制することができる。   According to the present invention, when a steel material represented by a shape steel such as a TMCP (thermal processing control) type ultra-thick H-section steel is cooled by a cooling nozzle, the size of the steel material can be reduced without making a large capital investment. Even if it changes, a cooling nonuniformity can be suppressed and the variation in the cross section of a performance can be suppressed.

また、冷却ノズルの噴射角度や高さを調整する機構を有する冷却設備の場合は、所定の速度が得られるように、冷却ノズルの角度や高さを駆動・制御する装置を改造することで実現可能であり、産業上の利用価値の高い発明である。   Also, in the case of cooling equipment with a mechanism that adjusts the injection angle and height of the cooling nozzle, it is realized by modifying the device that drives and controls the angle and height of the cooling nozzle so that a predetermined speed can be obtained This invention is possible and has high industrial utility value.

以下、本発明を実施するための最良の形態について、図1〜図5を用いて詳細に説明する。
図1は本発明の鋼材の冷却方法を実施する鋼材の冷却装置の一例を示す正面図、図2は図1の側面図、図3は冷却ノズルの正逆回動装置を説明する図である。
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to FIGS.
Figure 1 is a front view showing an example of a cooling apparatus of steel material cooling how to implement the steel of the present invention, FIG 2 is a side view of FIG. 1, FIG. 3 illustrating the normal and reverse rotation device of the cooling nozzle It is.

図1〜図3において、1は例えばH形鋼2の搬送経路に沿って、パスラインを挟んで設けられた上面冷却装置を構成する冷却ヘッダー管で、上フランジ内面冷却用は2段、フランジ外面冷却用は5段の冷却ヘッダー管1が、前記H形鋼2のフランジ外面と平行なように、例えば鉛直方向に配置されている。   In FIG. 1 to FIG. 3, reference numeral 1 denotes a cooling header pipe constituting an upper surface cooling device provided across a pass line along a conveying path of H-section steel 2, for cooling the upper flange inner surface, two stages, flange For cooling the outer surface, the five-stage cooling header pipe 1 is arranged, for example, in the vertical direction so as to be parallel to the outer surface of the flange of the H-shaped steel 2.

3は前記それぞれの冷却ヘッダー管1に一端を接続されたリンク機構であり、これらリンク機構3の他端は、電動機4による回転運動を、ピニオンギアを介して鉛直方向の直線運動に変換されるねじ軸5に接続されている。   Reference numeral 3 denotes a link mechanism having one end connected to each of the cooling header pipes 1, and the other end of these link mechanisms 3 converts a rotational motion by the electric motor 4 into a vertical linear motion via a pinion gear. It is connected to the screw shaft 5.

このような構成により、各冷却ヘッダー管1の例えば複数位置に、その先端をパスラインの方向に向けて設けられた冷却ノズル6は、制御装置7からの指令によってH形鋼2のフランジ外面と平行な鉛直方向の首振り角度の制御が行われる。なお、前記冷却ノズル6のうち、上フランジ内面冷却用のものは、その先端をパスラインに対して他側にあるフランジの内面に向けて設けられている。   With such a configuration, the cooling nozzles 6 provided at, for example, a plurality of positions of the respective cooling header pipes 1 with their tips directed in the direction of the pass line are connected to the flange outer surface of the H-section steel 2 in accordance with a command from the control device 7. A parallel vertical swing angle is controlled. Of the cooling nozzles 6, the one for cooling the inner surface of the upper flange is provided with its tip directed toward the inner surface of the flange on the other side with respect to the pass line.

11は下面冷却装置を構成する冷却ヘッダー管で、前記上面冷却装置と異なり、水平方向に3本固定配置され、各冷却ヘッダー管11に備えられた冷却ノズル12の噴出角度は固定されている。   Reference numeral 11 denotes a cooling header pipe constituting a lower surface cooling device. Unlike the upper surface cooling device, three are fixedly arranged in the horizontal direction, and the ejection angle of the cooling nozzle 12 provided in each cooling header tube 11 is fixed.

図4は、上記の冷却装置を用いた本発明の冷却方法における、冷却ヘッダー管1の正逆回動速度VWと、鋼材の搬送速度VLの関係を説明するための模式図である。 4, in the cooling method of the present invention using the cooling system of the above SL, is a schematic diagram for explaining the forward and reverse rotation velocity V W of the cooling header pipe 1, the relationship between the transport speed V L of the steel .

図4中、右上がりのハッチング部は、1個の冷却ノズル6から噴射する冷却水が、冷却ヘッダー管1の正逆回動により、鋼材の搬送方向と直角の鉛直方向にWの距離を冷却した場合の被水冷領域(図4の1個の冷却ノズル6による、鋼材の搬送方向における冷却ゾーン長さSLを重畳した領域)を示している。 In FIG. 4, the hatching portion that rises to the right cools the distance of W in the vertical direction perpendicular to the conveying direction of the steel by the cooling water sprayed from one cooling nozzle 6 by forward and reverse rotation of the cooling header pipe 1. shows the water-cooled region (by one cooling nozzle 6 in Figure 4, the area superimposed cooling zone length S L in the conveyance direction of the steel material) in the case of.

図4に示すように、VL、VWならびにSLの関係によっては冷却水の未噴射域が生じる。
すなわち、VW<(W/SL)・VLの関係になると、図4(a)に示すように、鉛直方向の冷却長さWの両端部近傍に、冷却ノズル6による冷却ゾーンが通過しない領域(冷却水の未噴射域)が生じる。
As shown in FIG. 4, an uninjected region of cooling water is generated depending on the relationship between V L , V W and S L.
That is, when the relationship of V W <(W / S L ) · V L is satisfied, as shown in FIG. 4A, the cooling zone by the cooling nozzle 6 passes near both ends of the cooling length W in the vertical direction. An area where no cooling water is injected is generated.

また、冷却水の噴射領域においては冷却ノズル6の回動方向(前記冷却長さWの方向)および鋼材の搬送方向に前記冷却ゾーンが重畳する個所と重畳しない個所が混在する不均一な水量密度分布となる。   Further, in the cooling water injection region, the non-uniform water density in which a portion where the cooling zone overlaps and a portion where the cooling zone does not overlap are mixed in the rotation direction of the cooling nozzle 6 (direction of the cooling length W) and the conveying direction of the steel material. Distribution.

一方、VW>(W/SL)・VLの関係になると、図4(b)に示すように、冷却ノズル6の回動方向(前記冷却長さWの方向)および鋼材の搬送方向に前記冷却ゾーンが重畳する回数が2回〜4回と変動する水量密度分布となる。 On the other hand, when the relationship of V W > (W / S L ) · V L is established, as shown in FIG. 4B, the rotation direction of the cooling nozzle 6 (the direction of the cooling length W) and the conveying direction of the steel material The number of times the cooling zone is superimposed on the water volume density distribution varies from 2 to 4 times.

しかしながら、冷却ノズル回動方向の流下水の影響や、冷却ノズル6の回動によりノズルから噴射された冷却水にノズル回動方向への慣性力が付与されることにより、図4(a)の場合に比べてかなり均一な水量密度分布となる。   However, due to the influence of the flowing water in the cooling nozzle rotation direction and the inertial force in the nozzle rotation direction applied to the cooling water jetted from the nozzle by the rotation of the cooling nozzle 6, as shown in FIG. Compared to the case, the water density distribution is fairly uniform.

以上のことから、
本発明方法を実施する際には、冷却ヘッダー管1の正逆回動速度又は往復移動速度VWは、鋼材の搬送速度VL、鉛直方向の冷却長さWおよび冷却ノズル6の鋼材の搬送方向における冷却ゾーン長さSLの間に、以下の関係を満足させることが望ましい。
W>(W/SL)・VL
From the above,
When carrying out the method of the present invention, the forward / reverse rotation speed or reciprocating speed V W of the cooling header pipe 1 is the steel material transport speed V L , the vertical cooling length W and the steel material transport of the cooling nozzle 6. during the cooling zone length S L in the direction, it is desirable to satisfy the following relationship.
V W > (W / S L ) ・ V L

さらには、冷却ヘッダー管1の正逆回動速度又は往復移動速度VWは、鋼材の搬送速度VL、鉛直方向の冷却長さWおよび冷却ノズル6の鋼材の搬送方向における冷却ゾーン長さSLの間に、以下の関係を満足させることが望ましい。
W=(W/SL)・VL
Further, the forward / reverse rotation speed or the reciprocating speed V W of the cooling header pipe 1 is the steel material transport speed V L , the vertical cooling length W, and the cooling zone length S in the steel material transport direction of the cooling nozzle 6. It is desirable to satisfy the following relationship between L.
V W = (W / S L ) · V L

次に、鋼材の冷却装置をH形鋼の熱間圧延ラインに配置し、本発明の冷却方法を実施して冷却能力の確認を行った結果について説明する。 Next, place the cooling apparatus of steel material in hot rolling line of the H-shaped steel, described cooling method results of confirmation of implementation to the cooling capacity of the present invention.

図5は、H形鋼の熱間圧延ラインと、この熱間圧延ラインへの本発明の冷却装置の設置位置を示した図で、21はサイズがH498mm×B432mm×tw45mm×tf70mm、引張強度が490MPa級のTMCP型極厚H形鋼を製造することを目的として製造された、幅1500mm、厚さ250mmの連続鋳造スラブである。   FIG. 5 is a diagram showing a hot rolling line of H-section steel and the installation position of the cooling device of the present invention in this hot rolling line. 21 is a size of H498 mm × B432 mm × tw 45 mm × tf 70 mm, and the tensile strength is It is a continuous cast slab having a width of 1500 mm and a thickness of 250 mm, which is manufactured for the purpose of manufacturing a 490 MPa class TMCP type ultra-thick H-section steel.

この連続鋳造スラブ21を、加熱炉で1250〜1300℃に加熱した後、ブレークダウンミル22で10数パスのリバース圧延を行い、粗形鋼片とした。続いて、この粗形鋼片に、粗ユニバーサルミル23とエッジャーミル24とで10数パスの圧延(熱加工制御圧延)を施し、最後に仕上げユニバーサルミル25で1パスの整形圧延(ウエブ・フランジの厚み調整とフランジの角度起こしを目的とした軽圧下圧延)を行った。   The continuous cast slab 21 was heated to 1250 to 1300 ° C. in a heating furnace, and then reverse rolled with 10 or more passes by a breakdown mill 22 to obtain a rough steel slab. Subsequently, this rough shaped steel slab is subjected to rolling of ten or more passes (heat-processed control rolling) by the rough universal mill 23 and the edger mill 24, and finally, the finishing universal mill 25 performs one-pass shaping rolling (for web and flange). Light rolling for the purpose of adjusting the thickness and raising the angle of the flange).

図5に示すように、仕上げユニバーサルミル25の下流側に、図1に記載の冷却装置を設置し、下記表1に記載の冷却条件で3パス水冷の各パス毎に鋼材のフランジ内外面、フィレット部及びウエブ上下面の冷却を行った。   As shown in FIG. 5, the cooling device shown in FIG. 1 is installed on the downstream side of the finishing universal mill 25, and the inner and outer surfaces of the flange of the steel material for each of the three-pass water cooling under the cooling conditions shown in Table 1 below. The fillet part and the upper and lower surfaces of the web were cooled.

しかる後、冷却完了後のH形鋼を圧延方向中央部で切断し、切断面の温度分布を走査型温度計にて測定した。その結果を図6に示す。また、比較のために、下記表1に示す冷却条件で、フランジ外面を冷却する冷却ノズルの回動を停止した状態で冷却した場合の断面内温度分布を図7に示す。   Thereafter, the H-shaped steel after completion of cooling was cut at the center in the rolling direction, and the temperature distribution of the cut surface was measured with a scanning thermometer. The result is shown in FIG. For comparison, FIG. 7 shows the temperature distribution in the cross section when cooling is performed in a state where the rotation of the cooling nozzle for cooling the outer surface of the flange is stopped under the cooling conditions shown in Table 1 below.

図6に示すように、本発明の冷却方法を適用すれば、水冷完了後のH形鋼のフランジ外面温度ばらつきを、約100℃から約50℃(両端部50mm除く)にまで50%低下させることができた。これによってフランジ幅方向の機械的性質のばらつきを抑制することが可能となった。   As shown in FIG. 6, when the cooling method of the present invention is applied, the flange outer surface temperature variation of the H-shaped steel after completion of water cooling is reduced by 50% from about 100 ° C. to about 50 ° C. (excluding 50 mm at both ends). I was able to. This makes it possible to suppress variations in mechanical properties in the flange width direction.

この本発明の実施例の場合、0.5m/秒の搬送速度VLで搬送される、フランジ幅Bが432mmのH形鋼を4段の冷却ノズルで冷却するから、各冷却ノズルの回動による冷却長さWは100mm=0.1m、H形鋼の搬送方向における冷却ノズル1個当たりの冷却ゾーン長さSLは0.05mであることから、冷却ノズルの正逆回動速度VWは、(0.1/0.05)×0.5=1.0m/秒として冷却した。 In this embodiment of the present invention, the H-section steel having a flange width B of 432 mm, which is transported at a transport speed V L of 0.5 m / sec, is cooled by four stages of cooling nozzles. cooling length by W is 100 mm = 0.1 m, a cooling zone length per cooling nozzle in the transport direction of the H-beam S L from it is 0.05 m, the normal and reverse rotation velocity V W of the cooling nozzles Was cooled as (0.1 / 0.05) × 0.5 = 1.0 m / sec.

一方、比較例の場合、図7に示すように、水冷完了後のH形鋼のフランジ外面温度のばらつきは100℃と大きく、結果的にフランジ幅方向の機械的性質のばらつきも本発明を適用した場合(図6)に比べて大きかった。   On the other hand, in the case of the comparative example, as shown in FIG. 7, the variation of the flange outer surface temperature of the H-shaped steel after completion of water cooling is as large as 100 ° C. As a result, the present invention is also applied to the variation of the mechanical properties in the flange width direction. As compared with the case (FIG. 6).

本発明は上記の例に限らず、各請求項に記載された技術的思想の範疇内で、適宜実施の形態を変更しても良いことは言うまでもない。   The present invention is not limited to the above example, and it goes without saying that the embodiment may be appropriately changed within the scope of the technical idea described in each claim.

例えば、以上の例では、個々の冷却ノズルがほぼ同一角度回動するような設定を行ったが、各段の冷却ノズルの水量調整と合わせて、各段の冷却ノズル・冷却ヘッダー管を独立して回動するように設定しても良い。   For example, in the above example, the setting was made so that the individual cooling nozzles rotate at substantially the same angle, but the cooling nozzles / cooling header pipes at each stage are made independent of the adjustment of the water amount of the cooling nozzles at each stage. May be set to rotate.

また、鋼材の長さ方向の温度変化に合わせて、各段の冷却ノズル、冷却ヘッダー管の正逆回動速度を冷却中に時間とともに変化するように制御しても良い。   Further, the forward / reverse rotation speeds of the cooling nozzles and the cooling header pipes in each stage may be controlled so as to change with time during cooling in accordance with the temperature change in the length direction of the steel material.

また、冷却ヘッダー管を正逆回動するものに代えて、冷却ノズルを正逆回動するもの、冷却ヘッダー管又は冷却ノズルを鉛直方向に往復移動するものでも良い。   Further, instead of rotating the cooling header pipe forward and backward, a cooling nozzle rotating forward and backward, or a cooling header pipe or cooling nozzle reciprocating in the vertical direction may be used.

さらに、冷却前および/または冷却後に測定した鋼材の被冷却面の温度ならびに該鋼材の搬送速度に基づき、鋼材の搬送方向と垂直な方向に前記冷却ノズルを回動する速度ならびに前記冷却ノズルから噴射する流体の流量を制御するものでも良い。   Furthermore, based on the temperature of the surface to be cooled of the steel material measured before and / or after cooling and the conveying speed of the steel material, the cooling nozzle is rotated in the direction perpendicular to the conveying direction of the steel material and the cooling nozzle is injected. The flow rate of the fluid to be controlled may be controlled.

本発明は形鋼の冷却のみならず、鋼板の冷却、例えば出願人が特開2007−83287号公報において開示したような平鋼の冷却、すなわち冷却水噴射ノズルを取付けた複数本のヘッダー管を高さ方向に設けた上部冷却装置と、平鋼を搬送する搬送ローラの搬送面下方に、前記搬送方向に沿って前記平鋼の幅方向に平行に設置された、冷却水噴射ノズルを取付けた複数本のヘッダー管からなる下部冷却装置においても適用可能である。具体的には、上部冷却装置のヘッダー管および下部冷却装置のヘッダー管を平鋼の搬送中に移動させる構造にすればよい。   In the present invention, not only cooling of the shape steel but also cooling of a steel plate, for example, flat steel cooling as disclosed in Japanese Patent Application Laid-Open No. 2007-83287, that is, a plurality of header pipes to which cooling water injection nozzles are attached. An upper cooling device provided in the height direction and a cooling water jet nozzle installed in parallel with the width direction of the flat bar along the transport direction are attached below the transport surface of the transport roller for transporting the flat bar. The present invention can also be applied to a lower cooling device including a plurality of header tubes. Specifically, a structure may be adopted in which the header pipe of the upper cooling device and the header pipe of the lower cooling device are moved during the transport of the flat steel.

本発明の鋼材の冷却方法を実施する鋼材の冷却装置の一例を示す正面図である。Is a front view showing an example of a cooling apparatus of steel material cooling how to implement the steel of the present invention. 図1を側面から見た図である。It is the figure which looked at FIG. 1 from the side. 材の冷却装置を構成する冷却ノズルの正逆回動装置を説明する図である。Is a diagram illustrating the normal and reverse rotation apparatus of the cooling nozzles constituting the cooling apparatus of steel material. 本発明の冷却方法における冷却ヘッダー管の正逆回動速度VWと、鋼材の搬送速度VLの関係を説明するための模式図で、(a)はVW<(W/SL)・VLの場合、(b)はVW>(W/SL)・VLの場合を示す図である。A forward and reverse rotation velocity V W of the cooling header pipes in the cooling method of the present invention, in schematic view for explaining the relationship between the transport speed V L of the steel, (a) shows the V W <(W / S L ) · In the case of V L , (b) is a diagram showing the case of V W > (W / S L ) · V L. 形鋼の圧延ラインと、冷却装置のこの圧延ラインへの設置位置を示した図である。And rolling line of section steel is a diagram showing the installation position for this rolling line of cooling device. 却装置を用いた本発明方法で極厚H形鋼を水冷した後の断面温度分布を示した図である。The extremely thick H-section steel in the present invention method using the cooling device is a diagram showing a cross section temperature distribution after the water-cooled. 却装置を用い、冷却ヘッダー管を正逆回動しないで極厚H形鋼を水冷した後の断面温度分布を示した図である。Using the cooling device, a diagram illustrating the cross-sectional temperature distribution after the water-cooled heavy gauge H-shaped steel cooling header pipe without reciprocal rotation. 一般的なフラットスプレーノズルの流量密度分布を示した図である。It is the figure which showed the flow rate density distribution of the general flat spray nozzle. 従来のH形鋼の水冷前と水冷後の温度分布の例を示した図である。It is the figure which showed the example of the temperature distribution before water cooling of the conventional H-section steel, and after water cooling.

符号の説明Explanation of symbols

1 冷却ヘッダー管
2 H形鋼
3 リンク機構
4 電動機
5 ねじ軸
6 冷却ノズル
7 制御装置
DESCRIPTION OF SYMBOLS 1 Cooling header pipe 2 H-section steel 3 Link mechanism 4 Electric motor 5 Screw shaft 6 Cooling nozzle 7 Control device

Claims (1)

少なくとも1本の冷却ヘッダー管に設けた、少なくとも1個の冷却ノズルから、搬送中の鋼材に向けて冷却媒体を噴射して冷却する際に
鋼材の搬送方向と直交する断面において、前記冷却ノズルから噴射する冷却媒体の、鋼材と平行な方向の到達位置が変化可能なように、
前記の冷却ヘッダー管又は冷却ノズルを、所定の角度だけ正逆回動又は鋼材と平行な方向に往復移動させつつ冷却する鋼材の冷却方法において、
前記鋼材の搬送速度をV L 、冷却ノズルから噴射した冷却媒体による鋼材と平行な方向の冷却長さをW、冷却ノズル1個当たりの鋼材の搬送方向における冷却ゾーン長さをS L とした場合、
前記冷却ノズルを、
W ≧(W/S L )・V L
で表される速度V W で正逆回動又は往復移動させることを特徴とする鋼材の冷却方法。
When cooling by injecting a cooling medium from at least one cooling nozzle provided in at least one cooling header pipe toward the steel material being conveyed,
In a cross section orthogonal to the steel material conveyance direction, so that the arrival position of the cooling medium sprayed from the cooling nozzle in the direction parallel to the steel material can be changed,
In the cooling method of the steel material, the cooling header pipe or the cooling nozzle is cooled while being reciprocally moved in a direction parallel to the steel material in a forward / reverse direction by a predetermined angle ,
If the conveying speed V L of the steel, cooling the length of the steel and parallel to the direction by the injected cooling medium from the cooling nozzles is W, the cooling zone length in the conveyance direction of the steel product per cooling nozzle was S L ,
The cooling nozzle,
V W ≧ (W / S L ) ・ V L
A method for cooling a steel material, wherein the steel material is rotated forward and backward or reciprocated at a speed V W represented by :
JP2007287520A 2007-11-05 2007-11-05 Steel cooling method Active JP4858411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007287520A JP4858411B2 (en) 2007-11-05 2007-11-05 Steel cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007287520A JP4858411B2 (en) 2007-11-05 2007-11-05 Steel cooling method

Publications (2)

Publication Number Publication Date
JP2009113067A JP2009113067A (en) 2009-05-28
JP4858411B2 true JP4858411B2 (en) 2012-01-18

Family

ID=40780792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007287520A Active JP4858411B2 (en) 2007-11-05 2007-11-05 Steel cooling method

Country Status (1)

Country Link
JP (1) JP4858411B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106460078A (en) * 2014-05-29 2017-02-22 株式会社Ihi Cooling device and multi-chamber heat treatment device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5776593B2 (en) * 2012-03-12 2015-09-09 Jfeスチール株式会社 Method and apparatus for cooling hot rolled coil
JP7381840B2 (en) * 2019-07-05 2023-11-16 日本製鉄株式会社 Cooling device for H-beam steel
CN113118946B (en) * 2021-04-20 2022-12-06 山东富蓝动力科技有限公司 Manufacturing process of powder metallurgy tool steel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2635334B2 (en) * 1987-09-18 1997-07-30 新日本製鐵株式会社 Refrigeration system for stationary section steel with flange
JPH0790252B2 (en) * 1991-05-29 1995-10-04 川崎製鉄株式会社 H-section steel flange cooling device
JP3064900B2 (en) * 1996-04-30 2000-07-12 住友金属工業株式会社 Shape control method for H-section steel
JP3252718B2 (en) * 1996-09-03 2002-02-04 日本鋼管株式会社 H-section cooling system
JP3654213B2 (en) * 2001-07-02 2005-06-02 住友金属工業株式会社 Shaped steel cooling device and cooling method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106460078A (en) * 2014-05-29 2017-02-22 株式会社Ihi Cooling device and multi-chamber heat treatment device

Also Published As

Publication number Publication date
JP2009113067A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
KR100973692B1 (en) Hot rolling facility of steel plate and hot rolling method
KR101631044B1 (en) Method and apparatus for cooling hot-rolled steel strip
JP4702166B2 (en) Method and apparatus for cooling shape steel
JP4858411B2 (en) Steel cooling method
CN102513383B (en) Ultra fast cooling and conventional laminar flow cooling method for medium plate
JP5200638B2 (en) T-shaped steel cooling device
CN110665964B (en) Method for rolling thin X70 pipeline steel strip
JP5673530B2 (en) Hot rolled steel sheet cooling apparatus, cooling method, manufacturing apparatus, and manufacturing method
CN1039047C (en) Continuous rail and method for producing same
JP3654213B2 (en) Shaped steel cooling device and cooling method
JP4623230B2 (en) T-section steel hot rolling line cooling device, T-section steel manufacturing equipment and manufacturing method
JP2005279691A (en) Secondary cooling method for continuously cast slab
RU2571029C1 (en) Production method of high-stiffness tongue-and-groove section
JP3241806B2 (en) Cooling method for section steel
JP2541213B2 (en) Shaped steel manufacturing equipment
JP5640416B2 (en) Flange bending prevention method, flange bending prevention device and T-shaped steel manufacturing equipment for T-section steel
JP2011011221A (en) Cooling device for hot-rolled steel sheet and controlling method for the same device, and device and method for manufacturing hot-rolled steel sheet
JP2011011222A (en) System for cooling hot-rolled steel plate, and apparatus and method for manufacturing the hot rolled steel plate
JP2008126259A (en) Manufacturing method and cooling system of t-shape steel
KR101532009B1 (en) Apparatus for water cooling h-beam of rolling line
JP5581668B2 (en) T-shaped steel manufacturing equipment and manufacturing method
JPWO2019059105A1 (en) Steel cooling device and cooling method
JP4126908B2 (en) Steel cooling method
JP7381840B2 (en) Cooling device for H-beam steel
JP4432669B2 (en) H-shaped steel cooling method and cooling line equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R150 Certificate of patent or registration of utility model

Ref document number: 4858411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350