JP7014245B2 - Steel bar cooling method and cooling mist spraying device, and steel bar manufacturing method - Google Patents

Steel bar cooling method and cooling mist spraying device, and steel bar manufacturing method Download PDF

Info

Publication number
JP7014245B2
JP7014245B2 JP2020038384A JP2020038384A JP7014245B2 JP 7014245 B2 JP7014245 B2 JP 7014245B2 JP 2020038384 A JP2020038384 A JP 2020038384A JP 2020038384 A JP2020038384 A JP 2020038384A JP 7014245 B2 JP7014245 B2 JP 7014245B2
Authority
JP
Japan
Prior art keywords
cooling
steel
steel bars
steel bar
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020038384A
Other languages
Japanese (ja)
Other versions
JP2020164983A (en
Inventor
啓之 福田
広和 杉原
匡将 佐藤
幸治 小橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to CN202020411658.2U priority Critical patent/CN213530188U/en
Priority to CN202010223966.7A priority patent/CN111744973A/en
Publication of JP2020164983A publication Critical patent/JP2020164983A/en
Application granted granted Critical
Publication of JP7014245B2 publication Critical patent/JP7014245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Metal Rolling (AREA)

Description

本発明は、熱間圧延が終了して冷却床へ送給され、さらに冷却床から排出された後に所定の長さに切断された棒鋼を、所定の本数ずつ結束して棒鋼の束(以下、棒鋼束という)とし、その棒鋼束を複数段の井桁状に積み上げた集積体(以下、段積み体という)に、霧状の冷却水(以下、冷却ミストという)を吹き付けて冷却する冷却方法および吹き付け装置、ならびに棒鋼の製造方法に関するものである。 In the present invention, a bundle of steel bars (hereinafter referred to as a bundle of steel bars) is obtained by binding a predetermined number of steel bars cut to a predetermined length after hot rolling is completed, the steel bars are fed to the cooling bed, and the steel bars are discharged from the cooling bed to a predetermined length. A cooling method in which atomized cooling water (hereinafter referred to as cooling mist) is sprayed onto an aggregate (hereinafter referred to as a stacked body) in which the steel bar bundles are stacked in a grid shape in a plurality of stages. It relates to a spraying device and a method for manufacturing steel bars.

一般に棒鋼は、連続鋳造で得た鋼片(たとえばビレット等)を加熱炉に送給して所定の温度まで加熱し、引き続き熱間圧延を行なって丸棒状の長尺素材とした後、冷却床にて空冷し、次いで所定の長さに切断するという工程を経て製造される。こうして得られた棒鋼は矯正や検査の工程に供されるので、それらの作業の精度向上、使用する機器の耐用性向上の観点から、棒鋼を50℃以下まで冷却する必要がある。 Generally, steel bars are made by feeding steel pieces (for example, billets) obtained by continuous casting to a heating furnace, heating them to a predetermined temperature, and then hot rolling them to make a long round bar-shaped material, and then cooling the floor. It is manufactured through a process of air-cooling in the air and then cutting to a predetermined length. Since the steel bars thus obtained are used in straightening and inspection processes, it is necessary to cool the steel bars to 50 ° C or lower from the viewpoint of improving the accuracy of those operations and improving the durability of the equipment used.

そこで、冷却床から排出されて所定の長さに切断された棒鋼を、さらに冷却する技術が検討されている。 Therefore, a technique for further cooling a steel bar discharged from a cooling bed and cut to a predetermined length is being studied.

たとえば、棒鋼を一定の本数ずつ結束した棒鋼束をクレーン等で運搬して井桁状の段積み体を形成し、そのまま空冷する技術が検討されている。この冷却技術は、大気中へ放熱することによって緩やかに冷却する技術であるから、棒鋼の反りや曲り等の変形は防止できる。しかし、冷却に要する所要時間が長くなるのは避けられず、棒鋼の寸法あるいは段積み体内の棒鋼の配列、段積み体周辺の温度や風量等に応じて変化するものの、50℃以下まで冷却するのに3~5日程度の時間が必要となる。したがって、段積み体の置き場が不足する、あるいは、在庫管理に多大な労力を要する等の問題が生じる。 For example, a technique is being studied in which a steel bar bundle in which a fixed number of steel bars are bundled is transported by a crane or the like to form a grid-shaped stack, and the steel bar is air-cooled as it is. Since this cooling technology is a technology for slowly cooling by dissipating heat to the atmosphere, it is possible to prevent deformation such as warping and bending of the steel bar. However, it is inevitable that the time required for cooling will be long, and although it will change depending on the dimensions of the steel bars, the arrangement of the steel bars in the stack, the temperature around the stack, the air volume, etc., it will be cooled to 50 ° C or less. However, it takes about 3 to 5 days. Therefore, there are problems such as insufficient storage space for stacks or a large amount of labor for inventory management.

特許文献1には、棒鋼束を空冷してMS点まで冷却し、その後、浸漬水冷する技術が開示されている。この技術は、棒鋼束を段積み体として積み上げる必要はなく、かつ短時間で冷却できるので、冷却工程の作業効率を高めることができる。しかし、浸漬水冷を繰り返し行なうことによって水槽内の冷却水の温度が上昇するので、冷却能力を安定して維持するためには冷却水を水槽と冷却塔の間で循環させる必要がある。 Patent Document 1 discloses a technique in which a steel bar bundle is air-cooled, cooled to the MS point, and then immersed in water. With this technique, it is not necessary to stack steel bar bundles as a stack, and cooling can be performed in a short time, so that the work efficiency of the cooling process can be improved. However, since the temperature of the cooling water in the water tank rises due to repeated immersion water cooling, it is necessary to circulate the cooling water between the water tank and the cooling tower in order to stably maintain the cooling capacity.

したがって特許文献1に開示された技術は、水槽や冷却塔のみならず、冷却水を流通させる配管が必須であり、設備が複雑になるので、そのメンテナンスに多大な労力を要するという問題がある。また、浸漬水冷による急速な冷却に起因して、棒鋼の反りや曲り等の変形が発生し易くなるという問題も発生する。 Therefore, the technique disclosed in Patent Document 1 requires not only a water tank and a cooling tower but also a pipe for circulating cooling water, which complicates the equipment and requires a great deal of labor for its maintenance. In addition, there is a problem that deformation such as warpage and bending of the steel bar is likely to occur due to rapid cooling by immersion water cooling.

特開2017-221968号公報Japanese Unexamined Patent Publication No. 2017-221968

本発明は、従来の技術の問題点を解消し、簡便な装置で効率良く、しかも反りや曲りを発生させずに棒鋼を冷却することが可能な冷却方法を提供することを目的とし、さらに、その冷却方法に好適な冷却ミストの吹き付け装置、ならびに、その冷却方法を適用した棒鋼の製造方法を提供することを目的とする。 An object of the present invention is to solve the problems of the prior art and to provide a cooling method capable of cooling a steel bar efficiently with a simple device without causing warping or bending, and further. It is an object of the present invention to provide a cooling mist spraying device suitable for the cooling method, and a method for manufacturing a steel bar to which the cooling method is applied.

本発明者は、簡便な装置で効率良く棒鋼を冷却する技術について検討した。そして、棒鋼束を複数段の井桁状に積み上げた段積み体は、水平方向の送風に対して優れた通気性を有することに着目した。つまり、送風によって棒鋼を効率良く冷却する技術を開発すれば、大規模な設備(たとえば水槽、冷却塔、配管等)を設置する必要はなく、簡便な設備(たとえば送風機等)で冷却できる。 The present inventor has studied a technique for efficiently cooling steel bars with a simple device. Then, attention was paid to the fact that the stacking body in which the steel bar bundles are stacked in the shape of a multi-tiered girder has excellent air permeability to the blast in the horizontal direction. In other words, if a technology for efficiently cooling steel bars by blowing air is developed, it is not necessary to install large-scale equipment (for example, a water tank, a cooling tower, piping, etc.), and simple equipment (for example, a blower, etc.) can be used for cooling.

こうして研究を進めた結果、棒鋼束の段積み体に水平な気流を供給すれば、その気流が段積み体の内部を容易に通り抜けるので、段積み体全体を効率良く冷却できることを見出した。 As a result of conducting research in this way, it was found that if a horizontal airflow is supplied to the stack of steel bars, the airflow easily passes through the inside of the stack, so that the entire stack can be cooled efficiently.

次に、冷却能力を更に高めるために、水平な気流と組み合わせて使用する冷却手段について研究した。その結果、冷却水を霧状の微細な水滴にして、水平な気流とともに吹き付けることによって、冷却能力の更なる向上を図ることが可能であり、しかも冷却速度が浸漬水冷よりも遅いので棒鋼の反りや曲りを防止できることが判明した。このような冷却ミストによる冷却においては、水槽や冷却塔は不要である。 Next, in order to further increase the cooling capacity, the cooling means used in combination with the horizontal air flow was studied. As a result, it is possible to further improve the cooling capacity by turning the cooling water into fine mist-like water droplets and spraying them together with a horizontal air flow, and since the cooling speed is slower than the immersion water cooling, the warp of the steel bar It turned out that it can prevent bending. A water tank or a cooling tower is not required for cooling with such a cooling mist.

冷却ミストを吹き付けることによって棒鋼の表面にスケール(たとえば付着物、錆等)が生じた場合は、冷却ミストの吹き付けを停止した後でスケールを除去すれば、その棒鋼を支障なく矯正や検査に供することができる。 If the surface of the steel bar is scaled (for example, deposits, rust, etc.) by spraying the cooling mist, the scale can be removed after the spraying of the cooling mist is stopped, and the steel bar can be straightened or inspected without any problem. be able to.

本発明は、このような知見に基づいてなされたものである。
すなわち本発明は、熱間圧延が終了して冷却床へ送給され、さらに冷却床から排出された後に所定の長さに切断された棒鋼を結束して棒鋼束とし、その棒鋼束を2束以上互いに間隔を設けかつほぼ平行に平積みして第1段を形成し、次いで第2段として2束以上の棒鋼束を互いに間隔を設けかつ第1段の棒鋼束に対してほぼ直角に平積みすることによって井桁状に積み上げて、引き続き必要に応じて第3段以降の棒鋼束を井桁状に積み上げることによって2段以上の段積み体を形成して冷却する冷却方法において、段積み体の側面または角に平均粒子径が300μm以下の水滴からなる冷却ミストを吹き付けて棒鋼を冷却する冷却方法である。
また、本発明は、熱間圧延が終了して冷却床へ送給され、さらに冷却床から排出された後に所定の長さに切断された棒鋼を一定の本数ずつ結束して棒鋼束とし、その棒鋼束を2束以上互いに間隔を設けかつほぼ平行に平積みして第1段を形成し、次いで第2段として2束以上の棒鋼束を互いに間隔を設けかつ第1段の棒鋼束に対してほぼ直角に平積みすることによって井桁状に積み上げて、引き続き必要に応じて第3段以降の棒鋼束を井桁状に積み上げることによって2段以上の段積み体を形成して冷却する冷却方法において、段積み体の側面または角に平均粒子径が300μm以下の水滴からなる冷却ミストを吹き付けて棒鋼を冷却する冷却方法である。
なお、本発明では、所望の平均粒子径の水滴を得るために、所定の水量や水圧等を前提条件として所定の粒子径の水滴ミストが得られるように設計および製作がなされたミストノズルを使用する。
すなわち、本発明で冷却ミストの水滴の平均粒子径(ザウター平均粒子径)が300μm以下であるとは、平均粒子径(ザウター平均粒子径)が300μm以下の水滴からなる冷却ミストが得られるように設計および製作がなされたミストノズルにより冷却ミストが噴射されていることを指す。
The present invention has been made based on such findings.
That is, in the present invention, steel bars cut to a predetermined length after hot rolling is completed, are fed to the cooling bed, and are discharged from the cooling bed are bundled to form a steel bar bundle, and two bundles of the steel bars are bundled. As described above, the first stage is formed by stacking them flat with each other at intervals and substantially parallel to each other, and then, as the second stage, two or more bundles of steel bars are spaced apart from each other and flat at a substantially right angle to the steel bundles of the first stage. In a cooling method in which two or more stages of stacks are formed and cooled by stacking them in a grid shape and then stacking steel bars from the third stage onward in a grid shape as needed. This is a cooling method in which a steel bar is cooled by spraying a cooling mist composed of water droplets having an average particle diameter of 300 μm or less on the sides or corners.
Further, in the present invention, a fixed number of steel bars cut to a predetermined length after hot rolling is completed, are fed to the cooling bed, and are discharged from the cooling bed are bundled to form a steel bar bundle. Two or more bundles of steel bars are spaced apart from each other and stacked almost in parallel to form the first stage, and then two or more bundles of steel bars are spaced apart from each other as the second stage and the first stage steel bundles are separated from each other. In a cooling method in which steel bars from the third stage onward are stacked in a grid pattern by stacking them flat at almost right angles, and then a stack of two or more stages is formed and cooled by stacking steel bars from the third stage onward in a grid pattern as needed. This is a cooling method for cooling steel bars by spraying a cooling mist composed of water droplets having an average particle diameter of 300 μm or less on the side surfaces or corners of a stack.
In the present invention, in order to obtain water droplets having a desired average particle size, a mist nozzle designed and manufactured so as to obtain water droplet mist having a predetermined particle size on the precondition of a predetermined amount of water, water pressure, etc. is used. do.
That is, in the present invention, the average particle size (Sauter average particle size) of the water droplets of the cooling mist is 300 μm or less, so that a cooling mist composed of water droplets having an average particle size (Sauter average particle size) of 300 μm or less can be obtained. It means that the cooling mist is injected by the mist nozzle designed and manufactured.

本発明の棒鋼の冷却方法においては、段積み体の側面に冷却ミストを水平方向に吹き付けることが好ましく、冷却ミストの水滴の平均粒子径は20~150μmの範囲内であることが好ましく、20~120μmの範囲内であることがより好ましい。
なお、本発明でいう水平方向は、水平方向を基準に垂直方向に±10度の範囲内の方向も含めるとする。好ましくは、±5度の範囲内である。
In the method for cooling steel bars of the present invention, it is preferable to spray the cooling mist horizontally on the side surface of the stack, and the average particle size of the water droplets of the cooling mist is preferably in the range of 20 to 150 μm, and 20 to 20 to. It is more preferably within the range of 120 μm.
The horizontal direction referred to in the present invention includes a direction within a range of ± 10 degrees in the vertical direction with respect to the horizontal direction. It is preferably within the range of ± 5 degrees.

また、本発明は、熱間圧延が終了して冷却床へ送給され、さらに冷却床から排出された後に所定の長さに切断された棒鋼を結束して棒鋼束とし、その棒鋼束を2束以上互いに間隔を設けかつほぼ平行に平積みして第1段を形成し、次いで第2段として2束以上の棒鋼束を互いに間隔を設けかつ第1段の棒鋼束に対してほぼ直角に平積みすることによって井桁状に積み上げて、引き続き必要に応じて第3段以降の棒鋼束を井桁状に積み上げて形成した2段以上の段積み体に冷却ミストを吹き付ける吹き付け装置であって、冷却ミストを発生させるミストノズルと、冷却ミストをミストノズルから段積み体の側面または角へ吹き付けるための気流を発生させる送風機と、段積み体に吹き付ける冷却ミストの水滴の平均粒子径を300μm以下に制御する制御部と、を有する冷却ミストの吹き付け装置である。
また、本発明は、熱間圧延が終了して冷却床へ送給され、さらに冷却床から排出された後に所定の長さに切断された棒鋼を一定の本数ずつ結束して棒鋼束とし、その棒鋼束を2束以上互いに間隔を設けかつほぼ平行に平積みして第1段を形成し、次いで第2段として2束以上の棒鋼束を互いに間隔を設けかつ第1段の棒鋼束に対してほぼ直角に平積みすることによって井桁状に積み上げて、引き続き必要に応じて第3段以降の棒鋼束を井桁状に積み上げて形成した2段以上の段積み体に冷却ミストを吹き付ける吹き付け装置であって、冷却ミストを発生させるミストノズルと、冷却ミストをミストノズルから段積み体の側面または角へ吹き付けるための気流を発生させる送風機と、段積み体に吹き付ける冷却ミストの水滴の平均粒子径を300μm以下に制御する制御部と、を有する冷却ミストの吹き付け装置である。
Further, in the present invention, steel bars cut to a predetermined length after hot rolling is completed and fed to the cooling bed and discharged from the cooling bed are bound to form a steel bar bundle, and the steel bar bundle is 2 The first stage is formed by stacking the bundles or more at intervals and stacking them almost parallel to each other, and then as the second stage, two or more bundles of steel bars are spaced apart from each other and substantially perpendicular to the first stage steel bundles. It is a spraying device that sprays cooling mist onto a stack of two or more stages formed by stacking steel bundles of the third and subsequent stages in a grid shape by stacking them flat and then stacking them in a grid shape as needed. The mist nozzle that generates mist, the blower that generates an air flow for blowing the cooling mist from the mist nozzle to the side surface or corner of the stack, and the average particle size of the water droplets of the cooling mist sprayed on the stack are controlled to 300 μm or less. It is a cooling mist spraying device having a control unit and a cooling mist.
Further, in the present invention, a fixed number of steel bars cut to a predetermined length after hot rolling is completed, are fed to the cooling bed, and are discharged from the cooling bed are bundled to form a steel bar bundle. Two or more bundles of steel bars are spaced apart from each other and stacked almost in parallel to form the first stage, and then two or more bundles of steel bars are spaced apart from each other as the second stage and the first stage steel bundles are separated from each other. It is a spraying device that sprays cooling mist on two or more stages of stacks formed by stacking steel bars from the third stage onward in a grid shape as needed by stacking them flat at almost right angles. There are mist nozzles that generate cooling mist, blowers that generate airflow to blow the cooling mist from the mist nozzles to the sides or corners of the stack, and the average particle size of the water droplets of the cooling mist that blows onto the stack. It is a cooling mist spraying device having a control unit for controlling to 300 μm or less.

本発明の冷却ミストの吹き付け装置においては、段積み体の側面に冷却ミストを水平方向に吹き付けることが好ましく、制御部が制御する冷却ミストの水滴の平均粒子径は20~150μmの範囲内であることが好ましく、20~120μmの範囲内であってもよい。 In the cooling mist spraying device of the present invention, it is preferable to spray the cooling mist horizontally on the side surface of the stack, and the average particle size of the water droplets of the cooling mist controlled by the control unit is in the range of 20 to 150 μm. It is preferably in the range of 20 to 120 μm.

さらに本発明は、上記したいずれかの冷却方法で冷却した棒鋼束を段積み体から回収し、さらに棒鋼束を解束する棒鋼の製造方法である。 Further, the present invention is a method for manufacturing a steel bar, in which a steel bar bundle cooled by any of the above cooling methods is recovered from a stack and the steel bar bundle is further unbundled.

本発明の棒鋼の製造方法においては、冷却した棒鋼束を段積み体から回収し、さらに棒鋼束を解束して棒鋼を取り出した後、棒鋼のスケールを除去することが好ましい。 In the method for producing steel bars of the present invention, it is preferable to recover the cooled steel bar bundle from the stack, further unbundle the steel bar bundle to take out the steel bar, and then remove the scale of the steel bar.

本発明によれば、簡便な装置で効率良く、しかも反りや曲りを発生させずに棒鋼を冷却することが可能となり、産業上格段の効果を奏する。 According to the present invention, it is possible to cool a steel bar efficiently with a simple device without causing warping or bending, which is extremely effective in industry.

棒鋼束を井桁状に積み上げた段積み体の例を模式的に示す斜視図である。It is a perspective view which shows the example of the stacking body which piled up the steel bar bundle in the shape of a grid. 冷却ミストの吹き付け装置の例を模式的に示す斜視図である。It is a perspective view which shows typically the example of the cooling mist spraying apparatus. 図1に示す段積み体を図2に示す吹き付け装置で冷却する例を模式的に示す平面図である。It is a top view schematically showing the example of cooling the stack shown in FIG. 1 by the spraying apparatus shown in FIG. 図1に示す段積み体を図2に示す吹き付け装置で冷却する例を模式的に示す平面図である。It is a top view schematically showing the example of cooling the stack shown in FIG. 1 by the spraying apparatus shown in FIG.

棒鋼は、連続鋳造で得た鋼片(たとえばビレット等)を加熱炉に送給して所定の温度まで加熱し、引き続き熱間圧延を行なって丸棒状の長尺素材とした後、冷却床にて空冷し、次いで所定の長さ(すなわち、製品規格上要請される長さ。例えば、4~13m程度)に切断するという工程を経て製造される。こうして得られた棒鋼を更に冷却するために、棒鋼を所定の本数ずつ結束して棒鋼束とし、その棒鋼束を井桁状に積み上げて段積み体を形成する。図1は、段積み体の例を模式的に示す斜視図である。 For steel bars, steel pieces (for example, billets) obtained by continuous casting are sent to a heating furnace to heat them to a predetermined temperature, and then hot rolling is performed to make a long round bar-shaped material, which is then placed on a cooling bed. It is manufactured through the steps of air cooling and then cutting to a predetermined length (that is, the length required by the product standard, for example, about 4 to 13 m). In order to further cool the steel bars thus obtained, a predetermined number of steel bars are bundled to form a steel bar bundle, and the steel bars are stacked in a grid shape to form a stack. FIG. 1 is a perspective view schematically showing an example of a stack.

ここで図1を参照して、段積み体2について説明する。
まず、棒鋼3を所定の本数ずつ結束して棒鋼束4とし、多数の棒鋼束4を井桁状に積み上げる。棒鋼束4を構成する棒鋼3の本数は、棒鋼束4ごとに異なっていてもかまわない。ただ、棒鋼3を結束して棒鋼束4を作製する工程の作業効率を高める観点から、および/または、多数の棒鋼束4を井桁状に積み上げたとき段積み体2の安定性を高める観点から、棒鋼束4を構成する棒鋼3の本数は一定であることが好ましい。たとえば、棒鋼3を一定の本数(図1の例では10本)ずつ結束して棒鋼束4とし、多数の棒鋼束4を井桁状に積み上げる。このとき、段積み体2をさらに安定させるために、各々の棒鋼束4における棒鋼3の配列を統一(図1の例では3本-4本-3本)して結束することがさらに好ましい。なお、図1では棒鋼3を結束するための結束帯は図示を省略する。
Here, the stack 2 will be described with reference to FIG.
First, a predetermined number of steel bars 3 are bundled to form a steel bar bundle 4, and a large number of steel bars 4 are stacked in a grid shape. The number of steel bars 3 constituting the steel bar bundle 4 may be different for each steel bar bundle 4. However, from the viewpoint of improving the work efficiency of the process of bundling the steel bars 3 to produce the steel bars 4 and / or from the viewpoint of improving the stability of the stack 2 when a large number of steel bars 4 are stacked in a grid shape. , It is preferable that the number of steel bars 3 constituting the steel bar bundle 4 is constant. For example, a fixed number of steel bars (10 in the example of FIG. 1) are bundled to form a steel bar bundle 4, and a large number of steel bars 4 are stacked in a grid shape. At this time, in order to further stabilize the stacking body 2, it is more preferable to unify the arrangement of the steel bars 3 in each steel bar bundle 4 (3-4 pieces-3 pieces in the example of FIG. 1) and bind them together. In FIG. 1, the binding band for binding the steel bars 3 is not shown.

そして、段積み体2の第1段として2束以上の棒鋼束4(図1の例では6束)をほぼ平行に並べて、かつ棒鋼束4の間に間隔を設けて平積みする。その間隔は、後述する冷却ミストが段積み体2の内部を通り抜ける際の通路となるものであり、互いに隣り合う棒鋼束4の間に間隔を設ける。ただし間隔の広さは、必ずしも同一とする必要はない。 Then, as the first stage of the stacking body 2, two or more bundles of steel bars 4 (6 bundles in the example of FIG. 1) are arranged substantially in parallel, and the steel bars 4 are stacked flat with a space between them. The interval is a passage for the cooling mist, which will be described later, to pass through the inside of the stack 2, and an interval is provided between the steel bar bundles 4 adjacent to each other. However, the spacing does not necessarily have to be the same.

棒鋼束4をほぼ平行に並べるのは、隣り合う棒鋼束4の間を効率的に冷却ミストが通り抜けるようにするためである。棒鋼束4は厳密に平行に並んでいることが好ましいが、必ずしも平行でなくても、冷却ミストが通り抜けることが可能であれば支障はない。よって、棒鋼束4の方向の平均値に対して±10°以内のずれは許容される。棒鋼束4の方向のずれは±5°以内が更に好ましい。ほぼ平行とは、棒鋼束4の方向の平均値に対して、ずれがこの範囲内であることを指す。 The reason why the steel bar bundles 4 are arranged substantially in parallel is to allow the cooling mist to efficiently pass between the adjacent steel bar bundles 4. It is preferable that the steel bar bundles 4 are arranged exactly in parallel, but even if they are not necessarily parallel, there is no problem as long as the cooling mist can pass through. Therefore, a deviation within ± 10 ° with respect to the average value in the direction of the steel bar bundle 4 is allowed. The deviation in the direction of the steel bar bundle 4 is more preferably within ± 5 °. Almost parallel means that the deviation is within this range with respect to the average value in the direction of the steel bar bundle 4.

また、棒鋼束4内の棒鋼3が置き場の床面と接触して疵が発生するのを防止するために、床面に架台1を設置し、その架台1上に棒鋼束4を載置することが好ましい。 Further, in order to prevent the steel bars 3 in the steel bar bundle 4 from coming into contact with the floor surface of the storage place and causing scratches, a gantry 1 is installed on the floor surface, and the steel bar bundle 4 is placed on the gantry 1. Is preferable.

次いで、段積み体2の第2段として、2束以上の棒鋼束4(図1の例では6束)を第1段の棒鋼束4に対してほぼ直角に並べて、かつ棒鋼束4の間に間隔を設けて平積みすることによって井桁状に積み上げる。 Next, as the second stage of the stacking body 2, two or more bundles of steel bars 4 (6 bundles in the example of FIG. 1) are arranged substantially at right angles to the steel bundles 4 of the first stage, and between the steel steel bundles 4. By stacking them flat at intervals, they are stacked in a grid shape.

段積み体2の第2段として2束以上の棒鋼束4をクレーン等によって並べる際に、棒鋼束4の方向を、段積み体2の第1段の棒鋼束4に対してほぼ直角にするのは、第2段の棒鋼束4を持ち上げている吊り具(たとえば爪等)を挿入し易くするためである。第2段の棒鋼束4は、第1段の棒鋼束4に対して厳密に直角に並んでいることが好ましいが、必ずしも直角でなくても、吊り具を容易に挿入することが可能であれば支障はない。よって、棒鋼束4の方向の平均値に対して±10°以内のずれは許容される。棒鋼束4の方向のずれは±5°以内が更に好ましい。ほぼ直角とは、棒鋼束4の方向の平均値に対して、ずれがこの範囲内であることを指す。 When arranging two or more bundles of steel bars 4 as the second stage of the stacking body 2 by a crane or the like, the direction of the steel rod bundles 4 is made substantially perpendicular to the steel bundles 4 of the first stage of the stacking body 2. This is to facilitate the insertion of a hanging tool (for example, a claw or the like) that lifts the steel bar bundle 4 in the second stage. The second-stage steel bar bundles 4 are preferably aligned exactly at right angles to the first-stage steel bar bundles 4, but the hangers may be easily inserted even if they are not necessarily at right angles. There is no problem. Therefore, a deviation within ± 10 ° with respect to the average value in the direction of the steel bar bundle 4 is allowed. The deviation in the direction of the steel bar bundle 4 is more preferably within ± 5 °. The term "nearly right angle" means that the deviation is within this range with respect to the average value in the direction of the steel bar bundle 4.

段積み体2を3段以上に積み上げる場合は、引き続き、第3段以降の棒鋼束4を第2段の棒鋼束4と同様に井桁状に順次積み上げて、図1に示すような段積み体2を形成する。 When stacking the stacking bodies 2 in three or more stages, the steel bar bundles 4 of the third and subsequent stages are continuously stacked in a grid shape in the same manner as the steel strip bundles of the second stage, and the stacking bodies as shown in FIG. 1 are stacked. Form 2.

こうして得られた段積み体2の側面または角に冷却ミストを吹き付けて、棒鋼束4を冷却する。本発明の冷却ミストの吹き付け装置の一例を図2に斜視図として示す。
なお、側面とは、段積み体2を略四角柱形状(直方体形状)とみなした場合の側面部における角部以外の平面部のことを指す。
A cooling mist is sprayed on the side surface or the corner of the stacked body 2 thus obtained to cool the steel bar bundle 4. An example of the cooling mist spraying device of the present invention is shown in FIG. 2 as a perspective view.
The side surface refers to a flat surface portion other than the square portion on the side surface portion when the stacked body 2 is regarded as a substantially square pillar shape (rectangular parallelepiped shape).

図2に示す吹き付け装置7は、軸流型の送風機5の周囲または正面に複数個のミストノズル6を配置したものであり、送風機5によって発生した気流が冷却ミストをミストノズル6から段積み体2に吹き付ける。なお図2では、ミストノズル6に冷却水を供給するホースは図示を省略する。 In the blowing device 7 shown in FIG. 2, a plurality of mist nozzles 6 are arranged around or in front of the axial flow type blower 5, and the airflow generated by the blower 5 causes cooling mist to be stacked from the mist nozzle 6. Spray on 2. In FIG. 2, the hose that supplies the cooling water to the mist nozzle 6 is not shown.

また、図示を省略するが、送風機5として高圧エアノズルを使用して、ミストノズル6から冷却ミストを段積み体2に吹き付ける構成にしても良い。あるいは、エアと水の二流体ノズルを使用することも可能である。 Further, although not shown, a high-pressure air nozzle may be used as the blower 5 to blow the cooling mist from the mist nozzle 6 onto the stack 2. Alternatively, it is possible to use a bifluid nozzle of air and water.

また、図示を省略するが、吹き付け装置7は、段積み体2に吹き付ける冷却ミストの水滴の平均粒子径を所定の範囲に制御する制御部を有する。制御部は、ミストノズル6に、段積み体2の側面に冷却ミストを水平方向に吹き付けさせるよう制御することもできる。また、制御部は吹き付け装置7のその他の機能を制御することもできる。制御部としては、特に限定されないが、CPU(Central Processing Unit)を有するコンピュータ等の情報処理装置とすることができる。 Further, although not shown, the spraying device 7 has a control unit that controls the average particle size of the water droplets of the cooling mist to be sprayed on the stack 2 within a predetermined range. The control unit can also control the mist nozzle 6 to spray the cooling mist horizontally on the side surface of the stack 2. The control unit can also control other functions of the spraying device 7. The control unit is not particularly limited, but may be an information processing device such as a computer having a CPU (Central Processing Unit).

吹き付け装置7は段積み体2の側面、とりわけ棒鋼束4同士の間隔に対向して配置することが好ましい(図3参照)。つまり、水平な気流とともに冷却ミストを段積み体2の側面に吹き付けることによって、棒鋼束4同士の間隔から冷却ミストが段積み体2に進入し、さらに段積み体2の内部を円滑に通り抜けるので、段積み体2全体を効率良く冷却することが可能となる。
また、水平な気流が段積み体2の中央部まで到達する速度で吹き付けを行うことが好ましい。このようにすることで、冷却ミストが段積み体2に進入し、さらに段積み体2の内部を円滑に通り抜けるので、段積み体2全体を効率良く冷却することが可能となる。さらに、段積み体2を0.5m/sec以上、5m/sec以下で通りぬける気流を吹き付けることが、より好ましい。0.5m/secより小さいと、段積み体2全体を効率よく冷却することができなくなり、冷却に時間を要してしまう場合がある。また、5m/secより大きいと、冷却ミストが蒸発する前に段積み体2を通りぬけてしまい、冷却効率が低下してしまうだけでなく、他の場所へ冷却ミストが飛散し、周囲が水で濡れてしまう惧れが発生する。なお、吹き付け装置7は、棒鋼束を段積みする際に邪魔にならないようであれば、棒鋼束の近くに設置する方が好ましい。これは、段積み体2に到達するまでに周囲の大気によって冷却ミストが減衰してしまうので、所望の風速を得るためにより大きな風速で吹き付けることが必要となるからである。上記の気流の風速は、公知の風速計により測定することができる。
It is preferable that the spraying device 7 is arranged on the side surface of the stack 2 so as to face the distance between the steel bar bundles 4 (see FIG. 3). That is, by spraying the cooling mist on the side surface of the stacking body 2 together with the horizontal air flow, the cooling mist enters the stacking body 2 from the distance between the steel bar bundles 4 and further smoothly passes through the inside of the stacking body 2. , The entire stack 2 can be efficiently cooled.
Further, it is preferable to perform the spraying at a speed at which the horizontal airflow reaches the central portion of the stack 2. By doing so, the cooling mist enters the stacking body 2 and smoothly passes through the inside of the stacking body 2, so that the entire stacking body 2 can be efficiently cooled. Further, it is more preferable to blow an air flow that passes through the stack 2 at 0.5 m / sec or more and 5 m / sec or less. If it is less than 0.5 m / sec, the entire stack 2 cannot be cooled efficiently, and it may take time to cool. On the other hand, if it is larger than 5 m / sec, the cooling mist passes through the stack 2 before it evaporates, and not only the cooling efficiency is lowered, but also the cooling mist is scattered to other places and the surrounding area is water. There is a fear of getting wet. It is preferable to install the spraying device 7 near the steel bar bundle if it does not interfere with the stacking of the steel bar bundle. This is because the cooling mist is attenuated by the surrounding atmosphere by the time it reaches the stack 2, so that it is necessary to blow at a higher wind speed in order to obtain a desired wind speed. The wind speed of the above airflow can be measured by a known anemometer.

段積み体2に吹き付けられた冷却ミストの水滴は、棒鋼束4(すなわち棒鋼3)との熱交換によって蒸発する。したがって、水滴を回収するための設備(たとえば水槽塔)、および、冷却水として循環使用するための設備(たとえば冷却塔、配管等)を設置する必要はない。冷却ミストを吹き付けることによって棒鋼3の表面にスケール(たとえば錆等)が生じた場合は、段積み体2から棒鋼束4を回収し、さらに結束を解放(以下、解束という)して棒鋼3を取り出した後、スケールを除去して後工程(たとえば加工、検査等)に送給する。棒鋼束4を解束する手段ならびにスケールを除去する手段は特に限定せず、従来から知られている技術を使用する。 The water droplets of the cooling mist sprayed on the stack 2 evaporate by heat exchange with the steel bar bundle 4 (that is, the steel bar 3). Therefore, it is not necessary to install equipment for collecting water droplets (for example, a water tank tower) and equipment for circulating use as cooling water (for example, cooling tower, piping, etc.). When scale (for example, rust) is generated on the surface of the steel bar 3 by spraying the cooling mist, the steel bar bundle 4 is collected from the stack 2 and further released from the bundle (hereinafter referred to as unbundle) to release the steel bar 3 After taking out the scale, the scale is removed and sent to a subsequent process (for example, processing, inspection, etc.). The means for unbunching the steel bar bundle 4 and the means for removing the scale are not particularly limited, and conventionally known techniques are used.

冷却ミストの水滴は、平均粒子径が小さいほど、蒸発に必要な熱量が少ないので、蒸発し易くなる。しかし平均粒子径が20μm未満では、冷却ミストの水滴が気流とともに段積み体2の内部に進入した後、中央部に到達する前に蒸発してしまうので、段積み体2全体を冷却するのが困難になる場合がある。
一方で、平均粒子径が大きいほど、蒸発に必要な熱量が増加して、冷却に要する所要時間を短縮できる。しかし平均粒子径が300μmを超えると、段積み体2全体が冷却された後も水滴が残留するので、水滴を回収するための設備および冷却水として循環使用するための設備を設置しなければならず、複雑な設備のメンテナンスに多大な労力を要する。また、水滴が大きいため、気流に乗りにくく、段積み体2全体を冷却するのが困難になる。したがって、冷却ミストの水滴の平均粒子径は300μm以下とする。300μm以下であれば、冷却された後の水滴の残留がほとんどなくなり、水滴を回収するための設備が不要となる。より好ましくは20~150μmの範囲内であり、この範囲内であれば、前述した気流に乗って棒鋼内部へ冷却ミストが到達しやすく、冷却効率も高まり、また、冷却後の棒鋼3の置き場の床面が極度に濡れることはなく、作業性が良くなる。水滴の平均粒子径が大きいほうが、冷却能力が大きくなるため、所望の温度にまで棒鋼を冷却するのに要する時間を短縮できるが、冷却後の棒鋼3の置き場の床面の濡れが残りやすい。これに対して、水滴の平均粒子径が小さいほうが、冷却後の棒鋼3の置き場の床面は乾きやすいものの、冷却能力が小さくなるので、所望の温度にまで棒鋼を冷却するのに要する時間は長くなる。このため、本発明を実施する場合には、冷却に要する時間と、冷却後の置場の床面の濡れ具合の許容度とのバランスを考慮して、水滴の平均粒子径を20~150μmの範囲内で選択すればよい。さらに好ましくは、水滴の平均粒子径は20~120μmである。
なお、冷却ミストの水滴の粒子径を制御する方法は、特に限定されるものではなく、公知の手法を用いて、所望の粒子径の冷却ミストを生成するように設計されたミストノズルを使用すれば良い。また、前述したように、制御部(図示せず)が、段積み体2に所定の平均粒子径を有する水滴からなる冷却ミストをミストノズル6に吹き付けさせるよう制御する。
本発明では、所望の平均粒子径の水滴を得るために、所定の水量や水圧等を前提条件として所定の粒子径の水滴ミストが得られるように設計および製作がなされたミストノズルを使用する。
すなわち、本発明で冷却ミストの水滴の平均粒子径(ザウター平均粒子径)が300μm以下であるとは、平均粒子径(ザウター平均粒子径)が300μm以下の水滴からなる冷却ミストが得られるように設計および製作がなされたミストノズルにより噴射されていることを指す。
The smaller the average particle size of the water droplets of the cooling mist, the smaller the amount of heat required for evaporation, and the easier it is to evaporate. However, if the average particle size is less than 20 μm, the water droplets of the cooling mist enter the inside of the stack 2 together with the air flow and then evaporate before reaching the central portion. Therefore, it is necessary to cool the entire stack 2. It can be difficult.
On the other hand, as the average particle size is larger, the amount of heat required for evaporation increases, and the time required for cooling can be shortened. However, if the average particle size exceeds 300 μm, water droplets will remain even after the entire stack 2 has been cooled, so equipment for collecting water droplets and equipment for circulating use as cooling water must be installed. However, it takes a lot of labor to maintain complicated equipment. Further, since the water droplets are large, it is difficult to get on the air flow, and it is difficult to cool the entire stacking body 2. Therefore, the average particle size of the water droplets of the cooling mist is set to 300 μm or less. If it is 300 μm or less, there is almost no residue of water droplets after cooling, and equipment for collecting water droplets becomes unnecessary. More preferably, it is in the range of 20 to 150 μm, and if it is within this range, the cooling mist easily reaches the inside of the steel bar by the above-mentioned air flow, the cooling efficiency is improved, and the cooling steel bar 3 is stored in the place. The floor surface does not get extremely wet, which improves workability. The larger the average particle size of the water droplets, the larger the cooling capacity, so that the time required to cool the steel bar to a desired temperature can be shortened, but the floor surface of the storage place for the steel bar 3 after cooling tends to remain wet. On the other hand, the smaller the average particle size of the water droplets, the easier it is for the floor surface of the steel bar 3 to dry after cooling, but the cooling capacity is small, so the time required to cool the steel bars to the desired temperature is longer. become longer. Therefore, when carrying out the present invention, the average particle size of water droplets is in the range of 20 to 150 μm in consideration of the balance between the time required for cooling and the tolerance of the wetness of the floor surface of the storage place after cooling. You can select within. More preferably, the average particle size of the water droplet is 20 to 120 μm.
The method for controlling the particle size of the water droplets of the cooling mist is not particularly limited, and a mist nozzle designed to generate a cooling mist having a desired particle size by using a known method is used. It's fine. Further, as described above, the control unit (not shown) controls the stacking body 2 to spray the cooling mist composed of water droplets having a predetermined average particle diameter onto the mist nozzle 6.
In the present invention, in order to obtain water droplets having a desired average particle size, a mist nozzle designed and manufactured so as to obtain water droplet mist having a predetermined particle size on the precondition of a predetermined amount of water, water pressure, etc. is used.
That is, in the present invention, the average particle size (Sauter average particle size) of the water droplets of the cooling mist is 300 μm or less, so that a cooling mist composed of water droplets having an average particle size (Sauter average particle size) of 300 μm or less can be obtained. It means that it is injected by a mist nozzle that has been designed and manufactured.

冷却ミストを段積み体2に吹き付けて冷却することによって、棒鋼3の冶金学的な変態が発生した場合は、棒鋼3が変形(たとえば反り、曲り等)する、あるいは棒鋼3の機械的性質が変化する等の問題が生じて、後工程の進捗に支障をきたす場合がある。したがって、棒鋼3の冶金学的な変態が終了した後で冷却ミストを吹き付けることが好ましい。 When the metallurgical transformation of the steel bar 3 occurs by spraying the cooling mist onto the stack 2 to cool the steel bar 3, the steel bar 3 is deformed (for example, warped, bent, etc.), or the mechanical properties of the steel bar 3 are changed. Problems such as changes may occur, which may hinder the progress of the subsequent process. Therefore, it is preferable to spray the cooling mist after the metallurgical transformation of the steel bar 3 is completed.

棒鋼として丸棒鋼を用いて冷却実験を行なうために、棒鋼束を井桁状に積み上げて段積み体を形成した。段積み体は、丸棒鋼を17本ずつ結束した棒鋼束を9束ずつ互いに間隔を設け、かつ平行に並べて第1段とし、第2段以降も9束ずつ直下の段の棒鋼束に対して直角に並べ、井桁状に積み上げて全10段の段積み体とした。したがって、図1に示す例よりも大きい段積み体である。こうして9体の段積み体を形成した。 In order to carry out a cooling experiment using round bar steel as the bar steel, steel bar bundles were piled up in a grid shape to form a stack. The stacking body consists of 9 bundles of steel bars, which are bundled with 17 round steel bars, arranged in parallel at intervals of 9 bundles to form the first stage. They were arranged at right angles and stacked in a grid pattern to form a total of 10 stages. Therefore, it is a stacking body larger than the example shown in FIG. In this way, nine stacks were formed.

そして、吹き付け装置(図2参照)から段積み体に冷却ミストを吹き付けた。冷却ミストの吹き付け条件は表1に示す通りである。 Then, the cooling mist was sprayed onto the stack from the spraying device (see FIG. 2). The conditions for spraying the cooling mist are as shown in Table 1.

吹き付け装置は、工場用の大型扇風機(直径450mm)を送風機として使用し、その前方にミストノズルを4個配設したものである。冷却ミストとして吹き付ける冷却水の流量は合計4L/min、水温は30℃であった。大型扇風機の風速は7m/secであり、段積み体から300mm離れた位置に設置し、棒鋼束の反対側に通過してきた気流の風速は1.5m/secであった。 The spraying device uses a large factory fan (diameter 450 mm) as a blower, and has four mist nozzles arranged in front of it. The total flow rate of the cooling water sprayed as the cooling mist was 4 L / min, and the water temperature was 30 ° C. The wind speed of the large fan was 7 m / sec, and the wind speed of the airflow passing through the opposite side of the steel bar bundle was 1.5 m / sec when it was installed at a position 300 mm away from the stack.

丸棒鋼はCを0.42~0.48質量%含有する機械構造用の炭素鋼であり、直径は55mm、長さは7mである。段積みが完了した時の丸棒鋼の温度は350℃であり、この状態から冷却しても冶金学的な変態が発生しない温度であった。 Round steel bar is a carbon steel for machine structure containing 0.42 to 0.48% by mass of C, and has a diameter of 55 mm and a length of 7 m. The temperature of the round bar steel when the stacking was completed was 350 ° C., which was a temperature at which no metallurgical transformation occurred even when cooled from this state.

この段積み体を冷却しながら、丸棒鋼の最高温度が50℃まで低下するのに要する所要時間を測定した。丸棒鋼の最高温度は2次元放射温度計を用いて上方から測定し、測定範囲内の最高温度を検出することにより測定した。その結果を冷却時間として表1に示す。なお、段積み体の置き場の大気温度は平均34℃であった。 While cooling this stack, the time required for the maximum temperature of the round bar steel to drop to 50 ° C was measured. The maximum temperature of the round bar steel was measured from above using a two-dimensional radiation thermometer, and was measured by detecting the maximum temperature within the measurement range. The results are shown in Table 1 as the cooling time. The average atmospheric temperature of the stacking area was 34 ° C.

Figure 0007014245000001
Figure 0007014245000001

表1中の参考例1は、吹き付け装置を用いて段積み体の角(すなわち棒鋼束の交差部)に冷却ミスト(平均粒子径150μm)を水平かつ対角線の方向に吹き付けた例(図4参照)である。この参考例1では、丸棒鋼の最高温度が50℃まで低下した時に、丸棒鋼の表面と置き場の床面が部分的に濡れていたが、水滴を回収する必要はなく、しかも丸棒鋼の変形(たとえば反り、曲り等)は認められなかった。また、50℃まで低下するのに要する所要時間は45時間であった。 Reference example 1 in Table 1 is an example in which a cooling mist (average particle diameter 150 μm) is sprayed horizontally and diagonally on the corners of the stack (that is, the intersections of steel bar bundles) using a spraying device (see FIG. 4). ). In Reference Example 1 , when the maximum temperature of the round bar steel dropped to 50 ° C, the surface of the round bar steel and the floor surface of the storage place were partially wet, but it was not necessary to collect water droplets, and the round bar steel was deformed. No (for example, warpage, bending, etc.) was observed. The time required to cool down to 50 ° C was 45 hours.

発明例2は、吹き付け装置を用いて段積み体の側面に冷却ミスト(平均粒子径150μm)を水平方向に吹き付けた例(図3参照)である。この発明例2では、丸棒鋼の最高温度が50℃まで低下した時に、丸棒鋼の表面と置き場の床面が部分的に濡れていたが、水滴を回収する必要はなく、しかも丸棒鋼の変形(たとえば反り、曲り等)は認められなかった。また、50℃まで低下するのに要する所要時間は参考例1よりも短縮されて31時間であった。これは、冷却ミストを段積み体の側面に吹き付けることによって、冷却ミストが段積み体の内部に進入し、さらに円滑に通り抜けるので、冷却能力が向上したからである。 The second aspect of the invention is an example in which a cooling mist (average particle diameter 150 μm) is sprayed horizontally on the side surface of the stack using a spraying device (see FIG. 3). In Example 2 of the present invention, when the maximum temperature of the round bar steel was lowered to 50 ° C., the surface of the round bar steel and the floor surface of the storage place were partially wet, but it was not necessary to collect water droplets and the round bar steel was deformed. No (for example, warpage, bending, etc.) was observed. In addition, the time required for the temperature to drop to 50 ° C. was 31 hours, which was shorter than that in Reference Example 1 . This is because by spraying the cooling mist on the side surface of the stack, the cooling mist enters the inside of the stack and passes through the stack more smoothly, so that the cooling capacity is improved.

発明例3は、吹き付け装置を用いて段積み体の側面に冷却ミスト(平均粒子径80μm)を水平方向に吹き付けた例(図3参照)である。この発明例3では、丸棒鋼の最高温度が50℃まで低下した時に、丸棒鋼の表面が濡れていたが、置き場の床面は濡れておらず、水滴を回収する必要はなく、しかも丸棒鋼の変形(たとえば反り、曲り等)は認められなかった。また、50℃まで低下するのに要する所要時間は32時間であり、参考例1よりも短縮された。これは、冷却ミストを段積み体の側面に吹き付けることによって、冷却ミストが段積み体の内部に進入し、さらに円滑に通り抜けるので、冷却能力が向上したからである。 The third aspect of the invention is an example in which a cooling mist (average particle diameter 80 μm) is sprayed horizontally on the side surface of the stack using a spraying device (see FIG. 3). In Example 3 of the present invention, when the maximum temperature of the round bar steel was lowered to 50 ° C., the surface of the round bar steel was wet, but the floor surface of the storage place was not wet, it was not necessary to collect water droplets, and the round bar steel was not necessary. No deformation (for example, warpage, bending, etc.) was observed. In addition, the time required for the temperature to drop to 50 ° C. was 32 hours, which was shorter than that of Reference Example 1 . This is because by spraying the cooling mist on the side surface of the stack, the cooling mist enters the inside of the stack and passes through the stack more smoothly, so that the cooling capacity is improved.

発明例4は、吹き付け装置を用いて段積み体の側面に冷却ミスト(平均粒子径40μm)を水平方向に吹き付けた例(図3参照)である。この発明例4では、丸棒鋼の最高温度が50℃まで低下した時に、丸棒鋼の表面が部分的に濡れていたが、置き場の床面は濡れておらず、水滴を回収する必要はなかった。しかも、丸棒鋼の変形(たとえば反り、曲り等)は認められなかった。また、50℃まで低下するのに要する所要時間は33時間であり、参考例1よりも短縮された。これは、冷却ミストを段積み体の側面に吹き付けることによって、冷却ミストが段積み体の内部に進入し、さらに円滑に通り抜けるので、冷却能力が向上したからである。 The fourth aspect of the invention is an example in which a cooling mist (average particle diameter 40 μm) is sprayed horizontally on the side surface of the stack using a spraying device (see FIG. 3). In Example 4 of the present invention, when the maximum temperature of the round bar steel was lowered to 50 ° C., the surface of the round bar steel was partially wet, but the floor surface of the storage place was not wet and it was not necessary to collect water droplets. .. Moreover, no deformation (for example, warping, bending, etc.) of the round bar steel was observed. In addition, the time required for the temperature to drop to 50 ° C. was 33 hours, which was shorter than that of Reference Example 1 . This is because by spraying the cooling mist on the side surface of the stack, the cooling mist enters the inside of the stack and passes through the stack more smoothly, so that the cooling capacity is improved.

発明例5は、吹き付け装置を用いて段積み体の側面に冷却ミスト(平均粒子径20μm)を水平方向に吹き付けた例(図3参照)である。この発明例5では、丸棒鋼の最高温度が50℃まで低下した時に、丸棒鋼の表面と置き場の床面が濡れることがなく、水滴を回収する必要はなく、しかも丸棒鋼の変形(たとえば反り、曲り等)は認められなかった。また、50℃まで低下するのに要する所要時間は34時間であり、参考例1よりも短縮された。これは、冷却ミストを段積み体の側面に吹き付けることによって、冷却ミストが段積み体の内部に進入し、さらに円滑に通り抜けるので、冷却能力が向上したからである。 The fifth aspect of the invention is an example in which a cooling mist (average particle diameter 20 μm) is sprayed horizontally on the side surface of the stack using a spraying device (see FIG. 3). In Example 5 of the present invention, when the maximum temperature of the round bar steel drops to 50 ° C., the surface of the round bar steel and the floor surface of the storage place do not get wet, it is not necessary to collect water droplets, and the round bar steel is deformed (for example, warped). , Bending, etc.) were not observed. In addition, the time required for the temperature to drop to 50 ° C. was 34 hours, which was shorter than that of Reference Example 1 . This is because by spraying the cooling mist on the side surface of the stack, the cooling mist enters the inside of the stack and passes through the stack more smoothly, so that the cooling capacity is improved.

発明例6は、吹き付け装置を用いて段積み体の側面に冷却ミスト(平均粒子径15μm)を水平方向に吹き付けた例(図3参照)である。この発明例6では、丸棒鋼の最高温度が50℃まで低下した時に、丸棒鋼の表面と置き場の床面が濡れることがなく、水滴を回収する必要はなく、しかも丸棒鋼の変形(たとえば反り、曲り等)は認められなかった。また、50℃まで低下するのに要する所要時間42時間であり、発明例5よりも長くなった。段積み体の中央部に到達するまでに冷却ミストが蒸発する量が多くなり、冷却能力が低下したためである。 The sixth aspect of the invention is an example in which a cooling mist (average particle diameter of 15 μm) is sprayed horizontally on the side surface of the stack using a spraying device (see FIG. 3). In Example 6 of the present invention, when the maximum temperature of the round bar steel drops to 50 ° C., the surface of the round bar steel and the floor surface of the storage place do not get wet, it is not necessary to collect water droplets, and the round bar steel is deformed (for example, warped). , Bending, etc.) were not observed. In addition, the time required for the temperature to drop to 50 ° C. was 42 hours, which was longer than that of Example 5. This is because the amount of cooling mist that evaporates before reaching the central part of the stack has increased, and the cooling capacity has decreased.

なお、参考例1および発明例~6では、冷却ミストの吹き付けを停止した後、一部の丸棒鋼にスケールが発生していたが、ショットブラストによって容易にスケールを除去できた。 In Reference Example 1 and Invention Examples 2 to 6, scale was generated on some round bar steels after the spraying of the cooling mist was stopped, but the scale could be easily removed by shot blasting.

一方で比較例1は、冷却ミストの吹き付けを行なわず、大気中へ放熱することによって段積み体を緩やかに冷却した例である。したがって、丸棒鋼の最高温度が50℃まで低下するまでに91時間を要し、参考例1および発明例~3に比べて大幅に増加した。 On the other hand, Comparative Example 1 is an example in which the stack is gently cooled by dissipating heat to the atmosphere without spraying the cooling mist. Therefore, it took 91 hours for the maximum temperature of the round bar steel to drop to 50 ° C., which was significantly increased as compared with Reference Example 1 and Invention Examples 2 and 3.

比較例2は、吹き付け装置を使用したものの、送風機を停止して、ミストノズルから冷却ミスト(平均粒子径40μm)を発生させて、置き場の自然風で漂流させた例である。そのため、段積み体にミストを吹き付けていないことから、冷却ミストが広範囲に飛散して、段積み体のみならず、置き場の床面、吹き付け装置、熱画像カメラにも多量に付着したので、段積み体の冷却実験を中止した。 Comparative Example 2 is an example in which a blowing device is used, but the blower is stopped, cooling mist (average particle diameter 40 μm) is generated from the mist nozzle, and the cooling mist is drifted by the natural wind of the storage place. Therefore, since the mist was not sprayed on the stack, the cooling mist scattered over a wide area and adhered not only to the stack but also to the floor of the storage area, the spraying device, and the thermal image camera. The cooling experiment of the stack was stopped.

比較例3は、吹き付け装置を用いて段積み体の側面に冷却水(平均粒子径400μm)を水平方向に吹き付けた例(図3参照)である。粒子径が大きく、気流に乗りにくく、段積み体2の送風機側のみが冷却されることとなり、置き場の床面が多量に濡れたため、段積み体の冷却実験を中止した。 Comparative Example 3 is an example in which cooling water (average particle diameter 400 μm) is sprayed horizontally on the side surface of the stack using a spraying device (see FIG. 3). Since the particle size was large, it was difficult to get into the air flow, only the blower side of the stack 2 was cooled, and the floor surface of the storage place got wet a lot, the cooling experiment of the stack was stopped.

以上に説明した冷却実験が終了した後、参考例1および発明例~6ならびに比較例1~3の段積み体から夫々任意の棒鋼束を回収し、さらに解束して丸棒鋼を1本取り出して、組織を顕微鏡観察したところ、いずれもフェライト-パーライト組織であり、異常な組織は認められなかった。 After the cooling experiment described above is completed, any steel bar bundle is recovered from the stacks of Reference Example 1 , Invention Examples 2 to 6 and Comparative Examples 1 to 3, and further bundled to form one round bar steel. When it was taken out and the structure was observed under a microscope, all of them had a ferrite-pearlite structure, and no abnormal structure was observed.

なお、ここでは丸棒鋼(すなわち断面が円形の棒鋼)を冷却する例を示したが、本発明の対象は丸棒鋼に限定されるものではなく、角棒鋼(すなわち断面が矩形などの多角形の棒鋼)の冷却にも適用できることは言うまでもない。 Although an example of cooling a round bar steel (that is, a steel bar having a circular cross section) is shown here, the object of the present invention is not limited to the round bar steel, and the square bar steel (that is, a polygon having a rectangular cross section or the like) is used. Needless to say, it can also be applied to cooling steel bars.

1 架台
2 段積み体
3 棒鋼
4 棒鋼束
5 送風機
6 ミストノズル
7 吹き付け装置
1 Stand 2 Stacked body 3 Bar steel 4 Bar steel bundle 5 Blower 6 Mist nozzle 7 Spraying device

Claims (10)

熱間圧延が終了して冷却床へ送給され、さらに該冷却床から排出された後に所定の長さに切断された棒鋼を結束して棒鋼束とし、該棒鋼束を2束以上互いに間隔を設けかつ前記棒鋼束の長手方向の平均値から±10°以内のずれで平行に平積みして第1段を形成し、次いで第2段として2束以上の前記棒鋼束を互いに間隔を設けかつ前記第2段の前記棒鋼束の長手方向の平均値から±10°以内のずれで前記第1段の前記棒鋼束に対して直角に平積みすることによって井桁状に積み上げて、引き続き3段以上に積み上げる場合、第3段以降の前記棒鋼束を井桁状に積み上げることによって2段以上の段積み体を形成して冷却する冷却方法において、
前記段積み体の側面に、水平方向に気流を吹き付けるとともに平均粒子径が300μm以下の水滴からなる冷却ミストを水平方向に吹き付けて前記棒鋼を冷却する棒鋼の冷却方法。
After hot rolling is completed, the steel bars are fed to the cooling bed, and after being discharged from the cooling bed, steel bars cut to a predetermined length are bound to form a steel bar bundle, and two or more bundles of the steel bars are spaced apart from each other. The first stage is formed by stacking them in parallel in parallel with a deviation of within ± 10 ° from the average value in the longitudinal direction of the steel bars , and then two or more bundles of steel bars are spaced apart from each other as the second stage. By stacking flatly at right angles to the steel bars of the first stage with a deviation of within ± 10 ° from the average value in the longitudinal direction of the steel bars of the second stage, they are piled up in a grid pattern, and then three or more stages are continued. In the cooling method in which the steel bars of the third and subsequent stages are stacked in a grid shape to form a stack of two or more stages and cooled.
A method for cooling a steel bar, which cools the steel bar by horizontally blowing a cooling mist composed of water droplets having an average particle diameter of 300 μm or less on the side surface of the stack.
熱間圧延が終了して冷却床へ送給され、さらに該冷却床から排出された後に所定の長さに切断された棒鋼を一定の本数ずつ結束して棒鋼束とし、該棒鋼束を2束以上互いに間隔を設けかつ前記棒鋼束の長手方向の平均値から±10°以内のずれで平行に平積みして第1段を形成し、次いで第2段として2束以上の前記棒鋼束を互いに間隔を設けかつ前記第2段の前記棒鋼束の長手方向の平均値から±10°以内のずれで前記第1段の前記棒鋼束に対して直角に平積みすることによって井桁状に積み上げて、引き続き3段以上に積み上げる場合、第3段以降の前記棒鋼束を井桁状に積み上げることによって2段以上の段積み体を形成して冷却する冷却方法において、
前記段積み体の側面に、水平方向に気流を吹き付けるとともに平均粒子径が300μm以下の水滴からなる冷却ミストを水平方向に吹き付けて前記棒鋼を冷却する棒鋼の冷却方法。
After hot rolling is completed, the steel bars are fed to the cooling bed, and after being discharged from the cooling bed, steel bars cut to a predetermined length are bundled in a fixed number to form a steel bar bundle, and two bundles of steel bars are bundled. The first stage is formed by stacking them in parallel with each other at intervals and within ± 10 ° from the average value in the longitudinal direction of the steel bars , and then as the second stage, two or more bundles of steel bars are stacked with each other. Stacked in a grid shape by stacking flatly at right angles to the steel strips of the first stage at intervals and within ± 10 ° from the average value in the longitudinal direction of the steel bars of the second stage . In the case of continuing to stack in three or more stages, in a cooling method in which the steel bar bundles in the third and subsequent stages are stacked in a grid shape to form a stack of two or more stages and cooled.
A method for cooling a steel bar, which cools the steel bar by horizontally blowing a cooling mist composed of water droplets having an average particle diameter of 300 μm or less on the side surface of the stack.
前記冷却ミストの水滴の平均粒子径が20~150μmの範囲内である請求項1または2に記載の棒鋼の冷却方法。 The method for cooling a steel bar according to claim 1 or 2 , wherein the average particle size of the water droplets of the cooling mist is in the range of 20 to 150 μm. 前記冷却ミストの水滴の平均粒子径が20~120μmの範囲内である請求項に記載の棒鋼の冷却方法。 The method for cooling a steel bar according to claim 3 , wherein the average particle size of the water droplets of the cooling mist is in the range of 20 to 120 μm. 熱間圧延が終了して冷却床へ送給され、さらに該冷却床から排出された後に所定の長さに切断された棒鋼を結束して棒鋼束とし、該棒鋼束を2束以上互いに間隔を設けかつ前記棒鋼束の長手方向の平均値から±10°以内のずれで平行に平積みして第1段を形成し、次いで第2段として2束以上の前記棒鋼束を互いに間隔を設けかつ前記第2段の前記棒鋼束の長手方向の平均値から±10°以内のずれで前記第1段の前記棒鋼束に対して直角に平積みすることによって井桁状に積み上げて、引き続き3段以上に積み上げる場合、第3段以降の前記棒鋼束を井桁状に積み上げて形成した2段以上の段積み体に冷却ミストを吹き付ける吹き付け装置であって、
前記冷却ミストを発生させるミストノズルと、
前記冷却ミストを前記ミストノズルから前記段積み体の側面に水平方向に吹き付けるための気流を発生させる送風機と、
前記段積み体の側面に水平方向に吹き付ける前記冷却ミストの水滴の平均粒子径を300μm以下に制御する制御部と、
を有する冷却ミストの吹き付け装置。
After hot rolling is completed, the steel bars are fed to the cooling bed, and after being discharged from the cooling bed, steel bars cut to a predetermined length are bundled to form a steel bar bundle, and two or more bundles of steel bars are spaced apart from each other. The first stage is formed by stacking them in parallel in parallel with a deviation of within ± 10 ° from the average value in the longitudinal direction of the steel bars , and then two or more bundles of steel bars are spaced apart from each other as the second stage. By stacking flatly at right angles to the steel bars of the first stage with a deviation of within ± 10 ° from the average value in the longitudinal direction of the steel bars of the second stage, they are piled up in a grid pattern, and then three or more stages are continued. A spraying device that sprays cooling mist onto a stack of two or more stages formed by stacking the steel bar bundles of the third and subsequent stages in a right-angled shape.
The mist nozzle that generates the cooling mist and
A blower that generates an air flow for horizontally blowing the cooling mist from the mist nozzle to the side surface of the stack.
A control unit that controls the average particle size of water droplets of the cooling mist to be sprayed horizontally on the side surface of the stack to 300 μm or less.
Cooling mist spraying device with.
熱間圧延が終了して冷却床へ送給され、さらに該冷却床から排出された後に所定の長さに切断された棒鋼を一定の本数ずつ結束して棒鋼束とし、該棒鋼束を2束以上互いに間隔を設けかつ前記棒鋼束の長手方向の平均値から±10°以内のずれで平行に平積みして第1段を形成し、次いで第2段として2束以上の前記棒鋼束を互いに間隔を設けかつ前記第2段の前記棒鋼束の長手方向の平均値から±10°以内のずれで前記第1段の前記棒鋼束に対して直角に平積みすることによって井桁状に積み上げて、引き続き3段以上に積み上げる場合、第3段以降の前記棒鋼束を井桁状に積み上げて形成した2段以上の段積み体に冷却ミストを吹き付ける吹き付け装置であって、
前記冷却ミストを発生させるミストノズルと、
前記冷却ミストを前記ミストノズルから前記段積み体の側面に水平方向に吹き付けるための気流を発生させる送風機と、
前記段積み体の側面に水平方向に吹き付ける前記冷却ミストの水滴の平均粒子径を300μm以下に制御する制御部と、
を有する冷却ミストの吹き付け装置。
After hot rolling is completed, the steel bars are fed to the cooling bed, and after being discharged from the cooling bed, steel bars cut to a predetermined length are bundled in a fixed number to form a steel bar bundle, and two bundles of steel bars are bundled. The first stage is formed by stacking them in parallel with each other at intervals and within ± 10 ° from the average value in the longitudinal direction of the steel bars , and then as the second stage, two or more bundles of steel bars are stacked with each other. Stacked in a grid shape by stacking flatly at right angles to the steel strips of the first stage at intervals and within ± 10 ° from the average value in the longitudinal direction of the steel bars of the second stage . When continuously stacking in three or more stages, it is a spraying device that sprays cooling mist on a stack of two or more stages formed by stacking the steel bar bundles in the third and subsequent stages in a right-angled shape.
The mist nozzle that generates the cooling mist and
A blower that generates an air flow for horizontally blowing the cooling mist from the mist nozzle to the side surface of the stack.
A control unit that controls the average particle size of water droplets of the cooling mist to be sprayed horizontally on the side surface of the stack to 300 μm or less.
Cooling mist spraying device with.
前記制御部は、前記平均粒子径を20~150μmの範囲内に制御する請求項5または6に記載の冷却ミストの吹き付け装置。 The cooling mist spraying device according to claim 5 or 6 , wherein the control unit controls the average particle size within the range of 20 to 150 μm. 前記制御部は、前記平均粒子径を20~120μmの範囲内に制御する請求項に記載の冷却ミストの吹き付け装置。 The cooling mist spraying device according to claim 7 , wherein the control unit controls the average particle size within the range of 20 to 120 μm. 請求項1~のいずれか一項に記載の方法で冷却した棒鋼束を段積み体から回収し、さらに前記棒鋼束を解束する棒鋼の製造方法。 A method for manufacturing a steel bar, in which a steel bar bundle cooled by the method according to any one of claims 1 to 4 is recovered from a stack and the steel bar bundle is further unbundled. 冷却した棒鋼束を段積み体から回収し、棒鋼束を解束して棒鋼を取り出した後、スケールを除去する請求項に記載の棒鋼の製造方法。 The method for manufacturing a steel bar according to claim 9 , wherein the cooled steel bar bundle is recovered from the stack, the steel bar bundle is unwound, the steel bar is taken out, and then the scale is removed.
JP2020038384A 2019-03-27 2020-03-06 Steel bar cooling method and cooling mist spraying device, and steel bar manufacturing method Active JP7014245B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202020411658.2U CN213530188U (en) 2019-03-27 2020-03-26 Blowing device of cooling fog
CN202010223966.7A CN111744973A (en) 2019-03-27 2020-03-26 Method for cooling steel bar, device for blowing cooling mist, and method for manufacturing steel bar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019060914 2019-03-27
JP2019060914 2019-03-27

Publications (2)

Publication Number Publication Date
JP2020164983A JP2020164983A (en) 2020-10-08
JP7014245B2 true JP7014245B2 (en) 2022-02-01

Family

ID=72717063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020038384A Active JP7014245B2 (en) 2019-03-27 2020-03-06 Steel bar cooling method and cooling mist spraying device, and steel bar manufacturing method

Country Status (2)

Country Link
JP (1) JP7014245B2 (en)
CN (1) CN213530188U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114134309A (en) * 2021-11-12 2022-03-04 广西首科轨道新材料科技有限公司 Energy-saving and environment-friendly high-ductility cold-binding belt rib steel bar machining device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246498A (en) 2007-03-29 2008-10-16 Daido Steel Co Ltd Method of cooling rolled steel product
JP2013188753A (en) 2012-03-12 2013-09-26 Jfe Steel Corp Method and device for cooling hot-rolled coil
JP2014057977A (en) 2012-09-18 2014-04-03 Mazda Motor Corp METHOD AND APPARATUS FOR COOLING Al-ALLOY-MADE CASTING

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246498A (en) 2007-03-29 2008-10-16 Daido Steel Co Ltd Method of cooling rolled steel product
JP2013188753A (en) 2012-03-12 2013-09-26 Jfe Steel Corp Method and device for cooling hot-rolled coil
JP2014057977A (en) 2012-09-18 2014-04-03 Mazda Motor Corp METHOD AND APPARATUS FOR COOLING Al-ALLOY-MADE CASTING

Also Published As

Publication number Publication date
JP2020164983A (en) 2020-10-08
CN213530188U (en) 2021-06-25

Similar Documents

Publication Publication Date Title
JP7004018B2 (en) Cooling method of steel bar and manufacturing method of steel bar, and cooling mist spraying device
JP7014245B2 (en) Steel bar cooling method and cooling mist spraying device, and steel bar manufacturing method
EP2494272B1 (en) Method for reclaiming energy in smelting systems and smelting system based on thermocouples
JP5776593B2 (en) Method and apparatus for cooling hot rolled coil
BRPI0908257B1 (en) cooling system and cold rolled steel cooling method
CN111744974B (en) Method for cooling steel bar, method for producing steel bar, and device for blowing cooling mist
US9604268B2 (en) Cold state metal plate strip surface treatment system and treatment method of the same
US10480816B2 (en) Method and system for reducing moisture carryover in air handlers
US5697169A (en) Apparatus for cooling strip and associated method
CN114585753B (en) Quick quenching production line
KR100441365B1 (en) Rolled Product Cooling System
CN111744973A (en) Method for cooling steel bar, device for blowing cooling mist, and method for manufacturing steel bar
JP2008221328A (en) Apparatus for removing scale from billet
EP3821171A2 (en) Method of heat transfer and associated device
JP5862907B2 (en) Method and apparatus for cooling coiled hot-rolled steel sheet
JP5816292B2 (en) Nozzle for tempering equipment
JP3370562B2 (en) Method and apparatus for cooling hot-rolled coil
JP2011011218A5 (en)
JP5741165B2 (en) Thermal steel sheet bottom surface cooling device
JP2008246498A (en) Method of cooling rolled steel product
JP2024058949A (en) Method for cooling steel material and method for manufacturing steel material
JPH05177240A (en) Method for cooling hot rolled coil
CA3103441C (en) Method to control the cooling of a flat metal product
JPH10328737A (en) Method for cooling hot rolling coil and device therefor
JP4621061B2 (en) Steel plate cooling equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220103