JP5776593B2 - Method and apparatus for cooling hot rolled coil - Google Patents

Method and apparatus for cooling hot rolled coil Download PDF

Info

Publication number
JP5776593B2
JP5776593B2 JP2012054452A JP2012054452A JP5776593B2 JP 5776593 B2 JP5776593 B2 JP 5776593B2 JP 2012054452 A JP2012054452 A JP 2012054452A JP 2012054452 A JP2012054452 A JP 2012054452A JP 5776593 B2 JP5776593 B2 JP 5776593B2
Authority
JP
Japan
Prior art keywords
cooling
coil
mist
coiled
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012054452A
Other languages
Japanese (ja)
Other versions
JP2013188753A (en
Inventor
広和 杉原
広和 杉原
日野 善道
善道 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012054452A priority Critical patent/JP5776593B2/en
Priority to PCT/JP2013/055827 priority patent/WO2013137042A1/en
Publication of JP2013188753A publication Critical patent/JP2013188753A/en
Application granted granted Critical
Publication of JP5776593B2 publication Critical patent/JP5776593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/26Special arrangements with regard to simultaneous or subsequent treatment of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Winding, Rewinding, Material Storage Devices (AREA)

Description

本発明は、熱間圧延後、コイル状に巻き取られた熱延鋼板を、錆を発生させずに冷却するための冷却方法および冷却装置に関するものである。   The present invention relates to a cooling method and a cooling device for cooling a hot-rolled steel sheet wound in a coil shape after hot rolling without causing rust.

図1に示すように、熱延鋼板を製造するには、加熱炉1においてスラブを所定温度に加熱し、加熱したスラブを粗圧延機2で圧延して粗バーとなし、ついでこの粗バーを複数基の圧延スタンドからなる連続熱間仕上圧延機3において所定の厚みの熱延鋼板4となす。そして仕上圧延機3から出た熱延鋼板4は、ランアウトテーブルに設置した冷却装置5で上方および下方から冷却水を供給して冷却した後、巻取機6で巻き取り、コイル状熱延鋼板7とする。   As shown in FIG. 1, in order to manufacture a hot-rolled steel sheet, a slab is heated to a predetermined temperature in a heating furnace 1, and the heated slab is rolled with a roughing mill 2 to form a rough bar. In a continuous hot finishing rolling mill 3 composed of a plurality of rolling stands, a hot rolled steel sheet 4 having a predetermined thickness is obtained. The hot-rolled steel sheet 4 coming out from the finish rolling mill 3 is cooled by supplying cooling water from above and below with a cooling device 5 installed on the run-out table, and then wound up with a winder 6 and coiled hot-rolled steel sheet. 7

この巻取後のコイル状熱延鋼板(以後、単に「コイル」とも呼ぶ。)は、温度が500〜650℃程度であるため、熱延工場のコイル置き場で常温まで冷却してから出荷する。コイル置き場では大量のコイルを冷却しており、高温のコイルの周囲に高温のコイルが置かれているため、各コイルの周囲の気温が高くなって冷却能率が低下し、冷却完了までに3〜5日かかる。このため、コイルを置く場所が不足したり、出荷までの期間が長くなったり、在庫が増加したりするといった問題が発生する。   The coiled hot-rolled steel sheet after winding (hereinafter, also simply referred to as “coil”) has a temperature of about 500 to 650 ° C., and is therefore shipped after being cooled to room temperature in a coil place in a hot-rolling factory. A large amount of coils are cooled in the coil storage area, and since the high temperature coils are placed around the high temperature coils, the temperature around each coil becomes high and the cooling efficiency is lowered. It takes 5 days. For this reason, problems such as a shortage of places for placing the coils, a long period until shipment, and an increase in inventory occur.

そこで、コイルの冷却時間を短縮するため、冷却水を散布する方法が種々堤案されている。しかし、コイルの表面温度が100℃以下の状態で冷却水を散布すると、冷却水が蒸発しにくいためコイル表面が水で濡れ、そのまま放置すると鋼板表面に錆が発生する。錆が発生すると外観が損なわれ、出荷できなくなる。   In order to shorten the coil cooling time, various methods for spraying cooling water have been proposed. However, if the cooling water is sprayed in a state where the coil surface temperature is 100 ° C. or lower, the cooling water is difficult to evaporate, so that the coil surface gets wet with water, and if left as it is, rust is generated on the steel sheet surface. If rust occurs, the appearance will be damaged and shipping will not be possible.

このため従来、特許文献1記載のように、鋼板表面が濡れないように、コイル周囲の温度と湿度を測定し、噴霧量を制御する水冷方法が提案されている。しかしながらこの方法では、コイル置き場の天井という遠方から冷却水を散布しており、冷却能力が低いため、効率的な冷却ができないという問題がある。   For this reason, conventionally, as described in Patent Document 1, a water cooling method has been proposed in which the temperature and humidity around the coil are measured and the spray amount is controlled so that the steel sheet surface does not get wet. However, this method has a problem that cooling water is sprayed from a distance from the ceiling of the coil storage area and cooling efficiency is low, so that efficient cooling cannot be performed.

また、特許文献2記載のように、コイル1個に対しその幅方向両端面を両側から1個ずつ冷却ノズルを用いて冷却する冷却方法も提案されている。しかしながらこの方法では、ミストが充分に広がらず、コイルの全体を冷却することが困難であり、冷却効率が低下するという問題がある。   Further, as described in Patent Document 2, a cooling method has been proposed in which one end of each width direction of one coil is cooled from both sides using a cooling nozzle. However, this method has a problem that the mist is not sufficiently spread, it is difficult to cool the entire coil, and the cooling efficiency is lowered.

特開昭57−134207号公報JP-A-57-134207 特開平5−177240号公報Japanese Patent Application Laid-Open No. 5-177240

すなわち、水冷時のコイル表面の濡れを防止するには、液滴粒子径が小さいミストが有効である。液滴粒子径が小さい方が、蒸発に必要な熱量が小さく、蒸発しやすいからである。しかしながら、液滴粒子径を微小化すると、周囲の風の影響を受けてコイルから外れやすく、また、噴射距離が短いという問題がある。   That is, a mist having a small droplet particle size is effective in preventing wetting of the coil surface during water cooling. This is because the smaller the particle size of the droplet, the smaller the amount of heat necessary for evaporation, and the easier it is to evaporate. However, when the droplet particle diameter is reduced, there is a problem in that it is easily detached from the coil due to the influence of the surrounding wind, and the ejection distance is short.

水冷能力の向上には、ミストの単位面積当りの噴射流量(以下、「水量密度」と呼ぶ。)の増加が重要である。しかしながら、コイルのような大きい体積の物体を冷却する場合、冷却能力が高いと、中心部に対し表面温度が大きく低下するため、表面が濡れやすくなる。特に、コイル表面温度が100℃以下の場合は、コイル表面が濡れやすくなるため、表面温度の低下の抑制が重要である。   In order to improve the water cooling capacity, it is important to increase the injection flow rate per unit area of the mist (hereinafter referred to as “water density”). However, when a large volume object such as a coil is cooled, if the cooling capacity is high, the surface temperature is greatly lowered with respect to the central portion, and thus the surface is easily wetted. In particular, when the coil surface temperature is 100 ° C. or lower, the coil surface is easily wetted, and therefore it is important to suppress the decrease in the surface temperature.

上述のように、コイル表面の濡れの抑制と冷却能力向上との両立は、従来は困難であった。それゆえ本発明は、コイルに錆を発生させず、しかも高能率で冷却を行う冷却方法および冷却装置を提供することを目的としている。   As described above, it has been difficult in the past to achieve both suppression of wetting of the coil surface and improvement of the cooling capacity. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a cooling method and a cooling device that do not generate rust in a coil and perform cooling with high efficiency.

上記課題を解決するため本発明のコイル状熱間圧延鋼板の冷却方法は、熱間圧延ラインに設置される巻取機で巻き取られた後のコイル状の鋼板を冷却するに際し、前記コイル状の鋼板の幅方向両端部に冷却ミストを間欠的に吹き付けて冷却を行うことを特徴としている。   In order to solve the above problems, the method for cooling a coiled hot-rolled steel sheet according to the present invention is a method for cooling a coiled steel sheet after being wound by a winder installed in a hot rolling line. It cools by spraying a cooling mist intermittently on the both ends of the width direction of this steel plate.

また、上記課題を解決するため本発明のコイル状熱間圧延鋼板の冷却装置は、前記冷却方法に用いられる冷却装置において、冷却ミストを発生させるミストノズルと、その冷却ミストを気流に乗せてコイル状の鋼板の幅方向端部に間欠的に吹き付ける送風機と、を具えることを特徴としている。   In order to solve the above problems, a coiled hot-rolled steel sheet cooling device according to the present invention includes a mist nozzle that generates cooling mist in the cooling device used in the cooling method, and a coil that mounts the cooling mist on an air stream. And a blower that blows intermittently on the widthwise end of the steel plate.

本発明の冷却方法および冷却装置を用いることにより、コイル状の鋼板の表面の濡れを防止する水冷が可能となり、その結果、錆の発生の防止および高能率の冷却が可能となり、短時間でコイルを出荷することができる。   By using the cooling method and the cooling device of the present invention, water cooling that prevents wetting of the surface of the coiled steel sheet is possible. As a result, it is possible to prevent the occurrence of rust and highly efficient cooling, and the coil can be obtained in a short time. Can be shipped.

なお、本発明の冷却方法および冷却装置においては、前記冷却ミストは、粒子径が20μm以上で40μm以下の液滴からなるものであると好ましい。なぜなら、水冷時のコイル表面の濡れを防止するには、液滴粒子径が小さいミストの方が、蒸発に必要な熱量が小さく、蒸発しやすいため有効であるが、粒子径が20μm未満の液滴からなる冷却ミストでは、周囲の風の影響を受けてコイルから外れ易く、また噴射距離が短いため広範囲に吹き付けるのが困難であり、一方、コイルを効率良く冷却するには、液滴粒子径が大きいミストの方が、蒸発によってコイルから奪う熱量が大きく、また噴射距離が長いため広範囲に吹き付けられるので有効であるが、粒子径が40μmを越える液滴からなる冷却ミストでは、蒸発しにくいためコイル表面がぬれ易くなるからである。   In the cooling method and apparatus of the present invention, the cooling mist is preferably composed of droplets having a particle diameter of 20 μm or more and 40 μm or less. This is because, in order to prevent wetting of the coil surface during water cooling, a mist with a small droplet particle size is effective because it requires less heat and is easier to evaporate, but a liquid with a particle size of less than 20 μm is effective. Cooling mist consisting of droplets is easily removed from the coil due to the influence of the surrounding wind, and is difficult to spray over a wide area due to the short injection distance. Larger mist is effective because it takes a larger amount of heat to evaporate from the coil due to evaporation, and it is effective because it is sprayed over a wide area because the spray distance is long. This is because the coil surface is easily wetted.

また、本発明の冷却装置においては、前記送風機は首振り機構を有し、その首振り機構による送風機の首振りによって、複数のコイル状の鋼板に対し冷却ミストを広範囲かつ間欠的に吹き付けるものであると好ましい。このようにすれば、少ない台数の送風機で多くのコイル状の鋼板に対し冷却ミストを広範囲かつ間欠的に吹き付けることができるからである。   Further, in the cooling device of the present invention, the blower has a swing mechanism, and the cooling mist is sprayed widely and intermittently on a plurality of coiled steel plates by swinging the blower by the swing mechanism. Preferably there is. This is because the cooling mist can be sprayed widely and intermittently on many coiled steel plates with a small number of fans.

通常の熱間圧延ラインの概略を示す構成図である。It is a block diagram which shows the outline of a normal hot rolling line. 本発明のコイル状熱間圧延鋼板の冷却方法の一実施形態に用いられる、本発明のコイル状熱間圧延鋼板の冷却装置の一実施形態の可動式冷却装置の概略を示す斜視図である。It is a perspective view which shows the outline of the movable cooling device of one Embodiment of the cooling apparatus of the coiled hot rolled steel plate of this invention used for one Embodiment of the cooling method of the coiled hot rolled steel plate of this invention. 二段積みされた複数のコイルからなるコイル群の概略を示す斜視図である。It is a perspective view which shows the outline of the coil group which consists of a plurality of coils stacked in two stages. 液滴粒子径とコイルの濡れ発生温度との関係を示す関係線図である。It is a relationship diagram which shows the relationship between a droplet particle diameter and the wetting generation temperature of a coil. 冷却ミストで間欠冷却および連続冷却をそれぞれ行った場合のコイルの低温部および高温部の温度履歴をそれぞれ示す関係線図である。It is a relationship diagram which shows the temperature history of the low temperature part of a coil at the time of performing intermittent cooling and continuous cooling with a cooling mist, respectively, and a high temperature part, respectively. 非可動式かつ連続冷却式冷却装置の概略を示す図である。It is a figure which shows the outline of a non-movable and continuous cooling type cooling device. 上記実施形態の可動式冷却装置の概略を示す図である。It is a figure which shows the outline of the movable cooling device of the said embodiment. 本発明の実施例および比較例1,3の条件で冷却をそれぞれ行った場合のコイルの低温部および高温部の温度履歴をそれぞれ示す関係線図である。It is a related line figure which shows the temperature history of the low temperature part of a coil, and the high temperature part at the time of cooling, respectively on the conditions of the Example of this invention, and Comparative Examples 1 and 3.

以下、この発明の実施の形態を、図面に基づき詳細に説明する。ここに、図2は、本発明のコイル状熱間圧延鋼板の冷却方法の一実施形態に用いられる、本発明のコイル状熱間圧延鋼板の冷却装置の一実施形態の可動式冷却装置の概略を示す斜視図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, FIG. 2 is an outline of the movable cooling device of one embodiment of the cooling device for the coiled hot-rolled steel sheet of the present invention, which is used in one embodiment of the method for cooling the coiled hot-rolled steel sheet of the present invention. FIG.

本実施形態の冷却装置8は、図2に示すように、例えば軸流型の送風機9の送風口の周囲にその送風方向へ向けて通常のミストノズル10を例えば周方向に等間隔に複数個(図示例では8個)配置し、各ミストノズル10に図示しない給水配管を接続したものである。このようにミストノズル10と送風機9とを組み合わせたのは、微小液滴粒子径の冷却ミストは軽いため、ミストノズル10から吹出す勢いだけでは空気抵抗を受けて遠方まで到達しにくいので、送風機9が吹出す気流に乗せて遠方まで飛ばせるようにするためである。   As shown in FIG. 2, the cooling device 8 of the present embodiment includes, for example, a plurality of normal mist nozzles 10 at regular intervals in the circumferential direction, for example, around the blower opening of an axial flow type blower 9 in the blowing direction. (8 in the illustrated example) are arranged, and a water supply pipe (not shown) is connected to each mist nozzle 10. The reason why the mist nozzle 10 and the blower 9 are combined in this way is that the cooling mist having a small droplet particle diameter is light, so that it is difficult to reach far by receiving air resistance only with the momentum blown from the mist nozzle 10. This is because 9 can be carried far away on the air current blown out.

本実施形態の冷却方法では、コイル置き場の、例えば図3に示すように二段積みされたコイル7の山の両側に、例えば図7に示すように上記冷却装置8を1台ずつ設置し、二段積みされたコイル群の各コイル7の鋼板幅方向両端面に冷却ミストMを間欠的に吹き付けて、各コイル7の冷却を行う。なお、二段積みされたコイル7に冷却ミストMを確実に到達させるためには、冷却装置8の大きさによるが、例えば送風機9の直径が0.5〜1m程度で中心高さが0.5〜1m程度のものでは、二段積みされたコイル7の鋼板幅方向端面と冷却装置8との間隔を例えば1〜2m程度とすることが好ましい。   In the cooling method of this embodiment, for example, as shown in FIG. 7, one cooling device 8 is installed on each side of the coil storage area on both sides of the mountain of the coils 7 stacked in two stages as shown in FIG. The cooling mist M is intermittently sprayed on both end faces in the steel plate width direction of the respective coils 7 of the two-stacked coil group to cool each coil 7. In order to ensure that the cooling mist M reaches the coils 7 stacked in two stages, depending on the size of the cooling device 8, for example, the diameter of the blower 9 is about 0.5 to 1 m and the center height is 0.1. In the case of about 5 to 1 m, it is preferable that the distance between the end faces in the steel plate width direction of the two stacked coils 7 and the cooling device 8 is, for example, about 1 to 2 m.

ここにおける冷却装置8は、例えば通常の扇風機のクランク式の首振り機構の如き図示しない首振り機構を有し、その首振り機構によって、図2中の矢印に示すように、鉛直軸であるZ軸周りに送風機9を往復首振りさせることが可能な可動式のものであり、この送風機9の首振りにより、二段積みされたコイル群に対し広範囲に液滴としての水滴からなる冷却ミストMを吹き付けて水冷を行うことができる。   The cooling device 8 here has a swing mechanism (not shown) such as a crank-type swing mechanism of a normal electric fan, for example, and, as shown by the arrow in FIG. A movable type capable of reciprocatingly swinging the blower 9 around the shaft. By the swing of the blower 9, a cooling mist M composed of water droplets as droplets over a wide range of coils stacked in two stages. Can be sprayed to cool the water.

ここで、特定のコイル7に着目すると、冷却装置8の送風機9がそのコイル7から逸れた方向へ首を振っていることにより、冷却装置8からの冷却ミストMがコイル7に当っていない間の空冷と、冷却装置8の送風機9がそのコイル7に向く方向へ首を振っていることにより、冷却装置8からの冷却ミストMが当っている間の水冷とが交互に行われる。以後、この空冷と水冷とが交互に行われる冷却方法を「間欠水冷方式」と呼ぶ。   Here, when paying attention to the specific coil 7, the cooling mist M from the cooling device 8 does not hit the coil 7 because the blower 9 of the cooling device 8 swings the head in a direction deviating from the coil 7. The air cooling of the cooling device 8 and the water cooling while the cooling mist M from the cooling device 8 is hit are alternately performed by swinging the head in the direction in which the blower 9 of the cooling device 8 faces the coil 7. Hereinafter, this cooling method in which air cooling and water cooling are performed alternately is referred to as “intermittent water cooling method”.

ところで、コイル置き場では、コイルの冷却完了温度である50℃まで、コイル表面をぬらさずにコイル7を冷却させる必要がある。本発明者が冷却ミストMの液滴粒子径とコイル表面の濡れ発生温度との関係を調べた結果を図4に示す。この図から判るように、50℃までコイル表面に濡れが発生しないようにするためには、冷却ミストMの液滴粒子径を40μm以下にすれば良い。但し、液滴粒子径を20μm未満にすると、冷却ミストMが周囲の風の影響を受けてコイル7から外れ易く、また噴射距離が短いため広範囲に吹き付けるのが困難となる。   By the way, in the coil storage place, it is necessary to cool the coil 7 to 50 ° C., which is the coil cooling completion temperature, without wetting the coil surface. FIG. 4 shows the result of the investigation of the relationship between the droplet particle diameter of the cooling mist M and the wetting occurrence temperature of the coil surface by the inventor. As can be seen from this figure, in order to prevent wetting of the coil surface up to 50 ° C., the droplet diameter of the cooling mist M should be 40 μm or less. However, if the droplet particle diameter is less than 20 μm, the cooling mist M is easily detached from the coil 7 due to the influence of the surrounding wind, and it is difficult to spray over a wide range because the spray distance is short.

温度600℃、一個あたり重量25tonのコイル7に対し、水温30℃の冷却水で液滴粒子径40μmのミストノズル10を用いて発生させた冷却ミストMにより間欠冷却および連続冷却をそれぞれ行った場合の、コイル7の低温部および高温部の温度履歴を図5に示す。図中、曲線Aは間欠冷却(低温部)、曲線Bは間欠冷却(高温部)、曲線Cは連続冷却(低温部)、曲線Dは連続冷却(高温部)をそれぞれ示す。但し、コイル7の最も温度が低い部分が50℃になった時点で水冷を停止するものとする。また、間欠冷却時(A,B)の冷却は、コイル7に対し冷却ミストMを吹き付ける1分間の水冷と冷却ミストMを吹き付けない1分間の空冷とを交互に繰り返すものであり、連続冷却時(C,D)の冷却は、コイル7に対し冷却ミストMを連続的に吹き付けるものである。   When the coil 7 having a temperature of 600 ° C. and a weight of 25 ton per piece is subjected to intermittent cooling and continuous cooling with cooling mist M generated by using a mist nozzle 10 having a droplet particle diameter of 40 μm with cooling water having a water temperature of 30 ° C. The temperature history of the low temperature part and the high temperature part of the coil 7 is shown in FIG. In the figure, curve A shows intermittent cooling (low temperature part), curve B shows intermittent cooling (high temperature part), curve C shows continuous cooling (low temperature part), and curve D shows continuous cooling (high temperature part). However, water cooling is stopped when the lowest temperature portion of the coil 7 reaches 50 ° C. The cooling during intermittent cooling (A, B) is one in which water cooling for 1 minute in which the cooling mist M is sprayed on the coil 7 and air cooling for 1 minute in which the cooling mist M is not sprayed are alternately repeated. The cooling of (C, D) is to continuously blow the cooling mist M against the coil 7.

コイル7の最も温度が低い部分が50℃になった時点において、コイル7の最も温度が高い部分と最も温度が低い部分との温度差を比較すると、連続冷却を行った場合は127℃であり、一方、間欠冷却を行った場合は59℃であった。このことから、間欠冷却を行うことにより、コイル7の高温部の温度が十分に下がるまでコイル7の水冷を行うことができ、冷却時間を短絡することが可能となることが判る。   When the lowest temperature portion of the coil 7 reaches 50 ° C., the temperature difference between the highest temperature portion and the lowest temperature portion of the coil 7 is 127 ° C. when continuous cooling is performed. On the other hand, it was 59 ° C. when intermittent cooling was performed. From this, it can be seen that by performing intermittent cooling, water cooling of the coil 7 can be performed until the temperature of the high temperature portion of the coil 7 is sufficiently lowered, and the cooling time can be short-circuited.

次に、本実施形態の冷却方法の一実施例を、熱延工場のコイル置き場において図3に示すように二段積みされたコイル群のコイル7に対し、図7に示すようにそのコイル群のコイル7の山の両側に上記冷却装置8を1台ずつ設置し、二段積みされたコイル群の各コイル7の鋼板幅方向両端面に冷却ミストMを間欠的に吹き付けて各コイル7の冷却を行う場合について説明する。コイル7の冷却開始温度は600℃、一個当り重量は25ton、冷却ミストMを生じさせる冷却水の水温は30℃であり、コイル7の最も温度が低い部分が50℃になった時点で水冷を停止する。   Next, an example of the cooling method of the present embodiment is shown in FIG. 7 for the coil 7 of the coil group stacked in two stages as shown in FIG. One cooling device 8 is installed on each side of the mountain of the coil 7 and cooling mist M is intermittently sprayed on both end faces in the steel sheet width direction of each coil 7 of the two-stacked coil group. A case where cooling is performed will be described. The cooling start temperature of the coil 7 is 600 ° C., the weight per piece is 25 ton, the temperature of the cooling water generating the cooling mist M is 30 ° C., and the water cooling is performed when the lowest temperature of the coil 7 reaches 50 ° C. Stop.

上記実施例として、冷却ミストMの液滴粒子径が30μmの可動式冷却装置8を用いて水冷を行った場合(水冷1分と空冷1分を繰り返す間欠冷却)、比較例1として、冷却装置8を用いず空冷を行った場合、比較例2として、図6に示すような、冷却ミストMの液滴粒子径が60μmの非可動式冷却装置11を用いて水冷を行った場合、そして比較例3として、図6に示すような、冷却ミストMの液滴粒子径が30μmの非可動式冷却装置11を用いて水冷を行った場合のそれぞれについて比較を行った。   In the above example, when water cooling is performed using the movable cooling device 8 having a droplet diameter of the cooling mist M of 30 μm (intermittent cooling in which water cooling is performed for 1 minute and air cooling is performed for 1 minute), When air-cooling is performed without using 8, as Comparative Example 2, when water-cooling is performed using a non-movable cooling device 11 with a droplet diameter of the cooling mist M of 60 μm as shown in FIG. As Example 3, a comparison was made for each of the cases where water cooling was performed using a non-movable cooling device 11 having a droplet particle diameter of 30 μm as shown in FIG.

なお、非可動式冷却装置11は、首振り機構を持たず、送風機9およびミストノズル10を一定方向へ向けて維持している点以外は、可動式冷却装置8と同様の構成を具えている。   The non-movable cooling device 11 has the same configuration as the movable cooling device 8 except that it does not have a swing mechanism and maintains the blower 9 and the mist nozzle 10 in a certain direction. .

表1に、上記実施例および比較例1〜3の条件で冷却をそれぞれ行った場合のコイルの冷却完了までの時間を、また図8に、上記実施例および比較例1,3の条件で冷却をそれぞれ行った場合のコイルの低温部および高温部の温度履歴を示す。図中、曲線Eは実施例(低温部)、曲線Fは実施例(高温部)、曲線Gは比較例1(低温部)、曲線Hは比較例1(高温部)、曲線Iは比較例3(低温部)、曲線Jは比較例3(高温部)をそれぞれ示す。但し、比較例2と比較例3との温度履歴は同じなので、比較例2の温度履歴は示していない。   Table 1 shows the time until coil cooling is completed when cooling is performed under the conditions of the above-described example and comparative examples 1 to 3, and FIG. 8 shows cooling under the conditions of the above-described example and comparative examples 1 and 3. The temperature history of the low-temperature part and high-temperature part of a coil when each is performed is shown. In the figure, curve E is an example (low temperature part), curve F is an example (high temperature part), curve G is comparative example 1 (low temperature part), curve H is comparative example 1 (high temperature part), and curve I is a comparative example. 3 (low temperature part) and curve J indicate Comparative Example 3 (high temperature part), respectively. However, since the temperature history of Comparative Example 2 and Comparative Example 3 is the same, the temperature history of Comparative Example 2 is not shown.

Figure 0005776593
Figure 0005776593

表1および図8に示すように、比較例1(G,H)の冷却方法では冷却完了までに87時間かかり、コイル表面に錆は発生しなかった。また比較例2の冷却方法では冷却完了までに59時間かかり、コイル表面に錆が発生した。そのためコイル7を出荷することができなかった。そして比較例3(I,J)の冷却方法では冷却完了までに59時間かかり、コイル表面に錆が発生しなかった。   As shown in Table 1 and FIG. 8, in the cooling method of Comparative Example 1 (G, H), it took 87 hours to complete the cooling, and no rust was generated on the coil surface. In the cooling method of Comparative Example 2, it took 59 hours to complete the cooling, and rust was generated on the coil surface. Therefore, the coil 7 could not be shipped. In the cooling method of Comparative Example 3 (I, J), it took 59 hours to complete the cooling, and no rust was generated on the coil surface.

これらに対し上記実施例(E,F)の冷却方法では、冷却完了まで51時間で済み、コイル表面に錆が発生しなかった。すなわち上記実施例の冷却方法によれば、コイル7の冷却時間を比較例3よりも8時間短縮することができ、コイル表面に錆を発生させることもなく、しかも冷却装置の数も比較例3の半分で済ませることができた。   On the other hand, in the cooling methods of the above Examples (E, F), it took 51 hours to complete the cooling, and no rust was generated on the coil surface. That is, according to the cooling method of the above embodiment, the cooling time of the coil 7 can be shortened by 8 hours as compared with the comparative example 3, the rust is not generated on the coil surface, and the number of cooling devices is also the comparative example 3. I was able to do it in half.

上述したところから明らかなように、本実施形態の冷却装置8およびそれを用いた本実施形態の冷却方法によれば、熱延工場のコイル置き場でのコイル7の冷却の際の、錆の発生防止および冷却時間の短縮が可能となる。   As is apparent from the above description, according to the cooling device 8 of the present embodiment and the cooling method of the present embodiment using the same, the generation of rust during the cooling of the coil 7 in the coil storage area of the hot rolling factory. Prevention and shortening of the cooling time are possible.

以上、図示例に基づき説明したが、この発明は上述の例に限定されるものでなく、特許請求の範囲の記載範囲内で適宜変更し得るものであり、例えば、本発明の他の実施形態の冷却装置では、上記比較例2,3で用いた非可動式冷却装置11のミストノズル10に繋がる冷却水配管に例えばタイマー制御の電磁式開閉弁を設けて、ミストノズル10からの冷却ミストMの、例えば1分間の連続吹き出しによる水冷と、1分間の吹出し休止による空冷とを交互に繰返すようにしても良い。   Although the present invention has been described based on the illustrated examples, the present invention is not limited to the above-described examples, and can be appropriately changed within the scope of the claims, for example, other embodiments of the present invention. In this cooling device, for example, a timer-controlled electromagnetic on-off valve is provided in the cooling water pipe connected to the mist nozzle 10 of the non-movable cooling device 11 used in the comparative examples 2 and 3, and the cooling mist M from the mist nozzle 10 is provided. For example, water cooling by continuous blowing for 1 minute and air cooling by blowing off for 1 minute may be repeated alternately.

また例えば、本発明の他の実施形態の冷却方法では、熱延工場のコイル置き場でコイル7を積み重ねずに置いて、互いに向き合わせて配置した上記非可動式冷却装置11が連続的に吹出す冷却ミストMの間にコイル7をコンベヤで往復通過させて、コイル7を間欠冷却するようにしてもよい。   Further, for example, in the cooling method according to another embodiment of the present invention, the non-movable cooling device 11 arranged continuously facing each other without placing the coils 7 in the coil place of the hot rolling factory continuously blows out. The coil 7 may be intermittently cooled by passing the coil 7 back and forth between the cooling mists M on a conveyor.

さらに例えば、本発明の他の実施形態の冷却装置および冷却方法では、上記実施形態の可動式冷却装置8の送風機9を、例えばスリップリングでの給電やスイベルジョイントでのミストノズル10への給水により、往復首振りでなく連続回動首振り可能に構成し、その可動式冷却装置8の周囲にコイル7を配置して間欠冷却するようにしても良い。   Further, for example, in the cooling device and the cooling method according to another embodiment of the present invention, the blower 9 of the movable cooling device 8 according to the above-described embodiment is supplied by, for example, feeding with a slip ring or supplying water to the mist nozzle 10 with a swivel joint. Alternatively, it may be configured so that it can be swung continuously instead of reciprocally swinging, and the coil 7 may be arranged around the movable cooling device 8 to perform intermittent cooling.

そして、本発明の冷却装置および冷却方法における水冷および空冷の時間の長さは、コイル置き場の気温や湿度等に応じて適宜変更してもよい。   And the length of the time of the water cooling and air cooling in the cooling device and cooling method of this invention may be suitably changed according to the temperature, humidity, etc. of a coil place.

かくして本発明の冷却方法および冷却装置によれば、コイル状の鋼板の表面の濡れを防止する水冷が可能となり、その結果、錆の発生の防止および高能率の冷却が可能となり、短時間でコイルを出荷することができる。   Thus, according to the cooling method and the cooling device of the present invention, water cooling that prevents wetting of the surface of the coiled steel sheet is possible, and as a result, it is possible to prevent the occurrence of rust and to achieve high efficiency cooling. Can be shipped.

1 加熱炉
2 粗圧延機
3 仕上圧延機
4 熱延鋼板
5 冷却装置
6 巻取機
7 コイル状熱延鋼板
8 可動式冷却装置
9 送風機
10 ミストノズル
11 非可動式冷却装置
M 冷却ミスト
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Coarse rolling mill 3 Finish rolling mill 4 Hot-rolled steel plate 5 Cooling device 6 Winding machine 7 Coiled hot-rolled steel plate 8 Movable cooling device 9 Blower 10 Mist nozzle 11 Non-movable cooling device M Cooling mist

Claims (5)

熱間圧延ラインに設置される巻取機で巻き取られた後のコイル状の鋼板を冷却するに際し、
前記コイル状の鋼板の幅方向両端部に冷却ミストを間欠的に吹き付けて冷却を行うことを特徴とするコイル状熱間圧延鋼板の冷却方法。
When cooling the coiled steel sheet after being wound by a winder installed in the hot rolling line,
A cooling method for a coiled hot-rolled steel sheet, wherein cooling is performed by spraying cooling mist intermittently on both ends in the width direction of the coiled steel sheet.
前記冷却ミストは、粒子径が20μm以上で40μm以下の液滴からなることを特徴とする、請求項1記載のコイル状熱間圧延鋼板の冷却方法。   The method for cooling a coiled hot-rolled steel sheet according to claim 1, wherein the cooling mist comprises droplets having a particle size of 20 µm or more and 40 µm or less. 請求項1または2記載の冷却方法に用いられる冷却装置において、
冷却ミストを発生させるミストノズルと、
その冷却ミストを気流に乗せてコイル状の鋼板の幅方向端部に間欠的に吹き付ける送風機と、
を具えることを特徴とするコイル状熱間圧延鋼板の冷却装置。
In the cooling device used for the cooling method of Claim 1 or 2,
A mist nozzle for generating cooling mist,
A blower that intermittently blows the cooling mist on the end of the coiled steel plate in the airflow with the airflow,
An apparatus for cooling a coiled hot-rolled steel sheet.
前記冷却ミストは、粒子径が20μm以上で40μm以下の液滴からなることを特徴とする、請求項3記載のコイル状熱間圧延鋼板の冷却装置。   The said cooling mist consists of a droplet with a particle diameter of 20 micrometers or more and 40 micrometers or less, The cooling apparatus of the coil-shaped hot-rolled steel plate of Claim 3 characterized by the above-mentioned. 前記送風機は首振り機構を有し、
その首振り機構による送風機の首振りによって、複数のコイル状の鋼板に対し冷却ミストを広範囲かつ間欠的に吹き付けることを特徴とする、請求項3または4記載のコイル状熱間圧延鋼板の冷却装置。
The blower has a swing mechanism,
The cooling apparatus for a coiled hot-rolled steel sheet according to claim 3 or 4, wherein a cooling mist is sprayed widely and intermittently on a plurality of coiled steel sheets by swinging the blower by the swing mechanism. .
JP2012054452A 2012-03-12 2012-03-12 Method and apparatus for cooling hot rolled coil Active JP5776593B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012054452A JP5776593B2 (en) 2012-03-12 2012-03-12 Method and apparatus for cooling hot rolled coil
PCT/JP2013/055827 WO2013137042A1 (en) 2012-03-12 2013-03-04 Device for cooling and method for cooling hot-rolled coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012054452A JP5776593B2 (en) 2012-03-12 2012-03-12 Method and apparatus for cooling hot rolled coil

Publications (2)

Publication Number Publication Date
JP2013188753A JP2013188753A (en) 2013-09-26
JP5776593B2 true JP5776593B2 (en) 2015-09-09

Family

ID=49160955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012054452A Active JP5776593B2 (en) 2012-03-12 2012-03-12 Method and apparatus for cooling hot rolled coil

Country Status (2)

Country Link
JP (1) JP5776593B2 (en)
WO (1) WO2013137042A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6094492B2 (en) * 2014-01-07 2017-03-15 Jfeスチール株式会社 Method and apparatus for cooling hot rolled coil
JP5862907B2 (en) * 2014-05-21 2016-02-16 Jfeスチール株式会社 Method and apparatus for cooling coiled hot-rolled steel sheet
CN111744973A (en) * 2019-03-27 2020-10-09 杰富意钢铁株式会社 Method for cooling steel bar, device for blowing cooling mist, and method for manufacturing steel bar
JP7014245B2 (en) * 2019-03-27 2022-02-01 Jfeスチール株式会社 Steel bar cooling method and cooling mist spraying device, and steel bar manufacturing method
CN111744974B (en) * 2019-03-27 2022-12-30 杰富意钢铁株式会社 Method for cooling steel bar, method for producing steel bar, and device for blowing cooling mist
JP7004018B2 (en) * 2019-03-27 2022-01-21 Jfeスチール株式会社 Cooling method of steel bar and manufacturing method of steel bar, and cooling mist spraying device
CN114798769B (en) * 2021-01-28 2024-04-12 佛山市艾科思智能科技有限公司 Water cooling device for stainless steel hot rolled coil

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327850Y2 (en) * 1985-02-07 1988-07-27
JPS6320418A (en) * 1986-07-11 1988-01-28 Sumitomo Metal Ind Ltd Cooling method for hot rolled coil
JPH05177240A (en) * 1992-01-07 1993-07-20 Nippon Steel Corp Method for cooling hot rolled coil
JP3370562B2 (en) * 1997-03-31 2003-01-27 川崎製鉄株式会社 Method and apparatus for cooling hot-rolled coil
JP3491127B2 (en) * 1997-03-31 2004-01-26 Jfeスチール株式会社 Cooling device for hot rolled coil
JP2003328038A (en) * 2002-05-07 2003-11-19 Nippon Steel Corp Process for cooling cylindrical metal coil
JP4858411B2 (en) * 2007-11-05 2012-01-18 住友金属工業株式会社 Steel cooling method

Also Published As

Publication number Publication date
WO2013137042A1 (en) 2013-09-19
JP2013188753A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP5776593B2 (en) Method and apparatus for cooling hot rolled coil
JP4903913B2 (en) Method and apparatus for cooling hot-rolled steel sheet
JP6026014B2 (en) Shape correction and rolling method and shape correction device for high strength steel
JP5862907B2 (en) Method and apparatus for cooling coiled hot-rolled steel sheet
CN213530189U (en) Blowing device of cooling fog
JP5597989B2 (en) Bottom surface cooling device for hot-rolled steel strip
US9988696B2 (en) Rail cooling method and rail cooling device
JP5100327B2 (en) Cold rolled steel sheet manufacturing method
JP3370562B2 (en) Method and apparatus for cooling hot-rolled coil
JP7014245B2 (en) Steel bar cooling method and cooling mist spraying device, and steel bar manufacturing method
JPH10328737A (en) Method for cooling hot rolling coil and device therefor
JPH05177240A (en) Method for cooling hot rolled coil
JP6094492B2 (en) Method and apparatus for cooling hot rolled coil
CN111744974B (en) Method for cooling steel bar, method for producing steel bar, and device for blowing cooling mist
JP2011011218A5 (en)
CN202747756U (en) Hot air blowing device for removing emulsified liquid
KR101384145B1 (en) Apparatus for preventing dew condensation of coil
JP6003849B2 (en) Rail manufacturing method and manufacturing apparatus
CN204154131U (en) Air-Cooling Island heat-sink unit and Air-Cooling Island cooling system
JP7444149B2 (en) Cooling method and cooling device for coiled hot rolled steel sheet
KR101543883B1 (en) Hot Milled Strip Pickling Method and Device
KR100768311B1 (en) Cooling apparatus for coiling coil
JP2011167736A (en) Device and method for cooling metal
JP2002263724A (en) Apparatus and method for cooling steel plate
RU2345858C2 (en) Method of outer surface heat insulation of black strip roll and facility for its realisation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R150 Certificate of patent or registration of utility model

Ref document number: 5776593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250