JP4061286B2 - Metal plate cooling device and cooling method - Google Patents

Metal plate cooling device and cooling method Download PDF

Info

Publication number
JP4061286B2
JP4061286B2 JP2004113907A JP2004113907A JP4061286B2 JP 4061286 B2 JP4061286 B2 JP 4061286B2 JP 2004113907 A JP2004113907 A JP 2004113907A JP 2004113907 A JP2004113907 A JP 2004113907A JP 4061286 B2 JP4061286 B2 JP 4061286B2
Authority
JP
Japan
Prior art keywords
refrigerant
metal plate
cooling
cone spray
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004113907A
Other languages
Japanese (ja)
Other versions
JP2005296976A (en
Inventor
良洋 芹澤
龍司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004113907A priority Critical patent/JP4061286B2/en
Publication of JP2005296976A publication Critical patent/JP2005296976A/en
Application granted granted Critical
Publication of JP4061286B2 publication Critical patent/JP4061286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、熱間圧延工程や熱処理工程で搬送中の温度が数百度以上の金属板(鋼板、チタン板、銅板などを意味する、以下「金属板」という。)の冷却に関し、より詳しくは、形状特性が良好で材質が均一な金属板を得るために適用される金属板の冷却装置および冷却方法に関するものである。   The present invention relates to cooling of a metal plate (meaning a steel plate, a titanium plate, a copper plate, etc., hereinafter referred to as “metal plate”) having a temperature of several hundred degrees or more during conveyance in a hot rolling process or a heat treatment process. The present invention relates to a metal plate cooling device and a cooling method applied to obtain a metal plate having good shape characteristics and uniform material.

例えば、熱間圧延された高温の鋼板は、巻取や酸洗工程などに搬送する際に冷却されるが、この際に、均一な材質特性および形状特性(平坦度)を確保することが重要であることから、特に板幅方向の温度分布が一様となるように制御冷却を行う必要がある。
このような冷却を行うための冷却装置として、例えば、特許文献1には、冷却媒体を噴射する多数のノズル噴射孔を有し、鋼材の搬送方向と平行に設置した冷却装置で、ノズル列を、
(1)搬送方向に対して斜行して配列する。
(2)隣接するノズル噴射孔の投影部がオーバーラップするように配列する。
(3)ノズル噴射孔を有する面の搬送方向の一部または全面に所定の間隔で幅方向にスリットノズルまたはノズル噴射孔を密に配置したノズル群を設ける。
(4)搬送方向で隣接するノズル噴射孔がオーバーラップし、かつ搬送速度によって鋼板のノズル噴射孔の直下域を通過する単位時間当たりの最低通過回数が変更するように配列する。
などによって、鋼材の冷却むらがなくなり、また早い搬送速度の鋼材も均一に冷却することができ、鋼材の機械的性質、加工性、溶接性、残留応力特性などを向上させることを意図した発明が提案されている。
しかし、この特許文献1の(1)〜(4)の発明では、いずれも3〜4mmの小径の噴射ノズルを15〜30mmの間隔で多数配置した冷却装置であり、搬送方向に多数列配置するものであることから、設備負担が大きくなること、ノズル詰まりなどのトラブルが多発して、冷媒の安定噴射の持続性に乏しいことなどの問題がある。また、冷媒噴射流は小径の棒状流であり冷却面積が小さいことから、特に、高温鋼材を急速冷却する場合には、さらに多数の冷媒噴射ノズルを密に配置し、かつ冷媒を高圧噴射する必要があり、上記問題はさらに顕著になる。
For example, hot-rolled high-temperature steel sheets are cooled when transported to a winding or pickling process, and it is important to ensure uniform material characteristics and shape characteristics (flatness). Therefore, it is necessary to perform the controlled cooling so that the temperature distribution in the plate width direction is particularly uniform.
As a cooling device for performing such cooling, for example, Patent Document 1 discloses a cooling device that has a number of nozzle injection holes for injecting a cooling medium and is installed in parallel with the conveying direction of the steel material. ,
(1) Arrange in a skewed manner with respect to the transport direction.
(2) Arrange so that the projections of adjacent nozzle injection holes overlap.
(3) A nozzle group in which slit nozzles or nozzle injection holes are densely arranged in the width direction at a predetermined interval is provided on a part or the entire surface of the surface having nozzle injection holes in the transport direction.
(4) The nozzle injection holes adjacent in the conveyance direction are overlapped and arranged so that the minimum number of passages per unit time passing through the region immediately below the nozzle injection holes of the steel sheet is changed depending on the conveyance speed.
The present invention is intended to improve the mechanical properties, workability, weldability, residual stress characteristics, etc. of steel materials by eliminating the uneven cooling of the steel materials and also capable of uniformly cooling the steel materials having a high conveyance speed. Proposed.
However, all of the inventions of (1) to (4) in Patent Document 1 are cooling devices in which a large number of small diameter nozzles of 3 to 4 mm are arranged at intervals of 15 to 30 mm, and are arranged in multiple rows in the transport direction. Therefore, there are problems such as an increase in equipment burden, frequent troubles such as nozzle clogging, and poor sustainability of stable refrigerant injection. In addition, since the refrigerant injection flow is a small-diameter rod-like flow and the cooling area is small, it is necessary to arrange a large number of refrigerant injection nozzles densely and to inject the refrigerant at high pressure, especially when rapidly cooling high-temperature steel materials. The above problem becomes more prominent.

また、特許文献2には、冷媒噴射スプレーノズルを少なくとも鋼材搬送方向に密に配置することにより、鋼材搬送方向に隣り合う冷媒噴射スプレーノズルの噴射域が一部重複して噴射干渉域が形成されるようにし、鋼材搬送直交方向にほぼ均一で連続した噴射干渉域が形成された冷媒噴射スプレーにより熱鋼材を冷却することが提案されている。
また、搬送方向に長い噴射干渉域が形成された場合には、鋼材搬送直交方向に隣合うスプレーノズル間で冷却能が高くなり、鋼材幅方向に均等な冷却能が得られないことから、鋼材搬送直交方向に隣接するスプレー噴射ノズル間に、鋼材搬送方向に延在する邪魔板を設けて均等な冷却能を得ることも提案されている。
ここで用いている噴射スプレーノズルは、例えば冷媒を円錐形に噴射する従来一般のノズル(好ましくは噴射角が90度以下のもの)であり、冷媒を広範囲に噴射可能であることから、少ないノズル配置にできる魅力があるが、構造上から冷媒は広がり角度αで充円錐形状に噴射されるため、冷却能力分布は、冷媒量分布と冷媒滴の厚鋼板との衝突面における法線方向の噴射速度分布に影響を受けることになる。例えば、冷媒量分布が均一であっても、噴射流の広がり角度αが例えば、90度の場合では、冷媒噴射流の周辺部の法線方向噴射速度は、中心部に比較して30%も低下する。
したがって、こうした法線方向の噴射速度分布が存在する限り、冷媒衝突面の直径方向、すなわち厚鋼板の幅方向で、冷却能力分布は不均一になり厚鋼板の幅方向の温度変化幅がかなり大きいものになる。
特許文献2では、少なくとも鋼材搬送方向に密に配置して噴射干渉域を形成することによって、上記の法線方向噴射速度の影響を少なくして冷却能力を確保できるように思われるが、隣り合う噴射スプレーノズル間の噴射干渉域間で冷媒滞留部が発生して対流が不十分になり、排出されない水が噴流自体を乱し、均一性の低下を招く、あるいは冷却効率が十分ではなく冷却コストが増大するという問題もある。
特開2001−232413号公報 特開平8−238518号公報
Further, in Patent Document 2, by disposing refrigerant injection spray nozzles densely at least in the steel material conveyance direction, the injection areas of refrigerant injection spray nozzles adjacent in the steel material conveyance direction partially overlap to form an injection interference area. Thus, it has been proposed that the hot steel material is cooled by the refrigerant jet spray in which the substantially uniform and continuous jet interference area is formed in the direction perpendicular to the steel material conveyance.
In addition, when a long jet interference zone is formed in the transport direction, the cooling capacity increases between the spray nozzles adjacent to each other in the steel transport orthogonal direction, and a uniform cooling capacity cannot be obtained in the steel width direction. It has also been proposed to obtain a uniform cooling performance by providing baffle plates extending in the steel material conveyance direction between spray spray nozzles adjacent to each other in the conveyance orthogonal direction.
The spray nozzle used here is, for example, a conventional general nozzle (preferably having an injection angle of 90 degrees or less) for injecting refrigerant in a conical shape. Although it is attractive to arrange, since the refrigerant is injected in a full conical shape with a spread angle α from the structure, the cooling capacity distribution is normal injection at the collision surface between the refrigerant amount distribution and the thick steel plate of the refrigerant droplets It will be affected by the velocity distribution. For example, even when the refrigerant amount distribution is uniform, when the jet flow spread angle α is 90 degrees, for example, the normal direction injection speed of the peripheral portion of the refrigerant jet flow is 30% as compared with the central portion. descend.
Therefore, as long as the jet velocity distribution in the normal direction exists, the cooling capacity distribution is not uniform in the diameter direction of the refrigerant collision surface, that is, the width direction of the thick steel plate, and the temperature change width in the width direction of the thick steel plate is considerably large. Become a thing.
In Patent Document 2, it seems that the cooling ability can be ensured by reducing the influence of the normal direction injection speed by forming the injection interference area by densely arranging in at least the steel material conveying direction, but adjacent to each other. Refrigerant stagnation occurs between the injection interference areas between the spray spray nozzles, resulting in insufficient convection, and water that is not discharged disturbs the jet itself, resulting in poor uniformity, or cooling efficiency is not sufficient and cooling cost There is also a problem that increases.
JP 2001-232413 A JP-A-8-238518

本発明は、搬送中の金属板に対して冷媒(水、空気、水と空気の混合体、溶融塩などで代表される冷却媒体を意味する、以下「冷媒」と略称する。)を噴射する充円錐スプレーノズルを、鉛直状態にして幅方向と搬送方向にそれぞれ複数列配置してなる金属板の冷却装置において、冷媒噴射ノズルの配置を少なくして設備費負担を軽減するとともに、金属板表面での噴射冷媒の衝突、対流および流動・排出を好ましい状態にして冷却効率を高め、金属板の幅方向の均一冷却を低コストで容易に実現できる金属板の冷却装置および冷却方法を提供するものである。   In the present invention, a refrigerant (water, air, a mixture of water and air, a cooling medium represented by a molten salt, etc., hereinafter abbreviated as “refrigerant”) is jetted onto a metal plate being conveyed. In the metal plate cooling device in which the full cone spray nozzles are arranged vertically in a plurality of rows in the width direction and in the conveying direction, the arrangement of the refrigerant injection nozzles is reduced to reduce the equipment cost burden, and the metal plate surface A cooling apparatus and cooling method for a metal plate that can easily achieve low-cost uniform cooling in the width direction of the metal plate by improving the cooling efficiency by making the collision, convection and flow / discharge of the injected refrigerant in a favorable state It is.

本発明の金属板の冷却装置は、金属板の幅方向の均一冷却を効率的に実現するために、以下の(1)〜(4)の構成を要旨とする。
(1) 金属板を拘束通板させる複数対の拘束ロールを備え、各拘束ロール対間に冷媒噴射量制御可能な充円錐スプレーノズルを備えた冷却装置において、金属板に冷媒を噴射する充円錐スプレーノズルを、鉛直状態にして金属板の幅方向と搬送方向にそれぞれ複数列配置してなり、各充円錐スプレーノズルを、噴射冷媒の衝突面が金属板表面で干渉しないように離して配置し、かつ、各充円錐スプレーノズルからの冷媒噴射流を、搬送方向から金属板の搬送方向と直交する鉛直面に投影した場合において、金属板の搬送方向で隣接する充円錐スプレーノズルの冷媒噴射流が、該鉛直面にその幅方向で部分的にオーバーラップして投影されるように配置し、前記充円錐スプレーノズルとして、冷媒の噴射広がり角度が5〜40度の充円錐スプレーノズルを用いたことを特徴とする金属板の冷却装置。
(2) (1)において、金属板の搬送方向で隣接する充円錐スプレーノズル間での冷媒噴射流のオーバーラップの幅が、双方の充円錐スプレーノズルの冷媒噴射流の鉛直面での底面直径の0.4倍以上であることを特徴とする金属板の冷却装置。
(3) (1)または(2)において、各拘束ロール対間単位で、各充円錐スプレーノズルからの冷媒噴射流の衝突面が、投影鉛直面の幅方向で部分的にオーバーラップして金属板の幅全体を覆うように、複数のノズル列を配置したことを特徴とする金属板の冷却装置。
(4) (1)〜(3)のいずれかの金属板の冷却装置を、複数対の拘束ロールで拘束通板中の金属板を冷却可能に配置し、該冷却装置の充円錐スプレーノズルからの噴射冷媒によって金属板を冷却し、冷却後の金属板の幅方向温度分布の均一性を高めることを特徴とする金属板の冷却方法。
The metal plate cooling device according to the present invention has the following configurations (1) to (4) in order to efficiently realize uniform cooling in the width direction of the metal plate.
(1) A cooling cone provided with a plurality of pairs of restraining rolls for restraining and passing a metal plate, and having a filling cone spray nozzle capable of controlling the amount of refrigerant injected between each pair of restraining rolls. The spray nozzles are vertically arranged in multiple rows in the width direction of the metal plate and in the transport direction, and the full cone spray nozzles are arranged apart so that the collision surface of the injected refrigerant does not interfere with the metal plate surface. In addition, when the refrigerant jet flow from each full cone spray nozzle is projected from the conveyance direction onto a vertical plane orthogonal to the conveyance direction of the metal plate, the refrigerant jet flow of the full cone spray nozzle adjacent in the conveyance direction of the metal plate Is arranged so as to be partially overlapped and projected on the vertical surface in the width direction, and as the full cone spray nozzle, a full cone spray having a refrigerant spray spread angle of 5 to 40 degrees. -A metal plate cooling device using a nozzle .
(2) In (1) , the width of the overlap of the refrigerant jet flow between the full cone spray nozzles adjacent in the conveying direction of the metal plate is the bottom diameter of the vertical plane of the refrigerant jet flow of both full cone spray nozzles The metal plate cooling device characterized by being 0.4 times or more.
(3) (1) or Oite, in units between each constraining roll pair (2), the collision surface of the coolant jet from KakuTakashi cone spray nozzles, partially overlap in the width direction of the projection vertical surface A plurality of nozzle rows are arranged so as to cover the entire width of the metal plate.
(4) The cooling device for the metal plate according to any one of (1) to (3) is arranged so that the metal plate in the restraining passage plate can be cooled by a plurality of pairs of restraining rolls, and from the full cone spray nozzle of the cooling device. A method for cooling a metal plate, wherein the metal plate is cooled by a jetting refrigerant of the above, and the uniformity of the temperature distribution in the width direction of the metal plate after cooling is improved.

本発明の金属板の冷却装置においては、冷媒を広範囲に噴射可能な充円錐スプレーノズルを用いるので、少ないノズル配置にして設備費負担を軽減することができ、噴流広がり角度αを5〜40度にして法線方向の噴射速度分布の変化幅を5%以下にした複数の充円錐スプレーノズルを、金属板の幅方向と搬送方向に、冷媒衝突面が干渉しないように離して配置し、かつ搬送方向で隣接する充円錐スプレーノズルを、その冷媒衝突面が幅方向で部分的にオーバーラップするように配置することにより、ノズル配置数を少なくして冷却効率を向上させるとともに、金属板の幅方向での冷却能力分布の変化幅を小さくして均一冷却でき、例えば金属板が鋼板である場合には、幅方向の表面温度分布幅を20℃程度まで小さくして、安定した形状特性、表層組織を有する鋼板を得ることができる。   In the metal plate cooling apparatus according to the present invention, a full conical spray nozzle capable of injecting a refrigerant in a wide range is used. Therefore, the equipment cost burden can be reduced with a small nozzle arrangement, and the jet spread angle α is set to 5 to 40 degrees. A plurality of full-cone spray nozzles having a variation width of the jet velocity distribution in the normal direction of 5% or less are arranged apart from each other so that the refrigerant collision surface does not interfere in the width direction and the conveyance direction of the metal plate, and By arranging the conical spray nozzles adjacent in the transport direction so that the refrigerant collision surfaces partially overlap in the width direction, the number of nozzles is reduced and the cooling efficiency is improved. For example, when the metal plate is a steel plate, the surface temperature distribution width in the width direction is reduced to about 20 ° C. to stabilize the shape characteristics. , It is possible to obtain a steel sheet having a surface layer structure.

本発明の金属板の冷却装置は、鋼板の冷却に用いる場合には、例えば図1に示すように、熱間圧延機2の後段に配置するものであり、基本的には、複数の拘束ロール(例えば4a、4b、4c)と、この拘束ロール対間(例えば4aと4b間、4bと4c間)に配置したノズル列群1a、1b、1cからなり、このノズル列群1a、1b、1cからの噴射冷媒で、各拘束ロール対間で拘束搬送される鋼板を冷却する構造を有するものであり、例えば、熱間圧延機2で熱間圧延して得られた700〜1000℃の高温の鋼板3を搬送中に室温〜700℃に制御冷却するために適用して特に顕著な効果を奏するものである。
この金属板(鋼板)の冷却装置1のノズル列群1a、1b、1cでは、それぞれ、図2(a)、(b)に示すように、充円錐形で鋼板3との冷媒衝突面が円形である冷媒噴射流5aを形成し、冷媒を広範囲に分散・噴射衝突させることができるノズル5(以下「充円錐スプレーノズル」と呼称する。)を、図3および図4に示すように、冷媒衝突面が鋼板3上で干渉しないように離して、例えば鋼板3の幅方向では間隔aをおいて、また搬送方向では間隔bをおいて、複数(列)配置してなるものである。
When used for cooling a steel sheet, the metal plate cooling device of the present invention is arranged at the subsequent stage of the hot rolling mill 2 as shown in FIG. 1, for example, and basically includes a plurality of restraining rolls. (For example, 4a, 4b, 4c) and nozzle row groups 1a, 1b, 1c arranged between the pair of restraining rolls (for example, between 4a and 4b, between 4b and 4c). The jet refrigerant from the above has a structure for cooling the steel sheet restrained and transported between each pair of restraining rolls. For example, a high temperature of 700 to 1000 ° C. obtained by hot rolling with the hot rolling mill 2 is used. This is particularly effective when applied to control and cool the steel plate 3 to room temperature to 700 ° C. during conveyance.
In the nozzle row groups 1a, 1b, and 1c of the cooling device 1 for the metal plate (steel plate), as shown in FIGS. 2 (a) and 2 (b), the refrigerant collision surface with the steel plate 3 is circular as shown in FIGS. As shown in FIGS. 3 and 4, a nozzle 5 (hereinafter referred to as a “full cone spray nozzle”) that forms a refrigerant injection flow 5 a that can disperse and collide with the refrigerant in a wide range as shown in FIGS. 3 and 4. The collision surfaces are separated so as not to interfere with each other on the steel plate 3, for example, a plurality (rows) are arranged at intervals a in the width direction of the steel plate 3 and at intervals b in the transport direction.

ここで、例えば、拘束ロール対間(例えば4aと4b間)でのノズル列群1aにおいては、鋼板3の搬送方向で隣接する、例えば第1列目の充円錐スプレーノズル5と第2列目の充円錐スプレーノズル5は、鋼板3の搬送方向から見て双方の冷媒噴射流5a間で、部分的にオーバーラップするように配置するものである。
例えば、図5に示すように、鋼板3の搬送方向で隣接する充円錐スプレーノズル5と5からの冷媒噴射流5aを、搬送方向から鋼板3の搬送方向と直交する鉛直面Fに投影した場合において、この充円錐スプレーノズル5と5の冷媒噴射流5aの形状が、鋼板3表面上で部分的にオーバーラップして投影されるように配置するものである。
このようなノズル配置にすることによって、ノズル配置数を少なくし冷却効率を向上可能にするとともに、特に鋼板3の幅方向において、冷却能力を支配する冷媒衝突面を安定形成し冷媒衝突面積分布の均一性を高めて冷却の均一性を高め、鋼板3の幅方向での温度分布の変化幅を20℃以下にし、鋼板3の形状特性および材質特性を均質化可能にするものである
Here, for example, the nozzle row group 1a between constraining roll pair (e.g. between 4a and 4b) are adjacent in the conveying direction of the steel plate 3, for example, the first column of the charge cone spray nozzles 5 1 and the second column charging cone spray nozzles 5 2 eyes, between both refrigerant jet 5a when viewed from the conveying direction of the steel plate 3, is to arranged to partially overlap.
For example, as shown in FIG. 5, projecting a refrigerant jet 5a from charging cone spray nozzles 5 1 and 5 2 adjacent in the conveying direction of the steel sheet 3, a vertical plane F perpendicular from the transport direction to the transporting direction of the steel plate 3 in case of the shape of the charge-cone spray nozzle 5 1 and 5 2 of the coolant jet 5a, is to arranged to be partially overlapping with the projection on the steel plate 3 surface.
By adopting such a nozzle arrangement, it is possible to reduce the number of nozzle arrangements and improve the cooling efficiency, and in particular, in the width direction of the steel plate 3, the refrigerant collision surface that governs the cooling capacity is stably formed, and the refrigerant collision area distribution is reduced. The uniformity is increased to enhance the cooling uniformity, the change width of the temperature distribution in the width direction of the steel sheet 3 is set to 20 ° C. or less, and the shape characteristics and material characteristics of the steel sheet 3 can be homogenized .

以下に本発明を、鋼板の冷却に用いる場合を例として、図3〜図6に基づき、具体的に説明する。ここでは、鋼板の冷却装置1のノズル列群1aを形成する、搬送方向の1列目の充円錐スプレーノズル5と2列目の充円錐スプレーノズル5の例で代表説明する。
鋼板3の上下面を冷却するように充円錐スプレーノズル(5、5)を、鋼板3の上面側と下面側にそれぞれ配置されるものであるが、ここでは、上面側の冷却について説明し、下面側の冷却については説明を省略する。
なお、下面側の冷却については概念的には、充円錐スプレーノズル(5、5)を上面側の場合と同様に配置することにより、下面側でも鋼板の幅方向で均一冷却が可能であるが、冷媒噴射流の挙動が上面側と異なることから、下面側の冷却については上面側の冷却と好ましい冷却バランスを確保するための条件付加を考慮する。
Hereinafter, the present invention will be specifically described with reference to FIGS. Here, forming the nozzle row groups 1a of the cooling device 1 of the steel sheet, leading described in example charging cone spray nozzle 2 of 5 of the first column of the charge cone spray nozzles 5 1 and the second column in the transport direction.
The full conical spray nozzles (5 1 , 5 2 ) are arranged on the upper surface side and the lower surface side of the steel plate 3 so as to cool the upper and lower surfaces of the steel plate 3, but here, the cooling on the upper surface side will be described. The description of the cooling on the lower surface side is omitted.
In terms of cooling on the lower surface side, conceptually, by arranging the full conical spray nozzles (5 1 , 5 2 ) in the same manner as on the upper surface side, uniform cooling in the width direction of the steel plate is possible on the lower surface side. However, since the behavior of the refrigerant injection flow is different from that on the upper surface side, regarding cooling on the lower surface side, consideration is given to the addition of conditions for ensuring cooling on the upper surface side and a preferable cooling balance.

本発明で鋼板の冷却装置1の各ノズル列群1a、1b、1cを形成する充円錐スプレーノズル(5、5)は、冷媒を広範囲に噴射可能であることから、少ないノズル配置にできる魅力があるが、構造上から冷媒は広がり角度αで充円錐形状に噴射されるため、冷却能力分布は、冷媒量分布と冷媒滴の鋼板との衝突面における法線方向の噴射速度分布に影響を受けることになる。
例えば、冷媒量分布が均一であっても、図6(a)、(b)に示すように、冷媒の噴流広がり角度αが例えば、90度の場合では、冷媒噴射流5aの周辺部では噴射速度は、中心部に比較して30%も低下する。こうした法線方向の噴射速度分布が存在する限り、冷媒衝突面の直径方向、すなわち鋼板3の幅方向で、冷却能力分布は不均一になり鋼板3の幅方向の温度変化幅を生じることは避けられない。
In the present invention, the full cone spray nozzles (5 1 , 5 2 ) forming the nozzle row groups 1a, 1b, 1c of the steel sheet cooling device 1 can inject a refrigerant in a wide range, and therefore can be arranged with a small number of nozzles. Although attractive, the refrigerant is jetted into a full conical shape with a spread angle α from the structure, so the cooling capacity distribution affects the normal velocity jet velocity distribution at the collision surface between the refrigerant amount distribution and the steel sheet of the refrigerant droplets. Will receive.
For example, even if the refrigerant amount distribution is uniform, as shown in FIGS. 6A and 6B, when the refrigerant jet spread angle α is, for example, 90 degrees, injection is performed at the periphery of the refrigerant jet flow 5a. The speed is reduced by 30% compared to the center. As long as such an injection velocity distribution in the normal direction exists, it is avoided that the cooling capacity distribution becomes non-uniform in the diameter direction of the refrigerant collision surface, that is, the width direction of the steel plate 3, and the temperature change width in the width direction of the steel plate 3 is generated. I can't.

そこで、本発明では、充円錐スプレーノズル(5、5)の冷媒の噴流広がり角度αを小さくして法線方向の噴射速度変化を5%以下にし、冷却能力分布の不均一性を緩和することを考慮する。
法線方向の噴射速度変化を5%以下にするための噴流広がり角度αは、図6(a)から40度以下であるが、噴流広がり角度αが5度未満では、冷却能力を支配する冷媒衝突面の面積が小さくなるため、ノズル配置数を多くする必要があり、前記したような問題を生じる。また、噴流広がり角度αが40度超の場合には、法線方向の冷媒噴射速度分布の不均一を充分に緩和できなくなるため、オーバーラップの幅dを大きくする必要があることから、充分な冷却効率を安定確保できる冷媒流を形成できない懸念がある。したがって、噴流広がり角度αは5〜40度であることが好ましい
Accordingly, in the present invention, the jet spread angle α of the refrigerant of the full cone spray nozzle (5 1 , 5 2 ) is reduced to reduce the change in the injection speed in the normal direction to 5% or less, thereby alleviating the non-uniformity of the cooling capacity distribution. Consider what to do.
The jet spread angle α for making the change in jet velocity in the normal direction 5% or less is 40 degrees or less from FIG. 6A, but if the jet spread angle α is less than 5 degrees, the refrigerant governing the cooling capacity. Since the area of the collision surface becomes small, it is necessary to increase the number of nozzles arranged, resulting in the problems described above. In addition, when the jet spread angle α is more than 40 degrees, the non-uniformity of the refrigerant jet velocity distribution in the normal direction cannot be sufficiently mitigated, so that it is necessary to increase the overlap width d. There is a concern that a refrigerant flow that can ensure stable cooling efficiency cannot be formed. Therefore, the jet spread angle α is preferably 5 to 40 degrees .

上記のように、法線方向の冷却能力分布の不均一を緩和した充円錐スプレーノズル5、5を、図3〜図4に示すように、鋼板3の幅方向に間隔aをおいて、また搬送方向に間隔bをおいて、それぞれ複数配置するものであるが、例えば、複数の充円錐スプレーノズル5からなる第1列目のノズル列で見た場合、鋼板3の幅方向に隣接する各充円錐スプレーノズル5間の冷媒衝突面間に噴射冷媒が衝突しない領域があり、この領域は冷却効果を支配する噴射冷媒の衝突がないため、この第1列目のノズル列の各充円錐スプレーノズル5のみでは鋼板3の幅方向の冷却能力分布の不均一が顕著になる。
そこで、鋼板3の搬送方向で隣接する複数の充円錐スプレーノズル5からなる第2列目のノズル列の充円錐スプレーノズル5を、その冷媒衝突面が第1列目のノズル列の各充円錐スプレーノズル5の冷媒衝突面と干渉しない間隔bだけ離れた位置で、第1列目のノズル列の充円錐スプレーノズル5の冷媒衝突がない領域に形成されるように配置することによって、第1列目と第2列目のノズル列による鋼板3の幅方向の冷媒衝突面積の分布の均一性を高め、鋼板3の幅方向の冷却能力分布の不均一を緩和するものである。
なお、充円錐スプレーノズル5、5の鋼板3の幅方向における間隔aは、双方の冷媒噴射流5aの鋼板3との冷媒衝突面の直径Dよりオーバーラップの幅d分を減じた程度とし、また充円錐スプレーノズル5と5との搬送方向の間隔bは、噴射冷媒を排出する流れを冷媒衝突流と干渉させないために、間隔aの60%以上離すことが好ましい。
As described above, the full-cone spray nozzles 5 1 , 5 2 that have relaxed the uneven cooling capacity distribution in the normal direction are spaced apart in the width direction of the steel plate 3 as shown in FIGS. , also at a distance b in the conveying direction, but in which each of a plurality of arrangement, for example, when viewed in the first nozzle row including a plurality of charge cone spray nozzles 5 1, in the width direction of the steel plate 3 There is a region injected refrigerant between the refrigerant collision surface between KakuTakashi cone spray nozzles 5 1 adjacent do not collide, since this region has no conflicts injection refrigerant governing the cooling effect, the first nozzle row KakuTakashi cone spray nozzle 5 1 only becomes noticeable uneven cooling capacity distribution in the width direction of the steel plate 3.
Therefore, the charge cone spray nozzle 5 of the second nozzle row including a plurality of charge cone spray nozzles 5 2 adjacent in the conveying direction of the steel plate 3, the refrigerant impact surface that is in the first nozzle row at a position apart by a distance b which does not interfere with the charging cone spray nozzles 5 1 coolant impact surface, be arranged to be formed in the region there is no refrigerant collision charging cone spray nozzles 5 of the first nozzle row This increases the uniformity of the refrigerant collision area distribution in the width direction of the steel plate 3 by the first and second nozzle rows, and alleviates the non-uniformity of the cooling capacity distribution in the width direction of the steel plate 3. .
The distance a in the width direction of the charging cone spray nozzles 5 1, 5 2 of the steel plate 3, the degree obtained by subtracting the width d min of the overlap than the diameter D of the coolant impact surface of the steel plate 3 of both the refrigerant jet 5a distance b between the conveying direction between, and also charge cone spray nozzles 5 1 and 5 2, the flow of discharging the injected refrigerant in order not to interfere with the refrigerant impinging flow, it is preferable to separate more than 60% of the distance a.

鋼板3の搬送方向で隣接する第1列目と第2列目のノズル列の充円錐スプレーノズル5と5間では、図5に示すように、充円錐スプレーノズル の冷媒噴射流形状が、搬送方向から鋼板3の搬送方向に直交する鉛直面に投影した際に、その幅方向で下部側に部分的にオーバーラップして投影されるように、充円錐スプレーノズル5と5を配置するものであり、充円錐スプレーノズル5、5における冷媒衝突面の法線方向の噴射速度分布変化に起因する、鋼板3の幅方向に対する冷却能力分布の不均一を、さらに緩和することが好ましい。
このオーバーラップの幅dの程度については、充円錐スプレーノズルの噴流広がり角度αにもよるが、例えば噴流広がり角度αを5〜40度にして冷媒噴射速度変化を5%未満にした場合には、鋼板3表面に噴射衝突させた冷媒の流れを、冷却効率を安定確保できる流れにして流動排出させるために、オーバーラップの幅dを、充円錐スプレーノズル5と5の冷媒噴射流5aの形状を搬送方向から鋼板3の搬送方向に直交する鉛直面Fに投影した場合の鉛直面Fでの冷媒噴射流5aの底面直径Dの0.4倍以上にすることが好ましい。ここで冷媒噴射流5aの底面直径Dとは、冷媒噴射流5aの鋼板3表面との衝突面の直径Dに相当する
In the first row and between charging cone spray nozzles 5 1 and 5 2 of the second nozzle row adjacent to each other in the conveyance direction of the steel plate 3, as shown in FIG. 5, the charge cone spray nozzles 5 1 and 5 2 When the refrigerant jet shape is projected from the conveying direction onto the vertical plane perpendicular to the conveying direction of the steel plate 3, the full cone spray nozzle 5 is projected so as to partially overlap the lower side in the width direction. is intended to place the 1 and 5 2, due to the normal direction of the injection velocity distribution change of the refrigerant impact surface during charge cone spray nozzles 5 1, 5 2, unevenness in cooling capacity distribution for the width direction of the steel plate 3 It is preferable to further relax.
The degree of the overlap width d depends on the jet spread angle α of the full cone spray nozzle. For example, when the jet spread angle α is 5 to 40 degrees and the change in the refrigerant injection speed is less than 5%. , the flow of refrigerant jetted collide with the steel plate 3 surface, in order to flow discharged in the flow can be stably ensured cooling efficiency, the width d of the overlap, charge cone spray nozzles 5 1 and 5 2 of the coolant jets 5a Is preferably 0.4 times or more the bottom surface diameter D of the refrigerant jet 5a on the vertical plane F when projected from the transport direction onto the vertical plane F orthogonal to the transport direction of the steel plate 3. Here, the bottom diameter D of the refrigerant jet 5a corresponds to the diameter D of the collision surface of the refrigerant jet 5a with the surface of the steel plate 3 .

図7は、本発明でいう鋼板の搬送方向で隣接する充円錐スプレーノズル(5と5)間の冷媒衝突面のオーバーラップの幅dの意味を平面的に示したものであり、ここでは、便宜的に、冷媒噴射流5aの鋼板3との冷媒衝突面を同じ位置で横方向に並べて示したものであり、図7(a)は、オーバーラップの幅dが、図5の鉛直面Fでの冷媒噴射流5aの底面直径Dの0.4倍、すなわち、鋼板3の搬送方向で隣接する充円錐スプレーノズル5と5の冷媒噴射流5aの冷媒衝突面間の重なり比率(d/D)が0.4の場合を示し、図7(b)は、オーバーラップの幅dが、底面直径Dの1/2以上、例えば2/3の場合を示している。
このオーバーラップの幅dは、充円錐スプレーノズル(5と5)からの噴射冷媒の噴流広がり角度α、冷却能力の大小を左右するものである。搬送方向各部の冷却能力は、底面直径Dとオーバーラップの幅d(または重なり角度θ)と噴流広がり角度αを用いて求めることができる。
Figure 7 is for the meaning of the width d of the overlapping of the coolant impact surface between the charge cone spray nozzles adjacent the conveying direction of the steel sheet in the present invention (5 1 and 5 2) shown in a plan view, wherein Then, for convenience, the refrigerant collision surfaces of the refrigerant jet flow 5a and the steel plate 3 are shown side by side in the same position, and FIG. 7 (a) shows the overlap width d in FIG. 0.4 times the base diameter D of the coolant jet 5a in terms F, i.e., the overlap ratio between the refrigerant collision surfaces of adjacent charge cone spray nozzles 5 1 and 5 2 of the coolant jet 5a in the conveyance direction of the steel plate 3 FIG. 7B shows a case where (d / D) is 0.4, and FIG. 7B shows a case where the overlap width d is ½ or more of the bottom surface diameter D, for example 2/3.
The width d of the overlap is to influence the jet spread angle alpha, the magnitude of the cooling capacity of the injection refrigerant from the charge cone spray nozzle (5 1 and 5 2). The cooling capacity of each part in the transport direction can be obtained using the bottom surface diameter D, the overlap width d (or the overlap angle θ), and the jet spread angle α.

図8は、搬送方向で隣接する充円錐スプレーノズル(5と5)の冷媒衝突面間のオーバーラップの幅dと底面直径Dの比(重なり比率:d/D)と、冷却能力の最大最小比率(−)の関係を、充円錐スプレーノズルの噴流広がり角度αが5度、40度、60度、100度の場合に区分して表したものである。
ここで、冷却能力の最大最小比率(−)とは、搬送方向で隣接する充円錐スプレーノズル(5と5)の冷媒衝突面の中心間における、冷媒衝突面の重なり比率:d/Dによって変化する鋼板3の幅方向の冷却能力分布幅を、最大冷却能力(冷媒衝突面の中心部の冷却能力)に対する比率として示したものである。
図8から、充円錐スプレーノズルの噴流広がり角度αが5度、40度の場合では、重なり比率(d/D)を0.4にした場合において、最大冷却能力に対して0.9以上の冷却能力を確保でき、鋼板3の幅方向での冷却能力分布の変化幅を10%以下に緩和可能であることを示している。冷却能力分布の変化幅が10%以下になるように隣接する充円錐スプレーノズルを配置することにより、冷却後の鋼板3の幅方向表面温度分布の変化幅を20℃以下にすることができる。
重なり比率(d/D)を0.35にした場合には、充円錐スプレーノズルの噴流広がり角度αを5度にしても最大冷却能力に対して0.8程度の冷却能力しか確保できないため、鋼板3の幅方向での冷却能力分布の変化幅を10%以下にできないことを示しており、冷却後の鋼板3の幅方向表面温度分布の変化幅を20℃以下にすることが難しい。
8, the overlap width d and a bottom surface diameter D ratio (overlap ratio: d / D) of between refrigerant impact surface charge cone spray nozzles adjacent to each other in the conveying direction (5 1 and 5 2) and, the cooling capacity The relationship between the maximum and minimum ratios (-) is shown separately when the jet spread angle α of the full cone spray nozzle is 5, 40, 60, and 100 degrees.
Here, the maximum and minimum ratio of the cooling capacity (-) and, between the center of the refrigerant impact surface charge cone spray nozzles adjacent to each other in the conveying direction (5 1 and 5 2), the overlapping of the coolant collision surface ratio: d / D The cooling capacity distribution width in the width direction of the steel plate 3 that changes depending on the ratio is shown as a ratio to the maximum cooling capacity (the cooling capacity at the center of the refrigerant collision surface).
From FIG. 8, when the jet spread angle α of the full cone spray nozzle is 5 degrees and 40 degrees, the overlap ratio (d / D) is 0.4 or more with respect to the maximum cooling capacity when the overlap ratio (d / D) is 0.4. It shows that the cooling capacity can be secured and the change width of the cooling capacity distribution in the width direction of the steel plate 3 can be relaxed to 10% or less. By arranging the adjacent full cone spray nozzles so that the change width of the cooling capacity distribution is 10% or less, the change width of the surface temperature distribution in the width direction of the steel sheet 3 after cooling can be 20 ° C. or less.
When the overlap ratio (d / D) is set to 0.35, even if the jet spread angle α of the full cone spray nozzle is 5 degrees, only about 0.8 cooling capacity can be secured with respect to the maximum cooling capacity. This indicates that the change width of the cooling capacity distribution in the width direction of the steel plate 3 cannot be 10% or less, and it is difficult to set the change width of the surface temperature distribution in the width direction of the steel plate 3 after cooling to 20 ° C. or less.

なお、充円錐スプレーノズルの噴流広がり角度αが60度、100度の場合では、重なり比率(d/D)を0.4にしても、最大冷却能力に対して0.8程度の冷却能力しか確保できないため、鋼板3の幅方向での冷却能力分布の変化幅を10%以下にすることができないことを示している。この角度αが60度、100度の場合で、重なり比率(d/D)を0.7程度まで大きくすれば、最大冷却能力に対して0.95程度の冷却能力を確保できるが、この場合、充円錐スプレーノズルを多く配置することになり、コスト負担が増大する。
これらのことから、噴流広がり角度αは5〜40度、重なり比率(d/D)は0.4〜0.7程度にすることが、より好ましい条件と言える。
When the jet spread angle α of the full cone spray nozzle is 60 degrees or 100 degrees, even if the overlap ratio (d / D) is 0.4, the cooling capacity is only about 0.8 with respect to the maximum cooling capacity. Since it cannot ensure, it has shown that the change width of the cooling capacity distribution in the width direction of the steel plate 3 cannot be made 10% or less. If the angle α is 60 degrees or 100 degrees and the overlap ratio (d / D) is increased to about 0.7, a cooling capacity of about 0.95 with respect to the maximum cooling capacity can be secured. As a result, a large number of full-cone spray nozzles are arranged, increasing the cost burden.
From these things, it can be said that it is more preferable that the jet spread angle α is 5 to 40 degrees and the overlap ratio (d / D) is about 0.4 to 0.7.

上記の例では、鋼板3の搬送方向の第1列目の充円錐スプレーノズル5と第2列目の充円錐スプレーノズル5を、搬送方向と直交方向に平行に配置してオーバーラップ幅dを形成するようにしたが、冷却対象の鋼板条件(材質、サイズ、温度)、冷却条件などに応じて、第1列目のノズル列と第2列目のノズル列を交互に配置して、鋼板3の搬送方向に3列目、4列目というようにノズル列を増加配置を考慮することができる。
なお、特に高温の鋼板3を冷却する場合には、反りの防止、表層組織の均質化の観点では、鋼板3を最初に冷却する第1列目のノズル列を、第2列目のノズル列より多くの充円錐スプレーノズルで形成して、幅方向の広い領域を均一に冷却するのが有利である場合が多いが、第1列目のノズル列を、第2列目のノズル列より少ない充円錐スプレーノズルで形成することも考慮できる。
このように、複数のノズル列の充円錐スプレーノズル5、5の冷媒噴流5aの衝突面を、鋼板3の幅方向全体に衝突させる場合の複数のノズル列配置としては、例えば図1のように、複数対の拘束ロール4a、4b、4cを備え、拘束ロール4aと4b間にノズル列群1aを配置し、拘束ロール4aと4b間にノズル列群1bを配置する場合では、この複数の拘束ロール対間すなわち、ノズル列群1aとノズル列群1bトータルとして考慮することも考えられるが、各拘束ロール対間単位、すなわち、各ノズル列群単位で考慮することが望ましい。
これは、鋼板3を冷却するに際しては冷却能力は鋼板3の表面温度の変化に伴って変化するので、例えば、拘束ロール4aと4b間に配置のノズル列群1aと、拘束ロール4bと4c間に配置のノズル列群1bの冷媒噴流5aの衝突面を鋼板3幅方向全体に衝突させても、鋼板3の進行方向で鋼板3の表面温度が大きく異なるため、例えば拘束ロール4aと4b間と、拘束ロール4bと4c間では、冷却能力に差が生じて幅方向の冷却の均一性が悪化するからである
In the above example, the first column of the charge cone spray nozzles 5 1 and the second column of the charge cone spray nozzles 5 2 in the transport direction of the steel plate 3, the overlapping width arranged in parallel in the direction perpendicular to the conveying direction d is formed, but the first nozzle row and the second nozzle row are alternately arranged according to the steel plate conditions (material, size, temperature) to be cooled, cooling conditions, etc. Further, it is possible to consider an increase in the arrangement of nozzle rows such as the third row and the fourth row in the conveying direction of the steel plate 3.
In particular, when cooling the high-temperature steel plate 3, from the viewpoint of preventing warpage and homogenizing the surface layer structure, the first nozzle row for cooling the steel plate 3 first is the second nozzle row. It is often advantageous to form a larger number of full-cone spray nozzles and uniformly cool a wide area in the width direction, but the first row of nozzles is less than the second row of nozzles. It is also possible to consider forming with a full cone spray nozzle.
Thus, the collision surface of the plurality of nozzle arrays of charge cone spray nozzles 5 1, 5 2 refrigerant jets 5a, as the plurality of nozzle rows arranged in the case of collision in the entire width direction of the steel plate 3, for example, in FIG. 1 As described above, when a plurality of pairs of restraining rolls 4a, 4b, and 4c are provided, the nozzle array group 1a is disposed between the restraining rolls 4a and 4b, and the nozzle array group 1b is disposed between the restraining rolls 4a and 4b. Although it can be considered that the total number of constraint roller pairs, that is, the total of the nozzle row group 1a and the nozzle row group 1b, it is desirable to consider each constraint roller pair unit, that is, each nozzle row group unit.
This is because when the steel plate 3 is cooled, the cooling capacity changes with the change in the surface temperature of the steel plate 3, for example, between the nozzle row group 1a arranged between the restraining rolls 4a and 4b and the restraining rolls 4b and 4c. Even if the collision surface of the refrigerant jet 5a of the nozzle row group 1b arranged at the same position is collided with the entire width direction of the steel plate 3, the surface temperature of the steel plate 3 is greatly different in the traveling direction of the steel plate 3. This is because there is a difference in cooling capacity between the restraining rolls 4b and 4c, and the uniformity of cooling in the width direction is deteriorated .

上記のように構成した本発明の金属板の冷却装置1を、例えば図1に示した鋼板の熱間圧延ラインの冷却ゾーンに、搬送中の鋼板3を冷却可能に配置し、この冷却装置1に、冷媒の噴流広がり角度αが例えば5〜40度である充円錐スプレーノズル5、5を、図9(a)に示すように鋼板3の搬送方向で冷媒衝突面が(重なり比率d/D:0.4)程度干渉(オーバーラップ)する位置関係で配置し、この充円錐スプレーノズル5、5からの噴冷媒によって鋼板3を冷却した場合には、鋼板3の幅方向の冷却能力分布の変化幅は10%以下であり、例えば800〜400℃の温度まで冷却した場合には、図9(b)に示すように、鋼板3の幅方向の表面温度分布の均一性を安定確保でき、この温度分布の変化幅を20℃以下にすることができ、反りもなく形状特性が良好で、表層組織の均一性を安定確保して機械的性質の低下要因のない鋼板を得ることができる。(請求項5の形態例に相当)。 The cooling device 1 of the metal plate of the present invention configured as described above is disposed in the cooling zone of the hot rolling line for steel plates shown in FIG. In addition, the full cone spray nozzles 5 1 , 5 2 having a refrigerant jet spread angle α of, for example, 5 to 40 degrees are arranged so that the refrigerant collision surface (overlap ratio d) in the conveying direction of the steel plate 3 as shown in FIG. / D: 0.4) When the steel plate 3 is cooled by the jet refrigerant from the full conical spray nozzles 5 1 , 5 2 , the steel plate 3 is arranged in the width direction. The variation width of the cooling capacity distribution is 10% or less. For example, when the cooling capacity distribution is cooled to a temperature of 800 to 400 ° C., as shown in FIG. It is possible to ensure stability, and the change width of this temperature distribution is set to 20 ° C or less. It can, warp without shape characteristics are good, it is possible to stably ensure the uniformity of the surface layer structure obtaining the steel sheet with no reduction factor of the mechanical properties. (Corresponding to the embodiment of claim 5).

なお、図10に示すように、図9(a)の場合と同様の充円錐スプレーノズル5、5を、冷媒噴射流5aの鋼板3との冷媒衝突面が干渉(オーバーラップ)しない範囲で近接して配置し、同じ量の冷媒(水)を噴射して鋼板3を冷却した場合では、鋼板3の幅方向の冷却能力分布の変化幅は100%で、例えば400℃の温度まで冷却後の鋼板3の幅方向の表面温度分布の変化幅は60℃以上になり、形状特性、表層の組織の均一性が充分に満足できる鋼板を得ることができない。 In addition, as shown in FIG. 10, the range which the refrigerant | coolant collision surface with the steel plate 3 of the refrigerant | coolant injection flow 5a does not interfere (overlap) through the full cone spray nozzles 5 1 and 5 2 similar to the case of FIG. 9A. When the steel plate 3 is cooled by spraying the same amount of refrigerant (water), the change width of the cooling capacity distribution in the width direction of the steel plate 3 is 100%, for example, cooled to a temperature of 400 ° C. The change width of the surface temperature distribution in the width direction of the subsequent steel plate 3 is 60 ° C. or more, and it is not possible to obtain a steel plate that can sufficiently satisfy the shape characteristics and the uniformity of the surface layer structure.

また、図11に示すように、図9(a)の場合と同様の充円錐スプレーノズル5、5を、鋼板3の搬送方向で冷媒衝突面が1/4(重なり比率d/D:0.25)程度干渉(オーバーラップ)する位置関係で配置し、この充円錐スプレーノズル5、5からの噴冷媒によって鋼板3を冷却した場合には、鋼板3の幅方向の冷却能力分布の変化幅は約50%で、例えば400℃の温度まで冷却後の鋼板3の幅方向の表面温度分布の変化幅は35℃以上になり形状特性、表層の組織の均一性が充分に満足できる鋼板を得ることができない。 Further, as shown in FIG. 11, the full conical spray nozzles 5 1 , 5 2 similar to the case of FIG. 9A have a refrigerant collision surface of 1/4 (overlap ratio d / D: in the conveying direction of the steel plate 3). 0.25) When the steel plate 3 is cooled by the jet refrigerant from the full conical spray nozzles 5 1 , 5 2 when arranged in a positional relationship that causes interference (overlap), the cooling capacity distribution in the width direction of the steel plate 3 The width of change in the surface temperature distribution in the width direction of the steel sheet 3 after cooling to a temperature of 400 ° C., for example, is 35 ° C. or more, and the shape characteristics and the uniformity of the surface layer structure are sufficiently satisfied. A steel plate cannot be obtained.

図1に示すように熱間仕上圧延機2によって熱間圧延した、表面温度が750〜770℃である厚み30mm、幅3200mmの鋼板3を80m/分の速度で搬送中に、噴流広がり角度αが30度の充円錐スプレーノズル5、5を図3〜図5に示すように配置した本発明の冷却装置1から冷媒として水を噴射圧力0.2MPaで噴射して該鋼板を20秒で、冷却帯を通過した直後に目標温度390〜410℃になるように冷却した。
ここで用いた充円錐スプレーノズル5、5は同じ特性のものであり、鋼板の幅方向の配置間隔aが60mm、搬送方向の配置間隔bが80mmで、ノズル先端が厚鋼板3の表面から150mmの位置にあり、噴射水の厚鋼板3との衝突面の直径Dが40mmで、オーバーラップの幅dが16mm(d/D:0.4)になるように配置したものである。各充円錐スプレーノズルからの噴射水量はノズル1本当たり20リットル/分にした。
その結果、表面温度が400℃まで冷却された鋼板3の幅方向の表面温度分布の変化幅は約20℃で、反りもなく形状特性は満足できるものであった。また、サンプル採取して組織分析したところ、表層の組織の均一性は充分に満足できるものであり、機械的性質の低下要因は認められなかった。
As shown in FIG. 1, a jet spreading angle α during the conveyance of a steel plate 3 having a surface temperature of 750 to 770 ° C. and a thickness of 30 mm and a width of 3200 mm hot-rolled by a hot finish rolling mill 2 as shown in FIG. Is sprayed with water at a jetting pressure of 0.2 MPa from the cooling device 1 of the present invention in which the conical spray nozzles 5 1 , 5 2 of 30 degrees are arranged as shown in FIGS. Then, immediately after passing through the cooling zone, the target temperature was 390 to 410 ° C.
The full cone spray nozzles 5 1 and 5 2 used here have the same characteristics, the arrangement interval a in the width direction of the steel plate is 60 mm, the arrangement interval b in the conveyance direction is 80 mm, and the tip of the nozzle is the surface of the thick steel plate 3. The diameter D of the collision surface with the thick steel plate 3 of the jet water is 40 mm, and the overlap width d is 16 mm (d / D: 0.4). The amount of water sprayed from each full cone spray nozzle was 20 liters / minute per nozzle.
As a result, the change width of the surface temperature distribution in the width direction of the steel sheet 3 cooled to 400 ° C. was about 20 ° C., and the shape characteristics were satisfactory without warping. Further, when a sample was collected and analyzed for texture, the uniformity of the surface structure was sufficiently satisfactory, and no reduction factor of mechanical properties was observed.

なお、本発明は、上記の内容に限定されるものではない。例えば、上記は冷却対象が鋼板である場合を主体に説明しているが、他の金属板、例えばチタン板、銅板等を冷却対象としても本発明の適用を考慮することができる。
また、充円錐スプレーノズルの構造条件、配置条件、冷媒の噴射条件などは、冷却対象の金属板条件(材質、サイズ、温度)、金属板に要求される表面品質、形状、機械的性質などを考慮して設定される冷却条件などに応じて、上記請求項を満足する範囲内で変更のあるものである。
In addition, this invention is not limited to said content. For example, although the above has mainly described the case where the object to be cooled is a steel plate, the application of the present invention can be considered even if another metal plate, for example, a titanium plate, a copper plate, or the like is the object to be cooled.
In addition, the structure condition, arrangement condition, refrigerant injection condition, etc. of the full cone spray nozzle include the metal plate conditions (material, size, temperature) to be cooled, the surface quality, shape, mechanical properties, etc. required for the metal plate. Depending on the cooling conditions set in consideration, there is a change within a range satisfying the above claims.

本発明を適用した鋼板の冷却装置の配置例を示す側面概念説明図。Side surface explanatory drawing which shows the example of arrangement | positioning of the cooling device of the steel plate to which this invention is applied. (a)図は、本発明の鋼板の冷却装置を構成する充円錐スプレーノズルと冷媒の噴流形状例を示す立体概念説明図、(b)図は、(a)図の充円錐スプレーノズルから噴射した冷媒噴流の鋼板表面との衝突面形状例を示す概念説明図。(A) The figure is a three-dimensional conceptual explanatory diagram showing an example of the shape of a full-cone spray nozzle and a refrigerant jet forming the steel plate cooling device of the present invention, and (b) is an injection from the full-cone spray nozzle of FIG. Explanatory drawing which shows the collision surface shape example with the steel plate surface of the made refrigerant jet. 本発明による鋼板の冷却装置での充円錐スプレーノズルの配置例を示す平面概念説明図。Plane | planar explanatory drawing which shows the example of arrangement | positioning of the full cone spray nozzle in the cooling device of the steel plate by this invention. 図3の側面説明図。Side surface explanatory drawing of FIG. 図3の充円錐スプレーノズルの配置例において、隣接する充円錐スプレーノズルからの冷媒噴射流形状を、搬送方向から搬送方向と直交方する鉛直面Fに投影した場合の鉛直面Fでの冷媒噴射形状例を示す概念説明図。In the arrangement example of the full cone spray nozzle of FIG. 3, the refrigerant injection on the vertical plane F when the refrigerant jet shape from the adjacent full cone spray nozzle is projected from the conveyance direction onto the vertical plane F orthogonal to the conveyance direction. The conceptual explanatory drawing which shows the example of a shape. (a)図は、充円錐スプレーノズルの冷媒噴流の広がり角度αと、冷媒噴流の鋼板法線方向の速度比との関係を示す説明図、(b)図は、充円錐スプレーノズルにおける冷媒噴流の広がり角度αと冷媒噴流の鋼板法線方向の速度分布を示す説明図。(A) The figure is explanatory drawing which shows the relationship between the spreading angle (alpha) of the refrigerant jet of a full cone spray nozzle, and the speed ratio of the steel plate normal direction of a refrigerant jet, (b) A figure is the refrigerant jet in a full cone spray nozzle. Explanatory drawing which shows the velocity distribution of the steel plate normal direction of the spreading angle (alpha) and a refrigerant | coolant jet. 搬送方向で隣接する充円錐スプレーノズル間での冷媒噴流の衝突面の干渉(オーバーラップ)例を示す平面説明図で、(a)図は、オーバーラップが冷媒衝突面の直径の1/2の場合を示し、(b)図は、オーバーラップが冷媒衝突面の直径の2/3の場合を示す。FIG. 9 is an explanatory plan view showing an example of interference (overlap) of a collision surface of a refrigerant jet between adjacent conical spray nozzles in the conveying direction, wherein (a) the overlap is half the diameter of the refrigerant collision surface; FIG. 4B shows a case where the overlap is 2/3 of the diameter of the refrigerant collision surface. 充円錐スプレーノズルによる冷却能力の最大最小比率(−)と冷媒衝突面の重なり比率との関係を、充円錐スプレーノズルの噴流広がり角度別に区分して示した説明図。Explanatory drawing which divided and showed the relationship between the maximum minimum ratio (-) of the cooling capability by a full cone spray nozzle, and the overlapping ratio of a refrigerant | coolant collision surface according to the jet spread angle of a full cone spray nozzle. (a)図は、本発明の鋼板の冷却装置の充円錐スプレーノズルの配置例を示す平面説明図、(b)図は、冷却後の鋼板幅方向の表面温度分布を示す説明図。(A) A figure is a plane explanatory view showing an example of arrangement of a full cone spray nozzle of a cooling device of a steel plate of the present invention, and (b) drawing is an explanatory view showing surface temperature distribution in the width direction of a steel plate after cooling. 本発明に対する比較例としての充円錐スプレーノズルの配置例を示す平面説明図。Plane explanatory drawing which shows the example of arrangement | positioning of the full cone spray nozzle as a comparative example with respect to this invention. 本発明に対する比較例としての充円錐スプレーノズルの他の配置例を示す平面説明図。Plane explanatory drawing which shows the other example of arrangement | positioning of the full cone spray nozzle as a comparative example with respect to this invention.

符号の説明Explanation of symbols

1 鋼板の冷却装置
1a、1b、1c ノズル列群
2 熱間仕上圧延機
3 鋼板
4a、4b、4c 拘束ロール
5、5、5 充円錐スプレーノズル置
5a 冷媒噴射流
6 ヘッダー管
7 板上冷媒
DESCRIPTION OF SYMBOLS 1 Steel plate cooling device 1a, 1b, 1c Nozzle row group 2 Hot finishing rolling mill 3 Steel plate 4a, 4b, 4c Restraining roll 5, 5 1 , 5 2 Conical spray nozzle placement 5a Refrigerant jet flow 6 Header pipe 7 On plate Refrigerant

Claims (4)

金属板を拘束通板させる複数対の拘束ロールを備え、各拘束ロール対間に冷媒噴射量制御可能な充円錐スプレーノズルを備えた冷却装置において、金属板に冷媒を噴射する充円錐スプレーノズルを、鉛直状態にして金属板の幅方向と搬送方向にそれぞれ複数列配置してなり、各充円錐スプレーノズルを、噴射冷媒の衝突面が金属板表面で干渉しないように離して配置し、かつ、各充円錐スプレーノズルからの冷媒噴射流を、搬送方向から金属板の搬送方向と直交する鉛直面に投影した場合において、金属板の搬送方向で隣接する充円錐スプレーノズルの冷媒噴射流が、該鉛直面にその幅方向で部分的にオーバーラップして投影されるように配置し、前記充円錐スプレーノズルとして、冷媒の噴射広がり角度が5〜40度の充円錐スプレーノズルを用いたことを特徴とする金属板の冷却装置。 A cooling device having a plurality of constraining rolls for restraining and passing a metal plate, and a conical spray nozzle capable of controlling the amount of refrigerant injected between each pair of constraining rolls. In a vertical state, the metal plate is arranged in a plurality of rows in the width direction and the conveyance direction, and each full cone spray nozzle is arranged apart so that the collision surface of the injected refrigerant does not interfere with the metal plate surface, and When the refrigerant jet flow from each full cone spray nozzle is projected from the conveyance direction onto a vertical plane perpendicular to the conveyance direction of the metal plate, the refrigerant jet flow of the full cone spray nozzle adjacent in the conveyance direction of the metal plate is partially overlap the widthwise direction in a vertical plane and arranged so as to be projected, as the charge cone spray nozzle, of 5 to 40 degrees injector spread angle of the refrigerant charge cone Supurenozu Cooling system of the metal plate, characterized in that with. 金属板の搬送方向で隣接する充円錐スプレーノズル間での冷媒噴射流のオーバーラップの幅が、双方の充円錐スプレーノズルの冷媒噴射流の鉛直面での底面直径の0.4倍以上であることを特徴とする請求項1に記載の金属板の冷却装置。 The overlap width of the refrigerant jet flow between adjacent conical spray nozzles in the conveying direction of the metal plate is not less than 0.4 times the bottom diameter of the refrigerant jet flow of both full cone spray nozzles on the vertical plane. The metal plate cooling device according to claim 1 . 各拘束ロール対間単位で、各充円錐スプレーノズルからの冷媒噴射流の衝突面が、投影鉛直面の幅方向で部分的にオーバーラップして金属板の幅全体を覆うように、複数のノズル列を配置したことを特徴とする請求項1または2に記載の金属板の冷却装置。 A plurality of nozzles so that the collision surface of the refrigerant jet flow from each full cone spray nozzle partially overlaps in the width direction of the projection vertical plane and covers the entire width of the metal plate in the unit between each constraining roll pair. The metal plate cooling device according to claim 1 , wherein a row is arranged. 請求項1〜3のいずれかに記載の金属板の冷却装置、搬送中の金属板を冷却可能に配置し、該冷却装置の充円錐スプレーノズルからの噴射冷媒によって金属板を冷却し、冷却後の金属板の幅方向温度分布の均一性を高めることを特徴とする金属板の冷却方法。 The cooling device for a metal plate according to any one of claims 1 to 3 , wherein the metal plate being transported is arranged to be cooled, the metal plate is cooled by a jet refrigerant from a full cone spray nozzle of the cooling device, and cooled. A method for cooling a metal plate, characterized by enhancing uniformity of the temperature distribution in the width direction of the subsequent metal plate.
JP2004113907A 2004-04-08 2004-04-08 Metal plate cooling device and cooling method Expired - Fee Related JP4061286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004113907A JP4061286B2 (en) 2004-04-08 2004-04-08 Metal plate cooling device and cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004113907A JP4061286B2 (en) 2004-04-08 2004-04-08 Metal plate cooling device and cooling method

Publications (2)

Publication Number Publication Date
JP2005296976A JP2005296976A (en) 2005-10-27
JP4061286B2 true JP4061286B2 (en) 2008-03-12

Family

ID=35329157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004113907A Expired - Fee Related JP4061286B2 (en) 2004-04-08 2004-04-08 Metal plate cooling device and cooling method

Country Status (1)

Country Link
JP (1) JP4061286B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1908535B1 (en) * 2005-06-23 2012-10-31 Nippon Steel Corporation Cooling device for thick steel plate
DE102017127470A1 (en) * 2017-11-21 2019-05-23 Sms Group Gmbh Chilled beams and cooling process with variable cooling rate for steel sheets
CN113245381B (en) * 2020-03-24 2022-11-18 宝山钢铁股份有限公司 On-line cooling system and cooling method for sized seamless steel tube

Also Published As

Publication number Publication date
JP2005296976A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP4238260B2 (en) Steel plate cooling method
KR100935490B1 (en) Cooling device for thick steel plate
JP4903920B1 (en) Steel plate cooling device and method for cooling steel plate
JP4214134B2 (en) Thick steel plate cooling device
JP4853224B2 (en) Steel sheet cooling equipment and cooling method
JP4905051B2 (en) Steel sheet cooling equipment and cooling method
JP2001286925A (en) Device and method for water-cooling steel sheet
JP4061286B2 (en) Metal plate cooling device and cooling method
JP5640648B2 (en) Method and apparatus for cooling bottom surface of hot steel sheet
JP4398898B2 (en) Thick steel plate cooling device and method
JP2898873B2 (en) Lower surface cooling device for high temperature metal plate
JP4091934B2 (en) Thick steel plate cooling method
JP5613997B2 (en) Hot-rolled steel sheet cooling device, hot-rolled steel sheet manufacturing apparatus and manufacturing method
TWI731415B (en) Cooling device for hot-rolled steel sheet and cooling method for hot-rolled steel sheet
JP3528740B2 (en) Steel cooling device
JP4478083B2 (en) Steel plate top and bottom uniform cooling system
JP2004306064A (en) Cooling system of high temperature steel sheet
JP2017177186A (en) Undersurface cooling method and cooling device of steel plate
JP5597916B2 (en) Steel cooling equipment
JP2004001082A (en) Method and device for cooling thick steel plate
JP4858113B2 (en) Steel sheet cooling equipment and cooling method
JP2011104594A (en) Device for cooling high temperature steel plate
JP2018043277A (en) Top face cooling device and top face cooling method of steel plate
JP4377832B2 (en) Steel plate top and bottom uniform cooling system
JPH1058026A (en) Method and device for cooling high temperature steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees