JP2003183021A - Method and apparatus for continuously purifying ammonia gas - Google Patents

Method and apparatus for continuously purifying ammonia gas

Info

Publication number
JP2003183021A
JP2003183021A JP2001385797A JP2001385797A JP2003183021A JP 2003183021 A JP2003183021 A JP 2003183021A JP 2001385797 A JP2001385797 A JP 2001385797A JP 2001385797 A JP2001385797 A JP 2001385797A JP 2003183021 A JP2003183021 A JP 2003183021A
Authority
JP
Japan
Prior art keywords
ammonia
ammonia gas
section
impurities
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001385797A
Other languages
Japanese (ja)
Other versions
JP3595301B2 (en
JP2003183021A5 (en
Inventor
Katanobu Uemori
賢悦 上森
Toshiyuki Abe
敏行 安部
Makoto Uchino
誠 内野
Shinichi Ando
紳一 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Toyo Sanso Co Ltd
Original Assignee
Taiyo Toyo Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Toyo Sanso Co Ltd filed Critical Taiyo Toyo Sanso Co Ltd
Priority to JP2001385797A priority Critical patent/JP3595301B2/en
Publication of JP2003183021A publication Critical patent/JP2003183021A/en
Publication of JP2003183021A5 publication Critical patent/JP2003183021A5/ja
Application granted granted Critical
Publication of JP3595301B2 publication Critical patent/JP3595301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/024Purification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for directly and continuously purifying low price crude ammonia gas for industrial applications having a purity of about 99.9% or recovered ammonia gas at a location where the ammonia is to be used into high purity ammonia gas having a purity of 99.999 to 99.9999% or higher that can be used in a semiconductor producing process, and to provide an apparatus therefor. <P>SOLUTION: In a process step A, the crude ammonia gas is introduced into a dehydrating tower (3) under a substantially room temperature filled with a barium oxide-based moisture removing agent to remove by reaction the moisture contained in the gas. In a process step B, the ammonia gas from which moisture is removed in the process step A is introduced into an intermediate reflux part (42) of a distillation column (4), liquefying the ammonia gas and separating low boiling point impurities at an upper condensation/cooling part (41). The liquefied material flows down to a lower storage part (43) to form the substantially high purity ammonia. Small amount of impurities contained in the stored liquid is removed by boiling at a lowest boiling/heating part (44). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、たとえば半導体製
造工程などに使用される高純度アンモニアガスを、工業
用アンモニアまたは回収アンモニア(総称してアンモニ
アガスとする)から連続的に精製するための方法および
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously purifying high-purity ammonia gas used in, for example, a semiconductor manufacturing process from industrial ammonia or recovered ammonia (collectively referred to as ammonia gas). And the device.

【0002】[0002]

【従来の技術】半導体デバイス製造工業において、シリ
コン窒化膜や発光ダイオードの製造工程では、窒素源と
して高純度アンモニアが大量に消費されており、その消
費量は年々増加傾向にある。
2. Description of the Related Art In the semiconductor device manufacturing industry, a large amount of high-purity ammonia is consumed as a nitrogen source in the manufacturing process of silicon nitride films and light emitting diodes, and the consumption amount is increasing year by year.

【0003】半導体デバイス製造工業で使用されるアン
モニアは、極めて高純度であることが要求されていると
共に、連続的に高純度アンモニアを供給可能な精製法が
望まれている。
Ammonia used in the semiconductor device manufacturing industry is required to have extremely high purity, and a purification method capable of continuously supplying high purity ammonia is desired.

【0004】アンモニア製造過程における不純物の除去
方法としては、不純物を蒸留除去する方法や、不純物を
合成ゼオライト等の吸着材を用いて吸着除去する方法が
知られている。高純度アンモニアは、各社それぞれの方
法により製造されるが、そのアンモニア純度は出荷検査
値で一般に99.999%以上であり、不純物の含有量は、多
い成分で数100ppb 程度である。
As a method of removing impurities in the ammonia production process, a method of removing impurities by distillation and a method of removing impurities by adsorption using an adsorbent such as synthetic zeolite are known. High-purity ammonia is manufactured by each company's method, but the ammonia purity is generally 99.999% or more in the shipping inspection value, and the content of impurities is about several hundreds of ppb as a large component.

【0005】近年の成膜技術の進歩に伴い、アンモニア
を半導体の製造に用いる際には、さらに高純度まで精製
する必要があるため、実際の使用個所で再度精製を行
い、不純物を低減する措置が採られている。
With the recent advances in film-forming technology, when ammonia is used in the manufacture of semiconductors, it is necessary to purify it to a higher degree of purity. Therefore, refining is performed again at the place of actual use to reduce impurities. Is taken.

【0006】また、上記の方法によりアンモニア製造工
場で製造された高純度アンモニアは、一般に液体状態で
ローリーにより搬送され、主たるユーザーである半導体
デバイス製造工場のタンクに移送され、使用に供されて
いる。
Further, the high-purity ammonia produced in the ammonia production plant by the above method is generally transported in a liquid state by a lorry, transferred to a tank of a semiconductor device production plant, which is a main user, and used. .

【0007】アンモニアを高純度に精製する方法として
は、アンモニアを100℃程度の温度下でゲッタ合金と
接触させて、酸素および水分を除去する方法(特開平4
−292413号公報)や、室温下でニッケル触媒と接
触させて、酸素、一酸化炭素、二酸化炭素を除去する方
法(特開2000−169138)が提案されている。
また、本出願人は、アンモニアを室温下で酸化バリウム
単体または酸化バリウムを主とする混合物と接触させ
て、水分を5ppb 以下にまで除去する方法を提案してい
る(特開平9−142833号公報参照)。
As a method for purifying ammonia to a high purity, a method of contacting ammonia with a getter alloy at a temperature of about 100 ° C. to remove oxygen and water (Japanese Patent Laid-Open No. 4-496).
No. 292413) or a method of removing oxygen, carbon monoxide, and carbon dioxide by contacting with a nickel catalyst at room temperature (Japanese Patent Laid-Open No. 2000-169138).
Further, the present applicant has proposed a method of contacting ammonia at room temperature with barium oxide alone or a mixture mainly containing barium oxide to remove water to 5 ppb or less (JP-A-9-142833). reference).

【0008】[0008]

【発明が解決しようとする課題】半導体の高集積化が進
むにつれて、高純度のアンモニアを低コストで安定的に
連続供給することが要求されている。
With the progress of higher integration of semiconductors, it is required to stably and continuously supply high-purity ammonia at low cost.

【0009】上記のように、アンモニア製造工場で製造
した高純度アンモニアをローリー搬送により供給して使
用する場合、製造タンクからローリーへの充填時やロー
リーから使用個所の設置タンクへの充填時に、窒素、酸
素、水分等の不純物が混入して再汚染され、アンモニア
の純度が低下するおそれがある。
As described above, when the high-purity ammonia produced in the ammonia production plant is used by being fed by a truck, when the tank is filled from the production tank or the tank is filled with nitrogen, the nitrogen is filled. , Impurities such as oxygen and water may be mixed and re-contaminated, and the purity of ammonia may decrease.

【0010】特に水分はアンモニアと親和性が強く、ア
ンモニアの搬送や貯槽のタンク、さらには供給配管に使
用されている金属表面に吸着している水分がアンモニア
と接触することにより脱離してアンモニア中の水分濃度
を増加させ、純度低下を招く危険性があり、いずれも半
導体デバイスの製造収率低下を招く原因となる。
In particular, water has a strong affinity with ammonia, and the water adsorbed on the surface of the metal used in the transportation of ammonia or the tank for storage tanks and the supply pipes comes into contact with the ammonia to be desorbed. There is a risk of increasing the water concentration and causing a decrease in purity, and any of these causes a decrease in the manufacturing yield of semiconductor devices.

【0011】また、上記のような汚染がなく、高純度ア
ンモニアが製造時の純度を維持できた場合でも、先に述
べた理由により、特に高純度を必要とするシリコン窒化
膜用CVD装置へ導入する直前で再度精製を行い、不純
物の混入を極限まで低減して使用することが必要とな
る。
Further, even when the high purity ammonia can maintain the purity at the time of production without the above-mentioned contamination, it is introduced into a CVD apparatus for a silicon nitride film which requires particularly high purity for the reason described above. It is necessary to carry out purification again immediately before, and to reduce the contamination of impurities to the limit.

【0012】アンモニアの使用個所で不純物を低減させ
る方法としては、上記の提案されている精製方法がある
が、各精製方法とも、除去できる不純物は限定された成
分であり、いずれの方法も窒素やメタンなどは除去でき
ないという限界がある。また、半導体グレードの高純度
アンモニアの価格は、工業グレードの粗アンモニアの1
0倍程度と高価である。
As a method for reducing impurities at the place where ammonia is used, there are the above-mentioned proposed purification methods. However, in each of the purification methods, the impurities that can be removed are limited components. There is a limit that methane cannot be removed. Also, the price of semiconductor grade high purity ammonia is 1
It is as expensive as 0 times.

【0013】本発明は、このような背景下において、純
度99.9%程度の安価な工業用の粗アンモニアガスまたは
回収アンモニアガスを、アンモニアの使用個所で、半導
体製造工程で使用可能な純度99.999〜 99.9999%以上の
高純度アンモニアに直接かつ連続的に精製する方法、お
よびそのための装置を提供することを目的とするもので
ある。
Against this background, the present invention has a purity of 99.999 to 99.9999, which can be used in the semiconductor manufacturing process at a place where ammonia is used as an inexpensive industrial crude ammonia gas or a recovered ammonia gas having a purity of about 99.9%. The object of the present invention is to provide a method for directly and continuously purifying high-purity ammonia having a purity of at least%, and an apparatus therefor.

【0014】[0014]

【課題を解決するための手段】本発明のアンモニアガス
の連続精製方法は、水分と、アンモニアよりも沸点の低
い低沸点不純物とを含む粗アンモニアガスを連続的に精
製する方法であって、酸化バリウム系水分除去剤を充填
した実質的に室温下の脱水塔(3) に粗アンモニアガスを
導入し、その粗アンモニアガス中に含まれる水分を反応
除去する工程Aを実施すること、および、上部凝縮冷却
部(41)、中間部還流部(42)、下部貯留部(43)、最下部沸
騰加熱部(44)に区画され、かつ上部には不純物を含むア
ンモニアガスの排出部(45)、下部には精製された液化ア
ンモニアの取出部(46)を備えた蒸留塔(4) を用い、該蒸
留塔(4) の中間部還流部(42)に前記工程Aにより水分が
除去されたアンモニアガスを導入して、上部凝縮冷却部
(41)でアンモニアガスを液化すると共に低沸点不純物を
分離しながら、液化物を下部貯留部(43)まで流下させて
実質的に高純度のアンモニアとなし、さらに、貯留され
た液体に含まれる微量不純物を最下部沸騰加熱部(44)で
沸騰により追い出す工程Bを実施することを特徴とする
ものである。
A method for continuously purifying ammonia gas according to the present invention is a method for continuously purifying a crude ammonia gas containing water and low boiling impurities having a boiling point lower than that of ammonia. Performing a step A of introducing crude ammonia gas into a dehydration tower (3) at a substantially room temperature filled with a barium-based moisture remover and reacting and removing moisture contained in the crude ammonia gas, and Condensation cooling section (41), intermediate reflux section (42), lower storage section (43), is divided into the lowest boiling heating section (44), and the upper portion of the ammonia gas discharge section containing impurities (45), A distillation column (4) equipped with a purified liquefied ammonia take-out part (46) is used in the lower part, and the ammonia whose water has been removed by the above step A is provided in the intermediate reflux part (42) of the distillation column (4). Introduce gas to condense and cool upper part
While liquefying the ammonia gas at (41) and separating low-boiling impurities, the liquefied substance is made to flow down to the lower storage section (43) to form substantially high-purity ammonia, which is further contained in the stored liquid. It is characterized in that step B is carried out to remove trace impurities by boiling in the lowermost boiling heating section (44).

【0015】本発明のアンモニアガスの連続精製装置
は、水分と、アンモニアよりも沸点の低い低沸点不純物
とを含む粗アンモニアガスを連続的に精製する装置であ
って、酸化バリウム系水分除去剤を充填するための脱水
塔(3) と、上部凝縮冷却部(41)、中間部還流部(42)、下
部貯留部(43)、最下部沸騰加熱部(44)に区画され、かつ
上部には不純物を含むアンモニアガスの排出部(45)、下
部には精製された液化アンモニアの取出部(46)を備えた
蒸留塔(4)とを備えてなることを特徴とするものであ
る。
The continuous purification apparatus for ammonia gas of the present invention is an apparatus for continuously purifying crude ammonia gas containing water and low boiling impurities having a boiling point lower than that of ammonia. It is divided into a dehydration tower (3) for filling, an upper condensation cooling section (41), an intermediate reflux section (42), a lower storage section (43), and a lowermost boiling heating section (44), and the upper section A discharge column (45) for ammonia gas containing impurities, and a distillation column (4) provided with a discharge section (46) for purified liquefied ammonia at the bottom are provided.

【0016】[0016]

【発明の実施の形態】以下本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0017】〈粗アンモニア〉本発明のアンモニアガス
の連続精製方法は、水分と、アンモニアよりも沸点の低
い低沸点不純物とを含む粗アンモニアガスを連続的に精
製する方法にかかるものである。
<Crude Ammonia> The continuous purification method for ammonia gas of the present invention is a method for continuously purifying crude ammonia gas containing water and low boiling impurities having a boiling point lower than that of ammonia.

【0018】本発明において不純物除去の対象としてい
る粗アンモニアとしては、純度が99.9%程度の市販の工
業用アンモニアや回収アンモニアがあげられる。粗アン
モニア中の水分濃度は、通常は100ppm 以下、好まし
くは50ppm 以下である。粗アンモニアに含まれている
アンモニアよりも沸点の低い低沸点不純物とは、水素(H
2)、酸素(O2)、窒素(N2)、アルゴン(Ar)、一酸化炭素(C
O)、二酸化炭素(CO2)、メタン(CH4) 、エタン(C2H6)、
エチレン(C2H4)、プロパン(C3H8)、プロピレン(C3H6)、
シラン(SiH4)、ホスフィン(PH3) 、アルシン(AsH3)、ゲ
ルマン(GeH4)などである。ただし、これらのうちエタン
からゲルマンまでの不純物の含有量は、実際には粗アン
モニア中にもほとんど検出されない程度である。
Examples of the crude ammonia targeted for removing impurities in the present invention include commercially available industrial ammonia having a purity of about 99.9% and recovered ammonia. The water concentration in the crude ammonia is usually 100 ppm or less, preferably 50 ppm or less. Low-boiling impurities having a lower boiling point than ammonia contained in crude ammonia are hydrogen (H
2 ), oxygen (O 2 ), nitrogen (N 2 ), argon (Ar), carbon monoxide (C
O), carbon dioxide (CO 2 ), methane (CH 4 ), ethane (C 2 H 6 ),
Ethylene (C 2 H 4 ), propane (C 3 H 8 ), propylene (C 3 H 6 ),
Examples include silane (SiH 4 ), phosphine (PH 3 ), arsine (AsH 3 ), and germane (GeH 4 ). However, of these, the content of impurities from ethane to germane is practically almost undetectable even in crude ammonia.

【0019】〈工程A〉工程Aは、酸化バリウム系水分
除去剤を充填した実質的に室温下の脱水塔(3)に粗アン
モニアガスを導入し、その粗アンモニアガス中に含まれ
る水分を反応除去する工程である。
<Step A> In step A, crude ammonia gas is introduced into a dehydration tower (3) at a substantially room temperature filled with a barium oxide-based water removing agent, and the water contained in the crude ammonia gas is reacted. This is the step of removing.

【0020】粗アンモニアガスの脱水塔(3) への導入
は、たとえば、粗アンモニアを収容した粗アンモニア容
器(1) を加熱器(2) により加熱して、気相の粗アンモニ
アガスとして取り出すことによりなされる。
To introduce the crude ammonia gas into the dehydration tower (3), for example, the crude ammonia container (1) containing the crude ammonia is heated by the heater (2) and taken out as the vapor phase crude ammonia gas. Made by.

【0021】酸化バリウム系水分除去剤としては、酸化
バリウム単体、または酸化バリウムを主とする混合物
(たとえば、酸化バリウムと、酸化カルシウム等の水分
除去能力のある物質との混合物)があげられる。後者の
混合物にあっては、その混合物に占める酸化バリウムの
割合は50モル%以上であることが好ましい。
Examples of the barium oxide-based water removing agent include barium oxide alone or a mixture mainly containing barium oxide (for example, a mixture of barium oxide and a substance capable of removing water such as calcium oxide). In the latter mixture, the proportion of barium oxide in the mixture is preferably 50 mol% or more.

【0022】酸化バリウム系水分除去剤からなる充填物
の形状は、粉体、顆粒、成形品などのいずれであっても
よいが、粗アンモニアガス導入時の圧力損失を抑えるた
めには、成形品の形状が好ましい。顆粒や成形品などに
賦形するときは、賦形剤や増量剤を配合することもでき
る。
The shape of the filling composed of the barium oxide-based water removing agent may be any of powder, granules, molded products and the like. In order to suppress the pressure loss when introducing the crude ammonia gas, the molded product is Is preferred. When shaping into granules or molded articles, an excipient and a bulking agent can be added.

【0023】粗アンモニアガス中に含まれる水分の除去
は、酸化バリウム系水分除去剤を脱水塔(3) (塔状のカ
ラム)に充填した後、実質的に室温下において、粗アン
モニアガスを導入することによって行われる。水分は、
酸化バリウムと反応して水酸化バリウムとなり、カラム
内に固定される。その際、カラム出口の水分濃度は、5
ppb 以下の極めて低濃度に維持される。
The water contained in the crude ammonia gas is removed by charging the barium oxide-based water removing agent into the dehydration tower (3) (columnar column), and then introducing the crude ammonia gas substantially at room temperature. Is done by doing. Moisture is
It reacts with barium oxide to form barium hydroxide, which is fixed in the column. At that time, the water concentration at the column outlet was 5
It is maintained at an extremely low concentration below ppb.

【0024】その際の空間速度(SV)は、実用的には、5
00hr-1以下に設定することが好ましい。空間速度を大
きくしても水分の除去は可能であるが、連続使用できる
時間が短くなるからである。
The space velocity (SV) at that time is practically 5
It is preferably set to 00 hr -1 or less. This is because the water content can be removed even if the space velocity is increased, but the continuous use time becomes short.

【0025】脱水塔(3) における充填物の充填高さは、
特に制限はないが、圧力損失の増加を考慮すると、20
00mm以下とすることが好ましい。
The filling height of the packing in the dehydration tower (3) is
There is no particular limitation, but considering the increase in pressure loss, 20
It is preferable to set it to 00 mm or less.

【0026】脱水塔(3) の数(カラムの数)は、1塔で
もよいが、連続的な運転を考えた場合、2塔で交互に使
用することが好ましい。
The number of dehydration towers (3) (the number of columns) may be one, but in consideration of continuous operation, it is preferable to alternately use two towers.

【0027】〈工程B〉工程Bは、上記の工程Aにより
水分が反応除去されたアンモニアガス中に残存する低沸
点不純物を、蒸留操作により分離精製する工程である。
<Step B> Step B is a step of separating and refining the low boiling point impurities remaining in the ammonia gas from which the water has been reacted and removed in the step A, by a distillation operation.

【0028】この工程Bにおいては、上部凝縮冷却部(4
1)、中間部還流部(42)、下部貯留部(43)、最下部沸騰加
熱部(44)に区画され、かつ上部には不純物を含むアンモ
ニアガスの排出部(45)、下部には精製された液化アンモ
ニアの取出部(46)を備えた蒸留塔(4) を用いる。
In this step B, the upper condensing cooling section (4
1), an intermediate reflux section (42), a lower storage section (43), and a bottom boiling heating section (44), and an ammonia gas discharge section (45) containing impurities in the upper section and a refinement section in the lower section. A distillation column (4) equipped with an outlet (46) for the liquefied liquefied ammonia is used.

【0029】そして工程Bにおいては、蒸留塔(4) の中
間部還流部(42)に前記工程Aにより水分が除去されたア
ンモニアガスを導入して、上部凝縮冷却部(41)でアンモ
ニアガスを液化すると共に低沸点不純物を分離しなが
ら、液化物を下部貯留部(43)まで流下させて実質的に高
純度のアンモニアとなし、さらに、貯留された液体に含
まれる微量不純物を最下部沸騰加熱部(44)で沸騰により
追い出す。これにより、高純度のアンモニアが得られ
る。
In step B, the ammonia gas from which water has been removed in step A is introduced into the intermediate reflux part (42) of the distillation column (4), and the ammonia gas is fed into the upper condensing cooling part (41). While liquefying and separating low-boiling-point impurities, the liquefied substance is made to flow down to the lower reservoir (43) to form substantially high-purity ammonia, and the trace impurities contained in the stored liquid are heated to the bottom by boiling. Drive out by boiling in part (44). As a result, highly pure ammonia is obtained.

【0030】工程Bにおいては、アンモニアガスを液化
させるため、上部凝縮冷却部(41)を−5〜10℃の温度
範囲に維持することが好ましい。上部凝縮冷却部(41)の
温度が−5℃よりも低温になると、液化は容易になる
が、液化されたアンモニアの温度が低くなり、精製され
た高純度アンモニアの圧力が低くなるため、使用時に再
昇圧の必要を生じる。一方、上部凝縮冷却部(41)の温度
が10℃よりも高温になると、凝縮効率が悪くなり、凝
縮に必要な熱交換面積が増大する。
In step B, in order to liquefy the ammonia gas, it is preferable to maintain the upper condensing cooling part (41) in the temperature range of -5 to 10 ° C. When the temperature of the upper condensing cooling part (41) becomes lower than -5 ° C, liquefaction becomes easy, but the temperature of the liquefied ammonia becomes low, and the pressure of the purified high-purity ammonia becomes low. Sometimes it is necessary to boost the pressure again. On the other hand, when the temperature of the upper condensing cooling part (41) becomes higher than 10 ° C., the condensing efficiency deteriorates and the heat exchange area required for condensing increases.

【0031】また、工程Bにおいては、最下部沸騰加熱
部(44)を30〜50℃の温度範囲に維持することが好ま
しい。最下部沸騰加熱部(44)の温度が30℃よりも低温
になると、液体アンモニアとの温度差が小さくなり、沸
騰による溶解不純物の追い出し効率が低下する。一方、
最下部沸騰加熱部(44)の温度が50℃よりも高温になる
と、液体アンモニアの温度が高くなりすぎて、圧力が高
くなり、導入されるアンモニアとの圧力差が小さくなる
ため、必要な精製流量を得ることが難しくなる。
In step B, it is preferable to maintain the bottom boiling heating section (44) in the temperature range of 30 to 50 ° C. When the temperature of the lowermost boiling heating section (44) becomes lower than 30 ° C., the temperature difference from the liquid ammonia becomes small, and the efficiency of expelling dissolved impurities due to boiling decreases. on the other hand,
When the temperature of the bottom boiling heating section (44) becomes higher than 50 ° C, the temperature of liquid ammonia becomes too high, the pressure becomes high, and the pressure difference with the introduced ammonia becomes small. It becomes difficult to obtain the flow rate.

【0032】さらに、工程Bにおいては、不純物を含む
アンモニアガスの排出流量を、体積比で、蒸留塔(4) 導
入流量の 0.1〜10%に設定することが好ましい。排出
流量が 0.1%よりも小さくなると、蒸留塔(4) 内で、不
凝縮成分である低沸点不純物の濃度が高くなり、アンモ
ニアの凝縮液化効率が低下する。一方、排出流量が10
%よりも大きくなると、製品として取り出せるアンモニ
ア量が少なくなり、経済的な精製の点で不利となる。
Further, in step B, the discharge flow rate of the ammonia gas containing impurities is preferably set to 0.1 to 10% of the flow rate introduced into the distillation column (4) by volume ratio. When the discharge flow rate is less than 0.1%, the concentration of low boiling point impurities that are non-condensable components increases in the distillation column (4), and the condensation and liquefaction efficiency of ammonia decreases. On the other hand, the discharge flow rate is 10
When it is larger than%, the amount of ammonia that can be taken out as a product becomes small, which is disadvantageous in terms of economical refining.

【0033】〈連続精製のための措置〉連続的な精製に
より安定した純度の高純度アンモニアを得るために、次
のような措置を講ずることが望ましい。
<Measures for Continuous Purification> In order to obtain highly pure ammonia having a stable purity by continuous purification, it is desirable to take the following measures.

【0034】上記の工程Aにおいては、水分を非可逆的
な反応で除去するため、再生はできない。そこで、カラ
ム(脱水塔(3) )から水分が流出する前に、新しいカラ
ムと交換する必要がある。
In the above step A, water cannot be regenerated because water is removed by an irreversible reaction. Therefore, it is necessary to replace with a new column before water flows out from the column (dehydration tower (3)).

【0035】本発明においては、上記カラムの充填層中
間位置、好ましくはたとえば充填層のガス流出部から上
流側の約1/3の位置のガスをサンプリングして水分濃
度を測定すると共に、工程Bにおける蒸留塔(4) の下部
貯留部(43)内の高純度アンモニア製品の水分濃度も測定
し、両者の水分濃度差を演算により求め、脱水塔(3)に
おける充填物の交換時機を検出することが好ましい。
In the present invention, the concentration of water is measured by sampling the gas at the intermediate position of the packed bed of the column, preferably, for example, at the position of about 1/3 of the upstream side from the gas outlet of the packed bed to measure the water concentration. The water concentration of the high-purity ammonia product in the lower storage part (43) of the distillation column (4) is also measured, and the difference in water concentration between the two is calculated, and the time for changing the packing in the dehydration column (3) is detected. It is preferable.

【0036】具体例をあげると、後述の実施例1の粗ア
ンモニアの場合、水分差設定値をたとえば(28ppm −
0.01ppm )/3の 9.3ppm に設定して制御することによ
り、脱水塔(3) の水分測定サンプリング配管取り付け位
置より下流側約1/3の脱水能力を最大限利用した後
に、交換を行うことができる。
As a specific example, in the case of crude ammonia of Example 1 described later, the water difference set value is set to, for example, (28 ppm-
(0.01ppm) / 3 of 9.3ppm for control so that the dehydration tower (3) can be replaced after making maximum use of the dehydration capacity of about 1/3 of the downstream side of the sampling pipe installation position for moisture measurement. You can

【0037】なお、上記カラム(脱水塔(3) )単独の水
分濃度でもカラムの交換時機を知ることができる。ただ
し、この方法においては、水分濃度が増加しはじめた時
点が交換時機となり、カラムの下流側の1/3程度の充
填層が有効に利用できないという点で、先の方法に比し
ては不利となる。
It should be noted that even when the water concentration of the above column (dehydration tower (3)) alone is used, it is possible to know when the column should be replaced. However, in this method, the time when the water concentration starts to increase becomes the time for replacement, and the packed bed of about 1/3 on the downstream side of the column cannot be effectively used, which is a disadvantage compared to the previous method. Becomes

【0038】アンモニア中の水分濃度は、水分濃度モニ
タ用のサンプリングガスを炭化カルシウム(CaC2)と接触
させて、アンモニア中の水分をアセチレン(C2H2)に変換
した後、ガスクロマトグラフ装置(たとえば、自動測定
機能を備えた水素炎イオン化式ガスクロマトグラフ(GC-
FID))で測定することによりなされる。水分濃度のモニ
タは、フーリエ変換赤外分光光度計(FT-IR) (たとえ
ば、光路長10m程度のガスセルを備えたフーリエ変換
赤外分光光度計(FT-IR) )を用いて行うこともできる。
これらの方法により、100ppb 以下の水分を定量する
ことができる。そして、これらの分析計で、脱水塔(3)
カラム内のガス中の水分と、蒸留塔(4) 下部貯留部(43)
の精製アンモニア中の水分とを測定することにより、脱
水塔(3) カラムの交換時機と、製品の品質とを、同時に
判定することができる。
The water concentration in ammonia, the sampling gas for water concentration monitor in contact with calcium carbide (CaC 2), after the water content in the ammonia was converted to acetylene (C 2 H 2), a gas chromatograph ( For example, a hydrogen flame ionization gas chromatograph (GC-
FID)). The water concentration can be monitored using a Fourier transform infrared spectrophotometer (FT-IR) (for example, a Fourier transform infrared spectrophotometer (FT-IR) equipped with a gas cell having an optical path length of about 10 m). .
By these methods, the water content of 100 ppb or less can be quantified. And with these analyzers, dehydration tower (3)
Moisture in the gas in the column and the lower storage part (43) of the distillation column (4)
By measuring the water content in the purified ammonia of (1), the time of replacement of the dehydration column (3) column and the quality of the product can be determined at the same time.

【0039】上に述べた脱水塔(3) カラムの交換に際し
ては、窒素ガスなどの不活性ガスで配管内に残留してい
る酸素や水分を置換した後、さらに、精製された高純度
アンモニアでパージを行い、残留する不活性ガスを追い
出した後、高純度アンモニアで均圧操作が行うことが望
ましい。
When replacing the dehydration column (3) column described above, after replacing oxygen and water remaining in the pipe with an inert gas such as nitrogen gas, it is further purified with purified high-purity ammonia. It is desirable to carry out a pressure equalization operation with high-purity ammonia after purging and purging out the remaining inert gas.

【0040】より詳しく述べると、工程Aにおける脱水
塔(3) を使用する前に、該脱水塔(3) に、工程Bにおけ
る蒸留塔(4) 下部貯留部(43)の精製されたアンモニアを
導入して、系内の不純物をパージした後、均圧操作を行
うのである。
More specifically, before using the dehydration column (3) in the step A, the purified ammonia in the distillation column (4) lower storage part (43) in the step B is added to the dehydration column (3). After introducing and purging impurities in the system, a pressure equalizing operation is performed.

【0041】そのほか、工程Bにおける蒸留塔(4) 下部
貯留部(43)の精製されたアンモニアで脱水塔(3) をパー
ジし、そのパージした後の排出ガスを回収し、その回収
ガスを工程Aにおいて脱水塔(3) に供給する原料アンモ
ニアの一部として再使用することが望ましい。
In addition, the dehydration tower (3) is purged with purified ammonia in the lower storage section (43) of the distillation tower (4) in step B, and the exhaust gas after the purging is recovered, and the recovered gas is used in the step. In A, it is desirable to reuse it as a part of the raw material ammonia supplied to the dehydration tower (3).

【0042】〈連続精製装置〉上述の連続精製方法を実
施するため、本発明のアンモニアガスの連続精製装置
は、酸化バリウム系水分除去剤を充填するための脱水塔
(3) と、上部凝縮冷却部(41)、中間部還流部(42)、下部
貯留部(43)、最下部沸騰加熱部(44)に区画され、かつ上
部には不純物を含むアンモニアガスの排出部(45)、下部
には精製された液化アンモニアの取出部(46)を備えた蒸
留塔(4)とを備えるようにする。付属する装置ないし部
材については、後述の実施例で説明する。
<Continuous Purification Apparatus> In order to carry out the above-mentioned continuous purification method, the continuous purification apparatus for ammonia gas of the present invention is a dehydration tower for filling a barium oxide-based water removing agent.
(3) is divided into an upper condensation cooling section (41), an intermediate reflux section (42), a lower storage section (43), and a lowermost boiling heating section (44), and the upper part thereof contains ammonia gas containing impurities. A discharge part (45) and a distillation column (4) equipped with a purified liquefied ammonia take-out part (46) are provided at the bottom. The attached devices or members will be described in the examples below.

【0043】〈作用〉本発明によれば、工程Aにおける
脱水反応操作と工程Bにおける蒸留分離操作との協同に
より、粗アンモニア中の水分および低沸点不純物の双方
の除去による精製アンモニアガスの取得が、連続的にか
つ確実に達成される。
<Operation> According to the present invention, by the cooperation of the dehydration reaction operation in the step A and the distillation separation operation in the step B, the purified ammonia gas can be obtained by removing both water and low boiling impurities in the crude ammonia. , Continuously and reliably achieved.

【0044】また、工程Aの操作を実質的に室温下で行
うことができ、工程Bの操作を−5〜50℃の温度範囲
で行うことができるため、アンモニアの精製のための全
処理工程を、無理のない経済的構造の低圧装置を用いか
つ約1MPaG以下の圧力で達成することができる。
Further, since the operation of step A can be carried out substantially at room temperature and the operation of step B can be carried out in the temperature range of -5 to 50 ° C., all treatment steps for purification of ammonia can be carried out. Can be achieved with a reasonably economical low pressure device and at pressures below about 1 MPaG.

【0045】[0045]

【実施例】次に実施例をあげて本発明をさらに説明す
る。
EXAMPLES The present invention will be further described with reference to examples.

【0046】実施例1 図1は、本発明に従ってアンモニアガスの連続精製を行
うときの流れおよび装置の一例を示した説明図である。
なお、図1中の(V) はバルブである。
Example 1 FIG. 1 is an explanatory diagram showing an example of a flow and an apparatus for continuously purifying ammonia gas according to the present invention.
In addition, (V) in FIG. 1 is a valve.

【0047】原料となる粗アンモニアとして、純度99.9
%以上の工業用アンモニアを使用した。原料に含まれる
不純物には、後述の表1に示すように、28ppm の水分
(H2O) のほか、水素(H2)、酸素(O2)、窒素(N2)、アルゴ
ン(Ar)、一酸化炭素(CO)、二酸化炭素(CO2) 、メタン(C
H4) などのアンモニアより沸点の低い低沸点不純物が含
まれている(エタン(C2H6)、エチレン(C2H4)、プロパン
(C3H8)、プロピレン(C 3H6)、シラン(SiH4)、ホスフィン
(PH3) 、アルシン(AsH3)、ゲルマン(GeH4)はほとんど検
出されない)。
As raw crude ammonia, purity 99.9
% Or more industrial ammonia was used. Contained in raw materials
As shown in Table 1 below, impurities include 28 ppm of water.
(H2O) as well as hydrogen (H2), Oxygen (O2), Nitrogen (N2), Argo
(Ar), carbon monoxide (CO), carbon dioxide (CO2), Methane (C
HFour) And other low boiling impurities such as
Rare (ethane (C2H6), Ethylene (C2HFour),propane
(C3H8), Propylene (C 3H6), Silane (SiHFour), Phosphine
(PH3), Arsine (AsH3), German (GeHFour) Is almost inspected
Will not be issued).

【0048】この原料は、粗アンモニア容器(1) に充填
されている。この粗アンモニア容器(1) は、加熱器(2)
により温度25℃に温度制御されており、アンモニアの
圧力として約 0.9 MPaG に維持されている。この原料
は、粗アンモニア容器(1) の気相部から取り出され、流
量調整器(F1)で10NL/minに調整された後、脱水塔(3)
に導入される。
This raw material is filled in the crude ammonia container (1). This crude ammonia container (1) is equipped with a heater (2).
The temperature is controlled to 25 ° C by the, and the pressure of ammonia is maintained at about 0.9 MPaG. This raw material was taken out from the gas phase part of the crude ammonia container (1) and adjusted to 10 NL / min by the flow rate controller (F 1 ), and then the dehydration tower (3)
Will be introduced to.

【0049】脱水塔(3) は、(3A), (3B)の2塔からな
り、各塔は内径83.1mm、高さ800mmのステンレス製カ
ラムを使用してある。それぞれの塔には、酸化バリウム
系水分除去剤からなる充填物として、酸化バリウム(Ba
O) 50重量%、ポリエチレン30重量%、アルミナ2
0重量%の組成を有する直径4mm、長さ 3.5mmの円柱状
の圧縮成形ペレットを約3リットル充填してある。
The dehydration tower (3) consists of two towers (3A) and (3B), and each tower uses a stainless steel column having an inner diameter of 83.1 mm and a height of 800 mm. Each of the towers was packed with barium oxide (Ba
O) 50% by weight, polyethylene 30% by weight, alumina 2
About 3 liters of cylindrical compression molded pellets having a diameter of 4 mm and a length of 3.5 mm having a composition of 0% by weight are filled.

【0050】また、脱水塔(3) の充填層のガス流出部か
ら上流側約1/3の位置からは、水分濃度を測定するた
めの配管が設けてあり、使用側の脱水塔(3) から、流量
調整器(F4)で所定流量に調整され、水分濃度測定器(5)
に導入されるようにしてある。
A pipe for measuring the water concentration is provided from a position approximately 1/3 on the upstream side from the gas outlet of the packed bed of the dehydration tower (3), and the dehydration tower (3) on the use side is provided. To the specified flow rate with the flow rate controller (F 4 )
It is being introduced into.

【0051】脱水塔(3) から導出されたアンモニアは、
蒸留塔(4) の中間部還流部(42)に導入され、冷凍機(47)
により0℃に温度制御された上部凝縮冷却部(41)で液化
され、低沸点不純物が分離される。液化されたアンモニ
アは、下部貯留部(43)まで流下し、貯留される。この貯
留された液化アンモニアの一部は、加熱機(48)により4
0℃に温度制御された最下部沸騰加熱部(44)で気化さ
れ、溶解している不純物が分離される。
Ammonia derived from the dehydration tower (3) is
Introduced into the middle reflux section (42) of the distillation column (4), the refrigerator (47)
Is liquefied in the upper condensing cooling part (41) whose temperature is controlled to 0 ° C., and low boiling point impurities are separated. The liquefied ammonia flows down and is stored in the lower storage section (43). A part of the stored liquefied ammonia was heated by the heater (48)
Impurities that have been vaporized and dissolved in the lowermost boiling heating section (44) whose temperature is controlled to 0 ° C. are separated.

【0052】上部凝縮沸騰部(41)および最下部沸騰加熱
部(44)で分離された低沸点不純物は、蒸留塔(4) 上部の
排出部(45)より、流量調整器(F3)で50Nml/min に調整
された流量で排出される。
The low boiling point impurities separated in the upper condensing boiling section (41) and the lowermost boiling heating section (44) are discharged from the discharge section (45) at the upper part of the distillation column (4) by a flow rate controller (F 3 ). It is discharged at a flow rate adjusted to 50 Nml / min.

【0053】不純物が分離された高純度アンモニアは、
蒸留塔(4) 下部の高純度アンモニア取出部(46)を通り、
製品アンモニア蒸発器(49)で気化された後、流量調整器
(F2)で10NL/minに調整されて、高純度アンモニアガス
として取り出される。
High-purity ammonia from which impurities have been separated is
Passing through the high-purity ammonia extraction section (46) at the bottom of the distillation column (4),
Product Ammonia Evaporator (49) after vaporization, then flow regulator
It is adjusted to 10 NL / min with (F 2 ) and taken out as high-purity ammonia gas.

【0054】この高純度アンモニアガスの不純物を、水
素炎イオン化式ガスクロマトグラフ(GC-FID)と光イオン
化式ガスクロマトグラフ(GC-PID)を用いて測定した。
The impurities of this high-purity ammonia gas were measured using a hydrogen flame ionization type gas chromatograph (GC-FID) and a photoionization type gas chromatograph (GC-PID).

【0055】その結果、後述の表2に示すように、水分
(H2O) が除去されているほか、水素(H2)、酸素(O2)、窒
素(N2)、アルゴン(Ar)、一酸化炭素(CO)、二酸化炭素(C
O2)、メタン(CH4) は極めて低濃度まで除去されてお
り、原料中にもともとほとんど含まれていなかったエタ
ン(C2H6)、エチレン(C2H4)、プロパン(C3H8)、プロピレ
ン(C3H6)、シラン(SiH4)、ホスフィン(PH3) 、アルシン
(AsH3)、ゲルマン(GeH4)等のアンモニアより沸点の低い
不純物も、高純度アンモニアガスにはほとんど含まれて
いなかった。
As a result, as shown in Table 2 below, the water content
(H 2 O) is removed, as well as hydrogen (H 2 ), oxygen (O 2 ), nitrogen (N 2 ), argon (Ar), carbon monoxide (CO), carbon dioxide (C
O 2 ) and methane (CH 4 ) have been removed to extremely low concentrations, and ethane (C 2 H 6 ), ethylene (C 2 H 4 ), propane (C 3 H 8), propylene (C 3 H 6), silane (SiH 4), phosphine (PH 3), arsine
Impurities such as (AsH 3 ) and germane (GeH 4 ) having a boiling point lower than that of ammonia were hardly contained in the high-purity ammonia gas.

【0056】実施例2 蒸留塔(4) の上部凝縮冷却部(41)の温度を−5℃、0
℃、5℃、10℃に、最下部沸騰加熱部(44)の温度を3
0℃、40℃、50℃にそれぞれ変化させ、蒸留操作の
温度条件以外は実施例1と同一の条件で粗アンモニアの
精製を行った。
Example 2 The temperature of the upper condensing cooling section (41) of the distillation column (4) was -5 ° C. and 0
℃, 5 ℃, 10 ℃, the temperature of the bottom boiling heating part (44) 3
The temperature was changed to 0 ° C., 40 ° C., and 50 ° C., and the crude ammonia was purified under the same conditions as in Example 1 except for the temperature condition of the distillation operation.

【0057】いずれの温度条件での精製においても、得
られた高純度アンモニアの不純物は表2に示した濃度と
変りはなく、充分な精製能力が得られた。
In the purification under any temperature conditions, the impurities of the obtained high-purity ammonia did not change from the concentrations shown in Table 2, and sufficient purification ability was obtained.

【0058】各温度条件の蒸留操作で得られた高純度ア
ンモニアの圧力は、後述の表3に示すように、実用上問
題のないレベルであった。
The pressure of the high-purity ammonia obtained by the distillation operation under each temperature condition was at a practically no problem level as shown in Table 3 below.

【0059】実施例3 実施例1と同一条件で連続精製を行い、脱水塔(3) の充
填層中間位置の水分濃度と、蒸留塔(4) の下部貯留部(4
3)の水分濃度とを、交互に水分濃度測定器(5)で測定
し、演算器(6) で演算した。
Example 3 Continuous purification was carried out under the same conditions as in Example 1, and the water concentration in the middle position of the packed bed of the dehydration tower (3) and the lower storage part (4
The water concentration of 3) and the water concentration were alternately measured by the water concentration measuring device (5) and calculated by the calculator (6).

【0060】水分濃度測定器(5) としては、自動測定機
能を備えた水素炎イオン化式ガスクロマトグラフ(GC-FI
D)を用いた。水分は、GC-FID導入部直前に設置した炭化
カルシウム(CaC2)充填カラムでアセチレン(C2H2)に変換
して測定した。定量下限値は10ppb である。
The moisture concentration measuring instrument (5) is a hydrogen flame ionization type gas chromatograph (GC-FI) equipped with an automatic measuring function.
D) was used. The water content was measured by converting it to acetylene (C 2 H 2 ) using a calcium carbide (CaC 2 ) packed column installed immediately before the GC-FID introduction part. The lower limit of quantification is 10 ppb.

【0061】精製開始後2280時間で、脱水塔(3) の
充填層中間位置の水分濃度に増加が見られたが、蒸留塔
(4) の下部貯留部(43)の水分濃度は、精製開始後310
0時間までは10ppb 未満であった。
At 2280 hours after the start of the purification, the water concentration in the middle position of the packed bed of the dehydration column (3) was found to increase.
The water concentration in the lower storage part (43) of (4) was 310% after the start of purification.
It was less than 10 ppb by 0 hours.

【0062】実施例4 水分濃度測定器(5) に、光路長10m のガスセルを備えた
フーリエ変換赤外分光光度計(FT-IR) を用いた以外は、
実施例3と同一条件で測定した。定量下限値は100pp
b である。
Example 4 A Fourier transform infrared spectrophotometer (FT-IR) equipped with a gas cell having an optical path length of 10 m was used as the moisture concentration measuring instrument (5), except that
It measured on the same conditions as Example 3. Lower limit of quantification is 100pp
b.

【0063】精製開始後2300時間で、脱水塔(3) の
充填層中間位置の水分濃度に増加が見られたが、蒸留塔
(4) の下部貯留部(43)の水分濃度は、精製開始後312
0時間までは100ppb 未満であった。
At 2300 hours after the start of purification, the water concentration in the middle position of the packed bed of the dehydration column (3) increased, but the distillation column
The water concentration in the lower storage part (43) of (4) was 312 after the start of purification.
It was less than 100 ppb by 0 hours.

【0064】実施例5 脱水能力がなくなった脱水塔(3) を新しい塔に交換し、
窒素ガスで配管内に残留している酸素や水分を置換し
た。ついで、精製された高純度アンモニアで脱水塔(3)
内をパージし、塔、配管内に残留している窒素を置換し
た後、高純度アンモニアで均圧した。パージで排出され
た主に窒素ガスを含むアンモニアを廃アンモニア回収容
器(7) に回収しながら、昇圧機(8) で約1MPaGまで昇圧
して、原料アンモニア供給配管に導入して、精製を行っ
た。
Example 5 The dehydration tower (3), which had no dehydration capacity, was replaced with a new tower,
Oxygen and water remaining in the pipe were replaced with nitrogen gas. Then, dehydration tower with purified high-purity ammonia (3)
After purging the inside and replacing the nitrogen remaining in the tower and the pipe, the pressure was equalized with high-purity ammonia. While recovering the ammonia mainly containing nitrogen gas discharged by the purge into the waste ammonia recovery container (7), the booster (8) boosts the pressure to about 1 MPaG and introduces it into the feed ammonia supply pipe for purification. It was

【0065】精製で得られた高純度アンモニアの不純物
は、表2に示した濃度と変りはなく、充分な精製能力が
得られた。
The impurities of high-purity ammonia obtained by the purification did not change from the concentrations shown in Table 2, and sufficient purification ability was obtained.

【0066】[0066]

【表1】 不純物 H2 O2 N2 Ar CO CO2 CH4 H2O 濃度(ppm) 4 21 138 1 0.10 0.52 342 28 [Table 1]      Impurity H2    O2    N2    Ar CO CO2    CHFour    H2O   Concentration (ppm) 4 21 138 1 0.10 0.52 342 28

【0067】[0067]

【表2】 不純物 H2 O2 N2 Ar CO CO2 CH4 濃度(ppm) <0.05 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 不純物 H2O C2H6 C2H4 C3H8 C3H6 SiH4 PH3 濃度(ppm) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 不純物 AsH3 GeH4 濃度(ppm) <0.01 <0.01 [Table 2]      Impurity H2      O2      N2      Ar CO CO2     CHFour    Concentration (ppm) <0.05 <0.01 <0.01 <0.01 <0.01 0.02 <0.01   Impurity H2O C2H6    C2HFour    C3H8    C3H6    SiHFour    PH3    Concentration (ppm) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01   Impurity AsH3    GeHFour   Concentration (ppm) <0.01 <0.01

【0068】[0068]

【表3】 [Table 3]

【0069】[0069]

【発明の効果】本発明によれば、工程Aにおける脱水反
応操作と工程Bにおける蒸留分離操作との協同により、
安価な工業用の粗アンモニアガスや回収アンモニアガス
を原料とし、使用個所で直接連続的に精製して、半導体
製造工業で使用可能な純度の高純度アンモニアを製造す
ることができる。
According to the present invention, by the cooperation of the dehydration reaction operation in step A and the distillation separation operation in step B,
It is possible to produce high-purity ammonia having a purity that can be used in the semiconductor manufacturing industry by directly using an inexpensive industrial crude ammonia gas or recovered ammonia gas as a raw material and directly purifying it at a place of use.

【0070】また、工程Aの操作を実質的に室温下で行
うことができ、工程Bの操作を−5〜50℃の温度範囲
で行うことができるため、アンモニアの精製のための全
処理工程を、無理のない経済的構造の低圧装置を用いか
つ約1MPaG以下の圧力で達成することができる。
Further, since the operation of step A can be carried out substantially at room temperature and the operation of step B can be carried out in the temperature range of -5 to 50 ° C., all treatment steps for purification of ammonia can be carried out. Can be achieved with a reasonably economical low pressure device and at pressures below about 1 MPaG.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に従ってアンモニアガスの連続精製を行
うときの流れおよび装置の一例を示した説明図である。
FIG. 1 is an explanatory diagram showing an example of a flow and an apparatus when performing continuous purification of ammonia gas according to the present invention.

【符号の説明】[Explanation of symbols]

(1) …粗アンモニア容器、 (2) …加熱器、 (3), (3A), (3B) …脱水塔、 (4) …蒸留塔、 (41)…上部凝縮冷却部、 (42)…中間部還流部、 (43)…下部貯留部、 (44)…最下部沸騰加熱部、 (45)…(不純物を含む)アンモニアガスの排出部、 (46)…(精製された)液化アンモニアの取出部、 (47)…冷凍機、 (48)…加熱機、 (49)…製品アンモニア蒸発器、 (5) …水分濃度測定器、 (6) …演算器、 (7) …廃アンモニア回収容器、 (8) …昇圧機、 (F1)〜(F4)…流量調整器、 (V) …バルブ(1) ... crude ammonia container, (2) ... heater, (3), (3A), (3B) ... dehydration tower, (4) ... distillation tower, (41) ... upper condensation cooling section, (42) ... Middle part reflux part, (43) ... lower storage part, (44) ... bottom boiling heating part, (45) ... ammonia gas discharge part (including impurities), (46) ... of (purified) liquefied ammonia Extraction unit, (47) ... Refrigerator, (48) ... Heating machine, (49) ... Product ammonia vaporizer, (5) ... Water concentration measuring instrument, (6) ... Calculator, (7) ... Waste ammonia recovery container , (8)… Booster, (F 1 ) to (F 4 )… Flow regulator, (V)… Valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内野 誠 大阪府大阪市西区靱本町2丁目4番11号 大陽東洋酸素株式会社内 (72)発明者 安藤 紳一 大阪府大阪市西区靱本町2丁目4番11号 大陽東洋酸素株式会社内 Fターム(参考) 4D052 AA02 CE00 GA03 GB00 HA00 HA02 HA49 HB02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Makoto Uchino             2-4-11 Tsubohoncho, Nishi-ku, Osaka City, Osaka Prefecture             Within Taiyo Toyo Oxygen Co., Ltd. (72) Inventor Shinichi Ando             2-4-11 Tsubohoncho, Nishi-ku, Osaka City, Osaka Prefecture             Within Taiyo Toyo Oxygen Co., Ltd. F-term (reference) 4D052 AA02 CE00 GA03 GB00 HA00                       HA02 HA49 HB02

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】水分と、アンモニアよりも沸点の低い低沸
点不純物とを含む粗アンモニアガスを連続的に精製する
方法であって、 酸化バリウム系水分除去剤を充填した実質的に室温下の
脱水塔(3) に粗アンモニアガスを導入し、その粗アンモ
ニアガス中に含まれる水分を反応除去する工程Aを実施
すること、および、 上部凝縮冷却部(41)、中間部還流部(42)、下部貯留部(4
3)、最下部沸騰加熱部(44)に区画され、かつ上部には不
純物を含むアンモニアガスの排出部(45)、下部には精製
された液化アンモニアの取出部(46)を備えた蒸留塔(4)
を用い、該蒸留塔(4) の中間部還流部(42)に前記工程A
により水分が除去されたアンモニアガスを導入して、上
部凝縮冷却部(41)でアンモニアガスを液化すると共に低
沸点不純物を分離しながら、液化物を下部貯留部(43)ま
で流下させて実質的に高純度のアンモニアとなし、さら
に、貯留された液体に含まれる微量不純物を最下部沸騰
加熱部(44)で沸騰により追い出す工程Bを実施すること
を特徴とするアンモニアガスの連続精製方法。
1. A method for continuously purifying a crude ammonia gas containing water and a low-boiling point impurity having a boiling point lower than that of ammonia, comprising dehydration at substantially room temperature filled with a barium oxide-based water removing agent. Introducing crude ammonia gas into the tower (3) and carrying out step A of reacting and removing water contained in the crude ammonia gas; and an upper condensation cooling section (41), an intermediate reflux section (42), Lower reservoir (4
3), a distillation column which is divided into the lowest boiling heating section (44), and in which the upper section has an exhaust section (45) for ammonia gas containing impurities, and the lower section has an extraction section (46) for purified liquefied ammonia. (Four)
Is used in the intermediate reflux section (42) of the distillation column (4).
By introducing the ammonia gas from which water has been removed by the liquefied ammonia gas in the upper condensing cooling unit (41) and liquefying the ammonia gas and separating low boiling point impurities, the liquefied substance is allowed to flow down to the lower storage unit (43). 1. A continuous purification method of ammonia gas, characterized in that step B is carried out to obtain highly pure ammonia, and further, trace impurities contained in the stored liquid are expelled by boiling in the lowermost boiling heating part (44).
【請求項2】工程Bにおいて、上部凝縮冷却部(41)を−
5〜10℃の温度範囲に維持すると共に、最下部沸騰加
熱部(44)を30〜50℃の温度範囲に維持することを特
徴とする請求項1記載の連続精製方法。
2. In step B, the upper condensing cooling part (41) is
The continuous refining method according to claim 1, wherein the lowermost boiling heating section (44) is maintained in a temperature range of 30 to 50 ° C while being maintained in a temperature range of 5 to 10 ° C.
【請求項3】工程Bにおいて、不純物を含むアンモニア
ガスの排出流量を、体積比で、蒸留塔(4) 導入流量の
0.1〜10%に設定することを特徴とする請求項1記載
の連続精製方法。
3. In the step B, the discharge flow rate of the ammonia gas containing impurities is adjusted by the volume ratio of the introduction flow rate of the distillation column (4).
The continuous purification method according to claim 1, wherein the concentration is set to 0.1 to 10%.
【請求項4】低沸点不純物が、水素(H2)、酸素(O2)、窒
素(N2)、アルゴン(Ar)、一酸化炭素(CO)、二酸化炭素(C
O2) 、メタン(CH4) 、エタン(C2H6)、エチレン(C2H4)、
プロパン(C3H8)、プロピレン(C3H6)、シラン(SiH4)、ホ
スフィン(PH3) 、アルシン(AsH3)およびゲルマン(GeH4)
よりなる群から選ばれた少なくとも1種の不純物からな
ることを特徴とする請求項1記載の連続精製方法。
4. Low boiling point impurities are hydrogen (H 2 ), oxygen (O 2 ), nitrogen (N 2 ), argon (Ar), carbon monoxide (CO), carbon dioxide (C
O 2 ), methane (CH 4 ), ethane (C 2 H 6 ), ethylene (C 2 H 4 ),
Propane (C 3 H 8), propylene (C 3 H 6), silane (SiH 4), phosphine (PH 3), arsine (AsH 3) and germane (GeH 4)
The continuous purification method according to claim 1, which comprises at least one impurity selected from the group consisting of:
【請求項5】工程Aにおける脱水塔(3) の充填層中間位
置の水分濃度と、工程Bにおける蒸留塔(4) の下部貯留
部(43)の水分濃度とをモニタし、両者の水分濃度差を演
算して、脱水塔(3) における充填物の交換時機を検知す
るようにしたことを特徴とする請求項1記載の連続精製
方法。
5. The water concentration in the middle position of the packed bed of the dehydration column (3) in the step A and the water concentration in the lower storage part (43) of the distillation column (4) in the step B are monitored and the water concentration of both is monitored. 2. The continuous purification method according to claim 1, wherein the difference is calculated to detect the time when the packing is replaced in the dehydration tower (3).
【請求項6】工程Aにおける脱水塔(3) を使用する前
に、該脱水塔(3) に、工程Bにおける蒸留塔(4) 下部貯
留部(43)の精製されたアンモニアを導入して、系内の不
純物をパージした後、均圧操作を行うことを特徴とする
請求項1記載の連続精製方法。
6. Before using the dehydration tower (3) in step A, the purified ammonia of the distillation column (4) lower storage part (43) in step B is introduced into the dehydration tower (3). 2. The continuous purification method according to claim 1, wherein the pressure equalizing operation is performed after purging impurities in the system.
【請求項7】工程Bにおける蒸留塔(4) 下部貯留部(43)
の精製されたアンモニアで脱水塔(3) をパージし、その
パージした後の排出ガスを回収し、その回収ガスを工程
Aにおいて脱水塔(3) に供給する原料アンモニアの一部
として再使用することを特徴とする請求項1記載の連続
精製方法。
7. The distillation column (4) lower storage part (43) in step B
The purified dehydrated ammonia is used to purge the dehydration tower (3), the exhaust gas after the purge is recovered, and the recovered gas is reused as part of the raw material ammonia supplied to the dehydration tower (3) in step A. The continuous purification method according to claim 1, wherein
【請求項8】水分と、アンモニアよりも沸点の低い低沸
点不純物とを含む粗アンモニアガスを連続的に精製する
装置であって、 酸化バリウム系水分除去剤を充填するための脱水塔(3)
と、 上部凝縮冷却部(41)、中間部還流部(42)、下部貯留部(4
3)、最下部沸騰加熱部(44)に区画され、かつ上部には不
純物を含むアンモニアガスの排出部(45)、下部には精製
された液化アンモニアの取出部(46)を備えた蒸留塔(4)
とを備えてなることを特徴とするアンモニアガスの連続
精製装置。
8. An apparatus for continuously purifying crude ammonia gas containing water and low-boiling impurities having a boiling point lower than that of ammonia, wherein a dehydration tower (3) for filling a barium oxide-based water removing agent is provided.
And the upper condensing cooling section (41), the intermediate reflux section (42), the lower storage section (4
3), a distillation column which is divided into the lowest boiling heating section (44), and has an ammonia gas-containing discharge section (45) in the upper section and a refined liquefied ammonia extraction section (46) in the lower section. (Four)
An apparatus for continuously purifying ammonia gas, comprising:
JP2001385797A 2001-10-12 2001-12-19 Method and apparatus for continuous purification of ammonia gas Expired - Fee Related JP3595301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001385797A JP3595301B2 (en) 2001-10-12 2001-12-19 Method and apparatus for continuous purification of ammonia gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001315390 2001-10-12
JP2001-315390 2001-10-12
JP2001385797A JP3595301B2 (en) 2001-10-12 2001-12-19 Method and apparatus for continuous purification of ammonia gas

Publications (3)

Publication Number Publication Date
JP2003183021A true JP2003183021A (en) 2003-07-03
JP2003183021A5 JP2003183021A5 (en) 2004-09-02
JP3595301B2 JP3595301B2 (en) 2004-12-02

Family

ID=27615377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001385797A Expired - Fee Related JP3595301B2 (en) 2001-10-12 2001-12-19 Method and apparatus for continuous purification of ammonia gas

Country Status (1)

Country Link
JP (1) JP3595301B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006005990A1 (en) * 2004-07-07 2006-01-19 L'air Liquide-Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Purification and transfilling of ammonia
JP2006206410A (en) * 2005-01-31 2006-08-10 Air Liquide Japan Ltd Ammonia purification system and purification method
JP2007246302A (en) * 2006-03-14 2007-09-27 Taiyo Nippon Sanso Corp Method for regenerating ammonia purification unit
JP2007263905A (en) * 2006-03-30 2007-10-11 Taiyo Nippon Sanso Corp Concentration analyzer of liquefied gas
KR100925813B1 (en) * 2008-01-14 2009-11-06 대성산업가스 주식회사 Method and apparatus for removing moisture from ammonia gas
CN102101682A (en) * 2010-12-23 2011-06-22 苏州市创新净化有限公司 Continuous dehydration distillation purification system and process method for ammonia
WO2012132559A1 (en) * 2011-03-31 2012-10-04 住友精化株式会社 Method for purifying ammonia and ammonia purification system
CN102774857A (en) * 2011-05-13 2012-11-14 高在万 High purity ammonia on-site manufacturing method and manufacturing device thereof
WO2013190732A1 (en) * 2012-06-21 2013-12-27 住友精化株式会社 Ammonia purification system
JP2014047089A (en) * 2012-08-30 2014-03-17 Japan Pionics Co Ltd Apparatus for feeding purified ammonia
WO2014129256A1 (en) * 2013-02-21 2014-08-28 三菱重工業株式会社 System and method for synthesizing ammonia
JP2014180667A (en) * 2013-03-15 2014-09-29 Air Products And Chemicals Inc Onsite ultra high purity chemicals or gas purification
CN110015668A (en) * 2019-04-02 2019-07-16 巫协森 Primary liquefied ammonia purifying is the method and its system of high purity liquid ammonia
CN110548364A (en) * 2019-10-17 2019-12-10 清远先导材料有限公司 method and device for recovering special gas adsorbed by molecular sieve
JP2020148357A (en) * 2019-03-11 2020-09-17 株式会社Ihi Power generating system
CN112299445A (en) * 2020-11-20 2021-02-02 苏州金宏气体股份有限公司 Method for preparing ultra-pure ammonia by filler rectification
CN115430408A (en) * 2022-09-23 2022-12-06 全椒科利德电子材料有限公司 Preparation method and preparation system of high-purity ammonia

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101799380B1 (en) 2016-04-05 2017-11-22 (주)원익머트리얼즈 Apparatus and method for purifying diborane

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101150612B1 (en) * 2004-07-07 2012-07-05 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Purification and transfilling of ammonia
WO2006005990A1 (en) * 2004-07-07 2006-01-19 L'air Liquide-Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Purification and transfilling of ammonia
US7297181B2 (en) 2004-07-07 2007-11-20 Air Liquide America L.P. Purification and transfilling of ammonia
JP2008505830A (en) * 2004-07-07 2008-02-28 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Ammonia purification and transfer filling
TWI391327B (en) * 2004-07-07 2013-04-01 Air Liquide Purification and transfilling of ammonia
JP2006206410A (en) * 2005-01-31 2006-08-10 Air Liquide Japan Ltd Ammonia purification system and purification method
JP4605705B2 (en) * 2005-01-31 2011-01-05 日本エア・リキード株式会社 Ammonia purification system and purification method
JP2007246302A (en) * 2006-03-14 2007-09-27 Taiyo Nippon Sanso Corp Method for regenerating ammonia purification unit
JP2007263905A (en) * 2006-03-30 2007-10-11 Taiyo Nippon Sanso Corp Concentration analyzer of liquefied gas
KR100925813B1 (en) * 2008-01-14 2009-11-06 대성산업가스 주식회사 Method and apparatus for removing moisture from ammonia gas
CN102101682A (en) * 2010-12-23 2011-06-22 苏州市创新净化有限公司 Continuous dehydration distillation purification system and process method for ammonia
WO2012132559A1 (en) * 2011-03-31 2012-10-04 住友精化株式会社 Method for purifying ammonia and ammonia purification system
CN102774857A (en) * 2011-05-13 2012-11-14 高在万 High purity ammonia on-site manufacturing method and manufacturing device thereof
CN102774857B (en) * 2011-05-13 2015-08-26 高在万 High purity ammonia making in site method and manufacturing installation
CN103619756A (en) * 2012-06-21 2014-03-05 住友精化株式会社 Ammonia purification system
WO2013190732A1 (en) * 2012-06-21 2013-12-27 住友精化株式会社 Ammonia purification system
KR101423090B1 (en) 2012-06-21 2014-07-25 스미토모 세이카 가부시키가이샤 Ammonia purification system
JP2014047089A (en) * 2012-08-30 2014-03-17 Japan Pionics Co Ltd Apparatus for feeding purified ammonia
WO2014129256A1 (en) * 2013-02-21 2014-08-28 三菱重工業株式会社 System and method for synthesizing ammonia
US10317136B2 (en) 2013-03-15 2019-06-11 Versum Materials Us, Llc Onsite ultra high purity chemicals or gas purification
US9216364B2 (en) 2013-03-15 2015-12-22 Air Products And Chemicals, Inc. Onsite ultra high purity chemicals or gas purification
JP2014180667A (en) * 2013-03-15 2014-09-29 Air Products And Chemicals Inc Onsite ultra high purity chemicals or gas purification
JP2020148357A (en) * 2019-03-11 2020-09-17 株式会社Ihi Power generating system
WO2020184612A1 (en) * 2019-03-11 2020-09-17 株式会社Ihi Electric power generating system
JP7251225B2 (en) 2019-03-11 2023-04-04 株式会社Ihi power generation system
CN110015668A (en) * 2019-04-02 2019-07-16 巫协森 Primary liquefied ammonia purifying is the method and its system of high purity liquid ammonia
CN110548364A (en) * 2019-10-17 2019-12-10 清远先导材料有限公司 method and device for recovering special gas adsorbed by molecular sieve
CN112299445A (en) * 2020-11-20 2021-02-02 苏州金宏气体股份有限公司 Method for preparing ultra-pure ammonia by filler rectification
CN115430408A (en) * 2022-09-23 2022-12-06 全椒科利德电子材料有限公司 Preparation method and preparation system of high-purity ammonia

Also Published As

Publication number Publication date
JP3595301B2 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP3595301B2 (en) Method and apparatus for continuous purification of ammonia gas
JP2001089131A (en) Purification process and apparatus for boron trichloride
JP4605705B2 (en) Ammonia purification system and purification method
JP2001114504A (en) Purification system and method for dinitrogen monoxide
EP1214965B1 (en) Method for purifying gases
US5069887A (en) Method of refining nitrogen trifluoride gas
US7384618B2 (en) Purification of nitrogen trifluoride
KR960002619B1 (en) Membrane/deoxo controlling method and the system thereof
CN113321184B (en) High-purity electronic-grade chlorine purification production device and technology thereof
CN100374184C (en) A process and apparatus for purifying hydrogen bromide
JP5815968B2 (en) Ammonia purification system and ammonia purification method
JP7142417B2 (en) Propane production method and propane production apparatus
CN113262628A (en) Production device and process for preparing electronic-grade high-purity methane from synthetic ammonia tail gas
KR20200024582A (en) Apparatus and method for purifying ammonia to UHP(Ultra High Purity) grade using distillation
JP3424100B2 (en) Method for purifying krypton and xenon
JPWO2005044725A1 (en) Production method of high purity liquid chlorine
US11987553B2 (en) Methods for removal of sulfur dioxide (SO2) from trifluoroacetyl chloride (TFAC)
CN216878719U (en) Production device for preparing electronic-grade high-purity methane from synthetic ammonia tail gas
JP2003128412A (en) Method for purifying silicon tetrafluoride
JPH0433726B2 (en)
JP2021165239A (en) Method for purifying trimethylamine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3595301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees