JPH10328737A - Method for cooling hot rolling coil and device therefor - Google Patents

Method for cooling hot rolling coil and device therefor

Info

Publication number
JPH10328737A
JPH10328737A JP17189097A JP17189097A JPH10328737A JP H10328737 A JPH10328737 A JP H10328737A JP 17189097 A JP17189097 A JP 17189097A JP 17189097 A JP17189097 A JP 17189097A JP H10328737 A JPH10328737 A JP H10328737A
Authority
JP
Japan
Prior art keywords
coil
air
hot
cooling
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17189097A
Other languages
Japanese (ja)
Other versions
JP3491127B2 (en
Inventor
Kenta Karibe
建太 苅部
Futahiko Nakagawa
二彦 中川
Masato Koide
正人 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17189097A priority Critical patent/JP3491127B2/en
Publication of JPH10328737A publication Critical patent/JPH10328737A/en
Application granted granted Critical
Publication of JP3491127B2 publication Critical patent/JP3491127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To uniformly cool a series of coils and each coil, and to immediately ship the coil without storing them by blowing a cooling air from the lower side of a hot rolling coil toward the side surface of the coil and joining the cooling air to a hot air stream generating along the side surface of the coil. SOLUTION: Ventilation ducts 3 are arranged along a coil series 2 on both sides of the coil series 2 arranged with plural numbers of coils 1. The outside air is introduced from ventilation fans 4 installed at the beginning ends of respective ventilation ducts 3. Jetting nozzles pointing to the coil 1 are arranged on both side faces of the ventilation duct 3 by at least, three, for example, 5a to 5d are arranged on every coil 1, and the coil 1 is cooled by blowing the air to the coil 1. In the ventilation duct 3, it is important that the static pressure of the air flow inside the duct 3 is made uniform from the beginning end to the finishing end of the ventilation duct 3. Therefore, the blowing amount of the air onto the coil 1 can be made same between the total coil 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱間圧延後にコイ
ルに巻き取られた熱延コイルを冷却する方法およびその
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for cooling a hot-rolled coil wound around a coil after hot rolling.

【0002】[0002]

【従来の技術】熱間圧延後の熱延コイル(以下、単に
「コイル」と言う)は、熱間圧延工場のコイルヤードあ
るいはコイル倉庫の床上に放置され、工場内あるいは倉
庫内の室温とコイル温度との差を利用して時間をかけて
冷却されていた。しかし、コイルとその周囲との温度差
が小さく、コイルの冷却に長時間を要する場合には、強
制的に冷却を行って冷却時間を短縮する技術が種々開発
されている。
2. Description of the Related Art A hot-rolled coil (hereinafter, simply referred to as a "coil") after hot rolling is left on a coil yard of a hot rolling factory or on a floor of a coil warehouse, and the room temperature and coil temperature in the factory or warehouse are reduced. It was cooled over time using the difference from the temperature. However, when the temperature difference between the coil and its surroundings is small and it takes a long time to cool the coil, various techniques have been developed for forcibly cooling to shorten the cooling time.

【0003】例えば、特開昭63−216927号公報
には、冷却ヤード床に戸外空気取り入れ口と接続した、
適当数の風道用溝を設け、これら溝内に、各溝毎に1個
宛設置された大型ファンにより作りだされる、直進風の
誘導板を複数個配設して、溝間の冷却ヤード床に整列配
置された、熱間圧延後のコイル列の各々に冷風を導き、
強制的に空冷する方法が、開示されている。
For example, JP-A-63-216927 discloses that a cooling yard floor is connected to an outdoor air intake.
An appropriate number of airway grooves are provided, and a plurality of direct-flow wind guide plates created by a large fan installed for each groove are provided in these grooves, and cooling between the grooves is performed. Guide cold air to each of the coil rows after hot rolling, arranged on the yard floor,
A method for forced air cooling is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
提案では、冷却に用いる空気がコイル側面に指向されて
いないため、抜熱効率が低くて冷却所要時間が長くな
る。また、大型ファンから遠方に離れたコイルほど、冷
風が届きにくいため、コイル列における各コイル間での
冷却が不均一になり、また誘導板を用いて各コイル表面
での風速を一定にすることは非常に困難であるため、各
コイルにおける冷却も不均一になり、冷却時間に大きな
ばらつきを生じやすい等の不利があった。さらに、風道
用溝が必要になるため、設備化する際に膨大な投資費用
が必要である。
However, in the above proposal, since the air used for cooling is not directed to the side surface of the coil, the heat removal efficiency is low and the cooling time is long. In addition, since the cool air is harder to reach as the coil gets farther from the large fan, the cooling between the coils in the coil array becomes uneven, and the wind speed on the surface of each coil is made constant by using an induction plate. Is very difficult, so that the cooling in each coil becomes non-uniform, and there is a disadvantage that the cooling time tends to vary greatly. Furthermore, since an airway groove is required, an enormous investment cost is required when installing the equipment.

【0005】そこで、本発明は、各コイル、さらにはコ
イル列において、均一な冷却を実現する冷却方法および
その装置を、安価に提供しようとするものである。
Accordingly, the present invention is to provide a cooling method and apparatus for achieving uniform cooling in each coil and further in the coil array at a low cost.

【0006】[0006]

【課題を解決するための手段】発明者らは、熱間圧延工
場のコイルヤードやコイル倉庫の床上に複数のコイルを
整列させた熱延コイル列に対して、その列に沿って配置
した送風ダクトに送風ファンから大気を送り込み、送風
ダクトから各コイルを指向させて設置したノズルから空
気をコイルに吹きつけてコイルの冷却を行うに当たり、
伝熱面の大きいコイルの側面に空気を吹きつけることで
冷却効率が高まり、また空気の吹きつけ角度を最適化す
ることによってコイル側面における熱気流の上昇速度が
一定となり、各コイルおよびコイル列における均一な冷
却を実現するのに有効であることを見出し、かかる知見
に基づいて、本発明を完成した。
Means for Solving the Problems The inventors of the present invention have proposed a blower having a plurality of coils arranged on the floor of a coil yard or a coil warehouse of a hot rolling factory and arranged along the rows. In order to cool the coil by blowing air from the blower fan into the duct and blowing air to the coil from the nozzle installed with each coil directed from the blower duct,
By blowing air to the side of the coil with a large heat transfer surface, the cooling efficiency increases, and by optimizing the blowing angle of the air, the rising speed of the hot air flow on the side of the coil becomes constant. The present inventors have found that the present invention is effective for achieving uniform cooling, and based on such findings, have completed the present invention.

【0007】すなわち、本発明は、熱延コイルの下方か
ら、該コイルの側部表面に向けて冷却空気を吹き付ける
と共に、その冷却空気を該コイル側部表面に沿って発生
する熱気流に合流させて該コイル表面を冷却することを
特徴とする熱延コイルの冷却方法である。
That is, according to the present invention, cooling air is blown from below the hot-rolled coil toward the side surface of the coil, and the cooling air is joined to a hot air flow generated along the side surface of the coil. And cooling the surface of the coil.

【0008】また、本発明は、コイルの複数を整列させ
たコイル列に対して、その列に沿って配置した送風ダク
トに空気を送り込み、送風ダクトから各コイルに指向し
て設置した、複数のノズルから空気をコイルに吹きつけ
てコイルの冷却を行うに当たり、コイルへの空気吹きつ
け量を全コイル間で同一にするとともに、コイルの側面
から立ち昇る空気の上昇流が均等になるように空気を吹
きつけることを特徴とするコイルの冷却方法である。と
りわけ、空気をコイル内周面と外周面との中間領域に吹
きつけることが有利である。
Further, according to the present invention, for a coil row in which a plurality of coils are arranged, air is fed into a ventilation duct arranged along the row, and a plurality of coils are installed to face each coil from the ventilation duct. When air is blown from the nozzle to the coil to cool the coil, the amount of air blown to the coil is the same for all coils, and air is blown so that the rising flow of air rising from the side of the coil is uniform. The method of cooling a coil, characterized by spraying water. In particular, it is advantageous to blow air to an intermediate region between the inner peripheral surface and the outer peripheral surface of the coil.

【0009】なお、本発明においては、コイルの側部表
面における冷却空気を合流させた熱気流の上昇速度の平
均が少なくとも1m/sとなるように冷却空気の吹き付
けを行うことが好ましい。ここで、上昇速度は、コイル
側部表面から30mm以内を流れる上昇流の測定速度であ
る。
In the present invention, it is preferable that the cooling air is blown such that the average of the rising speed of the hot air flow combined with the cooling air on the side surface of the coil is at least 1 m / s. Here, the rising speed is a measured speed of the rising flow flowing within 30 mm from the coil side surface.

【0010】次に、本発明の上記冷却方法の実施に当た
っては、複数のコイルを整列させたコイル列の両側に、
コイル列に沿って送風ダクトをそれぞれ配置し、該送風
ダクトの始端に送風ファンを設置するとともに、送風ダ
クトからコイル列の各コイル側面に指向させた噴射ノズ
ルを、各コイルの片側面宛少なくとも3つ設置した、コ
イルの冷却装置であって、前記送風ダクトは、その内部
を流れる空気の静圧がダクトの始端から終端まで均等と
なる構成とし、また前記噴射ノズルは、コイルの内周面
と外周面との中間領域を指向させて設けたことを特徴と
するコイルの冷却装置を、使用することができる。
Next, in carrying out the cooling method of the present invention, on both sides of a coil row in which a plurality of coils are aligned,
Blowing ducts are respectively arranged along the coil rows, a blower fan is installed at the beginning of the blowing ducts, and an injection nozzle directed from the blowing duct to each coil side face of the coil row is directed to at least three sides of one side of each coil. A cooling device for the coil, wherein the blower duct has a configuration in which the static pressure of air flowing through the inside of the duct is equal from the start end to the end of the duct, and the injection nozzle has an inner peripheral surface of the coil. A coil cooling device characterized by being provided so as to be directed to an intermediate region with the outer peripheral surface can be used.

【0011】[0011]

【発明の実施の形態】本発明のコイルの冷却装置は、図
1に示すように、複数のコイル1を整列させたコイル列
2の両側に、コイル列2に沿って送風ダクト3をそれぞ
れ配置し、この送風ダクト3には、各送風ダクト3の始
端に設置した送風ファン4から外気を導入する。一方、
送風ダクト3の両側面には、図2に示すように、コイル
列2のコイル1に指向させた噴射ノズル5を少なくとも
3つ、図示例では4つの噴射ノズル5a〜5dを、各コ
イル1毎に設置し、これら噴射ノズル5から空気をコイ
ル1に吹きつけてコイルを冷却する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, a coil cooling device according to the present invention has ventilation ducts 3 arranged on both sides of a coil array 2 in which a plurality of coils 1 are arranged. Then, outside air is introduced into the blower duct 3 from a blower fan 4 installed at the beginning of each blower duct 3. on the other hand,
As shown in FIG. 2, at least three injection nozzles 5 directed to the coils 1 of the coil array 2, and in the illustrated example, four injection nozzles 5 a to 5 d are provided on both side surfaces of the air duct 3. And air is blown from these injection nozzles 5 to the coil 1 to cool the coil.

【0012】ここで、送風ダクト3は、その内部を流れ
る空気の静圧がダクトの始端から終端まで均等となる構
成とすることが肝要である。すなわち、図2に示すよう
に、その内径を始端から終端に向かって漸減することに
よって、送風ファン4を介して導入した外気の送風ダク
ト3内での静圧を、送風ダクト3の始端から末端まで一
定にした結果、全ての噴射ノズル5a〜5dの入側での
静圧を同じにした。従って、、ダクト内を流れる空気の
静圧はダクト内で均等になり、コイルへの空気吹きつけ
量を全コイル間で同一にすることが可能である。なお、
コイルへの空気吹きつけ量を全コイル間で同一にするに
は、前記送風ダクト3の内径を漸減する手段のほか、ダ
クト内にダンパーを設けてその開度を調整することによ
り、同様にダクト内を流れる空気の静圧はダクト内で均
等になり、コイルへの空気吹きつけ量を全コイル間で同
一にすることが達成される。
Here, it is important that the ventilation duct 3 has a structure in which the static pressure of the air flowing through the inside of the ventilation duct 3 is uniform from the beginning to the end of the duct. That is, as shown in FIG. 2, by gradually decreasing the inner diameter from the start end to the end, the static pressure of the outside air introduced through the blower fan 4 in the blow duct 3 is reduced from the start end to the end of the blow duct 3. As a result, the static pressure on the inlet side of all the injection nozzles 5a to 5d was made the same. Therefore, the static pressure of the air flowing in the duct is equalized in the duct, and the amount of air blown to the coils can be made equal among all the coils. In addition,
In order to make the amount of air blown to the coil the same for all coils, in addition to means for gradually reducing the inner diameter of the air duct 3, a damper is provided in the duct to adjust the degree of opening, and similarly, The static pressure of the air flowing therethrough is equalized in the duct, and the same amount of air blown to the coils is achieved between all the coils.

【0013】また、噴射ノズル5a〜5dは、図3に例
示するように、その開口幅tおよびコイル1に対する仰
角αを各々異ならせて構成することによって、各ノズル
5からの空気は、例えば図2、そして図4に示すように
種々の拡がり, 方向をもって噴射される結果、コイル1
側面から立ち昇る高温空気の上昇量を有効に活用するこ
とができると共に、コイル側部表面における熱気流の上
昇速度が均等になる空気の吹きつけが実現するため、コ
イル1を極めて効率良く冷却することが可能になるので
ある。
As shown in FIG. 3, the injection nozzles 5a to 5d are formed so that the opening width t and the elevation angle α with respect to the coil 1 are different from each other. 2 and, as shown in FIG.
The amount of rise of the high-temperature air rising from the side surface can be effectively utilized, and air blowing with uniform rising speed of the hot air flow on the coil side surface is realized, so that the coil 1 is cooled very efficiently. It becomes possible.

【0014】たとえば、噴射ノズル5の開口幅tおよび
仰角αは、下記のとおりとすることが好ましい。 開口幅t;ノズル噴射速度が15 m/s 以上となる条件
で、図3に示すように、噴射ノズル5a:5b:5c:5dの流
量配分比がおよそ2:3:1:2とするように決定す
る。なお、開口形状は矩形とした。
For example, the opening width t and the elevation angle α of the injection nozzle 5 are preferably set as follows. As shown in FIG. 3, under the condition that the nozzle injection speed is 15 m / s or more, the flow distribution ratio of the injection nozzles 5a: 5b: 5c: 5d is approximately 2: 3: 1: 2. To decide. The opening shape was rectangular.

【0015】仰角α;各ノズル中心から仰角に応じて延
長した直線とコイルとの接点が、図5に示す●印になる
ように、コイル径D, ダクト−コイル間距離Lの変化に
応じて下記式(1) 〜(4) を満足するように各ノズルの仰
角αa 〜αd を決定する。 記 αa =tan -1{(D/2−ha )/L} ----(1) αb =tan -1{(D−d1 /2−hb )/L}----(2) αc =tan -1{(d1 /2−hc )/L} ----(3) αd =tan -1{(D/2−hd )/L} ----(4) ただし、 d1 :ノズル厚 ha , hb , hc , hd :ダクトにおける各ノズル基部
までの高さ(図3参照) L:送風ダクト側面とコイルとの間隔
Elevation angle α: The contact point between the coil and a straight line extended from the center of each nozzle according to the elevation angle is changed in accordance with the change in the coil diameter D and the distance L between the duct and the coil, as indicated by ● in FIG. The elevation angles α a to α d of each nozzle are determined so as to satisfy the following expressions (1) to (4). Serial α a = tan -1 {(D / 2-h a) / L} ---- (1) α b = tan -1 {(D-d 1/2-h b) / L} --- -(2) α c = tan -1 {(d 1 / 2−h c ) / L} ---- (3) α d = tan −1 {(D / 2−h d ) / L}- - (4) where, d 1: nozzle thickness h a, h b, h c , h d: height to the nozzle base in the duct (see FIG. 3) L: distance between the ventilation duct side and the coil

【0016】なお、前記接点は、コイル側部表面に沿っ
て上昇する空気の上昇速度が、後述する3〜5m/sに
保たれる条件を満足すれば、多少変動しても問題はな
い。好ましくは、●印は、コイル厚d1 の中間とする。
なぜなら、この位置に●印を配すると、空気流は●印の
周辺へほぼ均等に分布するからである。
It should be noted that there is no problem even if the contact slightly fluctuates as long as the rising speed of the air rising along the surface of the coil side satisfies a condition of keeping 3 to 5 m / s described later. Preferably, ● mark, the intermediate coil thickness d 1.
This is because, if a mark is placed at this position, the air flow is distributed almost uniformly around the mark.

【0017】さらに、コイル径Dおよびコイル幅Wに応
じて、図5に示す●印は変化するが、ノズル仰角を固定
にする場合は製品構成上、最も頻度の高いコイルサイズ
に基づいて、前記式(1) 〜(4) によりノズル仰角を決定
しておけば、コイル径Dが±500mmおよびコイル幅W
が±1000mm程度変化しても、コイル側部表面に沿っ
て上昇する空気の上昇速度が3〜5m/sに保たれて、
所定の冷却能力が得られることが検証済みである。
Further, although the mark ● shown in FIG. 5 changes according to the coil diameter D and the coil width W, when the nozzle elevation angle is fixed, the above-described coil size is most frequently used in the product configuration. If the nozzle elevation angle is determined by the equations (1) to (4), the coil diameter D is ± 500 mm and the coil width W is
Is changed by about ± 1000 mm, the rising speed of the air rising along the coil side surface is maintained at 3 to 5 m / s,
It has been verified that a predetermined cooling capacity can be obtained.

【0018】つまり、本発明においては、高温空気上昇
流 (ドラフト) を利用して効果的な冷却を行うために、
コイル側部表面に沿って上昇する空気の上昇速度は、5
m/s以下とすることが好ましい。これは、図7に示す
ように、5m/sを超えると、冷却効果が飽和すること
と、上昇流速度の増加に伴ってランニングコストが増大
するからである。さらに、3m/s前後に制御すること
がより好ましいと言える。また、1m/s未満になる
と、ファンを用いない自然放冷の条件とほぼ同じになる
ため、1m/s以上は必要である。なお、上記の上昇流
の速度は、図8に示す8測定点において、コイル表面か
ら30mm以内で測定した値である。
That is, in the present invention, in order to perform effective cooling using a high-temperature air rising flow (draft),
The rising speed of the air rising along the coil side surface is 5
m / s or less. This is because, as shown in FIG. 7, when the speed exceeds 5 m / s, the cooling effect is saturated, and the running cost increases as the ascending flow velocity increases. Furthermore, it can be said that it is more preferable to control the speed around 3 m / s. Further, if the speed is less than 1 m / s, the condition becomes substantially the same as the condition of natural cooling without using a fan, so that 1 m / s or more is required. The speed of the upward flow is a value measured within 30 mm from the coil surface at the eight measurement points shown in FIG.

【0019】ここで、噴射ノズル5を各コイルの片側毎
に少なくとも3つ設置することとしたのは、図6のa,
b,c各領域のコイル表面において、噴射ノズルより噴
射された空気が、ドラフトによって上昇するが、図5の
5b部の冷却は同5c部のドラフト上昇流を活用すれば
よいからである。このように、3つの噴射ノズルを配置
する例は、図3に示した4つのタイプにおけるノズル5b
を外して、5a, 5c, 5dの3つを配置すれば足りる。そし
て、開口幅t,仰角αの決定条件は上述したとおりであ
る。
Here, at least three injection nozzles 5 are provided on each side of each coil, as shown in FIGS.
The air injected from the injection nozzle rises by the draft on the coil surface in each of the regions b and c, but the cooling at the portion 5b in FIG. 5 can be achieved by utilizing the draft upward flow at the portion 5c. Thus, an example of arranging three injection nozzles is the nozzle 5b of the four types shown in FIG.
It is enough to remove 3 and arrange 3 of 5a, 5c, 5d. The conditions for determining the opening width t and the elevation angle α are as described above.

【0020】なお、以上で説明した図示例では、送風ダ
クト3をコイル1を載置した床上に設置する、最も低コ
ストの構造であるが、送風ダクト3を床下、または半床
下に設けたり、逆にコイル1の載置場所を床より高くす
る等、送風ダクト3つまり噴射ノズルとコイルとの上下
方向の距離を相対的に離して、噴射ノズルの仰角αをよ
り大きくして空気吹きつけを行って、コイル側面からの
高温気流の上昇を促進することも可能である。
In the illustrated example described above, the air blow duct 3 is installed on the floor on which the coil 1 is mounted, which is the lowest cost structure. However, the air blow duct 3 is installed under the floor or under the half floor, Conversely, the mounting position of the coil 1 is made higher than the floor, for example, and the vertical distance between the blower duct 3, that is, the injection nozzle and the coil is relatively increased, and the elevation angle α of the injection nozzle is increased to blow air. By doing so, it is possible to promote the rise of the high-temperature airflow from the coil side surface.

【0021】[0021]

【実施例】図1〜3に示したコイルの冷却装置を用い
て、コイル幅が1200mmおよびコイル径が2000mmのコイル
を一列に6個、図1に示したように配置し、コイル列の
両側にそれぞれ設置した、長さ12000 mmの各送風ダクト
3に、送風ファン4から240m3 /min の外気(平均
温度:35℃)を供給して、コイルの冷却を行った。送
風ダクト3は断面が矩形状であり、その内径は幅方向を
一定にする一方、高さを始端部の600mmから終端部で
150mmとなるよう漸減させてなる。その結果、各コイ
ル毎の空気の流量配分実績は、表1に示すとおり、コイ
ル間でほぼ同等であった。なお、表1において、送風ダ
クト3の始端側から順に、コイルNo. 1〜6とした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Using the coil cooling apparatus shown in FIGS. 1 to 3, six coils having a coil width of 1200 mm and a coil diameter of 2000 mm are arranged in a row as shown in FIG. The air was supplied to the air duct 3 having a length of 12000 mm from the air blow fan 4 at 240 m 3 / min (average temperature: 35 ° C.) to cool the coil. The ventilation duct 3 has a rectangular cross section, and its inner diameter is kept constant in the width direction, while its height is gradually reduced from 600 mm at the start end to 150 mm at the end end. As a result, as shown in Table 1, the air flow distribution results for each coil were almost the same among the coils. In addition, in Table 1, coil Nos. 1 to 6 were set in order from the starting end side of the ventilation duct 3.

【0022】[0022]

【表1】 [Table 1]

【0023】また、各コイルに対応して設置した噴射ノ
ズルの仕様は、図3に示した通りであり、ノズル5aおよ
び5dと同5bおよび5cとの間隔は、図3に示す寸法
として、そしてその結果、コイル表面平均風速はおよそ
3m /s となった。送風ダクト3の側面とコイルとの間
隔は300mmであった。
The specifications of the injection nozzles installed corresponding to the respective coils are as shown in FIG. 3, and the intervals between the nozzles 5a and 5d and the nozzles 5b and 5c are as shown in FIG. As a result, the average wind speed on the coil surface was approximately 3 m / s. The distance between the side surface of the air duct 3 and the coil was 300 mm.

【0024】以上の条件下にて、各コイルにおいて最高
温度部を、コイル直出荷が可能となる50℃以下とする
冷却に要する時間を調査したところ、3日以内に全ての
コイルの冷却が完了した。このとき、送風ダクトの始端
に配置したコイルと終端に配置したコイルとの間で冷却
完了時間に差は認められなかった。ちなみに、同様のコ
イルの冷却を、従来の放置冷却で行ったところ、5〜6
日の時間を要していた。ここで、コイルの冷却完了温度
を50℃としたのは、コイル直出荷が可能となる最高温
度、例えばコイルを巻き出して行うスキンパスなどにお
いて、表面欠陥が発生しない上限温度であるからであ
る。
Under the above conditions, the time required for cooling the maximum temperature portion of each coil to 50 ° C. or less, which enables direct shipment of the coil, was investigated. The cooling of all the coils was completed within three days. did. At this time, no difference was observed in the cooling completion time between the coil arranged at the beginning and the coil arranged at the end of the air duct. Incidentally, when the same coil was cooled by conventional standing cooling, 5 to 6
It took time for the day. Here, the reason why the cooling completion temperature of the coil is set to 50 ° C. is that it is a maximum temperature at which the coil can be directly shipped, for example, an upper limit temperature at which a surface defect does not occur in a skin pass performed by unwinding the coil.

【0025】[0025]

【発明の効果】本発明によれば、各コイル、さらにはコ
イル列において、均一な冷却を安価に実現することがで
き、コイルを倉庫などに長時間保管する必要がないた
め、コイルを直に出荷することが可能であり、とりわけ
物流費に要するコストが大幅に低減される。
According to the present invention, uniform cooling can be realized at low cost in each coil and further in the coil array, and it is not necessary to store the coil in a warehouse or the like for a long time. Shipment is possible, and the cost of logistics costs is significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の冷却装置を示す模式図である。FIG. 1 is a schematic diagram showing a cooling device of the present invention.

【図2】本発明の冷却装置を示す側面図である。FIG. 2 is a side view showing a cooling device of the present invention.

【図3】噴射ノズルの模式図である。FIG. 3 is a schematic view of an injection nozzle.

【図4】噴射ノズルからの空気の吹きつけを説明する模
式図である。
FIG. 4 is a schematic diagram illustrating blowing of air from an injection nozzle.

【図5】ノズル仰角の説明図である。FIG. 5 is an explanatory diagram of a nozzle elevation angle.

【図6】ドラフトに沿う空気上昇流の説明図である。FIG. 6 is an explanatory diagram of an upward flow of air along a draft.

【図7】コイル表面風速と冷却熱伝達係数との関係を示
すグラフである。
FIG. 7 is a graph showing a relationship between a coil surface wind speed and a cooling heat transfer coefficient.

【図8】空気上昇流の測定点を示す説明図である。FIG. 8 is an explanatory diagram showing measurement points of an upward air flow.

【符号の説明】[Explanation of symbols]

1 コイル 2 コイル列 3 送風ダクト 4 送風ファン 5a〜5d 噴射ノズル DESCRIPTION OF SYMBOLS 1 Coil 2 Coil row 3 Blow duct 4 Blow fan 5a-5d Injection nozzle

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱延コイルの下方から、該コイルの側部
表面に向けて冷却空気を吹き付けると共に、その冷却空
気を該コイル側部表面に沿って発生する熱気流に合流さ
せて該コイル表面を冷却することを特徴とする熱延コイ
ルの冷却方法。
1. A cooling air is blown from below a hot-rolled coil toward a side surface of the coil, and the cooling air is combined with a hot air flow generated along the side surface of the coil to form a coil surface. And cooling the hot rolled coil.
【請求項2】 熱延コイルの複数を整列させた熱延コイ
ル列に対して、その列に沿って配置した送風ダクトに空
気を送り込み、送風ダクトから各熱延コイルを指向させ
て設置した、複数のノズルから空気を熱延コイルの側面
に吹きつけて熱延コイルの冷却を行うに当たり、熱延コ
イルへの空気吹きつけ量を全コイル間で同一にするとと
もに、熱延コイルの側面から立ち昇る空気の上昇流が均
等になるように空気を吹きつけることを特徴とする熱延
コイルの冷却方法。
2. A hot-rolled coil row in which a plurality of hot-rolled coils are aligned, air is blown into a blow duct arranged along the row, and each hot-rolled coil is set to be directed from the blow duct. When cooling the hot-rolled coil by blowing air from multiple nozzles to the side of the hot-rolled coil, the amount of air blown to the hot-rolled coil should be the same for all the coils, and the air should be set up from the side of the hot-rolled coil. A method for cooling a hot-rolled coil, characterized by blowing air so that the rising flow of the rising air is uniform.
【請求項3】 コイルの側部表面における冷却空気を合
流させた熱気流の上昇速度の平均が少なくとも1m/s
となるように冷却空気の吹き付けを行うことを特徴とす
る請求項1または2に記載の冷却方法。
3. An average rising speed of a hot air flow combined with cooling air on a side surface of the coil is at least 1 m / s.
The cooling method according to claim 1, wherein the cooling air is blown so as to satisfy the following.
【請求項4】 複数の熱延コイルを整列させた熱延コイ
ル列の両側に、熱延コイル列に沿って送風ダクトをそれ
ぞれ配置し、該送風ダクトの始端に送風ファンを設置す
るとともに、送風ダクトから熱延コイル列の各コイル側
面に指向させた噴射ノズルを、各熱延コイル宛少なくと
も3つ設置した、熱延コイルの冷却装置であって、前記
送風ダクトは、その内部を流れる空気の静圧がダクトの
始端から終端まで均等となる構成とし、また前記噴射ノ
ズルは、コイルの内周面と外周面との中間領域を指向さ
せて設けたことを特徴とする熱延コイルの冷却装置。
4. A ventilation duct is arranged on each side of a hot-rolled coil row in which a plurality of hot-rolled coils are arranged along the hot-rolled coil row, and a blower fan is installed at a start end of the blower duct. A hot-rolled coil cooling device in which at least three jet nozzles directed from a duct to each coil side surface of a hot-rolled coil row are provided for each hot-rolled coil, wherein the blower duct has a structure in which air flowing therethrough is provided. A cooling device for a hot-rolled coil, characterized in that the static pressure is made uniform from the beginning to the end of the duct, and the injection nozzle is provided so as to be directed to an intermediate region between the inner peripheral surface and the outer peripheral surface of the coil. .
JP17189097A 1997-03-31 1997-06-27 Cooling device for hot rolled coil Expired - Fee Related JP3491127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17189097A JP3491127B2 (en) 1997-03-31 1997-06-27 Cooling device for hot rolled coil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-81586 1997-03-31
JP8158697 1997-03-31
JP17189097A JP3491127B2 (en) 1997-03-31 1997-06-27 Cooling device for hot rolled coil

Publications (2)

Publication Number Publication Date
JPH10328737A true JPH10328737A (en) 1998-12-15
JP3491127B2 JP3491127B2 (en) 2004-01-26

Family

ID=26422601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17189097A Expired - Fee Related JP3491127B2 (en) 1997-03-31 1997-06-27 Cooling device for hot rolled coil

Country Status (1)

Country Link
JP (1) JP3491127B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100426343B1 (en) * 2001-07-23 2004-04-08 주식회사 포스코건설 Cooling method for hot rolled coil
KR100768311B1 (en) * 2001-10-31 2007-10-18 주식회사 포스코 Cooling apparatus for coiling coil
KR101259243B1 (en) 2010-09-10 2013-04-29 주식회사 포스코 Apparatus for Cooling Wire-rod Coil
WO2013137042A1 (en) * 2012-03-12 2013-09-19 Jfeスチール株式会社 Device for cooling and method for cooling hot-rolled coil

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586699B2 (en) * 2005-09-29 2010-11-24 Jfeスチール株式会社 Hot rolled coil cooling device
KR102233562B1 (en) * 2019-08-21 2021-03-30 주식회사 이화팬텍 Cooling system for uniform cooling of winding coil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100426343B1 (en) * 2001-07-23 2004-04-08 주식회사 포스코건설 Cooling method for hot rolled coil
KR100768311B1 (en) * 2001-10-31 2007-10-18 주식회사 포스코 Cooling apparatus for coiling coil
KR101259243B1 (en) 2010-09-10 2013-04-29 주식회사 포스코 Apparatus for Cooling Wire-rod Coil
WO2013137042A1 (en) * 2012-03-12 2013-09-19 Jfeスチール株式会社 Device for cooling and method for cooling hot-rolled coil

Also Published As

Publication number Publication date
JP3491127B2 (en) 2004-01-26

Similar Documents

Publication Publication Date Title
KR100645152B1 (en) A gas jet cooling device
CN1046256C (en) An apparatus for the heating or cooling of plate-like or sheet-like flat glass
US4423856A (en) Controlled cooling apparatus for hot rolled wire rods
JP5776593B2 (en) Method and apparatus for cooling hot rolled coil
US5201132A (en) Strip cooling, heating or drying apparatus and associated method
JPH10328737A (en) Method for cooling hot rolling coil and device therefor
JPH10509792A (en) Combined air bar and hole bar floating dryer
JP3370562B2 (en) Method and apparatus for cooling hot-rolled coil
JPS62116724A (en) Strip cooler for continuous annealing furnace
JP2528669Y2 (en) Plenum duct for tenter oven
KR100815922B1 (en) Method for arranging rollers of cooling device to cool wires uniformly
JPS6254188B2 (en)
JPH0567685B2 (en)
JP4102130B2 (en) Steel strip cooling device
JPH0627219Y2 (en) High temperature metal coil cooling system
JP2007321204A (en) Heat-treatment facility for which heating and cooling are used in combination
KR101289181B1 (en) Apparatus Cooling Wire-rod Coil
KR100963064B1 (en) Cooling bend plate cooling pattern controller system
JPS63216927A (en) Method for cooling hot coil
JP3191474B2 (en) Heat treatment method
JPS6118026Y2 (en)
WO2022110166A1 (en) Air cushion generator of furnace for continuous solution heat treatment of coiled aluminum strip
JPS6324117Y2 (en)
JP2599886Y2 (en) Coil heat treatment furnace
KR100376511B1 (en) An apparatus for cooling wire rod in wire rod manufacturing unit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees