JPH07252538A - Method for cooling thin steel sheet - Google Patents

Method for cooling thin steel sheet

Info

Publication number
JPH07252538A
JPH07252538A JP7002694A JP7002694A JPH07252538A JP H07252538 A JPH07252538 A JP H07252538A JP 7002694 A JP7002694 A JP 7002694A JP 7002694 A JP7002694 A JP 7002694A JP H07252538 A JPH07252538 A JP H07252538A
Authority
JP
Japan
Prior art keywords
cooling
steel sheet
thin steel
spray
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7002694A
Other languages
Japanese (ja)
Inventor
Michiharu Hannoki
道春 播木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7002694A priority Critical patent/JPH07252538A/en
Publication of JPH07252538A publication Critical patent/JPH07252538A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the insufficient flatness accompanied with cooling of a thin steel sheet by regulating spray water spouting angle and cooling water flow rate of a nozzle, at the time of using the flat spray nozzle as a forcedly cooling means for the thin steel sheet in a continuous line. CONSTITUTION:The baking finish thin steel sheet 1 is forcedly cooled with the spray cooling device after slowly cooling with a gas jet cooling device in the continuous line. The spray cooling device is constituted with the flat spray nozzles 4b fitted at plural positions in the longitudinal direction of a cooling water supplying header 4a extended in the width direction of the thin steel sheet 1. The spray water spouting angle theta of this nozzle 4b is made to be 30-60 deg. against the thin steel sheet 1 and the cooling water flow rate is set in a range so that the temp. gradient variable rate in the line direction satisfies the inequality. In the inequality, DELTAdT/dX is the temp. gradient variable rate in the line direction ( deg.C/m); A, constant; W, width of the steel sheet (m); alpha; coefficient of thermal linear expansion (1/ deg.C); E, modulus of longitudinal elasticity (kgf/mm<2>); sigmay; yield stress of the steel material at the temp. gradient variation point (kgf/mm<2>); sigmau; tension of the line (kgf/mm<2>).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、家電用プレコート鋼
板のような薄肉の焼付塗装鋼板の焼付け後の冷却等に適
した薄鋼板の冷却方法に係り、より詳しくは薄鋼板の冷
却に伴う平坦度不良を防止するための冷却方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cooling a thin steel plate suitable for cooling after baking of a thin baked coated steel plate such as a pre-coated steel plate for household appliances, and more particularly, to a flat plate accompanying cooling of the thin steel plate. The present invention relates to a cooling method for preventing inferiority.

【0002】[0002]

【従来の技術】従来、焼付塗装鋼板の主たる製造工程
は、塗装ー焼付ー冷却である。この工程のうち、焼付後
の冷却には通常、ガスジェット冷却と水冷却の組合わせ
が用いられる(特開昭62−93317号公報等参
照)。ガスジェット冷却の利点は、焼付炉の直近で実施
できること、緩冷却であるため温度変化が緩やかとなり
平坦不良を生じにくいことである。しかしながら、ガス
ジェット冷却のみでは所定の温度まで冷却するのに時間
がかかるため、水冷却と組合わせてライン長さを短くし
ている。
2. Description of the Related Art Conventionally, the main manufacturing process of baking coated steel sheet is painting-baking-cooling. Of these steps, a combination of gas jet cooling and water cooling is usually used for cooling after baking (see JP-A-62-93317, etc.). The advantage of gas jet cooling is that it can be carried out in the immediate vicinity of the baking furnace, and since it is slow cooling, the temperature change is gentle and flat defects are less likely to occur. However, since it takes time to cool to a predetermined temperature only with gas jet cooling, the line length is shortened in combination with water cooling.

【0003】図5はガスジェット冷却と水冷却とを組合
わせた連続ラインの一例を示す概略図、図6は同上連続
ラインにおけるスプレー冷却装置を示す斜視図であり、
焼付炉2を出た鋼板1は、ガスジェット冷却装置3によ
って緩冷却された後、スプレー冷却装置4によって上面
側および下面側から強冷却される。5、6はそれぞれガ
イディングロール、スタビライザーロールである。
FIG. 5 is a schematic view showing an example of a continuous line in which gas jet cooling and water cooling are combined, and FIG. 6 is a perspective view showing a spray cooling device in the continuous line.
The steel plate 1 exiting the baking furnace 2 is gently cooled by the gas jet cooling device 3 and then strongly cooled by the spray cooling device 4 from the upper surface side and the lower surface side. Reference numerals 5 and 6 are a guiding roll and a stabilizer roll, respectively.

【0004】スプレー冷却装置4は、図6に示すごと
く、鋼板1の幅方向に延びる冷却水供給ヘッダ4aの長
手方向複数箇所にフラットスプレーノズル4bが取付け
られた構造のものが一般的であり、スプレー範囲が板幅
方向に細長く広がることにより板幅方向の冷却温度分布
を均一化できるため、鋼板の平坦度不良の防止に有効と
されている。
As shown in FIG. 6, the spray cooling device 4 generally has a structure in which flat spray nozzles 4b are attached to a plurality of longitudinal cooling water supply headers 4a extending in the width direction of the steel plate 1, Since the spraying range is elongated in the strip width direction to make the cooling temperature distribution in the strip width direction uniform, it is effective in preventing the flatness of the steel sheet from being defective.

【0005】[0005]

【発明が解決しようとする課題】しかるに、家電用プレ
コート鋼板のような薄肉材、特に薄肉で低降伏点の広幅
材の場合は、前記のガスジェット冷却とスプレー冷却と
の組合わせによっても平坦度不良を完全に防止すること
ができない。かかる対策として、従来は経験的にライン
速度を低下させる操業がとられてきたが、生産性を向上
できないため、ライン速度を低下させずに高速で薄鋼板
の平坦度不良を防止できる冷却方法が待望されていた。
However, in the case of thin-walled materials such as pre-coated steel sheets for household appliances, especially thin-walled and wide-width materials with a low yield point, the flatness can be obtained even by the combination of the gas jet cooling and the spray cooling. Defects cannot be completely prevented. As a countermeasure for this, conventionally, an operation to reduce the line speed has been empirically taken, but since the productivity cannot be improved, a cooling method capable of preventing the flatness defect of the thin steel sheet at a high speed without decreasing the line speed is available. Long-awaited.

【0006】この発明は、このような実情に鑑み、ライ
ン速度を高速に維持したままで鋼板の平坦度不良を防止
できる薄鋼板の冷却方法を提案しようとするものであ
る。
In view of the above situation, the present invention proposes a method for cooling a thin steel sheet which can prevent a flatness defect of the steel sheet while maintaining a high line speed.

【0007】[0007]

【課題を解決するための手段】薄鋼板の冷却においてラ
イン速度の低下は、生産性を問題にしなければ平坦度不
良の防止に有効な手段である。しかしながら、その理由
については明確でなく、経験的にライン速度を低下させ
る手段が採用されてきた。本発明者らは、ライン速度の
低下が平坦度不良の防止に有効である理由を解明すべ
く、鋭意研究を行った結果、次のような知見を得た。
In cooling a thin steel sheet, a decrease in line speed is an effective means for preventing a flatness defect unless productivity is a problem. However, the reason for this is not clear, and empirically means for reducing the line speed have been adopted. The present inventors have conducted the earnest research to clarify the reason why the reduction of the line speed is effective in preventing the poor flatness, and have obtained the following findings.

【0008】薄鋼板の強冷却手段にフラットスプレーノ
ズルを採用した場合、図6に示すごとく、鋼板1の表面
に一時的に水が乗った領域(斜線部)ができる。この現
象を一般に“水乗り”と呼んでいる。又、水乗りしてい
る領域の長さLは濡れ長さと呼ばれている。この濡れ長
さLは、ヘッダ4aより上流側の濡れ長さLと下流側
の濡れ長さLの和として表され、ライン速度により変
化する。すなわち、ライン速度が速いほど主に上流側の
濡れ長さLが短くなる。
When the flat spray nozzle is used as the strong cooling means for the thin steel plate, as shown in FIG. 6, a region (hatched portion) where water temporarily sits on the surface of the steel plate 1 is formed. This phenomenon is generally called "water riding". In addition, the length L of the water riding area is called the wet length. The wetting length L is expressed as the sum of the wetting length L 1 on the upstream side of the header 4a and the wetting length L 2 on the downstream side, and changes depending on the line speed. That is, the faster the line speed, the shorter the upstream wetting length L 1 becomes.

【0009】鋼板1はスプレー直下では急速に冷却され
るが、水乗りしている領域ではこれよりも緩やかに冷却
される。一方、本発明者らは既にライン方向の急激な温
度変化が平坦度不良を発生させるという知見を得てい
る。そのため、ライン速度が速くなって濡れ長さLが短
くなると、平坦度不良を発生させるほどの温度勾配がラ
イン方向に生じると考えられる。したがって、ライン速
度を遅くした場合には、濡れ長さLが長くなり、ライ
ン方向の温度勾配が平坦度不良を発生させないレベルま
で小さくなっていたと推定される。また、ライン速度の
低下は水冷開始前の鋼板温度を下げることになり、これ
もライン方向の温度勾配緩和に寄与していたと考えられ
る。
The steel sheet 1 is rapidly cooled immediately below the spray, but is cooled more gently than this in the region where water is riding. On the other hand, the present inventors have already found that a rapid temperature change in the line direction causes a flatness defect. Therefore, it is considered that when the line speed becomes faster and the wetting length L becomes shorter, a temperature gradient enough to cause a flatness defect occurs in the line direction. Therefore, it is presumed that when the line speed was slowed down, the wetting length L 1 became long, and the temperature gradient in the line direction was reduced to a level at which flatness defects did not occur. Further, the decrease in the line speed results in a decrease in the steel plate temperature before the start of water cooling, which is also considered to have contributed to the relaxation of the temperature gradient in the line direction.

【0010】以上のことから、薄鋼板の搬送速度(ライ
ン速度)を速くしても鋼板表面における濡れ長さL
短くならなければ、鋼板の平坦度不良は防止できること
が予想される。
From the above, it is expected that if the wetting length L 1 on the surface of the steel sheet does not become short even if the conveying speed (line speed) of the thin steel sheet is increased, the flatness of the steel sheet can be prevented.

【0011】本発明者らは以上の知見より、フラットス
プレーノズルと鋼板の衝突角度がある範囲内においては
上流側の濡れ長さLが生じないことを見いだし、ライ
ン速度を高速に維持したままで鋼板の平坦度不良を防止
できる薄鋼板の冷却方法を開発するに至った。
From the above findings, the present inventors have found that the wetting length L 1 on the upstream side does not occur within a certain range of the collision angle between the flat spray nozzle and the steel plate, and the line speed is kept high. Has developed a cooling method for thin steel sheets that can prevent defective flatness of the steel sheets.

【0012】すなわち、この発明は、連続ラインの薄鋼
板を緩冷却した後強冷却する方法において、前記強冷却
手段として、スプレー水噴射角が薄鋼板に対して30度
以上60度以下となるように設定したフラットスプレー
ノズルを用いるとともに、冷却水流量をライン方向の温
度勾配変化量が下記(1)式を満足する範囲に設定する
ことを要旨とするものである。 △dT/dX<(σyーσu)/A・W・α・E …(1)式 △dT/dX:ライン方向の温度勾配変化量(℃/m) A:定数 W:鋼板幅(m) α:熱線膨張係数(1/℃) E:縦弾性係数(kgf/mm) σy:温度勾配変化点での鋼材の降伏応力(kgf/m
) σu:ライン張力(kgf/mm
That is, according to the present invention, in the method of gently cooling a thin steel sheet in a continuous line and then strongly cooling it, as the strong cooling means, the spray water spray angle is 30 degrees or more and 60 degrees or less with respect to the thin steel sheet. The gist of the present invention is to use the flat spray nozzle set to No. 1 and set the cooling water flow rate within the range in which the amount of temperature gradient change in the line direction satisfies the following expression (1). ΔdT / dX <(σy−σu) / A · W · α · E (1) Formula ΔdT / dX: Change in temperature gradient in the line direction (° C / m) A: Constant W: Steel plate width (m) α: coefficient of linear thermal expansion (1 / ° C) E: coefficient of longitudinal elasticity (kgf / mm 2 ) σy: yield stress of steel material at temperature gradient change point (kgf / m
m 2 ) σu: Line tension (kgf / mm 2 ).

【0013】[0013]

【作用】この発明では図1に示すごとく、冷却水供給ヘ
ッダ4aの長手方向複数箇所に間隔配設されるフラット
スプレーノズル4bの鋼板1に対する噴射角、すなわち
スプレー水の鋼板との衝突角度θを30〜60度に設定
する。その理由は、図2にスプレー水の鋼板との衝突角
度θと上流側の濡れ長さLおよび搬送速度との関係を
示すごとく、スプレー水の鋼板との衝突角度θを60度
以下にすることにより上流側の濡れ長さLを皆無にす
ることができるからである。なお、衝突角度θの下限は
フラットスプレーノズルから噴射されたスプレー水流の
搬送方向の厚み(約10mm前後)がすべて鋼板に衝突
する角度で決まり、工業的には30度以上が望ましい。
In the present invention, as shown in FIG. 1, the spray angle of the flat spray nozzles 4b, which are arranged at intervals in the longitudinal direction of the cooling water supply header 4a, with respect to the steel plate 1, that is, the collision angle θ of the spray water with the steel plate is set. Set to 30 to 60 degrees. The reason is that the collision angle θ with the steel plate of the spray water is 60 degrees or less, as shown in FIG. 2 which shows the relationship between the collision angle θ with the steel plate of the spray water, the wet length L 1 on the upstream side and the transport speed. This is because the wetting length L 1 on the upstream side can be completely eliminated. The lower limit of the collision angle θ is determined by the angle at which the thickness (about 10 mm) of the spray water flow sprayed from the flat spray nozzle collides with the steel plate, and is preferably 30 degrees or more industrially.

【0014】ライン方向の温度勾配変化量(△dT/d
X)は、図3(A)に示すごとく、(TーT)/L
ー(TーT)/Lとなる。すなわち、薄鋼板のス
プレー冷却では、スプレー冷却(急冷却)の前段で行わ
れるガスジェット冷却や放冷等による緩冷却領域でのラ
イン方向の温度勾配は、後段のスプレーによる急冷却領
域でのライン方向の温度勾配より緩やかとなり、ここに
温度勾配変化が生じる。この温度勾配変化量(△dT/
dX)は位置によって変化するが、ここで問題になるの
は、ライン方向の急激な温度勾配変化量であり、図の緩
冷却から水冷(急冷)開始直後の位置である。この急冷
開始直後の位置では、フラットスプレーノズル4bの鋼
板1に対する噴射角度が例えば9O度の場合は、図3
(B)に示すごとく、上流側に濡れ長さLが生じ、そ
の結果当該部分が急冷されて平坦不良が発生する。一
方、フラットスプレーノズル4bの鋼板1に対する噴射
角度を60度以下にすると、図3(C)に示すごとく、
スプレー衝突面積が拡大して上流側の濡れ長さLが皆
無となると同時に、水量密度も低下することにより、急
冷開始直後における冷却能を小さくできる。
Amount of change in temperature gradient in the line direction (ΔdT / d
X) is (T 2 −T 1 ) / L as shown in FIG.
Over (T 1 over T 0) / L 0 become. That is, in the spray cooling of thin steel plates, the temperature gradient in the line direction in the slow cooling region due to gas jet cooling or cooling that is performed in the preceding stage of spray cooling (rapid cooling) is The temperature gradient becomes gentler than the directional temperature gradient, and the temperature gradient changes there. This temperature gradient change amount (ΔdT /
dX) changes depending on the position, but the problem here is the amount of rapid temperature gradient change in the line direction, that is, the position immediately after the start of water cooling (quick cooling) from slow cooling in the figure. At the position immediately after the start of the rapid cooling, when the injection angle of the flat spray nozzle 4b with respect to the steel plate 1 is, for example, 90 degrees, FIG.
As shown in (B), a wetting length L 1 is generated on the upstream side, and as a result, the portion is rapidly cooled and flatness failure occurs. On the other hand, when the spray angle of the flat spray nozzle 4b with respect to the steel plate 1 is set to 60 degrees or less, as shown in FIG.
Since the spray collision area is expanded and the wet length L 1 on the upstream side is completely eliminated, and at the same time, the water amount density is decreased, the cooling capacity immediately after the start of the rapid cooling can be reduced.

【0015】一方、薄鋼板のスプレー冷却では、薄鋼板
の側縁部に作用している応力は、薄鋼板の温度分布から
生じる熱応力と、ライン張力σuの和として表される。
薄鋼板の幅方向に温度分布がない場合、熱応力はライン
方向の温度分布のみによって生じる。また、スプレー冷
却(急冷却)の前段で行われるガスジェット冷却や放冷
等による緩冷却領域でのライン方向の温度勾配は、後段
のスプレーによる急冷却領域でのライン方向の温度勾配
より緩やかとなり、ここに温度勾配変化が生じる。この
温度勾配の変化(△dT/dX)は、図4に示す凸のパ
ターン、すなわち負のパターンとなる。ライン方向の温
度勾配の変化が負になると、薄鋼板の側縁部にライン方
向の引張熱応力が発生する。ライン方向の温度勾配の変
化によってこのようなライン方向の熱応力が発生する理
由は、薄鋼板に自由端(側縁部)が存在することによ
る。この熱応力は、ライン方向の温度勾配の変化(△d
T/dX)と薄鋼板の幅(W)に比例する。このように
して発生する熱応力が薄鋼板の降伏応力(σy)より小
さければその薄鋼板に平坦不良は生じない。その熱応力
と降伏応力(σy)の関係を表したのが上記(1)式で
あり、降伏応力(σy)を超えないように冷却水量を調
整すれば平坦不良の防止が可能となる。したがって、こ
の発明ではスプレー噴射角度を60度以下に設定したフ
ラットスプレーノズル4bの冷却水流量をライン方向の
温度勾配変化量が上記(1)式を満足する範囲に設定す
ることとしたのである。
On the other hand, in the spray cooling of the thin steel sheet, the stress acting on the side edge portion of the thin steel sheet is expressed as the sum of the thermal stress generated from the temperature distribution of the thin steel sheet and the line tension σu.
When there is no temperature distribution in the width direction of the thin steel sheet, thermal stress is generated only by the temperature distribution in the line direction. In addition, the temperature gradient in the line direction in the slow cooling area due to gas jet cooling or cooling that is performed before the spray cooling (rapid cooling) is gentler than the temperature gradient in the line direction in the rapid cooling area due to the subsequent spray. , Where a temperature gradient change occurs. The change (ΔdT / dX) in the temperature gradient becomes the convex pattern shown in FIG. 4, that is, the negative pattern. When the change in the temperature gradient in the line direction becomes negative, tensile thermal stress in the line direction occurs at the side edge of the thin steel sheet. The reason why such a thermal stress in the line direction occurs due to the change in the temperature gradient in the line direction is that the thin steel sheet has free ends (side edges). This thermal stress changes the temperature gradient in the line direction (Δd
It is proportional to T / dX) and the width (W) of the thin steel sheet. If the thermal stress thus generated is smaller than the yield stress (σy) of the thin steel sheet, flat failure does not occur in the thin steel sheet. The relationship between the thermal stress and the yield stress (σy) is expressed by the above formula (1), and if the amount of cooling water is adjusted so as not to exceed the yield stress (σy), it is possible to prevent the flatness failure. Therefore, in the present invention, the cooling water flow rate of the flat spray nozzle 4b in which the spray injection angle is set to 60 degrees or less is set within a range in which the temperature gradient change amount in the line direction satisfies the above expression (1).

【0016】[0016]

【実施例】【Example】

実施例1 板厚0.45mm、板幅787mmの家電用プレコート
鋼板(降伏応力σy=18kgf/mm)を製造する
にあたり、焼付け後、ガスジェット冷却後の急冷を表1
に示す条件で実施した結果を、スプレー噴射角度を種々
変化させた場合と、スプレー噴射角度90度の従来法と
比較して表2に示す。
Example 1 In producing a pre-coated steel sheet for home appliances (yield stress σy = 18 kgf / mm 2 ) having a plate thickness of 0.45 mm and a plate width of 787 mm, quenching after baking and gas jet cooling is shown in Table 1.
The results obtained under the conditions shown in Table 2 are shown in Table 2 when the spray injection angle was changed variously and in comparison with the conventional method in which the spray injection angle was 90 degrees.

【0017】表2の結果より明らかなごとく、スプレー
噴射角度が90度の従来法では、鋼板搬送速度が30m
/minと低速の場合は平坦不良は生じなかったのに対
し、搬送速度が50m/minの場合は平坦不良が発生
した。また、スプレー噴射角度が60度を超えて90度
未満の場合でも、搬送速度が50m/minの場合は平
坦不良が発生した。一方、スプレー噴射角度が30度〜
60度の本発明では、搬送速度50m/minで平坦不
良は発生せず、さらに搬送速度を100m/minに上
げても平坦不良は皆無であった。
As is clear from the results shown in Table 2, in the conventional method in which the spray injection angle is 90 degrees, the steel plate conveying speed is 30 m.
When the conveyance speed was 50 m / min, the flatness defect did not occur, whereas when the conveyance speed was 50 m / min, the flatness defect did not occur. Even when the spray injection angle is more than 60 degrees and less than 90 degrees, the flatness failure occurs when the transport speed is 50 m / min. On the other hand, the spray injection angle is 30 degrees ~
In the present invention of 60 degrees, no flatness defect occurred at the conveying speed of 50 m / min, and even if the conveying speed was increased to 100 m / min, there was no flatness defect.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】以上説明したごとく、この発明方法によ
れば、家電用プレコート鋼板のような薄肉材であって
も、ライン速度の低下に依存することなく平坦度不良を
防止できるので、ライン速度の高速化による生産性の向
上がはかられるという大なる効果を奏する。
As described above, according to the method of the present invention, even a thin material such as a pre-coated steel sheet for home appliances can prevent the flatness defect without depending on the decrease of the line speed. There is a great effect that the productivity can be improved by increasing the speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明におけるフラットスプレーノズルの鋼
板に対する噴射角(スプレー水の鋼板との衝突角度)θ
の説明図である。
FIG. 1 is a spray angle of a flat spray nozzle of the present invention with respect to a steel plate (collision angle of spray water with a steel plate) θ.
FIG.

【図2】スプレー水の鋼板との衝突角度θと上流側濡れ
長さおよび搬送速度との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the collision angle θ of the spray water with the steel plate, the upstream wetting length, and the transport speed.

【図3】ライン方向の温度勾配の変化と、急冷開始直後
におけるフラットスプレーノズルの噴射角と濡れ長さの
関係を示す説明図で、(A)はライン方向の温度勾配変
化量の説明図、(B)はフラットスプレーノズルの鋼板
に対する噴射角度が90度の場合の濡れ長さを示す説明
図、(C)はフラットスプレーノズルの鋼板に対する噴
射角度が60度の場合の濡れ長さを示す説明図である。
FIG. 3 is an explanatory diagram showing a change in temperature gradient in the line direction and a relationship between a spray angle and a wetting length of a flat spray nozzle immediately after the start of quenching, and (A) is an explanatory diagram of a temperature gradient change amount in the line direction; (B) is an explanatory view showing the wetting length when the spray angle of the flat spray nozzle to the steel plate is 90 degrees, and (C) shows the wetting length when the spray angle of the flat spray nozzle to the steel sheet is 60 degrees. It is a figure.

【図4】温度勾配の変化のパターンを示す模式図であ
る。
FIG. 4 is a schematic diagram showing a pattern of changes in temperature gradient.

【図5】塗装鋼板の冷却に使用する冷却設備で、ガスジ
ェット冷却と水冷却とを組み合わせた連続ラインの一例
を示す概略図である。
FIG. 5 is a schematic view showing an example of a continuous line in which gas jet cooling and water cooling are combined in a cooling facility used for cooling a coated steel sheet.

【図6】同上の冷却設備におけるフラットスプレーノズ
ルによる水乗り現象の説明図である。
FIG. 6 is an explanatory diagram of a water riding phenomenon caused by a flat spray nozzle in the above cooling facility.

【符号の説明】 1 鋼板 2 焼付炉 3 ガスジェット冷却装置 4 スプレー冷却装置 4a 冷却水供給ヘッダ 4b フラットスプレーノズル[Explanation of reference numerals] 1 steel plate 2 baking furnace 3 gas jet cooling device 4 spray cooling device 4a cooling water supply header 4b flat spray nozzle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 連続ラインの薄鋼板を緩冷却した後強冷
却する方法において、前記強冷却手段として、スプレー
水噴射角が薄鋼板に対して30度以上60度以下となる
ように設定したフラットスプレーノズルを用いるととも
に、冷却水流量をライン方向の温度勾配変化量が下記式
を満足する範囲に設定することを特徴とする薄鋼板の冷
却方法。 △dT/dX<(σyーσu)/A・W・α・E △dT/dX:ライン方向の温度勾配変化量(℃/m) A:定数 W:鋼板幅(m) α:熱線膨張係数(1/℃) E:縦弾性係数(kgf/mm) σy:温度勾配変化点での鋼材の降伏応力(kgf/m
) σu:ライン張力(kgf/mm
1. A method of gently cooling a thin steel plate in a continuous line and then strongly cooling it, wherein as the strong cooling means, a flat water spray angle is set to be 30 degrees or more and 60 degrees or less with respect to the thin steel sheet. A method for cooling a thin steel sheet, which comprises using a spray nozzle and setting a cooling water flow rate within a range in which a temperature gradient change amount in a line direction satisfies the following expression. ΔdT / dX <(σy−σu) / A · W · α · E ΔdT / dX: Change in temperature gradient in the line direction (° C / m) A: Constant W: Steel sheet width (m) α: Thermal linear expansion coefficient (1 / ° C) E: Modulus of longitudinal elasticity (kgf / mm 2 ) σy: Yield stress of steel material at temperature gradient change point (kgf / m)
m 2 ) σu: Line tension (kgf / mm 2 ).
JP7002694A 1994-03-15 1994-03-15 Method for cooling thin steel sheet Pending JPH07252538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7002694A JPH07252538A (en) 1994-03-15 1994-03-15 Method for cooling thin steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7002694A JPH07252538A (en) 1994-03-15 1994-03-15 Method for cooling thin steel sheet

Publications (1)

Publication Number Publication Date
JPH07252538A true JPH07252538A (en) 1995-10-03

Family

ID=13419684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7002694A Pending JPH07252538A (en) 1994-03-15 1994-03-15 Method for cooling thin steel sheet

Country Status (1)

Country Link
JP (1) JPH07252538A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070665A (en) * 2005-09-05 2007-03-22 Jfe Steel Kk Method for manufacturing steel strip
JP2010537046A (en) * 2007-08-17 2010-12-02 オウトクンプ オサケイティオ ユルキネン Method and apparatus for controlling flatness in cooling stainless steel strips
EP4012057A4 (en) * 2019-09-30 2022-10-12 JFE Steel Corporation Metal strip quenching device, metal strip quenching method, and method for producing metal strip product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070665A (en) * 2005-09-05 2007-03-22 Jfe Steel Kk Method for manufacturing steel strip
JP2010537046A (en) * 2007-08-17 2010-12-02 オウトクンプ オサケイティオ ユルキネン Method and apparatus for controlling flatness in cooling stainless steel strips
EP4012057A4 (en) * 2019-09-30 2022-10-12 JFE Steel Corporation Metal strip quenching device, metal strip quenching method, and method for producing metal strip product

Similar Documents

Publication Publication Date Title
JP4238260B2 (en) Steel plate cooling method
EP2116313B1 (en) Device and method for cooling hot-rolled steel strip
EP1935521B1 (en) A hot rolling mill for a steel plate or sheet and hot rolling methods using such mill
JP4119928B2 (en) Steel plate cooling method
JP4604564B2 (en) Method and apparatus for controlling cooling of thick steel plate
JP4678112B2 (en) Steel plate cooling method and apparatus
JP2001286925A (en) Device and method for water-cooling steel sheet
JPH07252538A (en) Method for cooling thin steel sheet
JP4360250B2 (en) Steel plate manufacturing method and manufacturing equipment
JPH1034226A (en) Method for cooling high-temperature metallic sheet and device therefor
JPS6035974B2 (en) Cooling method for high-temperature plate-shaped objects
JP2000042621A (en) Cooling control method of hot rolled steel plate
JP3287254B2 (en) Method and apparatus for cooling high-temperature steel sheet
JP3747546B2 (en) Method and apparatus for cooling high temperature steel sheet
JP3617448B2 (en) Steel plate draining method and apparatus
TWI753487B (en) Secondary cooling method and device for continuous casting slab
JPS6261656B2 (en)
JP4453522B2 (en) Steel plate cooling device and cooling method
JP3794085B2 (en) High temperature steel plate cooling device
JPH04344859A (en) Device for cooling continuous cast slab
JP3705147B2 (en) High temperature steel sheet cooling device and method
JP3173574B2 (en) High temperature steel plate cooling system
JP6981435B2 (en) Hot-rolled steel sheet manufacturing equipment
JPH05222461A (en) Cooling method for steel sheet for preventing inferior flatness
JPH0741866A (en) Method for cooling thin steel strip