WO2012132559A1 - Method for purifying ammonia and ammonia purification system - Google Patents

Method for purifying ammonia and ammonia purification system Download PDF

Info

Publication number
WO2012132559A1
WO2012132559A1 PCT/JP2012/052778 JP2012052778W WO2012132559A1 WO 2012132559 A1 WO2012132559 A1 WO 2012132559A1 JP 2012052778 W JP2012052778 W JP 2012052778W WO 2012132559 A1 WO2012132559 A1 WO 2012132559A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
phase component
liquid
impurities
gas phase
Prior art date
Application number
PCT/JP2012/052778
Other languages
French (fr)
Japanese (ja)
Inventor
慎一 田井
啓之 畑
茂 森本
義則 吉田
豊仁 福島
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to CN2012800041886A priority Critical patent/CN103269979A/en
Priority to KR1020137013884A priority patent/KR20130140755A/en
Publication of WO2012132559A1 publication Critical patent/WO2012132559A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/10Separation of ammonia from ammonia liquors, e.g. gas liquors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/024Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia

Definitions

  • the present invention relates to a purification method and an ammonia purification system for purifying crude ammonia.
  • high-purity ammonia is used as a processing agent used for producing a nitride film.
  • Such high-purity ammonia can be obtained by purifying crude ammonia to remove impurities.
  • the crude ammonia contains hydrogen, nitrogen, oxygen, argon, nitrogen monoxide, carbon dioxide and other low-boiling gases, hydrocarbons, moisture and the like as impurities.
  • the purity of generally available crude ammonia is about 98 to 99% by weight.
  • hydrocarbons contained in crude ammonia are mainly those having 1 to 4 carbon atoms.
  • the oil content in the cracking gas is insufficiently separated.
  • hydrocarbons having a high boiling point and a large molecular weight may be mixed.
  • ammonia contains a large amount of moisture, the function of a semiconductor or the like manufactured using this ammonia may be greatly reduced, and the moisture in ammonia needs to be reduced as much as possible.
  • ammonia is used in the semiconductor manufacturing process and the liquid crystal manufacturing process
  • the manner in which the impurities in ammonia vary.
  • the purity of ammonia is required to be 99.9999% by weight or more (each impurity concentration of 100 ppb or less), more preferably about 99.99999% by weight.
  • a moisture concentration of less than 30 ppb has been demanded for the production of a light emitter such as gallium nitride.
  • a method for removing impurities contained in crude ammonia a method for adsorbing and removing impurities using an adsorbent such as silica gel, synthetic zeolite, activated carbon, and a method for removing impurities by distillation are known.
  • Patent Document 1 discloses a first distillation column that removes low-volatile impurities from liquid crude ammonia, and impurities (mainly moisture) contained in gaseous ammonia derived from the first distillation column.
  • An ammonia purification system is disclosed that includes an adsorption tower that adsorbs and removes with an adsorbent, and a second distillation tower that removes highly volatile impurities from gaseous ammonia derived from the adsorption tower.
  • Patent Document 2 discloses a method of purifying ammonia by distilling and removing moisture contained in gaseous crude ammonia with an adsorbent composed of barium oxide.
  • adsorbent that adsorbs and removes impurities contained in crude ammonia
  • moisture is adsorbed and removed by an adsorbent composed of synthetic zeolite 3A
  • adsorption composed of barium oxide is performed. Moisture is absorbed and removed by the agent.
  • an adsorption tower packed with an adsorbent having a high adsorption capacity for moisture and an adsorbent having a high adsorption capacity for hydrocarbons It is necessary to make it the structure provided with a plurality of adsorption towers with the adsorption tower filled with or a structure where a plurality of adsorbents are stacked and packed in one adsorption tower.
  • an object of the present invention is to efficiently remove moisture and hydrocarbons contained as impurities in crude ammonia by making maximum use of the adsorption capacity of the adsorbent and to remove ammonia by a simplified method. To provide a method for purifying ammonia and an ammonia purification system that can be purified.
  • the present invention is a method for purifying crude ammonia containing impurities, An adsorption removal step of adsorbing and removing impurities contained in the crude ammonia by an adsorbent having an adsorption ability for moisture and hydrocarbons alone; Ammonia from which impurities have been adsorbed and removed in the adsorption removal step is fractionated and separated into a gas phase component and a liquid phase component, so that hydrogen, nitrogen, oxygen, argon, carbon monoxide, carbon dioxide, and carbon number 1 And a fractionation step of separating and removing hydrocarbons of ⁇ 8 as a gas phase component to obtain liquid ammonia as a liquid phase component.
  • the liquid ammonia obtained in the fractionation step is vaporized, and the vaporized ammonia is fractionated and separated into a gas phase component and a liquid phase component, thereby removing impurities. It is preferable to further include a re-denaturation step of separating and removing as a gas phase component to obtain liquid ammonia as a liquid phase component.
  • the adsorbent used in the adsorption removal step is porous synthetic zeolite.
  • the synthetic zeolite is preferably a synthetic zeolite having a pore diameter of 5 to 9 mm.
  • ammonia purification method of the present invention in the partial reduction step, 70 to 99% by volume of ammonia from which impurities have been adsorbed and removed in the adsorption removal step is condensed and separated into a gas phase component and a liquid phase component. Is preferred.
  • the ammonia from which impurities have been adsorbed and removed in the adsorption removal step is condensed at a temperature of ⁇ 77 to 50 ° C. to obtain a gas phase component and a liquid phase component. It is preferable to separate them.
  • the present invention is also an ammonia purification system for purifying crude ammonia containing impurities, An adsorbing part that adsorbs and removes impurities contained in the crude ammonia by an adsorbent having an adsorption ability for water and hydrocarbons alone;
  • the ammonia from which the impurities are adsorbed and removed by the adsorbing part is fractionated and separated into a gas phase component and a liquid phase component, so that hydrogen, nitrogen, oxygen, argon, carbon monoxide, carbon dioxide, and carbon number of 1 to And a fractionation unit that separates and removes 8 hydrocarbons as a gas phase component to obtain liquid ammonia as a liquid phase component.
  • the ammonia purification method is a method for purifying crude ammonia containing impurities, and includes an adsorption removal step and a partial condensation step.
  • impurities contained in the gaseous crude ammonia are adsorbed and removed by an adsorbent having adsorption ability for moisture and hydrocarbons alone.
  • gaseous ammonia from which the impurities have been adsorbed and removed in the adsorption removal process is fractionated and separated into a gas phase component and a liquid phase component, so that hydrogen, nitrogen, oxygen, argon, carbon monoxide, Carbon dioxide and hydrocarbons having 1 to 8 carbon atoms are separated and removed as gas phase components to obtain purified liquid ammonia as liquid phase components.
  • the adsorption removal step uses an adsorbent having an adsorption ability for water and hydrocarbons alone, so that the adsorbent having an adsorption ability for moisture and the hydrocarbon are adsorbed as in the prior art.
  • moisture and hydrocarbons contained as impurities in the gaseous crude ammonia can be efficiently adsorbed and removed by making full use of the adsorption capacity of the adsorbent, and management of adsorbent breakthrough is simplified. can do.
  • a part of the gaseous ammonia after adsorption removal is condensed and separated into a gas phase component and a liquid phase component.
  • Liquid ammonia purified as a liquid phase component can be obtained by separating and removing dissolved low boiling point gas such as hydrocarbon, hydrogen, nitrogen, oxygen, argon, carbon monoxide and carbon dioxide as a gas phase component. Therefore, ammonia can be purified by a simplified method without passing through a distillation step as in the prior art.
  • the method for purifying ammonia further includes a re-denaturation step.
  • a re-denaturation step liquid ammonia obtained in the fractionation process is vaporized, and the vaporized ammonia is fractionated and separated into a gas phase component and a liquid phase component, so that impurities become gas phase components. Separation and removal are performed to obtain liquid ammonia as a liquid phase component.
  • the re-differentiation step a part of the ammonia vaporized from the liquid ammonia obtained in the partial reduction step is condensed and separated into a gas phase component and a liquid phase component, so that highly volatile impurities are removed from the gas phase component. As a result, it is possible to obtain more purified liquid ammonia.
  • the adsorbent used in the adsorption removing step is a porous synthetic zeolite.
  • the synthetic zeolite used as the adsorbent has a pore diameter of 5 to 9 mm.
  • the present invention in the partial reduction process, 70 to 99% by volume of gaseous ammonia from which impurities are adsorbed and removed in the adsorption removal process is condensed and separated into a gas phase component and a liquid phase component.
  • gaseous ammonia from which impurities are adsorbed and removed in the adsorption removal process is condensed and separated into a gas phase component and a liquid phase component.
  • gaseous ammonia from which impurities have been adsorbed and removed in the adsorption removal process is condensed at a temperature of ⁇ 77 to 50 ° C. to separate into a gas phase component and a liquid phase component. To do.
  • gaseous ammonia after adsorption removal can be efficiently condensed to obtain liquid ammonia, and the purity of the liquid ammonia can be increased.
  • the ammonia purification system is a system for purifying crude ammonia containing impurities, and includes an adsorption part and a partial condensation part.
  • the adsorbing part adsorbs and removes impurities contained in the gaseous crude ammonia by an adsorbent having an adsorption ability for moisture and hydrocarbons alone.
  • the partial reduction part separates gaseous ammonia from which impurities have been adsorbed and removed by the adsorption part and separates it into a gas phase component and a liquid phase component, so that hydrogen, nitrogen, oxygen, argon, carbon monoxide, carbon dioxide Carbon and hydrocarbons having 1 to 8 carbon atoms are separated and removed as gas phase components to obtain purified liquid ammonia as liquid phase components.
  • the adsorbing part adsorbs and removes impurities contained in the gaseous crude ammonia by an adsorbent having adsorption ability for moisture and hydrocarbons alone, so that the adsorption capacity of the adsorbent is maximized. Can be efficiently adsorbed and removed.
  • the partial condensation part condenses part of the gaseous ammonia after the adsorption removal and separates it into a gas phase component and a liquid phase component.
  • the dissolved low boiling point gas such as hydrogen, hydrogen, nitrogen, oxygen, argon, carbon monoxide and carbon dioxide can be separated and removed as a gas phase component to obtain purified liquid ammonia as a liquid phase component. Therefore, ammonia can be purified with a simplified system without providing a distillation section as in the prior art.
  • FIG. 1 is a diagram showing a configuration of an ammonia purification system 100 according to the first embodiment of the present invention.
  • the ammonia purification system 100 of the present embodiment is a system that purifies crude ammonia containing impurities.
  • the ammonia purification system 100 includes a raw material storage container 1, a first adsorption tower 21 and a second adsorption tower 22 that are a plurality of adsorption towers as the adsorption unit 2, and a first capacitor 31 and a second capacitor 32 as the partial condensation unit 3.
  • the recovery tank 4 and the product tank 7 are included. Further, the ammonia purification system 100 realizes the ammonia purification method according to the present invention, the first adsorption tower 21 and the second adsorption tower 22 execute the adsorption removal step, and the first capacitor 31 and the second capacitor 32 are separated. Perform the shrinking process.
  • the raw material storage container 1 stores crude ammonia.
  • the crude ammonia stored in the raw material storage container 1 has a purity of 99% by weight or more, preferably a purity of 99.9 to 99.99% by weight.
  • Examples of such crude ammonia include industrial grade ammonia (manufactured by Ube Industries, Ltd.) having a purity of 99.9% by weight, industrial grade ammonia having a purity of 99.9% by weight (manufactured by Mitsui Chemicals, Inc.), etc. Is mentioned.
  • the raw material storage container 1 is not particularly limited as long as it is a heat insulating container having pressure resistance and corrosion resistance.
  • the raw material storage container 1 stores crude ammonia as liquid ammonia and is controlled so that the temperature and pressure are constant.
  • a gas phase is formed in the upper part of the raw material storage container 1 in a state where liquid ammonia is stored.
  • the crude ammonia is derived from the raw material storage container 1 to the first adsorption tower 21 or the second adsorption tower 22, it may be derived as liquid ammonia, but in this embodiment, the crude ammonia is extracted from the gas phase. Derived as gaseous ammonia.
  • a first pipe 71 is connected between the raw material storage container 1 and the first adsorption tower 21 and the second adsorption tower 22, and crude ammonia derived from the raw material storage container 1 passes through the first pipe 71. It is supplied to the first adsorption tower 21 or the second adsorption tower 22 through.
  • the first pipe 71 is provided with a flow rate regulator 5 for adjusting the flow rate of gaseous crude ammonia flowing from the raw material storage container 1 to the first adsorption tower 21 or the second adsorption tower 22. Further, the first pipe 71 is provided with a first valve 81 and a second valve 82 that open or close a flow path in the first pipe 71. In the first pipe 71, the first valve 81 is arranged upstream of the flow rate regulator 5 in the flow direction of the crude ammonia (that is, the raw material storage container 1 side), and the second valve 82 is placed from the flow rate regulator 5. Is also arranged downstream of the flow direction of the crude ammonia (that is, the first adsorption tower 21 and the second adsorption tower 22 side).
  • the first valve 81 and the second valve 82 are opened, and the flow rate is adjusted by the flow rate regulator 5, so that Gaseous crude ammonia flows in the first pipe 71 toward the adsorption tower 21 or the second adsorption tower 22.
  • the first adsorption tower 21 and the second adsorption tower 22 adsorb and remove impurities contained in the gaseous crude ammonia derived from the raw material storage container 1 with an adsorbent.
  • impurities contained in the crude ammonia are removed from the first adsorption tower which is one of the adsorption towers.
  • the second adsorption tower 22 which is another used adsorption tower so that the adsorption removal operation can be performed again by the second adsorption tower 22 which is another used adsorption tower while the tower 21 is performing adsorption removal.
  • the opening / closing valve 82a and the opening / closing valve 83a of the second adsorption tower 22 are opened, and the second valve 82 and the third valve 83 of the second adsorption tower 22 are closed.
  • the adsorbent filled in each of the first adsorption tower 21 and the second adsorption tower 22 has an adsorption ability for moisture and hydrocarbons alone.
  • Examples of such an adsorbent include porous synthetic zeolite.
  • synthetic zeolites synthetic zeolites having a pore diameter of 5 to 9 mm are preferable.
  • Examples of the synthetic zeolite having a pore diameter of 5 mm include MS-5A
  • examples of the synthetic zeolite having a pore diameter of 9 mm include MS-13X.
  • MS-13X which is a synthetic zeolite having a pore size of 9 mm, as an adsorbent.
  • the adsorbent used in the present embodiment can be regenerated by desorbing the adsorbed impurities (water and hydrocarbons) by any one of heating, decompression, heating and decompression.
  • heating may be performed at a temperature of 200 to 350 ° C.
  • the first adsorption tower 21 and the second adsorption tower 22 adsorb and remove impurities contained in the gaseous crude ammonia using an adsorbent that has adsorption ability for moisture and hydrocarbons alone. Therefore, unlike the prior art, it is not necessary to use a plurality of adsorbents, that is, an adsorbent having an adsorption ability for moisture and an adsorbent having an adsorption ability for hydrocarbons. Therefore, moisture and hydrocarbons contained as impurities in the gaseous crude ammonia can be efficiently adsorbed and removed by utilizing the adsorption capacity of the adsorbent to the maximum.
  • the crude ammonia supplied to the first adsorption tower 21 or the second adsorption tower 22 by adsorbing and removing impurities contained in the gaseous crude ammonia with an adsorbent having adsorption ability for moisture and hydrocarbons alone. Even if the quantity ratio between the moisture and the hydrocarbon contained in the fluctuates, the first adsorption tower is based on the analysis result of the amount of ammonia impurities derived from the first adsorption tower 21 or the second adsorption tower 22. Management of breakthrough of 21 and the second adsorption tower 22 can be easily performed.
  • the synthetic zeolite used as the adsorbent has a pore diameter of 5 to 9 mm, particularly MS-13X having a pore diameter of 9 mm, moisture and hydrocarbons (especially higher-order hydrocarbons) contained in the crude ammonia as impurities. ) Can be efficiently adsorbed and removed.
  • the 1st adsorption tower 21 and the 2nd adsorption tower 22 it can use combining the adsorption agent which has the adsorption ability with respect to a water
  • the temperature of the first adsorption tower 21 and the second adsorption tower 22 is controlled to 0 to 60 ° C., and the absolute pressure (hereinafter sometimes simply referred to as “pressure”) is set.
  • the pressure is controlled to 0.1 to 1.0 MPa.
  • the temperature of the 1st adsorption tower 21 and the 2nd adsorption tower 22 exceeds 60 degreeC, there exists a possibility that the adsorption capacity of the impurity by adsorbent may fall.
  • the pressure of the 1st adsorption tower 21 and the 2nd adsorption tower 22 is less than 0.1 Mpa, there exists a possibility that the adsorption capacity of the impurity by adsorption agent may fall.
  • the pressure in the first adsorption tower 21 and the second adsorption tower 22 exceeds 1.0 MPa, a large amount of energy is required to maintain a constant pressure, and the energy efficiency may be reduced.
  • the linear velocity in the first adsorption tower 21 and the second adsorption tower 22 is the amount of crude ammonia supplied to the first adsorption tower 21 and the second adsorption tower 22 per unit time.
  • the range of values obtained by dividing by the empty cross-sectional areas of the first adsorption tower 21 and the second adsorption tower 22 is 0.1 to 5.0 m / sec. If the linear velocity is less than 0.1 m / sec, it takes a long time to remove impurities, which is not preferable. If the linear velocity exceeds 5.0 m / sec, the impurity adsorption band length increases. There is a possibility that the adsorbing ability of impurities in the first adsorption tower 21 and the second adsorption tower 22 is lowered.
  • Ammonia flows through the ninth pipe 79 branched from the second pipe 72 connected between the first adsorption tower 21 and the second adsorption tower 22 and the first condenser 31, and passes through the ninth valve 89. It is introduced into the analysis unit 61.
  • the analysis unit 61 includes a gas chromatograph analyzer (GC-4000, manufactured by GL Science Co., Ltd.) and a cavity ring-down spectroscopic analyzer (MTO-LP-H 2 O, manufactured by Tiger Optics).
  • Table 1 shows a cylindrical tube (length) filled with synthetic zeolite MS-13X having an adsorption capacity for moisture and hydrocarbons, using 99.9 wt% industrial grade ammonia manufactured by Ube Industries, Ltd. as crude ammonia.
  • the analysis results when gaseous crude ammonia is passed through the first adsorption tower 21 or the second adsorption tower 22 having a diameter of 50 cm and an inner diameter of 2 cm under conditions of a temperature of 25 ° C. and a pressure of 0.4 MPa are shown.
  • the impurities contained in the gaseous ammonia derived from the first adsorption tower 21 and the second adsorption tower 22 are low boiling point gases such as hydrogen, nitrogen, oxygen, carbon monoxide, and the first adsorption. It turns out that it is a highly volatile impurity, such as low-order hydrocarbons, such as methane and ethane, depending on the operating conditions of the tower 21 and the second adsorption tower 22. Gaseous ammonia derived from the first adsorption tower 21 or the second adsorption tower 22 is supplied to the first condenser 31.
  • a second pipe 72 is connected between the first adsorption tower 21 and the second adsorption tower 22 and the first condenser 31, and the first adsorption tower 21 or the second adsorption tower 21.
  • Gaseous ammonia derived from the adsorption tower 22 flows through the second pipe 72 and is supplied to the first capacitor 31.
  • the second pipe 72 is provided with a pressure gauge 6 for measuring the pressure of gaseous ammonia flowing from the first adsorption tower 21 or the second adsorption tower 22 to the first condenser 31.
  • the second pipe 72 is provided with a third valve 83 and a fourth valve 84 that open or close the flow path in the second pipe 72.
  • the third valve 83 is disposed upstream of the pressure gauge 6 in the ammonia flow direction (that is, the first adsorption tower 21 and the second adsorption tower 22 side), and the fourth valve 84 is It is arranged downstream of the pressure gauge 6 in the flow direction of ammonia (that is, on the first capacitor 31 side).
  • the third valve 83 and the fourth valve 84 are opened, the pressure is measured by the pressure gauge 6, and the first adsorption tower 21 or the second adsorption tower 22 performs the second measurement. Gaseous ammonia flows in the second pipe 72 toward the condenser 31.
  • the first capacitor 31 separates and removes highly volatile impurities contained in the ammonia as a gas phase component by partial condensation of gaseous ammonia and separating it into a gas phase component and a liquid phase component.
  • Impurities contained in industrially produced ammonia are broadly classified into dissolved low boiling point gases such as hydrogen, nitrogen, oxygen, argon, carbon monoxide and carbon dioxide. , Hydrocarbons, moisture and the like.
  • hydrocarbons contained in the crude ammonia methane is the most abundant, but ethane, propane, ethylene and propylene are the next most abundant.
  • carbon number hydrocarbons having 1 to 3 carbon atoms constitute the main component of hydrocarbons.
  • crude ammonia contains hydrocarbons having 4 or more carbon atoms, and in many cases hydrocarbons having 4 to 6 carbon atoms, although the content thereof is small.
  • an oil pump or the like is used for compression.
  • hydrocarbons having a large molecular weight such as oil components derived from pump oil mixed from an oil pump or the like are contained in the crude ammonia.
  • ammonia for the electronics industry, which is an ammonia purification system capable of removing hydrocarbons having a wide range of carbon atoms, which constitute these impurities.
  • the present inventors have found that a method using partial condensation is excellent as a method for removing impurities in crude ammonia in place of rectification.
  • Table 2 shows the boiling points of ammonia and saturated n-hydrocarbons having 1 to 8 carbon atoms, but hydrocarbons having 4 to 8 carbon atoms have a boiling point higher than that of ammonia when the hydrocarbon is present as a pure substance. However, in the rectification operation, it is discharged from the top of the distillation column as a highly volatile compound.
  • the boiling point of hydrocarbons having 1 to 8 carbon atoms is, for example, the boiling point of propane having 3 carbon atoms.
  • propane is put into a container and the temperature is changed, the pressure in the container is reduced. This is the temperature at 1 atm (0.1013 MPa).
  • the state of propane at this time is a state in which adjacent propane molecules are attracted to each other by van der Waals force or the like, and if the pulling force is strong, the boiling point appears high.
  • the concentration of propane present in ammonia is very low, which is now a problem, there is no propane molecule or other hydrocarbon molecule that can be attracted next to the propane molecule.
  • the concentration of hydrocarbons with 1 to 8 carbon atoms contained in trace amounts in ammonia shows the concentration distribution in the gas phase and liquid phase of liquefied ammonia by changing the temperature in various ways in ammonia.
  • Table 3 shows the results of the measurement when the concentration at 1 reached the vapor-liquid equilibrium state. The distribution ratio was measured after adjusting the initial concentration of each saturated n-hydrocarbon concentration in liquid ammonia to 5000 ppm, and then standing at a predetermined temperature for 2 days.
  • the gas-liquid distribution coefficient shown in Table 3 serves as an index of how much impurities can be separated by partial contraction, and is defined as follows.
  • Distribution coefficient (Kd) A 1 / A 2 (1)
  • a 1 represents an impurity concentration of gaseous ammonia after the gas-liquid equilibrium
  • a 2 represents an impurity concentration in liquid ammonia after gas-liquid equilibrium.
  • impurity concentrations A 1 and A 2 in the above formula (1) have mol-ppm as the unit, and are defined by the following formula (2).
  • Impurity concentration (A 1 , A 2 ) Impurity (mol) / (ammonia (mol) + impurity (mol)) ⁇ 10 6 ... (2)
  • an impurity having a larger gas-liquid partition coefficient is contained more in uncondensed gaseous ammonia that has not been condensed by partial condensation.
  • a hydrocarbon having a smaller carbon number has a higher ratio in the gas phase than in the liquid phase, and a hydrocarbon having a carbon number of up to 8 exists in a higher concentration in the gas phase. Furthermore, the lower the temperature, the higher the concentration of hydrocarbons in the ammonia gas phase.
  • Table 3 shows data on saturated straight-chain hydrocarbons. In the case of 4 or more carbon atoms, the corresponding various isomers, and in the case of hydrocarbons of 2 or more carbon atoms, unsaturated bonds are included in the molecule. There is also a tendency shown in Table 3.
  • the ammonia gas temperature is kept at ⁇ 20 ° C., and the wall temperature in the first capacitor 31 is ⁇ 30
  • the wall temperature in the first capacitor 31 is ⁇ 30
  • the purification method by partial condensation in the first condenser 31 not only provides high-purity ammonia in a short time but also has a great energy advantage. I understand that.
  • the present inventors have liquefied gaseous crude ammonia to about 90 to 99.5% by the first capacitor 31 when the impurities contained in the crude ammonia are hydrocarbons having 1 to 8 carbon atoms.
  • the concentration of impurities contained in the liquid ammonia obtained as the liquid phase component is greatly reduced compared to the concentration of impurities contained in the first gaseous crude ammonia. I found the fact that.
  • the liquid ammonia obtained as a liquid phase component by the partial condensation is expected from the gas-liquid distribution ratio as described above. Beyond that value, the concentration of impurity hydrocarbons is much lower. The reason for this is not clear, but it is presumed that in the partial reduction, the equilibrium relationship is lost and dynamic impurity separation occurs, and most of the impurity hydrocarbons remain in the vapor phase components that are not condensed.
  • the correctness of this inference is that liquid ammonia obtained as a liquid phase component by partial contraction in the first capacitor 31 does not immediately take out from the first capacitor 31 and stays in the first capacitor 31 in the state of liquid ammonia. This is supported by the fact that the concentration of impurity hydrocarbons in liquid ammonia gradually increases over time.
  • this gas-liquid distribution coefficient is affected by temperature, and a larger gas-liquid distribution coefficient can be obtained as the partial contraction temperature is lower. This is because when the set temperature of the partial condensation operation in the first capacitor 31 is high, for example, when the temperature at which the partial condensation of ammonia is 50 ° C., the pressure of ammonia supplied to the first capacitor 31 is 1.81 MPa. This means that ammonia can be partially condensed, but it means that the separation efficiency of the hydrocarbon impurities may be reduced as compared with the case where the set temperature of the partial operation is low.
  • the first capacitor 31 condenses gaseous ammonia from which impurities have been adsorbed and removed by the first adsorption tower 21 or the second adsorption tower 22 and separates it into a gas phase component and a liquid phase component, so that hydrogen, nitrogen, Oxygen, argon, carbon monoxide, carbon dioxide, and hydrocarbons having 1 to 8 carbon atoms are separated and removed as gas phase components to obtain liquid ammonia purified as liquid phase components.
  • the first capacitor 31 converts ammonia into gaseous phase derived from the first adsorption tower 21 or the second adsorption tower 22 by cooling treatment, and a part thereof becomes a gas phase component. And condensed into a gas phase component and a liquid phase component.
  • Examples of the first capacitor 31 include a multi-tube capacitor and a plate heat exchanger.
  • the first capacitor 31 condenses 70 to 99% by volume of gaseous ammonia derived from the first adsorption tower 21 or the second adsorption tower 22 and separates it into a gas phase component and a liquid phase component.
  • 1 to 30% by volume, which is part of gaseous ammonia derived from the first adsorption tower 21 or the second adsorption tower 22, is condensed so as to become a gas phase component, It separates into a liquid phase component.
  • the condensation conditions in the first condenser 31 are not limited as long as a part of the gaseous ammonia led out from the first adsorption tower 21 or the second adsorption tower 22 becomes a liquid.
  • the temperature, pressure and time may be set as appropriate.
  • the first condenser 31 condenses gaseous ammonia derived from the first adsorption tower 21 or the second adsorption tower 22 at a temperature of ⁇ 77 to 50 ° C. to condense the gas phase component and the liquid phase. It is preferably configured to separate into components.
  • the first capacitor 31 condenses gaseous ammonia derived from the first adsorption tower 21 or the second adsorption tower 22 under a pressure of 0.007 to 2.0 MPa to condense a gas phase component and a liquid phase component. It is preferable that it is comprised so that it may isolate
  • the pressure at the time of condensation with respect to gaseous ammonia in the first capacitor 31 is less than 0.007 MPa, the temperature for condensing ammonia is lowered, so that a lot of energy is required for cooling, which is not preferable. If the pressure exceeds 2.0 MPa, the temperature at which ammonia is condensed becomes high, which is not preferable because the concentration of impurities contained in liquid ammonia obtained by condensing a part of ammonia is increased.
  • the first condenser 31 condenses a part of gaseous ammonia after adsorption removal by the first adsorption tower 21 or the second adsorption tower 22 to vapor phase component and liquid phase component. Therefore, highly volatile impurities can be separated and removed as a gas phase component to obtain liquid ammonia purified as a liquid phase component. Therefore, ammonia can be purified with a simplified system without providing a distillation section as in the prior art.
  • the first capacitor 31 is connected to a third pipe 73 and a fourth pipe 74 provided with a fifth valve 85.
  • the third pipe 73 is connected between the first capacitor 31 and the recovery tank 4.
  • the liquid ammonia obtained as the liquid phase component is supplied to the recovery tank 4 through the third pipe 73.
  • the recovery tank 4 stores the condensed liquid ammonia obtained as a liquid phase component by the first condenser 31.
  • the recovery tank 4 is preferably controlled at a constant temperature and pressure so that the condensed ammonia can be stored as liquid ammonia.
  • a gas phase is formed in a state where liquid ammonia is stored, and a fifth pipe 75 provided with a sixth valve 86 is connected to the gas phase portion.
  • the fifth pipe 75 is also connected to the second capacitor 32. That is, the fifth pipe 75 is connected between the collection tank 4 and the second capacitor 32.
  • the liquid ammonia derived from the first capacitor 31 and stored in the recovery tank 4 may contain a very small amount of highly volatile impurities. By leaving the liquid ammonia in the recovery tank 4 for a predetermined time (5 to 10 hours), a very small amount of highly volatile impurities contained in the liquid ammonia can be concentrated in the gas phase above the recovery tank 4. The purity of liquid ammonia can be further increased.
  • Gaseous ammonia containing highly volatile impurities concentrated in the gas phase above the recovery tank 4 is supplied to the second condenser 32 through the fifth pipe 75 with the sixth valve 86 opened.
  • the second capacitor 32 degenerates gaseous ammonia derived from the gas phase in the upper part of the recovery tank 4 and separates it into a gas phase component and a liquid phase component, thereby removing highly volatile impurities in the gas phase component.
  • liquid ammonia purified as a liquid phase component Specifically, the second condenser 32 condenses ammonia by gaseous cooling to gaseous ammonia derived from the gas phase at the top of the recovery tank 4 so that a part thereof becomes a gas phase component. Thus, the gas phase component and the liquid phase component are separated.
  • the second capacitor 32 condenses 70 to 99% by volume of gaseous ammonia derived from the gas phase at the top of the recovery tank 4 and separates it into a gas phase component and a liquid phase component.
  • 1 to 30% by volume of gaseous ammonia derived from the gas phase at the upper part of the recovery tank 4 is condensed so as to become a gas phase component, and the gas phase component and the liquid phase component are condensed. And will be separated.
  • the condensation conditions such as temperature, pressure, and time in the second capacitor 32 may be the same as those for the first capacitor 31.
  • the second condenser 32 is connected to a sixth pipe 76 and a seventh pipe 77 provided with a seventh valve 87.
  • the sixth pipe 76 is connected between the second capacitor 32 and the collection tank 4.
  • the second capacitor 32 highly volatile impurities separated and removed from ammonia as a gas phase component are discharged to the outside of the system through the seventh pipe 77 with the seventh valve 87 opened.
  • the liquid ammonia obtained as the liquid phase component is supplied to the recovery tank 4 through the sixth pipe 76.
  • a liquid phase is formed in a state where liquid ammonia is stored, and an eighth pipe 78 provided with an eighth valve 88 is connected to the liquid phase portion.
  • the eighth pipe 78 is also connected to the product tank 7. That is, the eighth pipe 78 is connected between the recovery tank 4 and the product tank 7.
  • the liquid ammonia stored in the recovery tank 4 is supplied to the product tank 7 through the eighth pipe 78 with the eighth valve 88 opened.
  • the product tank 7 stores liquid ammonia supplied from the recovery tank 4 as product ammonia.
  • the temperature and pressure of the product tank 7 are controlled under constant conditions so that ammonia can be stored as liquid liquid ammonia.
  • a highly volatile impurity contained in gaseous ammonia derived from the first adsorption tower 21 or the second adsorption tower 22 is removed from the gas phase component by the first condenser 31. Further, a highly volatile impurity contained in gaseous ammonia derived from the gas phase of the recovery tank 4 is separated and removed as a gas phase component by the second capacitor 32.
  • highly volatile impurities can be removed without performing distillation accompanied by reflux, so that energy is suppressed and ammonia is efficiently purified. be able to.
  • the ammonia purification system 100 of the present embodiment is liquid ammonia obtained as a liquid phase component by being divided by the first capacitor 31 and the second capacitor 32 and separated into a gas phase component and a liquid phase component. Then, the liquid ammonia stored in the recovery tank 4 may be vaporized, and a re-division process for re-division of the vaporized ammonia may be performed.
  • a circulation pipe for connecting the gas phase portion of the recovery tank 4 and the second pipe 72 is provided, and ammonia vaporized in the recovery tank 4 is allowed to flow through the circulation pipe, and further, What is necessary is just to make it flow into 2 piping 72, and to supply to the 1st capacitor
  • the re-denaturation process of ammonia vaporized in the recovery tank 4 may be repeatedly performed a plurality of times.
  • the ammonia vaporized in the recovery tank 4 is divided by the first capacitor 31 and the second capacitor 32 to be separated into a gas phase component and a liquid phase component. , Highly volatile impurities are separated and removed as a gas phase component to obtain liquid ammonia as a liquid phase component. Thereby, more purified liquid ammonia can be obtained.
  • FIG. 2 is a diagram showing a configuration of an ammonia purification system 200 according to the second embodiment of the present invention.
  • the ammonia purification system 200 of the present embodiment is similar to the ammonia purification system 100 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted.
  • the configuration of the partial reduction unit 207 is different from the partial reduction unit 3 of the ammonia purification system 100 described above.
  • the above-described partial reduction unit 3 includes the first capacitor 31 and the second capacitor 32, whereas the partial reduction unit 207 includes only the first capacitor 31.
  • the ammonia purification system 200 is configured to derive crude ammonia as liquid ammonia when the crude ammonia is derived from the raw material storage container 1 to the first adsorption tower 21 or the second adsorption tower 22.
  • the vaporizer 203 is provided between the raw material storage container 1 and the flow rate regulator 5, and when the crude ammonia is led out from the raw material storage container 1 to the vaporizer 203, the raw material storage container 1 Derived from the liquid phase as liquid crude ammonia.
  • a tenth pipe 201 is connected between the raw material storage container 1 and the vaporizer 203, and liquid crude ammonia led out from the raw material storage container 1 is supplied to the vaporizer 203 through the tenth pipe 201. Is done.
  • the tenth pipe 201 is provided with a tenth valve 202 that opens or closes the flow path in the tenth pipe 201.
  • the tenth valve 202 is opened, and the liquid crude ammonia flows in the tenth pipe 201 from the raw material storage container 1 toward the vaporizer 203.
  • the vaporizer 203 vaporizes a part of the liquid crude ammonia led out from the raw material storage container 1, that is, the liquid crude ammonia is heated and vaporized at a predetermined vaporization rate, so that the vapor phase component and the liquid phase are vaporized. Separated into components, gaseous ammonia is derived. Since the vaporizer 203 vaporizes a part of the liquid crude ammonia, low-volatile impurities (for example, moisture, hydrocarbons having 9 or more carbon atoms, etc.) contained in the crude ammonia remain in the liquid phase, Gaseous ammonia in which impurities with low volatility are reduced can be derived.
  • low-volatile impurities for example, moisture, hydrocarbons having 9 or more carbon atoms, etc.
  • the vaporizer 203 vaporizes the liquid ammonia derived from the raw material storage container 1 at a vaporization rate of 90 to 95% by volume and separates it into a gas phase component and a liquid phase component.
  • 90 to 95% by volume of liquid ammonia derived from the raw material storage container 1 is a gas phase component
  • 5 to 10% by volume is a liquid phase component.
  • An eleventh pipe 204 provided with an eleventh valve 205 and a twelfth pipe 206 are connected to the vaporizer 203.
  • the twelfth pipe 206 is connected between the vaporizer 203 and the flow rate regulator 5.
  • low-volatile impurities separated and removed from ammonia as a liquid phase component are discharged to the outside of the system through the eleventh pipe 204 with the eleventh valve 205 opened. Further, gaseous ammonia obtained as a gas phase component in the vaporizer 203 flows through the twelfth pipe 206 and is supplied to the first adsorption tower 21 or the second adsorption tower 22 via the flow rate regulator 5.
  • the impurities contained in the gaseous ammonia supplied to the first adsorption tower 21 or the second adsorption tower 22 in this way are used for the moisture and hydrocarbons filled in the first adsorption tower 21 or the second adsorption tower 22. It is adsorbed and removed by an adsorbent having adsorbability alone.
  • Gaseous ammonia after adsorption removal derived from the first adsorption tower 21 or the second adsorption tower 22 is supplied to the first capacitor 31.
  • the first capacitor 31 condenses a part of the gaseous ammonia after the adsorption removal and separates it into a gas phase component and a liquid phase component, and separates and removes a highly volatile impurity as a gas phase component.
  • the partial reduction condition of the first capacitor 31 in the ammonia purification system 200 is the same as that of the first capacitor 31 in the ammonia purification system 100 described above.
  • the ammonia purification system 200 of the present embodiment can obtain purified liquid ammonia as described above.
  • crude ammonia A industrial grade ammonia having a purity of 99.9% by weight manufactured by Ube Industries, Ltd. was used. Further, crude ammonia B having a purity different from that of the crude ammonia A was prepared. Table 4 shows the concentration of impurities contained in the crude ammonia A and the crude ammonia B.
  • the impurity concentration the hydrocarbon concentration, hydrogen, nitrogen, oxygen, and carbon monoxide concentration are analyzed by a gas chromatograph analyzer (GC-4000, manufactured by GL Sciences Inc.), and the moisture concentration is determined by cavity ring. The analysis was performed using a down-spectroscopic analyzer (MTO-LP-H 2 O, manufactured by Tiger Optics).
  • Example 1 As an adsorbent, a gaseous adsorbent was placed in a cylindrical adsorption tower (length: 50 cm, inner diameter: 2 cm) packed with synthetic zeolite MS-13X (F-9, manufactured by Tosoh Corporation) having adsorption ability for moisture and hydrocarbons alone. Crude ammonia A was passed under conditions of a temperature of 25 ° C. and a pressure of 0.4 MPa.
  • Gaseous ammonia derived from the adsorption tower is supplied to a SUS multi-tube condenser (first condenser) under the conditions of a temperature of ⁇ 10 ° C. and a pressure of 0.4 MPa, and 95% by volume of the supplied ammonia is supplied. It condensed and separated into a gas phase component and a liquid phase component. A gas phase component (concentrated by highly volatile impurities) corresponding to 5% by volume of ammonia supplied to the multitubular capacitor (first capacitor) is removed from the upper portion of the multitubular capacitor (first capacitor). Drained and removed.
  • liquid ammonia obtained as a liquid phase component in the multi-tube condenser (first condenser) was supplied to the recovery tank. Then, the liquid ammonia stored in the recovery tank is allowed to stand for 5 hours or longer, and the gas phase component (2% by volume of liquid ammonia) in the recovery tank is supplied to the multi-tube condenser (second condenser). 95% by volume of the ammonia was condensed and separated into a gas phase component and a liquid phase component. A gas phase component (concentrated by highly volatile impurities) corresponding to 5% by volume of ammonia supplied to the multitubular capacitor (second capacitor) is removed from the upper portion of the multitubular capacitor (second capacitor). Drained and removed.
  • Example 2 As an adsorbent, gaseous crude ammonia A was placed at a temperature of 40 ° C. in a cylindrical tubular adsorption tower (length: 50 cm, inner diameter: 2 cm) packed with synthetic zeolite MS-5A having adsorption ability for moisture and hydrocarbons alone. It was passed under the condition of pressure 0.6 MPa.
  • Gaseous ammonia derived from the adsorption tower is supplied to a SUS multi-tubular condenser (first condenser) under the conditions of a temperature of ⁇ 5 ° C. and a pressure of 0.4 MPa.
  • the volume% was condensed and separated into a gas phase component and a liquid phase component.
  • a gas phase component (concentrated with highly volatile impurities) corresponding to 10% by volume of ammonia supplied to the multitubular capacitor (first capacitor) is removed from the upper portion of the multitubular capacitor (first capacitor). Drained and removed.
  • liquid ammonia obtained as a liquid phase component in the multi-tube condenser (first condenser) was supplied to the recovery tank. Then, the liquid ammonia stored in the recovery tank is allowed to stand for 5 hours or longer, and the gas phase component (2% by volume of liquid ammonia) in the recovery tank is supplied to the multi-tube condenser (second condenser). 90% by volume of ammonia was condensed and separated into a gas phase component and a liquid phase component. A gas phase component (concentrated with highly volatile impurities) corresponding to 10% by volume of ammonia supplied to the multitubular capacitor (second capacitor) is removed from the upper portion of the multitubular capacitor (second capacitor). Drained and removed.
  • Example 3 As an adsorbent, a gaseous crude ammonia B was placed at a temperature of 25 ° C. in a cylindrical tubular adsorption tower (length: 50 cm, inner diameter: 2 cm) filled with synthetic zeolite MS-13X having adsorption ability for water and hydrocarbons alone. It was passed under the condition of pressure 0.4 MPa.
  • Gaseous ammonia derived from the adsorption tower is supplied to a SUS multi-tube condenser (first condenser) under the conditions of a temperature of ⁇ 10 ° C. and a pressure of 0.4 MPa, and 95% by volume of the supplied ammonia is supplied. It condensed and separated into a gas phase component and a liquid phase component. A gas phase component (concentrated by highly volatile impurities) corresponding to 5% by volume of ammonia supplied to the multitubular capacitor (first capacitor) is removed from the upper portion of the multitubular capacitor (first capacitor). Drained and removed.
  • liquid ammonia obtained as a liquid phase component in the multi-tube condenser was supplied to the recovery tank. Further, the liquid ammonia stored in the recovery tank was re-denaturated. Specifically, the liquid ammonia stored in the recovery tank is allowed to stand for 5 hours or more, and the gas phase component (2% by volume of liquid ammonia) in the recovery tank is supplied to the multi-tube condenser (second condenser). , 95% by volume of the supplied ammonia was condensed and separated into a gas phase component and a liquid phase component. A gas phase component (concentrated by highly volatile impurities) corresponding to 5% by volume of ammonia supplied to the multitubular capacitor (second capacitor) is removed from the upper portion of the multitubular capacitor (second capacitor). Drained and removed.
  • Gaseous ammonia derived from the adsorption tower was supplied to a SUS jacketed distillation tower under a pressure of 0.4 MPa.
  • the distillation column was temperature-controlled with a refrigerant having a temperature of ⁇ 10 ° C., and the reflux ratio was set to 20. From the top of the distillation column, 7% by volume of ammonia with respect to the supplied ammonia was discharged, and from the bottom of the distillation column, 93% by volume of liquid ammonia with respect to the supplied ammonia was led out. And the liquid ammonia led out from the tower bottom of the distillation tower was stored in the collection tank.
  • Gaseous ammonia derived from the adsorption tower is supplied to a SUS multi-tube condenser under the conditions of a temperature of ⁇ 10 ° C. and a pressure of 0.4 MPa, and 95% by volume of the supplied ammonia is condensed to the gas phase. Separated into component and liquid phase component. A gas phase component corresponding to 5% by volume of ammonia supplied to the multitubular capacitor was discharged from the upper portion of the multitubular capacitor and removed.
  • liquid ammonia obtained as a liquid phase component in the multi-tube condenser was supplied to the recovery tank. Then, the liquid ammonia stored in the recovery tank was allowed to stand for 5 hours or more, and the gas phase component in the recovery tank (2% by volume of liquid ammonia) was discharged from the upper part of the recovery tank and removed.
  • the liquid ammonia obtained by the ammonia purification method of Examples 1 and 2 was the liquid ammonia obtained by the ammonia purification method of Comparative Example 1 including a distillation removal step using a distillation column. It is equivalent in purity.
  • the liquid ammonia obtained by the ammonia purification method of Comparative Example 2 contains a large amount of moisture. This is because, as the adsorbent packed in the adsorption tower, activated carbon that does not have the ability to adsorb moisture and only has the ability to adsorb hydrocarbons was used. It is because it concentrated in the liquid ammonia isolate
  • the method for purifying ammonia in Examples 1 and 2 can obtain high-purity liquid ammonia even though it does not include a distillation removal step by a distillation column. It can be seen that ammonia can be efficiently purified while suppressing energy consumption.
  • Example 3 Although crude ammonia B having low purity (high impurity concentration) was used, finally (after re-denaturation treatment: second condensation), Examples 1, 2 and High purity liquid ammonia equivalent to or higher than that of Comparative Example 1 can be obtained. From this result, it can be seen that the ammonia purification method of Example 3 performs re-denaturation treatment of the ammonia vaporized in the recovery tank, so that more purified liquid ammonia can be obtained.

Abstract

The present invention is a method for purifying ammonia and an ammonia purification system whereby impurities in crude ammonia can be efficiently adsorbed and removed and whereby ammonia can be purified by a simplified method. In an ammonia purification system (100), a first adsorption tower (21) and a second adsorption tower (22) adsorb and remove impurities in crude ammonia, using an adsorption agent having the ability to adsorb moisture and hydrocarbons only. A first condenser (31) partially condenses the ammonia from which the impurities have been adsorbed and removed, to thereby separate out and remove highly volatile impurities as gas phase components.

Description

アンモニアの精製方法およびアンモニア精製システムAmmonia purification method and ammonia purification system
 本発明は、粗アンモニアを精製する精製方法およびアンモニア精製システムに関する。 The present invention relates to a purification method and an ammonia purification system for purifying crude ammonia.
 半導体製造工程および液晶製造工程においては、窒化物被膜の作製などに用いる処理剤として、高純度のアンモニアが利用されている。このような高純度のアンモニアは、粗アンモニアを精製して不純物を除去することにより得られる。 In a semiconductor manufacturing process and a liquid crystal manufacturing process, high-purity ammonia is used as a processing agent used for producing a nitride film. Such high-purity ammonia can be obtained by purifying crude ammonia to remove impurities.
 粗アンモニア中には、水素、窒素、酸素、アルゴン、一酸化窒素、二酸化炭素などの低沸点ガス、炭化水素、水分などが不純物として含まれている。一般的に入手可能な粗アンモニアの純度は98~99重量%程度である。 The crude ammonia contains hydrogen, nitrogen, oxygen, argon, nitrogen monoxide, carbon dioxide and other low-boiling gases, hydrocarbons, moisture and the like as impurities. The purity of generally available crude ammonia is about 98 to 99% by weight.
 粗アンモニア中に含まれる炭化水素としては、一般的には炭素数1~4のものが主であるが、アンモニアの合成原料として用いる水素ガスの製造時に、クラッキングガス中の油分の分離が不十分であったり、あるいは、製造時にポンプ類からのポンプ油による油汚染を受けたりと、沸点の高い分子量の大きな炭化水素が混入することもある。また、アンモニア中に水分が多く含まれると、このアンモニアを用いて製造される半導体等の機能を大きく低下させる場合があり、アンモニア中の水分は極力減らす必要がある。 Generally, hydrocarbons contained in crude ammonia are mainly those having 1 to 4 carbon atoms. However, when producing hydrogen gas used as a raw material for ammonia synthesis, the oil content in the cracking gas is insufficiently separated. Or, when the oil is contaminated with pump oil from pumps during production, hydrocarbons having a high boiling point and a large molecular weight may be mixed. Moreover, if ammonia contains a large amount of moisture, the function of a semiconductor or the like manufactured using this ammonia may be greatly reduced, and the moisture in ammonia needs to be reduced as much as possible.
 半導体製造工程および液晶製造工程におけるアンモニアが用いられる工程の種類によって、アンモニア中の不純物の影響の仕方は異なる。アンモニアの純度としては、99.9999重量%以上(各不純物濃度100ppb以下)、より好ましくは99.99999重量%程度であることが求められる。近年窒化ガリウムのような発光体製造用には水分濃度が30ppb未満であることが求められている。 Depending on the type of process in which ammonia is used in the semiconductor manufacturing process and the liquid crystal manufacturing process, the manner in which the impurities in ammonia vary. The purity of ammonia is required to be 99.9999% by weight or more (each impurity concentration of 100 ppb or less), more preferably about 99.99999% by weight. In recent years, a moisture concentration of less than 30 ppb has been demanded for the production of a light emitter such as gallium nitride.
 粗アンモニア中に含まれる不純物を除去する方法としては、シリカゲル、合成ゼオライト、活性炭等の吸着剤を用いて不純物を吸着除去する方法、不純物を蒸留除去する方法が知られている。 As a method for removing impurities contained in crude ammonia, a method for adsorbing and removing impurities using an adsorbent such as silica gel, synthetic zeolite, activated carbon, and a method for removing impurities by distillation are known.
 たとえば、特許文献1には、液体状の粗アンモニアから揮発性の低い不純物を除去する第1蒸留塔と、第1蒸留塔から導出された気体状のアンモニアに含まれる不純物(主に水分)を吸着剤により吸着除去する吸着塔と、吸着塔から導出された気体状のアンモニアから揮発性の高い不純物を除去する第2蒸留塔とを備えるアンモニア精製システムが開示されている。また、特許文献2には、気体状の粗アンモニアに含まれる水分を酸化バリウムからなる吸着剤で吸着除去した後、蒸留することによってアンモニアを精製する方法が開示されている。 For example, Patent Document 1 discloses a first distillation column that removes low-volatile impurities from liquid crude ammonia, and impurities (mainly moisture) contained in gaseous ammonia derived from the first distillation column. An ammonia purification system is disclosed that includes an adsorption tower that adsorbs and removes with an adsorbent, and a second distillation tower that removes highly volatile impurities from gaseous ammonia derived from the adsorption tower. Patent Document 2 discloses a method of purifying ammonia by distilling and removing moisture contained in gaseous crude ammonia with an adsorbent composed of barium oxide.
特開2006-206410号公報JP 2006-206410 A 特開2003-183021号公報JP 2003-183021 A
 粗アンモニアに含まれる不純物を吸着除去する吸着剤としては、水分に対して高い吸着能を有する吸着剤と、炭化水素に対して高い吸着能を有する吸着剤とを、区別して用いるのが一般的であり、特許文献1に開示されるアンモニアを精製する技術では、合成ゼオライト3Aからなる吸着剤により水分を吸着除去し、特許文献2に開示されるアンモニアを精製する技術では、酸化バリウムからなる吸着剤により水分を吸着除去している。 As an adsorbent that adsorbs and removes impurities contained in crude ammonia, it is common to distinguish between adsorbents that have a high adsorption capacity for moisture and adsorbents that have a high adsorption capacity for hydrocarbons. In the technology for purifying ammonia disclosed in Patent Document 1, moisture is adsorbed and removed by an adsorbent composed of synthetic zeolite 3A, and in the technology for purifying ammonia disclosed in Patent Document 2, adsorption composed of barium oxide is performed. Moisture is absorbed and removed by the agent.
 粗アンモニアに含まれる水分および炭化水素の不純物を吸着除去するためには、水分に対して高い吸着能を有する吸着剤が充填された吸着塔と、炭化水素に対して高い吸着能を有する吸着剤が充填された吸着塔との、複数の吸着塔を備える構成とするか、または、1つの吸着塔に複数の吸着剤を積層して充填する構成とする必要がある。 In order to adsorb and remove moisture and hydrocarbon impurities contained in crude ammonia, an adsorption tower packed with an adsorbent having a high adsorption capacity for moisture and an adsorbent having a high adsorption capacity for hydrocarbons It is necessary to make it the structure provided with a plurality of adsorption towers with the adsorption tower filled with or a structure where a plurality of adsorbents are stacked and packed in one adsorption tower.
 1つの吸着塔に複数の吸着剤を積層した場合、粗アンモニアに不純物として含まれる水分と炭化水素との量比が変動したときには、一方の吸着剤が吸着飽和に達していないときであっても、他方の吸着剤が吸着飽和に達して破過する現象が生じる。そのため、吸着剤の吸着能を最大限に利用して、粗アンモニアに含まれる水分および炭化水素を効率的に吸着除去することができず、さらには、吸着剤の破過の管理も複雑になってしまう。 When a plurality of adsorbents are stacked in one adsorption tower, when the amount ratio of moisture and hydrocarbons contained as impurities in the crude ammonia varies, even if one adsorbent has not reached adsorption saturation The other adsorbent reaches adsorption saturation and breaks through. For this reason, it is not possible to efficiently absorb and remove moisture and hydrocarbons contained in the crude ammonia by making maximum use of the adsorption capacity of the adsorbent, and the management of adsorbent breakthrough becomes complicated. End up.
 また、特許文献1,2に開示されるアンモニアを精製する技術では、粗アンモニアに含まれる不純物を吸着塔で吸着除去し、さらに、蒸留塔で蒸留除去してアンモニアを精製するが、蒸留塔から導出された精製後の気体状のアンモニアは、冷却されて液体アンモニアとして回収される。すなわち、特許文献1,2に開示されるアンモニアを精製する技術では、粗アンモニアに含まれる不純物を吸着・蒸留除去し、さらに冷却して精製された液体アンモニアを得るので、アンモニアを精製する方法として簡単化されたものであるとは言えない。 Further, in the technology for purifying ammonia disclosed in Patent Documents 1 and 2, impurities contained in the crude ammonia are adsorbed and removed by an adsorption tower, and further, the ammonia is purified by distillation by distillation using a distillation tower. The derived gaseous ammonia after purification is cooled and recovered as liquid ammonia. That is, in the technology for purifying ammonia disclosed in Patent Documents 1 and 2, impurities contained in the crude ammonia are adsorbed and distilled off, and further cooled to obtain purified liquid ammonia. It cannot be said to be simplified.
 したがって本発明の目的は、粗アンモニアに不純物として含まれる水分および炭化水素を、吸着剤の吸着能を最大限に利用して効率よく吸着除去することができるとともに、簡単化された方法でアンモニアを精製することができるアンモニアの精製方法、およびアンモニア精製システムを提供することである。 Accordingly, an object of the present invention is to efficiently remove moisture and hydrocarbons contained as impurities in crude ammonia by making maximum use of the adsorption capacity of the adsorbent and to remove ammonia by a simplified method. To provide a method for purifying ammonia and an ammonia purification system that can be purified.
 本発明は、不純物が含まれる粗アンモニアを精製する方法であって、
 粗アンモニアに含まれる不純物を、水分および炭化水素に対する吸着能を単独で有する吸着剤により吸着除去する吸着除去工程と、
 前記吸着除去工程で不純物が吸着除去されたアンモニアを分縮して気相成分と液相成分とに分離することで、水素、窒素、酸素、アルゴン、一酸化炭素、二酸化炭素、および炭素数1~8の炭化水素を気相成分として分離除去し、液相成分として液体アンモニアを得る分縮工程と、を含むことを特徴とするアンモニアの精製方法である。
The present invention is a method for purifying crude ammonia containing impurities,
An adsorption removal step of adsorbing and removing impurities contained in the crude ammonia by an adsorbent having an adsorption ability for moisture and hydrocarbons alone;
Ammonia from which impurities have been adsorbed and removed in the adsorption removal step is fractionated and separated into a gas phase component and a liquid phase component, so that hydrogen, nitrogen, oxygen, argon, carbon monoxide, carbon dioxide, and carbon number 1 And a fractionation step of separating and removing hydrocarbons of ˜8 as a gas phase component to obtain liquid ammonia as a liquid phase component.
 また本発明のアンモニアの精製方法は、前記分縮工程で得られた液体アンモニアを気化し、その気化されたアンモニアを分縮して気相成分と液相成分とに分離することで、不純物を気相成分として分離除去し、液相成分として液体アンモニアを得る再分縮工程をさらに含むことが好ましい。 In the method for purifying ammonia according to the present invention, the liquid ammonia obtained in the fractionation step is vaporized, and the vaporized ammonia is fractionated and separated into a gas phase component and a liquid phase component, thereby removing impurities. It is preferable to further include a re-denaturation step of separating and removing as a gas phase component to obtain liquid ammonia as a liquid phase component.
 また本発明のアンモニアの精製方法では、前記吸着除去工程で用いる前記吸着剤が、多孔質の合成ゼオライトであることが好ましい。 In the ammonia purification method of the present invention, it is preferable that the adsorbent used in the adsorption removal step is porous synthetic zeolite.
 また本発明のアンモニアの精製方法では、前記合成ゼオライトが、5~9Åの細孔径を有する合成ゼオライトであることが好ましい。 In the ammonia purification method of the present invention, the synthetic zeolite is preferably a synthetic zeolite having a pore diameter of 5 to 9 mm.
 また本発明のアンモニアの精製方法において、前記分縮工程では、前記吸着除去工程で不純物が吸着除去されたアンモニアの70~99体積%を凝縮して気相成分と液相成分とに分離することが好ましい。 In the ammonia purification method of the present invention, in the partial reduction step, 70 to 99% by volume of ammonia from which impurities have been adsorbed and removed in the adsorption removal step is condensed and separated into a gas phase component and a liquid phase component. Is preferred.
 また本発明のアンモニアの精製方法において、前記分縮工程では、前記吸着除去工程で不純物が吸着除去されたアンモニアを、-77~50℃の温度下で凝縮して気相成分と液相成分とに分離することが好ましい。 In the ammonia purification method of the present invention, in the partial reduction step, the ammonia from which impurities have been adsorbed and removed in the adsorption removal step is condensed at a temperature of −77 to 50 ° C. to obtain a gas phase component and a liquid phase component. It is preferable to separate them.
 また本発明は、不純物が含まれる粗アンモニアを精製するアンモニア精製システムであって、
 粗アンモニアに含まれる不純物を、水分および炭化水素に対する吸着能を単独で有する吸着剤により吸着除去する吸着部と、
 前記吸着部により不純物が吸着除去されたアンモニアを分縮して気相成分と液相成分とに分離することで、水素、窒素、酸素、アルゴン、一酸化炭素、二酸化炭素、および炭素数1~8の炭化水素を気相成分として分離除去し、液相成分として液体アンモニアを得る分縮部と、を含むことを特徴とするアンモニア精製システムである。
The present invention is also an ammonia purification system for purifying crude ammonia containing impurities,
An adsorbing part that adsorbs and removes impurities contained in the crude ammonia by an adsorbent having an adsorption ability for water and hydrocarbons alone;
The ammonia from which the impurities are adsorbed and removed by the adsorbing part is fractionated and separated into a gas phase component and a liquid phase component, so that hydrogen, nitrogen, oxygen, argon, carbon monoxide, carbon dioxide, and carbon number of 1 to And a fractionation unit that separates and removes 8 hydrocarbons as a gas phase component to obtain liquid ammonia as a liquid phase component.
 本発明によれば、アンモニアの精製方法は、不純物が含まれる粗アンモニアを精製する方法であって、吸着除去工程と分縮工程とを含む。吸着除去工程では、気体状の粗アンモニアに含まれる不純物を、水分および炭化水素に対する吸着能を単独で有する吸着剤により吸着除去する。分縮工程では、吸着除去工程で不純物が吸着除去された気体状のアンモニアを分縮して気相成分と液相成分とに分離することで、水素、窒素、酸素、アルゴン、一酸化炭素、二酸化炭素、および炭素数1~8の炭化水素を気相成分として分離除去し、液相成分として精製された液体アンモニアを得る。 According to the present invention, the ammonia purification method is a method for purifying crude ammonia containing impurities, and includes an adsorption removal step and a partial condensation step. In the adsorption removal process, impurities contained in the gaseous crude ammonia are adsorbed and removed by an adsorbent having adsorption ability for moisture and hydrocarbons alone. In the partial condensation process, gaseous ammonia from which the impurities have been adsorbed and removed in the adsorption removal process is fractionated and separated into a gas phase component and a liquid phase component, so that hydrogen, nitrogen, oxygen, argon, carbon monoxide, Carbon dioxide and hydrocarbons having 1 to 8 carbon atoms are separated and removed as gas phase components to obtain purified liquid ammonia as liquid phase components.
 本発明のアンモニアの精製方法では、吸着除去工程において、水分および炭化水素に対する吸着能を単独で有する吸着剤を用いるので、従来技術のように、水分に対する吸着能を有する吸着剤と、炭化水素に対する吸着能を有する吸着剤との、複数の吸着剤を用いる必要がない。そのため、気体状の粗アンモニアに不純物として含まれる水分および炭化水素を、吸着剤の吸着能を最大限に利用して効率よく吸着除去することができるとともに、吸着剤の破過の管理も簡単化することができる。また、本発明のアンモニアの精製方法では、分縮工程において、吸着除去後の気体状のアンモニアの一部を凝縮して気相成分と液相成分とに分離するので、炭素数1~8の炭化水素、水素、窒素、酸素、アルゴン、一酸化炭素および二酸化炭素等の溶存低沸点ガスを気相成分として分離除去し、液相成分として精製された液体アンモニアを得ることができる。そのため、従来技術のように蒸留工程を経ることなく、簡単化された方法でアンモニアを精製することができる。 In the ammonia purification method of the present invention, the adsorption removal step uses an adsorbent having an adsorption ability for water and hydrocarbons alone, so that the adsorbent having an adsorption ability for moisture and the hydrocarbon are adsorbed as in the prior art. There is no need to use a plurality of adsorbents with adsorbents having adsorbability. As a result, moisture and hydrocarbons contained as impurities in the gaseous crude ammonia can be efficiently adsorbed and removed by making full use of the adsorption capacity of the adsorbent, and management of adsorbent breakthrough is simplified. can do. Further, in the ammonia purification method of the present invention, in the partial condensation step, a part of the gaseous ammonia after adsorption removal is condensed and separated into a gas phase component and a liquid phase component. Liquid ammonia purified as a liquid phase component can be obtained by separating and removing dissolved low boiling point gas such as hydrocarbon, hydrogen, nitrogen, oxygen, argon, carbon monoxide and carbon dioxide as a gas phase component. Therefore, ammonia can be purified by a simplified method without passing through a distillation step as in the prior art.
 また本発明によれば、アンモニアの精製方法は、再分縮工程をさらに含む。この再分縮工程では、分縮工程で得られた液体アンモニアを気化し、その気化されたアンモニアを分縮して気相成分と液相成分とに分離することで、不純物を気相成分として分離除去し、液相成分として液体アンモニアを得る。再分縮工程において、分縮工程で得られた液体アンモニアから気化されたアンモニアの一部を凝縮して気相成分と液相成分とに分離することで、揮発性の高い不純物を気相成分として分離除去するので、より精製された液体アンモニアを得ることができる。 According to the present invention, the method for purifying ammonia further includes a re-denaturation step. In this re-fractionation process, liquid ammonia obtained in the fractionation process is vaporized, and the vaporized ammonia is fractionated and separated into a gas phase component and a liquid phase component, so that impurities become gas phase components. Separation and removal are performed to obtain liquid ammonia as a liquid phase component. In the re-differentiation step, a part of the ammonia vaporized from the liquid ammonia obtained in the partial reduction step is condensed and separated into a gas phase component and a liquid phase component, so that highly volatile impurities are removed from the gas phase component. As a result, it is possible to obtain more purified liquid ammonia.
 また本発明によれば、吸着除去工程で用いる吸着剤が、多孔質の合成ゼオライトである。これによって、粗アンモニアに不純物として含まれる水分および炭化水素を、効率よく吸着除去することができる。 Further, according to the present invention, the adsorbent used in the adsorption removing step is a porous synthetic zeolite. As a result, moisture and hydrocarbons contained as impurities in the crude ammonia can be efficiently adsorbed and removed.
 また本発明によれば、吸着剤として用いる合成ゼオライトが、5~9Åの細孔径を有するものである。これによって、粗アンモニアに不純物として含まれる水分および炭化水素(特にブタン、ペンタン、ヘキサン等の高次炭化水素)を、効率よく吸着除去することができる。 According to the present invention, the synthetic zeolite used as the adsorbent has a pore diameter of 5 to 9 mm. As a result, moisture and hydrocarbons (particularly higher-order hydrocarbons such as butane, pentane, and hexane) contained as impurities in the crude ammonia can be efficiently adsorbed and removed.
 また本発明によれば、分縮工程では、吸着除去工程で不純物が吸着除去された気体状のアンモニアの70~99体積%を凝縮して気相成分と液相成分とに分離する。これによって、吸着除去後の気体状のアンモニアに含まれる揮発性の高い不純物を気相成分として分離除去し、液相成分として精製された液体アンモニアを収率よく得ることができる。 According to the present invention, in the partial reduction process, 70 to 99% by volume of gaseous ammonia from which impurities are adsorbed and removed in the adsorption removal process is condensed and separated into a gas phase component and a liquid phase component. As a result, it is possible to separate and remove highly volatile impurities contained in the gaseous ammonia after adsorption removal as a gas phase component, and to obtain liquid ammonia purified as a liquid phase component with a high yield.
 また本発明によれば、分縮工程では、吸着除去工程で不純物が吸着除去された気体状のアンモニアを、-77~50℃の温度下で凝縮して気相成分と液相成分とに分離する。これによって、吸着除去後の気体状のアンモニアを効率よく凝縮して液体アンモニアを得ることができるとともに、その液体アンモニアの純度を高めることができる。 Further, according to the present invention, in the partial reduction process, gaseous ammonia from which impurities have been adsorbed and removed in the adsorption removal process is condensed at a temperature of −77 to 50 ° C. to separate into a gas phase component and a liquid phase component. To do. Thereby, gaseous ammonia after adsorption removal can be efficiently condensed to obtain liquid ammonia, and the purity of the liquid ammonia can be increased.
 また本発明によれば、アンモニア精製システムは、不純物が含まれる粗アンモニアを精製するシステムであり、吸着部と分縮部とを含む。吸着部は、気体状の粗アンモニアに含まれる不純物を、水分および炭化水素に対する吸着能を単独で有する吸着剤により吸着除去する。分縮部は、吸着部により不純物が吸着除去された気体状のアンモニアを分縮して気相成分と液相成分とに分離することで、水素、窒素、酸素、アルゴン、一酸化炭素、二酸化炭素、および炭素数1~8の炭化水素を気相成分として分離除去し、液相成分として精製された液体アンモニアを得る。 Further, according to the present invention, the ammonia purification system is a system for purifying crude ammonia containing impurities, and includes an adsorption part and a partial condensation part. The adsorbing part adsorbs and removes impurities contained in the gaseous crude ammonia by an adsorbent having an adsorption ability for moisture and hydrocarbons alone. The partial reduction part separates gaseous ammonia from which impurities have been adsorbed and removed by the adsorption part and separates it into a gas phase component and a liquid phase component, so that hydrogen, nitrogen, oxygen, argon, carbon monoxide, carbon dioxide Carbon and hydrocarbons having 1 to 8 carbon atoms are separated and removed as gas phase components to obtain purified liquid ammonia as liquid phase components.
 本発明のアンモニア精製システムにおいて、吸着部は、水分および炭化水素に対する吸着能を単独で有する吸着剤により、気体状の粗アンモニアに含まれる不純物を吸着除去するので、吸着剤の吸着能を最大限に利用して効率よく吸着除去することができる。また、本発明のアンモニア精製システムにおいて、分縮部は、吸着除去後の気体状のアンモニアの一部を凝縮して気相成分と液相成分とに分離するので、炭素数1~8の炭化水素、水素、窒素、酸素、アルゴン、一酸化炭素および二酸化炭素等の溶存低沸点ガスを気相成分として分離除去し、液相成分として精製された液体アンモニアを得ることができる。そのため、従来技術のように蒸留部を設けなくても、簡単化されたシステムでアンモニアを精製することができる。 In the ammonia purification system of the present invention, the adsorbing part adsorbs and removes impurities contained in the gaseous crude ammonia by an adsorbent having adsorption ability for moisture and hydrocarbons alone, so that the adsorption capacity of the adsorbent is maximized. Can be efficiently adsorbed and removed. Further, in the ammonia purification system of the present invention, the partial condensation part condenses part of the gaseous ammonia after the adsorption removal and separates it into a gas phase component and a liquid phase component. The dissolved low boiling point gas such as hydrogen, hydrogen, nitrogen, oxygen, argon, carbon monoxide and carbon dioxide can be separated and removed as a gas phase component to obtain purified liquid ammonia as a liquid phase component. Therefore, ammonia can be purified with a simplified system without providing a distillation section as in the prior art.
 本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
本発明の第1実施形態に係るアンモニア精製システム100の構成を示す図である。 本発明の第2実施形態に係るアンモニア精製システム200の構成を示す図である。
Objects, features, and advantages of the present invention will become more apparent from the following detailed description and drawings.
It is a figure which shows the structure of the ammonia purification system 100 which concerns on 1st Embodiment of this invention. It is a figure which shows the structure of the ammonia purification system 200 which concerns on 2nd Embodiment of this invention.
 図1は、本発明の第1実施形態に係るアンモニア精製システム100の構成を示す図である。本実施形態のアンモニア精製システム100は、不純物が含まれる粗アンモニアを精製するシステムである。 FIG. 1 is a diagram showing a configuration of an ammonia purification system 100 according to the first embodiment of the present invention. The ammonia purification system 100 of the present embodiment is a system that purifies crude ammonia containing impurities.
 アンモニア精製システム100は、原料貯留容器1と、吸着部2として複数の吸着塔である第1吸着塔21および第2吸着塔22と、分縮部3として第1コンデンサ31および第2コンデンサ32と、回収タンク4と、製品タンク7とを含んで構成される。また、アンモニア精製システム100は、本発明に係るアンモニアの精製方法を実現し、第1吸着塔21および第2吸着塔22が吸着除去工程を実行し、第1コンデンサ31および第2コンデンサ32が分縮工程を実行する。 The ammonia purification system 100 includes a raw material storage container 1, a first adsorption tower 21 and a second adsorption tower 22 that are a plurality of adsorption towers as the adsorption unit 2, and a first capacitor 31 and a second capacitor 32 as the partial condensation unit 3. The recovery tank 4 and the product tank 7 are included. Further, the ammonia purification system 100 realizes the ammonia purification method according to the present invention, the first adsorption tower 21 and the second adsorption tower 22 execute the adsorption removal step, and the first capacitor 31 and the second capacitor 32 are separated. Perform the shrinking process.
 原料貯留容器1は、粗アンモニアを貯留するものである。本実施形態において、原料貯留容器1に貯留される粗アンモニアは、純度99重量%以上、好ましくは純度99.9~99.99重量%である。このような粗アンモニアとしては、たとえば、純度99.9重量%の工業用グレードのアンモニア(宇部興産株式会社製)、純度99.9重量%の工業用グレードのアンモニア(三井化学株式会社製)などが挙げられる。 The raw material storage container 1 stores crude ammonia. In the present embodiment, the crude ammonia stored in the raw material storage container 1 has a purity of 99% by weight or more, preferably a purity of 99.9 to 99.99% by weight. Examples of such crude ammonia include industrial grade ammonia (manufactured by Ube Industries, Ltd.) having a purity of 99.9% by weight, industrial grade ammonia having a purity of 99.9% by weight (manufactured by Mitsui Chemicals, Inc.), etc. Is mentioned.
 原料貯留容器1は、耐圧性および耐腐食性を有する保温容器であれば特に制限されるものではない。この原料貯留容器1は、粗アンモニアを液体アンモニアとして貯留し、温度および圧力が一定条件となるように制御されている。原料貯留容器1の上部には、液体アンモニアを貯留した状態で気相が形成されている。原料貯留容器1から第1吸着塔21または第2吸着塔22に粗アンモニアを導出する際には、液体アンモニアとして導出するようにしてもよいが、本実施形態では、粗アンモニアを前記気相から気体状のアンモニアとして導出する。原料貯留容器1と、第1吸着塔21および第2吸着塔22との間には、第1配管71が接続されており、原料貯留容器1から導出された粗アンモニアは、第1配管71を通って第1吸着塔21または第2吸着塔22に供給される。 The raw material storage container 1 is not particularly limited as long as it is a heat insulating container having pressure resistance and corrosion resistance. The raw material storage container 1 stores crude ammonia as liquid ammonia and is controlled so that the temperature and pressure are constant. A gas phase is formed in the upper part of the raw material storage container 1 in a state where liquid ammonia is stored. When the crude ammonia is derived from the raw material storage container 1 to the first adsorption tower 21 or the second adsorption tower 22, it may be derived as liquid ammonia, but in this embodiment, the crude ammonia is extracted from the gas phase. Derived as gaseous ammonia. A first pipe 71 is connected between the raw material storage container 1 and the first adsorption tower 21 and the second adsorption tower 22, and crude ammonia derived from the raw material storage container 1 passes through the first pipe 71. It is supplied to the first adsorption tower 21 or the second adsorption tower 22 through.
 第1配管71には、原料貯留容器1から第1吸着塔21または第2吸着塔22に流れる気体状の粗アンモニアの流量を調整する流量調整器5が設けられている。また、第1配管71には、第1配管71における流路を開放または閉鎖する第1バルブ81および第2バルブ82が設けられている。第1配管71において、第1バルブ81は、流量調整器5よりも粗アンモニアの流過方向上流側(すなわち、原料貯留容器1側)に配置され、第2バルブ82は、流量調整器5よりも粗アンモニアの流過方向下流側(すなわち、第1吸着塔21および第2吸着塔22側)に配置される。粗アンモニアの第1吸着塔21または第2吸着塔22への供給時には、第1バルブ81および第2バルブ82が開放され、流量調整器5により流量が調整されて、原料貯留容器1から第1吸着塔21または第2吸着塔22に向けて第1配管71内を気体状の粗アンモニアが流れる。 The first pipe 71 is provided with a flow rate regulator 5 for adjusting the flow rate of gaseous crude ammonia flowing from the raw material storage container 1 to the first adsorption tower 21 or the second adsorption tower 22. Further, the first pipe 71 is provided with a first valve 81 and a second valve 82 that open or close a flow path in the first pipe 71. In the first pipe 71, the first valve 81 is arranged upstream of the flow rate regulator 5 in the flow direction of the crude ammonia (that is, the raw material storage container 1 side), and the second valve 82 is placed from the flow rate regulator 5. Is also arranged downstream of the flow direction of the crude ammonia (that is, the first adsorption tower 21 and the second adsorption tower 22 side). When supplying crude ammonia to the first adsorption tower 21 or the second adsorption tower 22, the first valve 81 and the second valve 82 are opened, and the flow rate is adjusted by the flow rate regulator 5, so that Gaseous crude ammonia flows in the first pipe 71 toward the adsorption tower 21 or the second adsorption tower 22.
 第1吸着塔21および第2吸着塔22は、原料貯留容器1から導出された気体状の粗アンモニアに含まれる不純物を吸着剤により吸着除去する。本実施形態では、第1吸着塔21および第2吸着塔22の2つの吸着塔を並列に接続する構成であるので、たとえば、粗アンモニアに含まれる不純物を、一方の吸着塔である第1吸着塔21で吸着除去している間に、使用済みの他の吸着塔である第2吸着塔22で再度吸着除去動作が可能なように、使用済みの他の吸着塔である第2吸着塔22を再生処理することができる。この場合、第2吸着塔22の開閉バルブ82aおよび開閉バルブ83aを開放し、第2吸着塔22の第2バルブ82および第3バルブ83は閉鎖しておく。 The first adsorption tower 21 and the second adsorption tower 22 adsorb and remove impurities contained in the gaseous crude ammonia derived from the raw material storage container 1 with an adsorbent. In the present embodiment, since the two adsorption towers of the first adsorption tower 21 and the second adsorption tower 22 are connected in parallel, for example, impurities contained in the crude ammonia are removed from the first adsorption tower which is one of the adsorption towers. The second adsorption tower 22 which is another used adsorption tower so that the adsorption removal operation can be performed again by the second adsorption tower 22 which is another used adsorption tower while the tower 21 is performing adsorption removal. Can be reprocessed. In this case, the opening / closing valve 82a and the opening / closing valve 83a of the second adsorption tower 22 are opened, and the second valve 82 and the third valve 83 of the second adsorption tower 22 are closed.
 第1吸着塔21および第2吸着塔22のそれぞれに充填される吸着剤は、水分および炭化水素に対する吸着能を単独で有する。このような吸着剤としては、多孔質の合成ゼオライトを挙げることができる。合成ゼオライトの中でも、5~9Åの細孔径を有する合成ゼオライトが好ましく、細孔径が5Åの合成ゼオライトとしてMS-5Aが挙げられ、細孔径が9Åの合成ゼオライトとしてMS-13Xが挙げられる。これらの中でも、細孔径が9Åの合成ゼオライトであるMS-13Xを吸着剤として用いるのが、特に好ましい。本実施形態で用いる吸着剤は、加熱、減圧、加熱および減圧のいずれかの処理によって、吸着した不純物(水分および炭化水素)を脱離させて再生することができる。たとえば、加熱処理によって吸着剤に吸着した不純物を脱離させる場合には、200~350℃の温度下で加熱するようにすればよい。 The adsorbent filled in each of the first adsorption tower 21 and the second adsorption tower 22 has an adsorption ability for moisture and hydrocarbons alone. Examples of such an adsorbent include porous synthetic zeolite. Among the synthetic zeolites, synthetic zeolites having a pore diameter of 5 to 9 mm are preferable. Examples of the synthetic zeolite having a pore diameter of 5 mm include MS-5A, and examples of the synthetic zeolite having a pore diameter of 9 mm include MS-13X. Among these, it is particularly preferable to use MS-13X, which is a synthetic zeolite having a pore size of 9 mm, as an adsorbent. The adsorbent used in the present embodiment can be regenerated by desorbing the adsorbed impurities (water and hydrocarbons) by any one of heating, decompression, heating and decompression. For example, when desorbing impurities adsorbed on the adsorbent by heat treatment, heating may be performed at a temperature of 200 to 350 ° C.
 本実施形態のアンモニア精製システム100において、第1吸着塔21および第2吸着塔22は、水分および炭化水素に対する吸着能を単独で有する吸着剤により、気体状の粗アンモニアに含まれる不純物を吸着除去するので、従来技術のように、水分に対する吸着能を有する吸着剤と、炭化水素に対する吸着能を有する吸着剤との、複数の吸着剤を用いる必要がない。そのため、気体状の粗アンモニアに不純物として含まれる水分および炭化水素を、吸着剤の吸着能を最大限に利用して効率よく吸着除去することができる。さらに、水分および炭化水素に対する吸着能を単独で有する吸着剤により、気体状の粗アンモニアに含まれる不純物を吸着除去することによって、第1吸着塔21または第2吸着塔22に供給される粗アンモニアに含まれる水分と炭化水素との量比が変動する場合であっても、第1吸着塔21または第2吸着塔22から導出されるアンモニアの不純物量の分析結果に基づいて、第1吸着塔21および第2吸着塔22の破過の管理を簡単に実施することができる。 In the ammonia purification system 100 of the present embodiment, the first adsorption tower 21 and the second adsorption tower 22 adsorb and remove impurities contained in the gaseous crude ammonia using an adsorbent that has adsorption ability for moisture and hydrocarbons alone. Therefore, unlike the prior art, it is not necessary to use a plurality of adsorbents, that is, an adsorbent having an adsorption ability for moisture and an adsorbent having an adsorption ability for hydrocarbons. Therefore, moisture and hydrocarbons contained as impurities in the gaseous crude ammonia can be efficiently adsorbed and removed by utilizing the adsorption capacity of the adsorbent to the maximum. Furthermore, the crude ammonia supplied to the first adsorption tower 21 or the second adsorption tower 22 by adsorbing and removing impurities contained in the gaseous crude ammonia with an adsorbent having adsorption ability for moisture and hydrocarbons alone. Even if the quantity ratio between the moisture and the hydrocarbon contained in the fluctuates, the first adsorption tower is based on the analysis result of the amount of ammonia impurities derived from the first adsorption tower 21 or the second adsorption tower 22. Management of breakthrough of 21 and the second adsorption tower 22 can be easily performed.
 また、吸着剤として用いる合成ゼオライトが5~9Åの細孔径を有するもの、特に細孔径が9ÅのMS-13Xであることによって、粗アンモニアに不純物として含まれる水分および炭化水素(特に高次炭化水素)を、効率よく吸着除去することができる。 Further, since the synthetic zeolite used as the adsorbent has a pore diameter of 5 to 9 mm, particularly MS-13X having a pore diameter of 9 mm, moisture and hydrocarbons (especially higher-order hydrocarbons) contained in the crude ammonia as impurities. ) Can be efficiently adsorbed and removed.
 なお、第1吸着塔21および第2吸着塔22において、水分および炭化水素に対する吸着能を単独で有する吸着剤と、その他の吸着剤とを組合わせて用いることができるが、水分および炭化水素に対する吸着能を単独で有する吸着剤のみを用いるのが好ましい。その他の吸着剤としては、水分に対する吸着能に優れる合成ゼオライトである、MS-3A(細孔径3Å)、MS-4A(細孔径4Å)などを挙げることができる。 In addition, in the 1st adsorption tower 21 and the 2nd adsorption tower 22, it can use combining the adsorption agent which has the adsorption ability with respect to a water | moisture content and hydrocarbon independently, and another adsorption agent, However, With respect to a water | moisture content and a hydrocarbon, It is preferable to use only an adsorbent having adsorbability alone. Examples of other adsorbents include MS-3A (pore diameter 3 mm), MS-4A (pore diameter 4 mm) and the like, which are synthetic zeolites excellent in moisture adsorption ability.
 本実施形態のアンモニア精製システム100において、第1吸着塔21および第2吸着塔22は、温度が0~60℃に制御され、絶対圧力(以下、単に「圧力」と記載する場合がある)が0.1~1.0MPaに制御される。第1吸着塔21および第2吸着塔22の温度が0℃未満の場合には、不純物の吸着除去時に発生する吸着熱を除去する冷却が必要となってエネルギ効率が低下するおそれがある。第1吸着塔21および第2吸着塔22の温度が60℃を超える場合には、吸着剤による不純物の吸着能が低下するおそれがある。また、第1吸着塔21および第2吸着塔22の圧力が0.1MPa未満の場合には、吸着剤による不純物の吸着能が低下するおそれがある。第1吸着塔21および第2吸着塔22の圧力が1.0MPaを超える場合には、一定圧力に維持するために多くのエネルギが必要となり、エネルギ効率が低下するおそれがある。 In the ammonia purification system 100 of the present embodiment, the temperature of the first adsorption tower 21 and the second adsorption tower 22 is controlled to 0 to 60 ° C., and the absolute pressure (hereinafter sometimes simply referred to as “pressure”) is set. The pressure is controlled to 0.1 to 1.0 MPa. When the temperature of the first adsorption tower 21 and the second adsorption tower 22 is less than 0 ° C., cooling to remove adsorption heat generated during adsorption removal of impurities is necessary, and energy efficiency may be lowered. When the temperature of the 1st adsorption tower 21 and the 2nd adsorption tower 22 exceeds 60 degreeC, there exists a possibility that the adsorption capacity of the impurity by adsorbent may fall. Moreover, when the pressure of the 1st adsorption tower 21 and the 2nd adsorption tower 22 is less than 0.1 Mpa, there exists a possibility that the adsorption capacity of the impurity by adsorption agent may fall. When the pressure in the first adsorption tower 21 and the second adsorption tower 22 exceeds 1.0 MPa, a large amount of energy is required to maintain a constant pressure, and the energy efficiency may be reduced.
 また、第1吸着塔21および第2吸着塔22における線速度(リニアベロシティ)は、単位時間あたりに粗アンモニアを第1吸着塔21および第2吸着塔22に供給する量をNTPでのガス体積に換算し、第1吸着塔21および第2吸着塔22の空塔断面積で除算して求めた値の範囲が、0.1~5.0m/秒であることが好ましい。線速度が0.1m/秒未満の場合には、不純物の吸着除去に長時間を要するので好ましくなく、線速度が5.0m/秒を超える場合には、不純物の吸着帯長さが長くなり、第1吸着塔21および第2吸着塔22における不純物の吸着能が低下するおそれがある。 The linear velocity in the first adsorption tower 21 and the second adsorption tower 22 is the amount of crude ammonia supplied to the first adsorption tower 21 and the second adsorption tower 22 per unit time. Preferably, the range of values obtained by dividing by the empty cross-sectional areas of the first adsorption tower 21 and the second adsorption tower 22 is 0.1 to 5.0 m / sec. If the linear velocity is less than 0.1 m / sec, it takes a long time to remove impurities, which is not preferable. If the linear velocity exceeds 5.0 m / sec, the impurity adsorption band length increases. There is a possibility that the adsorbing ability of impurities in the first adsorption tower 21 and the second adsorption tower 22 is lowered.
 水分および炭化水素に対する吸着能を単独で有する吸着剤(特に細孔径が9Åの合成ゼオライトであるMS-13X)が充填された第1吸着塔21または第2吸着塔22から導出される気体状のアンモニアは、第1吸着塔21および第2吸着塔22と、第1コンデンサ31との間に接続される第2配管72から分岐する第9配管79を流過し、第9バルブ89を介して分析部61に導入される。この分析部61は、ガスクロマトグラフ分析装置(GC-4000、ジーエルサイエンス株式会社製)と、キャビティリングダウン分光分析装置(MTO-LP-HO、Tiger Optics社製)とを含む。 A gaseous state derived from the first adsorption tower 21 or the second adsorption tower 22 filled with an adsorbent having an adsorption capacity for moisture and hydrocarbons alone (especially MS-13X which is a synthetic zeolite having a pore size of 9 mm). Ammonia flows through the ninth pipe 79 branched from the second pipe 72 connected between the first adsorption tower 21 and the second adsorption tower 22 and the first condenser 31, and passes through the ninth valve 89. It is introduced into the analysis unit 61. The analysis unit 61 includes a gas chromatograph analyzer (GC-4000, manufactured by GL Science Co., Ltd.) and a cavity ring-down spectroscopic analyzer (MTO-LP-H 2 O, manufactured by Tiger Optics).
 第1吸着塔21または第2吸着塔22から導出される気体状のアンモニアについて、ガスクロマトグラフ分析装置(GC-4000、ジーエルサイエンス株式会社製)で炭化水素濃度、水素、窒素、酸素、および一酸化炭素濃度を分析し、キャビティリングダウン分光分析装置(MTO-LP-HO、Tiger Optics社製)で水分濃度を分析したところ、以下の表1に示す結果が得られた。 About gaseous ammonia derived | led-out from the 1st adsorption tower 21 or the 2nd adsorption tower 22, hydrocarbon concentration, hydrogen, nitrogen, oxygen, and monoxide with a gas chromatograph analyzer (GC-4000, GL Sciences Inc.) When the carbon concentration was analyzed and the moisture concentration was analyzed with a cavity ring-down spectroscopic analyzer (MTO-LP-H 2 O, manufactured by Tiger Optics), the results shown in Table 1 below were obtained.
 表1は、宇部興産株式会社製の純度99.9重量%の工業用グレードのアンモニアを粗アンモニアとして用い、水分および炭化水素に対する吸着能を有する合成ゼオライトMS-13Xを充填した円筒管状(長さ50cm、内径2cm)の第1吸着塔21または第2吸着塔22に、気体状の粗アンモニアを、温度25℃、圧力0.4MPaの条件下で通過させたときの分析結果を示す。 Table 1 shows a cylindrical tube (length) filled with synthetic zeolite MS-13X having an adsorption capacity for moisture and hydrocarbons, using 99.9 wt% industrial grade ammonia manufactured by Ube Industries, Ltd. as crude ammonia. The analysis results when gaseous crude ammonia is passed through the first adsorption tower 21 or the second adsorption tower 22 having a diameter of 50 cm and an inner diameter of 2 cm under conditions of a temperature of 25 ° C. and a pressure of 0.4 MPa are shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、第1吸着塔21または第2吸着塔22の破過開始時点では炭化水素の中で最も分子サイズの小さいメタンが検出され、次いでエタンが検出される。以上のことより、第1吸着塔21および第2吸着塔22から導出される気体状のアンモニアに含まれる不純物は、水素、窒素、酸素、一酸化炭素等の低沸点ガス、および、第1吸着塔21および第2吸着塔22の稼動条件によってはメタン、エタン等の低次炭化水素などの、揮発性の高い不純物であることがわかる。第1吸着塔21または第2吸着塔22から導出された気体状のアンモニアは、第1コンデンサ31に供給される。 Also, at the time when breakthrough of the first adsorption tower 21 or the second adsorption tower 22 starts, methane having the smallest molecular size among the hydrocarbons is detected, and then ethane is detected. From the above, the impurities contained in the gaseous ammonia derived from the first adsorption tower 21 and the second adsorption tower 22 are low boiling point gases such as hydrogen, nitrogen, oxygen, carbon monoxide, and the first adsorption. It turns out that it is a highly volatile impurity, such as low-order hydrocarbons, such as methane and ethane, depending on the operating conditions of the tower 21 and the second adsorption tower 22. Gaseous ammonia derived from the first adsorption tower 21 or the second adsorption tower 22 is supplied to the first condenser 31.
 本実施形態のアンモニア精製システム100では、第1吸着塔21および第2吸着塔22と、第1コンデンサ31との間には第2配管72が接続されており、第1吸着塔21または第2吸着塔22から導出された気体状のアンモニアは、第2配管72を流過して第1コンデンサ31に供給される。第2配管72には、第1吸着塔21または第2吸着塔22から第1コンデンサ31に流れる気体状のアンモニアの圧力を計測する圧力計6が設けられている。また、第2配管72には、第2配管72における流路を開放または閉鎖する第3バルブ83および第4バルブ84が設けられている。第2配管72において、第3バルブ83は、圧力計6よりもアンモニアの流過方向上流側(すなわち、第1吸着塔21および第2吸着塔22側)に配置され、第4バルブ84は、圧力計6よりもアンモニアの流過方向下流側(すなわち、第1コンデンサ31側)に配置される。気体状のアンモニアの第1コンデンサ31への供給時には、第3バルブ83および第4バルブ84が開放され、圧力計6により圧力が計測されて、第1吸着塔21または第2吸着塔22から第1コンデンサ31に向けて第2配管72内を気体状のアンモニアが流れる。 In the ammonia purification system 100 of the present embodiment, a second pipe 72 is connected between the first adsorption tower 21 and the second adsorption tower 22 and the first condenser 31, and the first adsorption tower 21 or the second adsorption tower 21. Gaseous ammonia derived from the adsorption tower 22 flows through the second pipe 72 and is supplied to the first capacitor 31. The second pipe 72 is provided with a pressure gauge 6 for measuring the pressure of gaseous ammonia flowing from the first adsorption tower 21 or the second adsorption tower 22 to the first condenser 31. The second pipe 72 is provided with a third valve 83 and a fourth valve 84 that open or close the flow path in the second pipe 72. In the second pipe 72, the third valve 83 is disposed upstream of the pressure gauge 6 in the ammonia flow direction (that is, the first adsorption tower 21 and the second adsorption tower 22 side), and the fourth valve 84 is It is arranged downstream of the pressure gauge 6 in the flow direction of ammonia (that is, on the first capacitor 31 side). When supplying gaseous ammonia to the first condenser 31, the third valve 83 and the fourth valve 84 are opened, the pressure is measured by the pressure gauge 6, and the first adsorption tower 21 or the second adsorption tower 22 performs the second measurement. Gaseous ammonia flows in the second pipe 72 toward the condenser 31.
 ここで、本実施形態のアンモニア精製システム100における分縮部3としての第1コンデンサ31による気体状のアンモニアの分縮について説明する。第1コンデンサ31は、気体状のアンモニアを分縮して気相成分と液相成分とに分離することで、アンモニア中に含有される揮発性の高い不純物を気相成分として分離除去する。 Here, the partial contraction of gaseous ammonia by the first condenser 31 as the partial contraction unit 3 in the ammonia purification system 100 of the present embodiment will be described. The first capacitor 31 separates and removes highly volatile impurities contained in the ammonia as a gas phase component by partial condensation of gaseous ammonia and separating it into a gas phase component and a liquid phase component.
 工業的に製造されるアンモニア(粗アンモニア)中に含有される不純物は、その種類を大きく分類すると、一般的に、水素、窒素、酸素、アルゴン、一酸化炭素および二酸化炭素などの溶存低沸点ガス、炭化水素類、水分などである。粗アンモニア中に含有される炭化水素としては、最も多く含有されているのはメタンであるが、その他にエタン、プロパン、エチレンおよびプロピレンなどがそれに次いで多く含有されている。炭素数でいうと炭素数1~3の炭化水素が炭化水素類の主成分を構成することになる。 Impurities contained in industrially produced ammonia (crude ammonia) are broadly classified into dissolved low boiling point gases such as hydrogen, nitrogen, oxygen, argon, carbon monoxide and carbon dioxide. , Hydrocarbons, moisture and the like. As the hydrocarbons contained in the crude ammonia, methane is the most abundant, but ethane, propane, ethylene and propylene are the next most abundant. In terms of carbon number, hydrocarbons having 1 to 3 carbon atoms constitute the main component of hydrocarbons.
 しかしながら、粗アンモニア中には、その含有量は少ないものの、炭素数4以上の炭化水素、多くの場合は炭素数4~6の炭化水素が、含有されている。また、工業的に製造されたアンモニアガスを液化する時には、その圧縮のためにオイルポンプなどが使用されている。このような場合には、オイルポンプなどから混入してくるポンプ油に由来する油分などの、大きな分子量を有する炭化水素が、粗アンモニア中に含有される。 However, crude ammonia contains hydrocarbons having 4 or more carbon atoms, and in many cases hydrocarbons having 4 to 6 carbon atoms, although the content thereof is small. In addition, when liquefying industrially produced ammonia gas, an oil pump or the like is used for compression. In such a case, hydrocarbons having a large molecular weight such as oil components derived from pump oil mixed from an oil pump or the like are contained in the crude ammonia.
 これらの不純物を構成する、炭素数が広範囲にわたる炭化水素類を除去できるアンモニアの精製システムとすることが、電子産業向けのアンモニアを製造するためには必須となってくる。 It is indispensable to produce ammonia for the electronics industry, which is an ammonia purification system capable of removing hydrocarbons having a wide range of carbon atoms, which constitute these impurities.
 本発明者らは、精留に代わる粗アンモニア中の不純物の除去方法として、分縮による方法が優れていることを見出した。 The present inventors have found that a method using partial condensation is excellent as a method for removing impurities in crude ammonia in place of rectification.
 例えば、精留により炭化水素を分離する場合、一般的に5~20段の精留塔を設け、還流比10~20で蒸留する必要がある。この蒸留(精留)において、アンモニア中に含まれる、主に炭素数1~8の炭化水素類は、揮発性の高い成分として蒸留塔の塔頂部より除去される。この精留操作により高純度のアンモニアを得る場合には、蒸留塔の塔頂部から廃棄する揮発性の高い不純物を含んだアンモニアをどの程度の割合とすれば、目的とする高純度のアンモニアが得られるかが問題となってくる。不純物の含有量が比較的低い粗アンモニアを原料として用いた場合であっても、蒸留塔の塔頂部から廃棄する割合は、蒸留塔に供給した粗アンモニアの約10%と大きな割合とする必要がある。 For example, when hydrocarbons are separated by rectification, it is generally necessary to provide a rectification column having 5 to 20 stages and perform distillation at a reflux ratio of 10 to 20. In this distillation (rectification), hydrocarbons mainly having 1 to 8 carbon atoms contained in ammonia are removed from the top of the distillation column as highly volatile components. When high-purity ammonia is obtained by this rectification operation, the desired high-purity ammonia can be obtained by what proportion of ammonia containing highly volatile impurities discarded from the top of the distillation column. It becomes a problem whether it can be done. Even when crude ammonia having a relatively low impurity content is used as a raw material, the proportion discarded from the top of the distillation column must be as large as about 10% of the crude ammonia supplied to the distillation column. is there.
 表2にはアンモニア、および炭素数1~8の飽和n-炭化水素の沸点を示したが、炭素数4~8の炭化水素は、その炭化水素が純物質として存在する場合にはアンモニアより沸点が高いにもかかわらず、精留操作では揮発性の高い化合物として蒸留塔の塔頂部より排出されてくる。 Table 2 shows the boiling points of ammonia and saturated n-hydrocarbons having 1 to 8 carbon atoms, but hydrocarbons having 4 to 8 carbon atoms have a boiling point higher than that of ammonia when the hydrocarbon is present as a pure substance. However, in the rectification operation, it is discharged from the top of the distillation column as a highly volatile compound.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この理由は定かではないが、本発明者らはこの理由として次のように推測している。すなわち、炭素数1~8の炭化水素の沸点は、例えば炭素数3のプロパンの沸点を例にとると、プロパンを容器に入れて温度を変化させていったときに、その容器中の圧力が1気圧(0.1013MPa)となるときの温度である。このときのプロパンの状態は、隣り合うプロパン分子同士が、ファンデルワールス力などにより互いに引っ張りあっている状態であり、その引っ張り合う力が強いと沸点が高く現れることになる。しかしながら、今問題にしているような、アンモニア中に存在するプロパンの濃度が非常に低い状況においては、プロパン分子の隣には引っ張り合うことができるプロパン分子や、あるいは他の炭化水素分子が存在せず、ちょうど液体アンモニアの海の中にプロパン分子がただ一つ漂っている状態となっている。 The reason for this is not clear, but the present inventors presume as this reason as follows. That is, the boiling point of hydrocarbons having 1 to 8 carbon atoms is, for example, the boiling point of propane having 3 carbon atoms. When propane is put into a container and the temperature is changed, the pressure in the container is reduced. This is the temperature at 1 atm (0.1013 MPa). The state of propane at this time is a state in which adjacent propane molecules are attracted to each other by van der Waals force or the like, and if the pulling force is strong, the boiling point appears high. However, in the situation where the concentration of propane present in ammonia is very low, which is now a problem, there is no propane molecule or other hydrocarbon molecule that can be attracted next to the propane molecule. There is just one propane molecule floating in the sea of liquid ammonia.
 一般的に、炭化水素分子同士やアンモニア分子同士のように、似た性質を持つ者同士の間には大きな分子間力が生まれる。しかしながら、プロパン分子とアンモニア分子のように性質の大きく異なる分子同士の間に生まれるこの分子間力は小さなものである。この様に、アンモニア中に炭化水素不純物が極微量に存在する状況下においては、従来の蒸留の概念はもはや無意味となる。液体アンモニアでは、アンモニア分子同士は互いに引っ張り合いの力を及ぼし合っているが、一方、純物質としてはアンモニアより沸点の高い炭素数4~8の炭化水素であろうとも、それらはアンモニア分子との相互作用が小さい。このために、液体アンモニア中では、アンモニアよりも沸点の高い炭素数4~8の炭化水素は、アンモニアよりも沸点の低い化合物として振舞ったとしてもなんら不思議ではない。事実、精留の結果からは、炭素数1~8の炭化水素が、アンモニアよりも低い沸点を持った揮発性の高い化合物として振舞っていることが分かる。 Generally, a large intermolecular force is generated between those having similar properties such as hydrocarbon molecules and ammonia molecules. However, this intermolecular force generated between molecules with very different properties such as propane molecules and ammonia molecules is small. Thus, in the situation where a very small amount of hydrocarbon impurities are present in ammonia, the conventional distillation concept is no longer meaningful. In liquid ammonia, the ammonia molecules exert a pulling force on each other. On the other hand, even if the pure substance is a hydrocarbon having 4 to 8 carbon atoms having a boiling point higher than that of ammonia, they are The interaction is small. For this reason, in liquid ammonia, it is no wonder that hydrocarbons having 4 to 8 carbon atoms having a boiling point higher than that of ammonia behave as compounds having a boiling point lower than that of ammonia. In fact, the result of rectification shows that hydrocarbons having 1 to 8 carbon atoms behave as highly volatile compounds having a boiling point lower than that of ammonia.
 アンモニア中に微量に含まれる炭素数1~8の炭化水素が、液化アンモニアの気相と液相でどのような濃度分布を示しているかを、温度を種々変化させてそれらの炭化水素のアンモニア中での濃度が気液平衡状態になったところで測定した結果が表3である。なお、分配比は、それぞれの飽和n-炭化水素濃度の液体アンモニア中の初期濃度を5000ppmに調整し、その後、所定の温度で2昼夜放置後に測定した。 The concentration of hydrocarbons with 1 to 8 carbon atoms contained in trace amounts in ammonia shows the concentration distribution in the gas phase and liquid phase of liquefied ammonia by changing the temperature in various ways in ammonia. Table 3 shows the results of the measurement when the concentration at 1 reached the vapor-liquid equilibrium state. The distribution ratio was measured after adjusting the initial concentration of each saturated n-hydrocarbon concentration in liquid ammonia to 5000 ppm, and then standing at a predetermined temperature for 2 days.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、この表3中で示した、気液分配係数は、分縮により不純物がどの程度分離できるかの指標となるものであり、次のように定義される。
  分配係数(Kd)=A/A              …(1)
 [式中、Aは気液平衡後の気体アンモニア中の不純物濃度を示し、Aは気液平衡後の液体アンモニア中の不純物濃度を示す。]
The gas-liquid distribution coefficient shown in Table 3 serves as an index of how much impurities can be separated by partial contraction, and is defined as follows.
Distribution coefficient (Kd) = A 1 / A 2 (1)
Wherein, A 1 represents an impurity concentration of gaseous ammonia after the gas-liquid equilibrium, A 2 represents an impurity concentration in liquid ammonia after gas-liquid equilibrium. ]
 ただし、上記式(1)中における不純物濃度A,Aは、mol-ppmをその単位とし、定義は、下記式(2)とする。
  不純物濃度(A,A)=
 不純物(mol)/(アンモニア(mol)+不純物(mol))×10
                              …(2)
However, the impurity concentrations A 1 and A 2 in the above formula (1) have mol-ppm as the unit, and are defined by the following formula (2).
Impurity concentration (A 1 , A 2 ) =
Impurity (mol) / (ammonia (mol) + impurity (mol)) × 10 6
... (2)
 この定義に従えば、気液分配係数が大きい不純物ほど、分縮により凝縮されなかった未凝縮の気体アンモニア中に多く含まれてくることになる。炭素数の小さな炭化水素ほど、液相中よりも気相中に存在する割合が高くなり、炭素数8までの炭化水素であれば気相中により高い濃度で存在することになる。さらに、温度が低いほど、より高い濃度でアンモニア気相中に炭化水素が存在することになる。 According to this definition, an impurity having a larger gas-liquid partition coefficient is contained more in uncondensed gaseous ammonia that has not been condensed by partial condensation. A hydrocarbon having a smaller carbon number has a higher ratio in the gas phase than in the liquid phase, and a hydrocarbon having a carbon number of up to 8 exists in a higher concentration in the gas phase. Furthermore, the lower the temperature, the higher the concentration of hydrocarbons in the ammonia gas phase.
 さらに、この表3に示した平衡に達するまでの時間は、アンモニア中に含まれる炭化水素濃度が低くなるにしたがって長くなり、ここに示したppmオーダーの濃度においては、その平衡に達するまでに数日間を要することがわかった。このことは、精留によりアンモニア中の不純物を除去する操作において、精留塔の各蒸留段において起こる短い気液接触時間では、不純物である炭化水素の物質移動が十分に行われていないことを示している。この結果からは、アンモニアの高純度化に精留を用いる方法は、工業的には効果が低いものと考えられる。なお、表3は飽和直鎖状炭化水素についてのデータであるが、炭素数4以上においては相当する種々の異性体や、炭素数2以上の炭化水素においては分子内に不飽和結合を含む場合にも、表3に示した傾向がある。 Furthermore, the time to reach the equilibrium shown in Table 3 becomes longer as the concentration of hydrocarbons contained in ammonia decreases, and at the concentration shown in the ppm order, it takes several times to reach the equilibrium. It turns out that it takes days. This means that in the operation of removing impurities in ammonia by rectification, the mass transfer of hydrocarbons as impurities is not sufficiently performed in the short gas-liquid contact time that occurs in each distillation stage of the rectification column. Show. From this result, it is considered that the method of using rectification for purification of ammonia is less effective industrially. Table 3 shows data on saturated straight-chain hydrocarbons. In the case of 4 or more carbon atoms, the corresponding various isomers, and in the case of hydrocarbons of 2 or more carbon atoms, unsaturated bonds are included in the molecule. There is also a tendency shown in Table 3.
 以上で示してきたように、本発明者らは、粗アンモニア中における希薄不純物である炭素数1~8の炭化水素の挙動が、従来考えられていた状態と大きく異なることを確認した。さらに一歩進めて、この炭素数1~8の炭化水素のアンモニア中での性質の違いをアンモニアの精製に利用できないかと考えた。そこで、メタン、エタンおよびプロパンをそれぞれ約5000ppm、約500ppmおよび約500ppmで含む気体状の粗アンモニアの95%を、アンモニアガス温度を-20℃に保ち、第1コンデンサ31における器壁温度を-30℃として凝縮により液化してみたところ、得られた液体アンモニア中にはそれらの炭化水素は検出されず、不純物の大部分は凝縮されなかった気体アンモニア中に残存することが分かった。表3の分配比に従うと、分縮操作により-20℃で凝縮してくる液体アンモニア中には、メタン、エタンおよびプロパンがそれぞれ54ppm、24ppmおよび56ppmで存在する計算となるが、意外にも、第1コンデンサ31における分縮では、その値ははるかに小さなものとなり、粗アンモニアを短時間のうちに非常に高純度にまで精製できることが分かった。 As described above, the present inventors have confirmed that the behavior of hydrocarbons having 1 to 8 carbon atoms, which are dilute impurities in crude ammonia, is significantly different from the state considered conventionally. Taking this a step further, we thought that the difference in properties of this hydrocarbon having 1 to 8 carbon atoms in ammonia could be used for the purification of ammonia. Accordingly, 95% of the gaseous crude ammonia containing methane, ethane and propane at about 5000 ppm, about 500 ppm and about 500 ppm, respectively, the ammonia gas temperature is kept at −20 ° C., and the wall temperature in the first capacitor 31 is −30 When liquefied by condensation at a temperature of ° C., it was found that these hydrocarbons were not detected in the obtained liquid ammonia, and most of the impurities remained in the gaseous ammonia that was not condensed. According to the distribution ratio in Table 3, it is calculated that methane, ethane, and propane are present at 54 ppm, 24 ppm, and 56 ppm, respectively, in the liquid ammonia condensed at −20 ° C. by the partial reduction operation. The partial reduction in the first capacitor 31 has a much smaller value, which indicates that the crude ammonia can be purified to a very high purity within a short time.
 粗アンモニア中に含有される不純物を精留により分離除去する場合、還流を掛けながらの蒸留であるので、蒸留塔で液体アンモニアを加熱蒸発させて気体アンモニアとし、一方、蒸留塔の塔頂部のコンデンサで精留塔からの気体アンモニアを凝縮させて液体アンモニアとする操作を繰り返すことになる。そのため、精留操作においては大きなエネルギーをその操作に投入することになる。 When the impurities contained in the crude ammonia are separated and removed by rectification, since distillation is performed while refluxing, liquid ammonia is heated and evaporated in a distillation tower to form gaseous ammonia, while the condenser at the top of the distillation tower Thus, the operation of condensing gaseous ammonia from the rectification column to form liquid ammonia is repeated. Therefore, large energy is input to the rectification operation.
 これに対して、第1コンデンサ31における分縮により粗アンモニア中に含有される不純物を分離除去する場合には、気体アンモニアを1回凝縮させるだけであるので、それに必要なエネルギーが少なくて済む。このように、精留によるアンモニアの精製方法と比較して、第1コンデンサ31における分縮による精製方法は、短時間に高純度のアンモニアが得られるばかりではなく、エネルギー的にも大きなメリットがあることがわかる。 On the other hand, when the impurities contained in the crude ammonia are separated and removed by the partial condensation in the first capacitor 31, only the gaseous ammonia is condensed once, so that less energy is required. Thus, compared with the purification method of ammonia by rectification, the purification method by partial condensation in the first condenser 31 not only provides high-purity ammonia in a short time but also has a great energy advantage. I understand that.
 さらに、本発明者らは、粗アンモニアに含有される不純物が炭素数1~8の炭化水素である場合、第1コンデンサ31により、気体状の粗アンモニアの90~99.5%程度までの液化を伴う分縮操作を行うと、液相成分として得られる液体アンモニア中に含まれてくる不純物の濃度は、最初の気体状の粗アンモニア中に含有される不純物濃度と比べて大きく低下しているという事実を見出した。 Further, the present inventors have liquefied gaseous crude ammonia to about 90 to 99.5% by the first capacitor 31 when the impurities contained in the crude ammonia are hydrocarbons having 1 to 8 carbon atoms. When the partial condensation operation is performed, the concentration of impurities contained in the liquid ammonia obtained as the liquid phase component is greatly reduced compared to the concentration of impurities contained in the first gaseous crude ammonia. I found the fact that.
 第1コンデンサ31における分縮により粗アンモニア中に含有される不純物を分離除去する精製方法では、分縮により液相成分として得られる液体アンモニアは、前述のように、気液分配比から予想される値を超えて、不純物炭化水素の濃度がはるかに低くなっている。その理由は定かではないが、分縮では平衡関係が崩れて動的な不純物分離が起こり、不純物炭化水素のほとんどが、凝縮されなかった気相成分に残存するものと推察している。この推察の正しさは、第1コンデンサ31における分縮により液相成分として得られた液体アンモニアを、第1コンデンサ31から速やかに取り出さずに、液体アンモニアの状態で第1コンデンサ31の内部に滞留させておくと、時間の経過とともに液体アンモニア中の不純物炭化水素濃度が次第に上昇してくることからも裏付けられる。 In the purification method in which the impurities contained in the crude ammonia are separated and removed by the partial condensation in the first capacitor 31, the liquid ammonia obtained as a liquid phase component by the partial condensation is expected from the gas-liquid distribution ratio as described above. Beyond that value, the concentration of impurity hydrocarbons is much lower. The reason for this is not clear, but it is presumed that in the partial reduction, the equilibrium relationship is lost and dynamic impurity separation occurs, and most of the impurity hydrocarbons remain in the vapor phase components that are not condensed. The correctness of this inference is that liquid ammonia obtained as a liquid phase component by partial contraction in the first capacitor 31 does not immediately take out from the first capacitor 31 and stays in the first capacitor 31 in the state of liquid ammonia. This is supported by the fact that the concentration of impurity hydrocarbons in liquid ammonia gradually increases over time.
 この推察と結果は、第1コンデンサ31における分縮により液相成分として得られた液体アンモニアは、速やかに第1コンデンサ31から導出し、第1コンデンサ31の内部には未凝縮の気相成分のみが存在するように、第1コンデンサ31の運転を行うのが、高純度アンモニアを得るために必要であることを示している。 This inference and result is that liquid ammonia obtained as a liquid phase component by partial contraction in the first capacitor 31 is quickly derived from the first capacitor 31, and only the uncondensed gas phase component is present inside the first capacitor 31. This indicates that the operation of the first capacitor 31 is necessary to obtain high-purity ammonia.
 なお、アンモニアの精製効率を高めるためには、あくまでも目安であるが、気液分配係数が大きいほど好ましいと考えられる。前述したように、この気液分配係数は温度により影響を受け、分縮温度が低いほど大きな気液分配係数を得ることができる。このことは、第1コンデンサ31における分縮操作の設定温度が高い場合、例えばアンモニアの分縮の起こる温度を50℃とした場合には、第1コンデンサ31に供給するアンモニアの圧力を1.81MPa以上とするとアンモニアの分縮は可能となるが、分縮操作の設定温度が低い場合と比較し、その炭化水素不純物の分離効率が低下する可能性があることを意味している。 Note that, in order to increase the purification efficiency of ammonia, it is only a guide, but a larger gas-liquid partition coefficient is considered preferable. As described above, this gas-liquid distribution coefficient is affected by temperature, and a larger gas-liquid distribution coefficient can be obtained as the partial contraction temperature is lower. This is because when the set temperature of the partial condensation operation in the first capacitor 31 is high, for example, when the temperature at which the partial condensation of ammonia is 50 ° C., the pressure of ammonia supplied to the first capacitor 31 is 1.81 MPa. This means that ammonia can be partially condensed, but it means that the separation efficiency of the hydrocarbon impurities may be reduced as compared with the case where the set temperature of the partial operation is low.
 第1コンデンサ31は、第1吸着塔21または第2吸着塔22により不純物が吸着除去された気体状のアンモニアを凝縮して気相成分と液相成分とに分離することで、水素、窒素、酸素、アルゴン、一酸化炭素、二酸化炭素、および炭素数1~8の炭化水素を気相成分として分離除去し、液相成分として精製された液体アンモニアを得る。具体的には、第1コンデンサ31は、第1吸着塔21または第2吸着塔22から導出された気体状のアンモニアに対して、冷却処理によって、アンモニアを、その一部が気相成分となるように凝縮して、気相成分と液相成分とに分離する。第1コンデンサ31としては、多管式コンデンサ、プレート式熱交換器などが挙げられる。 The first capacitor 31 condenses gaseous ammonia from which impurities have been adsorbed and removed by the first adsorption tower 21 or the second adsorption tower 22 and separates it into a gas phase component and a liquid phase component, so that hydrogen, nitrogen, Oxygen, argon, carbon monoxide, carbon dioxide, and hydrocarbons having 1 to 8 carbon atoms are separated and removed as gas phase components to obtain liquid ammonia purified as liquid phase components. Specifically, the first capacitor 31 converts ammonia into gaseous phase derived from the first adsorption tower 21 or the second adsorption tower 22 by cooling treatment, and a part thereof becomes a gas phase component. And condensed into a gas phase component and a liquid phase component. Examples of the first capacitor 31 include a multi-tube capacitor and a plate heat exchanger.
 本実施形態では、第1コンデンサ31は、第1吸着塔21または第2吸着塔22から導出された気体状のアンモニアの70~99体積%を凝縮して気相成分と液相成分とに分離する。この場合には、第1吸着塔21または第2吸着塔22から導出された気体状のアンモニアの一部である1~30体積%が気相成分となるように凝縮して、気相成分と液相成分とに分離することになる。これによって、吸着除去後の気体状のアンモニアに含まれる揮発性の高い不純物を気相成分として分離除去し、液相成分として精製された液体アンモニアを収率よく得ることができる。 In the present embodiment, the first capacitor 31 condenses 70 to 99% by volume of gaseous ammonia derived from the first adsorption tower 21 or the second adsorption tower 22 and separates it into a gas phase component and a liquid phase component. To do. In this case, 1 to 30% by volume, which is part of gaseous ammonia derived from the first adsorption tower 21 or the second adsorption tower 22, is condensed so as to become a gas phase component, It separates into a liquid phase component. As a result, it is possible to separate and remove highly volatile impurities contained in the gaseous ammonia after adsorption removal as a gas phase component, and to obtain liquid ammonia purified as a liquid phase component with a high yield.
 また、第1コンデンサ31における凝縮条件としては、第1吸着塔21または第2吸着塔22から導出された気体状のアンモニアの一部が液体となるような条件であれば限定されるものではなく、温度、圧力および時間を適宜設定すればよい。本実施形態では、第1コンデンサ31は、第1吸着塔21または第2吸着塔22から導出された気体状のアンモニアを、-77~50℃の温度下で凝縮して気相成分と液相成分とに分離するように構成されるのが好ましい。これによって、第1吸着塔21または第2吸着塔22から導出された気体状のアンモニアを効率よく凝縮して精製された液体アンモニアを得ることができるとともに、その液体アンモニアの純度を高めることができる。第1コンデンサ31における気体状のアンモニアに対する凝縮時の温度が、-77℃未満である場合には、冷却するのに多くのエネルギを要するので好ましくなく、50℃を超える場合には、アンモニアの一部が凝縮されて得られる液体アンモニアに含まれてくる不純物濃度が高くなってくるので好ましくない。 Further, the condensation conditions in the first condenser 31 are not limited as long as a part of the gaseous ammonia led out from the first adsorption tower 21 or the second adsorption tower 22 becomes a liquid. The temperature, pressure and time may be set as appropriate. In the present embodiment, the first condenser 31 condenses gaseous ammonia derived from the first adsorption tower 21 or the second adsorption tower 22 at a temperature of −77 to 50 ° C. to condense the gas phase component and the liquid phase. It is preferably configured to separate into components. As a result, it is possible to obtain purified liquid ammonia by efficiently condensing gaseous ammonia derived from the first adsorption tower 21 or the second adsorption tower 22, and to increase the purity of the liquid ammonia. . When the temperature at the time of condensation with respect to gaseous ammonia in the first condenser 31 is less than −77 ° C., it is not preferable because much energy is required for cooling. Since the concentration of impurities contained in the liquid ammonia obtained by condensing the part becomes high, it is not preferable.
 また、第1コンデンサ31は、第1吸着塔21または第2吸着塔22から導出された気体状のアンモニアを、0.007~2.0MPaの圧力下で凝縮して気相成分と液相成分とに分離するように構成されるのが好ましい。第1コンデンサ31における気体状のアンモニアに対する凝縮時の圧力が、0.007MPa未満である場合には、アンモニアを凝縮させる温度が低くなるので、冷却するのに多くのエネルギが必要となって好ましくなく、2.0MPaを超える場合には、アンモニアを凝縮させる温度が高くなるので、アンモニアの一部が凝縮されて得られる液体アンモニアに含まれてくる不純物濃度が高くなって好ましくない。 The first capacitor 31 condenses gaseous ammonia derived from the first adsorption tower 21 or the second adsorption tower 22 under a pressure of 0.007 to 2.0 MPa to condense a gas phase component and a liquid phase component. It is preferable that it is comprised so that it may isolate | separate. When the pressure at the time of condensation with respect to gaseous ammonia in the first capacitor 31 is less than 0.007 MPa, the temperature for condensing ammonia is lowered, so that a lot of energy is required for cooling, which is not preferable. If the pressure exceeds 2.0 MPa, the temperature at which ammonia is condensed becomes high, which is not preferable because the concentration of impurities contained in liquid ammonia obtained by condensing a part of ammonia is increased.
 本実施形態のアンモニア精製システム100において、第1コンデンサ31は、第1吸着塔21または第2吸着塔22による吸着除去後の気体状のアンモニアの一部を凝縮して気相成分と液相成分とに分離するので、揮発性の高い不純物を気相成分として分離除去し、液相成分として精製された液体アンモニアを得ることができる。そのため、従来技術のように蒸留部を設けなくても、簡単化されたシステムでアンモニアを精製することができる。 In the ammonia purification system 100 of the present embodiment, the first condenser 31 condenses a part of gaseous ammonia after adsorption removal by the first adsorption tower 21 or the second adsorption tower 22 to vapor phase component and liquid phase component. Therefore, highly volatile impurities can be separated and removed as a gas phase component to obtain liquid ammonia purified as a liquid phase component. Therefore, ammonia can be purified with a simplified system without providing a distillation section as in the prior art.
 第1コンデンサ31には、第3配管73と、第5バルブ85が設けられた第4配管74とが接続されている。なお、第3配管73は、第1コンデンサ31と回収タンク4との間に接続される。 The first capacitor 31 is connected to a third pipe 73 and a fourth pipe 74 provided with a fifth valve 85. The third pipe 73 is connected between the first capacitor 31 and the recovery tank 4.
 第1コンデンサ31において、気相成分としてアンモニアから分離除去された揮発性の高い不純物は、第5バルブ85が開放された状態で、第4配管74を通ってシステム外部に排出される。また、第1コンデンサ31において、液相成分として得られた液体アンモニアは、第3配管73を通って回収タンク4に供給される。 In the first capacitor 31, highly volatile impurities separated and removed from ammonia as a gas phase component are discharged to the outside of the system through the fourth pipe 74 with the fifth valve 85 being opened. In the first capacitor 31, the liquid ammonia obtained as the liquid phase component is supplied to the recovery tank 4 through the third pipe 73.
 回収タンク4は、第1コンデンサ31で液相成分として得られた、凝縮後の液体アンモニアを貯留する。この回収タンク4は、凝縮後のアンモニアを液体アンモニアとして貯留できるように、温度および圧力が一定条件で制御されるのが好ましい。 The recovery tank 4 stores the condensed liquid ammonia obtained as a liquid phase component by the first condenser 31. The recovery tank 4 is preferably controlled at a constant temperature and pressure so that the condensed ammonia can be stored as liquid ammonia.
 回収タンク4の上部には、液体アンモニアを貯留した状態で気相が形成され、この気相部分に対応して、第6バルブ86が設けられた第5配管75が接続されている。この第5配管75は、第2コンデンサ32にも接続されている。すなわち、第5配管75は、回収タンク4と第2コンデンサ32との間に接続される。第1コンデンサ31から導出されて、回収タンク4に貯留された液体アンモニアには、極微量の揮発性の高い不純物が含まれている場合がある。回収タンク4において液体アンモニアを所定時間(5~10時間)静置することによって、液体アンモニア中に含まれる極微量の揮発性の高い不純物を、回収タンク4の上部の気相に濃縮させることができ、液体アンモニアの純度をさらに高めることができる。 In the upper part of the recovery tank 4, a gas phase is formed in a state where liquid ammonia is stored, and a fifth pipe 75 provided with a sixth valve 86 is connected to the gas phase portion. The fifth pipe 75 is also connected to the second capacitor 32. That is, the fifth pipe 75 is connected between the collection tank 4 and the second capacitor 32. The liquid ammonia derived from the first capacitor 31 and stored in the recovery tank 4 may contain a very small amount of highly volatile impurities. By leaving the liquid ammonia in the recovery tank 4 for a predetermined time (5 to 10 hours), a very small amount of highly volatile impurities contained in the liquid ammonia can be concentrated in the gas phase above the recovery tank 4. The purity of liquid ammonia can be further increased.
 回収タンク4の上部の気相に濃縮された揮発性の高い不純物を含む気体状のアンモニアは、第6バルブ86が開放された状態で、第5配管75を通って第2コンデンサ32に供給される。 Gaseous ammonia containing highly volatile impurities concentrated in the gas phase above the recovery tank 4 is supplied to the second condenser 32 through the fifth pipe 75 with the sixth valve 86 opened. The
 第2コンデンサ32は、回収タンク4の上部の気相から導出された気体状のアンモニアを分縮して気相成分と液相成分とに分離することで、揮発性の高い不純物を気相成分として分離除去し、液相成分として精製された液体アンモニアを得る。具体的には、第2コンデンサ32は、回収タンク4の上部の気相から導出された気体状のアンモニアに対して、冷却処理によって、アンモニアを、その一部が気相成分となるように凝縮して、気相成分と液相成分とに分離する。 The second capacitor 32 degenerates gaseous ammonia derived from the gas phase in the upper part of the recovery tank 4 and separates it into a gas phase component and a liquid phase component, thereby removing highly volatile impurities in the gas phase component. To obtain liquid ammonia purified as a liquid phase component. Specifically, the second condenser 32 condenses ammonia by gaseous cooling to gaseous ammonia derived from the gas phase at the top of the recovery tank 4 so that a part thereof becomes a gas phase component. Thus, the gas phase component and the liquid phase component are separated.
 本実施形態では、第2コンデンサ32は、回収タンク4の上部の気相から導出された気体状のアンモニアの70~99体積%を凝縮して気相成分と液相成分とに分離する。この場合には、回収タンク4の上部の気相から導出された気体状のアンモニアの一部である1~30体積%が気相成分となるように凝縮して、気相成分と液相成分とに分離することになる。第2コンデンサ32における温度、圧力および時間などの凝縮条件は、第1コンデンサ31と同様にすればよい。 In the present embodiment, the second capacitor 32 condenses 70 to 99% by volume of gaseous ammonia derived from the gas phase at the top of the recovery tank 4 and separates it into a gas phase component and a liquid phase component. In this case, 1 to 30% by volume of gaseous ammonia derived from the gas phase at the upper part of the recovery tank 4 is condensed so as to become a gas phase component, and the gas phase component and the liquid phase component are condensed. And will be separated. The condensation conditions such as temperature, pressure, and time in the second capacitor 32 may be the same as those for the first capacitor 31.
 第2コンデンサ32には、第6配管76と、第7バルブ87が設けられた第7配管77とが接続されている。なお、第6配管76は、第2コンデンサ32と回収タンク4との間に接続される。 The second condenser 32 is connected to a sixth pipe 76 and a seventh pipe 77 provided with a seventh valve 87. The sixth pipe 76 is connected between the second capacitor 32 and the collection tank 4.
 第2コンデンサ32において、気相成分としてアンモニアから分離除去された揮発性の高い不純物は、第7バルブ87が開放された状態で、第7配管77を通ってシステム外部に排出される。また、第2コンデンサ32において、液相成分として得られた液体アンモニアは、第6配管76を通って回収タンク4に供給される。 In the second capacitor 32, highly volatile impurities separated and removed from ammonia as a gas phase component are discharged to the outside of the system through the seventh pipe 77 with the seventh valve 87 opened. In the second capacitor 32, the liquid ammonia obtained as the liquid phase component is supplied to the recovery tank 4 through the sixth pipe 76.
 回収タンク4の下部には、液体アンモニアを貯留した状態で液相が形成され、この液相部分に対応して、第8バルブ88が設けられた第8配管78が接続されている。この第8配管78は、製品タンク7にも接続されている。すなわち、第8配管78は、回収タンク4と製品タンク7との間に接続される。回収タンク4に貯留された液体アンモニアは、第8バルブ88が開放された状態で、第8配管78を通って製品タンク7に供給される。 In the lower part of the recovery tank 4, a liquid phase is formed in a state where liquid ammonia is stored, and an eighth pipe 78 provided with an eighth valve 88 is connected to the liquid phase portion. The eighth pipe 78 is also connected to the product tank 7. That is, the eighth pipe 78 is connected between the recovery tank 4 and the product tank 7. The liquid ammonia stored in the recovery tank 4 is supplied to the product tank 7 through the eighth pipe 78 with the eighth valve 88 opened.
 製品タンク7は、回収タンク4から供給された液体アンモニアを製品アンモニアとして貯留する。この製品タンク7は、アンモニアを液体状の液体アンモニアとして貯留できるように、温度および圧力が一定条件で制御される。 The product tank 7 stores liquid ammonia supplied from the recovery tank 4 as product ammonia. The temperature and pressure of the product tank 7 are controlled under constant conditions so that ammonia can be stored as liquid liquid ammonia.
 以上のように構成されたアンモニア精製システム100では、第1吸着塔21または第2吸着塔22から導出された気体状のアンモニアに含まれる揮発性の高い不純物を、第1コンデンサ31で気相成分として分離除去し、さらに、回収タンク4の気相から導出された気体状のアンモニアに含まれる揮発性の高い不純物を、第2コンデンサ32で気相成分として分離除去する。このように、本実施形態のアンモニア精製システム100では、還流を伴う蒸留を行うことなく、揮発性の高い不純物を除去することができるので、エネルギの消費を抑制してアンモニアを効率的に精製することができる。 In the ammonia purification system 100 configured as described above, a highly volatile impurity contained in gaseous ammonia derived from the first adsorption tower 21 or the second adsorption tower 22 is removed from the gas phase component by the first condenser 31. Further, a highly volatile impurity contained in gaseous ammonia derived from the gas phase of the recovery tank 4 is separated and removed as a gas phase component by the second capacitor 32. As described above, in the ammonia purification system 100 of the present embodiment, highly volatile impurities can be removed without performing distillation accompanied by reflux, so that energy is suppressed and ammonia is efficiently purified. be able to.
 また、本実施形態のアンモニア精製システム100は、第1コンデンサ31および第2コンデンサ32により分縮して気相成分と液相成分とに分離することで、液相成分として得た液体アンモニアであって、回収タンク4に貯留される液体アンモニアを気化し、その気化されたアンモニアを再分縮処理する再分縮工程を実行するように構成してもよい。 In addition, the ammonia purification system 100 of the present embodiment is liquid ammonia obtained as a liquid phase component by being divided by the first capacitor 31 and the second capacitor 32 and separated into a gas phase component and a liquid phase component. Then, the liquid ammonia stored in the recovery tank 4 may be vaporized, and a re-division process for re-division of the vaporized ammonia may be performed.
 具体的には、回収タンク4の気相部分と第2配管72とを接続する循環配管を設け、この循環配管に、回収タンク4内において気化されたアンモニアを流過させ、さらに循環配管から第2配管72に流過させて、第1コンデンサ31および第2コンデンサ32に供給するようにすればよい。なお、回収タンク4内において気化されたアンモニアの再分縮処理は、複数回にわたって繰り返し実行されるようにしてもよい。 Specifically, a circulation pipe for connecting the gas phase portion of the recovery tank 4 and the second pipe 72 is provided, and ammonia vaporized in the recovery tank 4 is allowed to flow through the circulation pipe, and further, What is necessary is just to make it flow into 2 piping 72, and to supply to the 1st capacitor | condenser 31 and the 2nd capacitor | condenser 32. In addition, the re-denaturation process of ammonia vaporized in the recovery tank 4 may be repeatedly performed a plurality of times.
 このように構成されたアンモニア精製システム100では、回収タンク4内において気化されたアンモニアを、第1コンデンサ31および第2コンデンサ32により分縮して気相成分と液相成分とに分離することで、揮発性の高い不純物を気相成分として分離除去し、液相成分として液体アンモニアを得る。これによって、より精製された液体アンモニアを得ることができる。 In the ammonia purification system 100 configured as described above, the ammonia vaporized in the recovery tank 4 is divided by the first capacitor 31 and the second capacitor 32 to be separated into a gas phase component and a liquid phase component. , Highly volatile impurities are separated and removed as a gas phase component to obtain liquid ammonia as a liquid phase component. Thereby, more purified liquid ammonia can be obtained.
 図2は、本発明の第2実施形態に係るアンモニア精製システム200の構成を示す図である。本実施形態のアンモニア精製システム200は、前述のアンモニア精製システム100に類似し、対応する部分については同一の参照符号を付して説明を省略する。アンモニア精製システム200では、分縮部207の構成が、前述のアンモニア精製システム100の分縮部3と異なる。前述の分縮部3が第1コンデンサ31および第2コンデンサ32から構成されているのに対して、分縮部207は、第1コンデンサ31のみから構成されている。 FIG. 2 is a diagram showing a configuration of an ammonia purification system 200 according to the second embodiment of the present invention. The ammonia purification system 200 of the present embodiment is similar to the ammonia purification system 100 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. In the ammonia purification system 200, the configuration of the partial reduction unit 207 is different from the partial reduction unit 3 of the ammonia purification system 100 described above. The above-described partial reduction unit 3 includes the first capacitor 31 and the second capacitor 32, whereas the partial reduction unit 207 includes only the first capacitor 31.
 また、アンモニア精製システム200は、原料貯留容器1から第1吸着塔21または第2吸着塔22に粗アンモニアを導出する際に、液体アンモニアとして導出するように構成されている。本実施形態では、原料貯留容器1と流量調整器5との間に気化器203が設けられており、原料貯留容器1から気化器203に粗アンモニアを導出する際には、原料貯留容器1の液相から液体状の粗アンモニアとして導出する。 In addition, the ammonia purification system 200 is configured to derive crude ammonia as liquid ammonia when the crude ammonia is derived from the raw material storage container 1 to the first adsorption tower 21 or the second adsorption tower 22. In this embodiment, the vaporizer 203 is provided between the raw material storage container 1 and the flow rate regulator 5, and when the crude ammonia is led out from the raw material storage container 1 to the vaporizer 203, the raw material storage container 1 Derived from the liquid phase as liquid crude ammonia.
 原料貯留容器1と気化器203との間には第10配管201が接続されており、原料貯留容器1から導出された液体状の粗アンモニアは、第10配管201を通って気化器203に供給される。 A tenth pipe 201 is connected between the raw material storage container 1 and the vaporizer 203, and liquid crude ammonia led out from the raw material storage container 1 is supplied to the vaporizer 203 through the tenth pipe 201. Is done.
 第10配管201には、第10配管201における流路を開放または閉鎖する第10バルブ202が設けられている。液体状の粗アンモニアの気化器203への供給時には、第10バルブ202が開放されて、原料貯留容器1から気化器203に向けて第10配管201内を液体状の粗アンモニアが流れる。 The tenth pipe 201 is provided with a tenth valve 202 that opens or closes the flow path in the tenth pipe 201. When supplying the liquid crude ammonia to the vaporizer 203, the tenth valve 202 is opened, and the liquid crude ammonia flows in the tenth pipe 201 from the raw material storage container 1 toward the vaporizer 203.
 気化器203は、原料貯留容器1から導出された液体状の粗アンモニアの一部を気化する、すなわち、液体状の粗アンモニアを加熱して所定の気化率で気化して気相成分と液相成分とに分離し、気体状のアンモニアを導出する。気化器203は、液体状の粗アンモニアの一部を気化するので、粗アンモニア中に含有される揮発性の低い不純物(例えば、水分、炭素数9以上の炭化水素等)が液相に残り、揮発性の低い不純物が低減された気体状のアンモニアを導出することができる。 The vaporizer 203 vaporizes a part of the liquid crude ammonia led out from the raw material storage container 1, that is, the liquid crude ammonia is heated and vaporized at a predetermined vaporization rate, so that the vapor phase component and the liquid phase are vaporized. Separated into components, gaseous ammonia is derived. Since the vaporizer 203 vaporizes a part of the liquid crude ammonia, low-volatile impurities (for example, moisture, hydrocarbons having 9 or more carbon atoms, etc.) contained in the crude ammonia remain in the liquid phase, Gaseous ammonia in which impurities with low volatility are reduced can be derived.
 本実施形態では、気化器203は、原料貯留容器1から導出された液体状のアンモニアを、90~95体積%の気化率で気化して気相成分と液相成分とに分離する。この場合には、原料貯留容器1から導出された液体状のアンモニアの90~95体積%が気相成分となり、5~10体積%が液相成分となる。 In this embodiment, the vaporizer 203 vaporizes the liquid ammonia derived from the raw material storage container 1 at a vaporization rate of 90 to 95% by volume and separates it into a gas phase component and a liquid phase component. In this case, 90 to 95% by volume of liquid ammonia derived from the raw material storage container 1 is a gas phase component, and 5 to 10% by volume is a liquid phase component.
 気化器203には、第11バルブ205が設けられた第11配管204と、第12配管206とが接続されている。なお、第12配管206は、気化器203と流量調整器5との間に接続される。 An eleventh pipe 204 provided with an eleventh valve 205 and a twelfth pipe 206 are connected to the vaporizer 203. The twelfth pipe 206 is connected between the vaporizer 203 and the flow rate regulator 5.
 気化器203において、液相成分としてアンモニアから分離除去された揮発性の低い不純物は、第11バルブ205が開放された状態で、第11配管204を通ってシステム外部に排出される。また、気化器203において、気相成分として得られた気体状のアンモニアは、第12配管206を流過し、流量調整器5を介して第1吸着塔21または第2吸着塔22に供給される。 In the vaporizer 203, low-volatile impurities separated and removed from ammonia as a liquid phase component are discharged to the outside of the system through the eleventh pipe 204 with the eleventh valve 205 opened. Further, gaseous ammonia obtained as a gas phase component in the vaporizer 203 flows through the twelfth pipe 206 and is supplied to the first adsorption tower 21 or the second adsorption tower 22 via the flow rate regulator 5. The
 このようにして第1吸着塔21または第2吸着塔22に供給された気体状のアンモニアに含まれる不純物は、第1吸着塔21または第2吸着塔22に充填される、水分および炭化水素に対する吸着能を単独で有する吸着剤によって吸着除去される。第1吸着塔21または第2吸着塔22から導出された、吸着除去後の気体状のアンモニアは、第1コンデンサ31に供給される。そして、第1コンデンサ31は、吸着除去後の気体状のアンモニアの一部を凝縮して気相成分と液相成分とに分離し、揮発性の高い不純物を気相成分として分離除去する。ここで、アンモニア精製システム200における第1コンデンサ31の分縮条件は、前述したアンモニア精製システム100における第1コンデンサ31と同様である。本実施形態のアンモニア精製システム200は、上記のようにして、精製された液体アンモニアを得ることができる。 The impurities contained in the gaseous ammonia supplied to the first adsorption tower 21 or the second adsorption tower 22 in this way are used for the moisture and hydrocarbons filled in the first adsorption tower 21 or the second adsorption tower 22. It is adsorbed and removed by an adsorbent having adsorbability alone. Gaseous ammonia after adsorption removal derived from the first adsorption tower 21 or the second adsorption tower 22 is supplied to the first capacitor 31. The first capacitor 31 condenses a part of the gaseous ammonia after the adsorption removal and separates it into a gas phase component and a liquid phase component, and separates and removes a highly volatile impurity as a gas phase component. Here, the partial reduction condition of the first capacitor 31 in the ammonia purification system 200 is the same as that of the first capacitor 31 in the ammonia purification system 100 described above. The ammonia purification system 200 of the present embodiment can obtain purified liquid ammonia as described above.
 以下に、本発明を実施例に基づいてさらに詳細に説明するが、本発明は、かかる実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the examples.
 <粗アンモニア>
 宇部興産株式会社製の純度99.9重量%の工業用グレードのアンモニアを粗アンモニアAとして用いた。また、粗アンモニアAとは純度の異なる粗アンモニアBを準備した。粗アンモニアAおよび粗アンモニアBに含まれる不純物の濃度を、表4に示す。
<Rough ammonia>
As the crude ammonia A, industrial grade ammonia having a purity of 99.9% by weight manufactured by Ube Industries, Ltd. was used. Further, crude ammonia B having a purity different from that of the crude ammonia A was prepared. Table 4 shows the concentration of impurities contained in the crude ammonia A and the crude ammonia B.
 なお、不純物濃度は、炭化水素濃度、水素、窒素、酸素、および一酸化炭素濃度については、ガスクロマトグラフ分析装置(GC-4000、ジーエルサイエンス株式会社製)で分析し、水分濃度については、キャビティリングダウン分光分析装置(MTO-LP-HO、Tiger Optics社製)で分析した。 As for the impurity concentration, the hydrocarbon concentration, hydrogen, nitrogen, oxygen, and carbon monoxide concentration are analyzed by a gas chromatograph analyzer (GC-4000, manufactured by GL Sciences Inc.), and the moisture concentration is determined by cavity ring. The analysis was performed using a down-spectroscopic analyzer (MTO-LP-H 2 O, manufactured by Tiger Optics).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (実施例1)
 吸着剤として、水分および炭化水素に対する吸着能を単独で有する合成ゼオライトMS-13X(F-9、東ソー社製)を充填した円筒管状の吸着塔(長さ50cm、内径2cm)に、気体状の粗アンモニアAを、温度25℃、圧力0.4MPaの条件下で通過させた。
Example 1
As an adsorbent, a gaseous adsorbent was placed in a cylindrical adsorption tower (length: 50 cm, inner diameter: 2 cm) packed with synthetic zeolite MS-13X (F-9, manufactured by Tosoh Corporation) having adsorption ability for moisture and hydrocarbons alone. Crude ammonia A was passed under conditions of a temperature of 25 ° C. and a pressure of 0.4 MPa.
 吸着塔から導出された気体状のアンモニアを、温度-10℃、圧力0.4MPaの条件下で、SUS製多管式コンデンサ(第1コンデンサ)に供給し、供給されたアンモニアの95体積%を凝縮して気相成分と液相成分とに分離した。多管式コンデンサ(第1コンデンサ)に供給されたアンモニアの5体積%に相当する気相成分(揮発性の高い不純物が濃縮されている)を、多管式コンデンサ(第1コンデンサ)の上部から排出して除去した。 Gaseous ammonia derived from the adsorption tower is supplied to a SUS multi-tube condenser (first condenser) under the conditions of a temperature of −10 ° C. and a pressure of 0.4 MPa, and 95% by volume of the supplied ammonia is supplied. It condensed and separated into a gas phase component and a liquid phase component. A gas phase component (concentrated by highly volatile impurities) corresponding to 5% by volume of ammonia supplied to the multitubular capacitor (first capacitor) is removed from the upper portion of the multitubular capacitor (first capacitor). Drained and removed.
 次に、多管式コンデンサ(第1コンデンサ)において液相成分として得られた液体アンモニアを、回収タンクに供給した。そして、回収タンクにおいて貯留される液体アンモニアを5時間以上静置し、回収タンク内の気相成分(液体アンモニアの2体積%)を、多管式コンデンサ(第2コンデンサ)に供給し、供給されたアンモニアの95体積%を凝縮して気相成分と液相成分とに分離した。多管式コンデンサ(第2コンデンサ)に供給されたアンモニアの5体積%に相当する気相成分(揮発性の高い不純物が濃縮されている)を、多管式コンデンサ(第2コンデンサ)の上部から排出して除去した。 Next, liquid ammonia obtained as a liquid phase component in the multi-tube condenser (first condenser) was supplied to the recovery tank. Then, the liquid ammonia stored in the recovery tank is allowed to stand for 5 hours or longer, and the gas phase component (2% by volume of liquid ammonia) in the recovery tank is supplied to the multi-tube condenser (second condenser). 95% by volume of the ammonia was condensed and separated into a gas phase component and a liquid phase component. A gas phase component (concentrated by highly volatile impurities) corresponding to 5% by volume of ammonia supplied to the multitubular capacitor (second capacitor) is removed from the upper portion of the multitubular capacitor (second capacitor). Drained and removed.
 (実施例2)
 吸着剤として、水分および炭化水素に対する吸着能を単独で有する合成ゼオライトMS-5Aを充填した円筒管状の吸着塔(長さ50cm、内径2cm)に、気体状の粗アンモニアAを、温度40℃、圧力0.6MPaの条件下で通過させた。
(Example 2)
As an adsorbent, gaseous crude ammonia A was placed at a temperature of 40 ° C. in a cylindrical tubular adsorption tower (length: 50 cm, inner diameter: 2 cm) packed with synthetic zeolite MS-5A having adsorption ability for moisture and hydrocarbons alone. It was passed under the condition of pressure 0.6 MPa.
 吸着塔から導出された気体状のアンモニアを、温度-5℃、圧力0.4MPaの条件下で、SUS製多管式コンデンサ(第1コンデンサ)に供給し、供給された気体状のアンモニアの90体積%を凝縮して気相成分と液相成分とに分離した。多管式コンデンサ(第1コンデンサ)に供給されたアンモニアの10体積%に相当する気相成分(揮発性の高い不純物が濃縮されている)を、多管式コンデンサ(第1コンデンサ)の上部から排出して除去した。 Gaseous ammonia derived from the adsorption tower is supplied to a SUS multi-tubular condenser (first condenser) under the conditions of a temperature of −5 ° C. and a pressure of 0.4 MPa. The volume% was condensed and separated into a gas phase component and a liquid phase component. A gas phase component (concentrated with highly volatile impurities) corresponding to 10% by volume of ammonia supplied to the multitubular capacitor (first capacitor) is removed from the upper portion of the multitubular capacitor (first capacitor). Drained and removed.
 次に、多管式コンデンサ(第1コンデンサ)において液相成分として得られた液体アンモニアを、回収タンクに供給した。そして、回収タンクにおいて貯留される液体アンモニアを5時間以上静置し、回収タンク内の気相成分(液体アンモニアの2体積%)を、多管式コンデンサ(第2コンデンサ)に供給し、供給されたアンモニアの90体積%を凝縮して気相成分と液相成分とに分離した。多管式コンデンサ(第2コンデンサ)に供給されたアンモニアの10体積%に相当する気相成分(揮発性の高い不純物が濃縮されている)を、多管式コンデンサ(第2コンデンサ)の上部から排出して除去した。 Next, liquid ammonia obtained as a liquid phase component in the multi-tube condenser (first condenser) was supplied to the recovery tank. Then, the liquid ammonia stored in the recovery tank is allowed to stand for 5 hours or longer, and the gas phase component (2% by volume of liquid ammonia) in the recovery tank is supplied to the multi-tube condenser (second condenser). 90% by volume of ammonia was condensed and separated into a gas phase component and a liquid phase component. A gas phase component (concentrated with highly volatile impurities) corresponding to 10% by volume of ammonia supplied to the multitubular capacitor (second capacitor) is removed from the upper portion of the multitubular capacitor (second capacitor). Drained and removed.
 (実施例3)
 吸着剤として、水分および炭化水素に対する吸着能を単独で有する合成ゼオライトMS-13Xを充填した円筒管状の吸着塔(長さ50cm、内径2cm)に、気体状の粗アンモニアBを、温度25℃、圧力0.4MPaの条件下で通過させた。
(Example 3)
As an adsorbent, a gaseous crude ammonia B was placed at a temperature of 25 ° C. in a cylindrical tubular adsorption tower (length: 50 cm, inner diameter: 2 cm) filled with synthetic zeolite MS-13X having adsorption ability for water and hydrocarbons alone. It was passed under the condition of pressure 0.4 MPa.
 吸着塔から導出された気体状のアンモニアを、温度-10℃、圧力0.4MPaの条件下で、SUS製多管式コンデンサ(第1コンデンサ)に供給し、供給されたアンモニアの95体積%を凝縮して気相成分と液相成分とに分離した。多管式コンデンサ(第1コンデンサ)に供給されたアンモニアの5体積%に相当する気相成分(揮発性の高い不純物が濃縮されている)を、多管式コンデンサ(第1コンデンサ)の上部から排出して除去した。 Gaseous ammonia derived from the adsorption tower is supplied to a SUS multi-tube condenser (first condenser) under the conditions of a temperature of −10 ° C. and a pressure of 0.4 MPa, and 95% by volume of the supplied ammonia is supplied. It condensed and separated into a gas phase component and a liquid phase component. A gas phase component (concentrated by highly volatile impurities) corresponding to 5% by volume of ammonia supplied to the multitubular capacitor (first capacitor) is removed from the upper portion of the multitubular capacitor (first capacitor). Drained and removed.
 次に、多管式コンデンサ(第1コンデンサ)において液相成分として得られた液体アンモニアを、回収タンクに供給した。さらに、回収タンク内において貯留される液体アンモニアを再分縮処理した。具体的には、回収タンクにおいて貯留される液体アンモニアを5時間以上静置し、回収タンク内の気相成分(液体アンモニアの2体積%)を、多管式コンデンサ(第2コンデンサ)に供給し、供給されたアンモニアの95体積%を凝縮して気相成分と液相成分とに分離した。多管式コンデンサ(第2コンデンサ)に供給されたアンモニアの5体積%に相当する気相成分(揮発性の高い不純物が濃縮されている)を、多管式コンデンサ(第2コンデンサ)の上部から排出して除去した。 Next, liquid ammonia obtained as a liquid phase component in the multi-tube condenser (first condenser) was supplied to the recovery tank. Further, the liquid ammonia stored in the recovery tank was re-denaturated. Specifically, the liquid ammonia stored in the recovery tank is allowed to stand for 5 hours or more, and the gas phase component (2% by volume of liquid ammonia) in the recovery tank is supplied to the multi-tube condenser (second condenser). , 95% by volume of the supplied ammonia was condensed and separated into a gas phase component and a liquid phase component. A gas phase component (concentrated by highly volatile impurities) corresponding to 5% by volume of ammonia supplied to the multitubular capacitor (second capacitor) is removed from the upper portion of the multitubular capacitor (second capacitor). Drained and removed.
 (比較例1)
 水分に対する吸着能を有する合成ゼオライトMS-3A(A-3、東ソー社製)と、炭化水素に対する吸着能を有する活性炭(クラレGG、クラレケミカル株式会社製)とを、同容積充填した円筒管状の吸着塔(長さ50cm、内径2cm)に、気体状の粗アンモニアAを、温度25℃、圧力0.4MPaの条件下で通過させた。
(Comparative Example 1)
A cylindrical tube filled with the same volume of synthetic zeolite MS-3A (A-3, manufactured by Tosoh Corporation) having an adsorption capacity for moisture and activated carbon (Kuraray GG, manufactured by Kuraray Chemical Co., Ltd.) having an adsorption capacity for hydrocarbons. Gaseous crude ammonia A was passed through an adsorption tower (length 50 cm, inner diameter 2 cm) under conditions of a temperature of 25 ° C. and a pressure of 0.4 MPa.
 吸着塔から導出された気体状のアンモニアを、圧力0.4MPaの条件下で、SUS製ジャケット式蒸留塔に供給した。蒸留塔は、温度-10℃の冷媒により温度制御し、還流比を20とした。蒸留塔の塔頂から、供給されたアンモニアに対して7体積%のアンモニアを排出させ、蒸留塔の塔底から、供給されたアンモニアに対して93体積%の液体アンモニアを導出させた。そして、蒸留塔の塔底から導出させた液体アンモニアを、回収タンクに貯留した。 Gaseous ammonia derived from the adsorption tower was supplied to a SUS jacketed distillation tower under a pressure of 0.4 MPa. The distillation column was temperature-controlled with a refrigerant having a temperature of −10 ° C., and the reflux ratio was set to 20. From the top of the distillation column, 7% by volume of ammonia with respect to the supplied ammonia was discharged, and from the bottom of the distillation column, 93% by volume of liquid ammonia with respect to the supplied ammonia was led out. And the liquid ammonia led out from the tower bottom of the distillation tower was stored in the collection tank.
 (比較例2)
 吸着剤として、炭化水素に対する吸着能を有する活性炭(クラレGG、クラレケミカル株式会社製)を充填した円筒管状の吸着塔(長さ50cm、内径2cm)に、気体状の粗アンモニアAを、温度25℃、圧力0.4MPaの条件下で通過させた。
(Comparative Example 2)
A cylindrical crude adsorption tower (length: 50 cm, inner diameter: 2 cm) filled with activated carbon (Kuraray GG, manufactured by Kuraray Chemical Co., Ltd.) having an adsorption capacity for hydrocarbons as an adsorbent is mixed with gaseous crude ammonia A at a temperature of 25 It was passed under the conditions of ° C and pressure 0.4 MPa.
 吸着塔から導出された気体状のアンモニアを、温度-10℃、圧力0.4MPaの条件下で、SUS製多管式コンデンサに供給し、供給されたアンモニアの95体積%を凝縮して気相成分と液相成分とに分離した。多管式コンデンサに供給されたアンモニアの5体積%に相当する気相成分を、多管式コンデンサの上部から排出して除去した。 Gaseous ammonia derived from the adsorption tower is supplied to a SUS multi-tube condenser under the conditions of a temperature of −10 ° C. and a pressure of 0.4 MPa, and 95% by volume of the supplied ammonia is condensed to the gas phase. Separated into component and liquid phase component. A gas phase component corresponding to 5% by volume of ammonia supplied to the multitubular capacitor was discharged from the upper portion of the multitubular capacitor and removed.
 次に、多管式コンデンサにおいて液相成分として得られた液体アンモニアを、回収タンクに供給した。そして、回収タンクにおいて貯留される液体アンモニアを5時間以上静置し、回収タンク内の気相成分(液体アンモニアの2体積%)を、回収タンクの上部から排出して除去した。 Next, liquid ammonia obtained as a liquid phase component in the multi-tube condenser was supplied to the recovery tank. Then, the liquid ammonia stored in the recovery tank was allowed to stand for 5 hours or more, and the gas phase component in the recovery tank (2% by volume of liquid ammonia) was discharged from the upper part of the recovery tank and removed.
 <アンモニア中に含まれる不純物濃度の分析結果>
 実施例1~3および比較例1,2において、回収タンクに貯留される液体アンモニアについて、不純物濃度を分析した。分析結果を表5に示す。
<Analytical results of impurity concentration in ammonia>
In Examples 1 to 3 and Comparative Examples 1 and 2, the impurity concentration of liquid ammonia stored in the recovery tank was analyzed. The analysis results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5の結果から明らかなように、実施例1,2のアンモニアの精製方法で得られた液体アンモニアは、蒸留塔による蒸留除去工程を含む比較例1のアンモニアの精製方法で得られた液体アンモニアと同等の純度である。 As is apparent from the results in Table 5, the liquid ammonia obtained by the ammonia purification method of Examples 1 and 2 was the liquid ammonia obtained by the ammonia purification method of Comparative Example 1 including a distillation removal step using a distillation column. It is equivalent in purity.
 また、比較例2のアンモニアの精製方法で得られた液体アンモニアには、水分が多く含まれる。これは、吸着塔に充填する吸着剤として、水分に対する吸着能を有さず、炭化水素に対する吸着能のみを有する活性炭を用いたからであり、吸着塔で吸着除去されなかった水分が、凝縮時に液相成分として分離された液体アンモニア中に濃縮されたためである。 Further, the liquid ammonia obtained by the ammonia purification method of Comparative Example 2 contains a large amount of moisture. This is because, as the adsorbent packed in the adsorption tower, activated carbon that does not have the ability to adsorb moisture and only has the ability to adsorb hydrocarbons was used. It is because it concentrated in the liquid ammonia isolate | separated as a phase component.
 以上の結果より、実施例1,2のアンモニアの精製方法は、蒸留塔による蒸留除去工程を含まないにもかかわらず、高純度の液体アンモニアを得ることができるので、還流を伴う蒸留を行うことなくエネルギの消費を抑制して、アンモニアを効率的に精製することができる、ということがわかる。 From the above results, the method for purifying ammonia in Examples 1 and 2 can obtain high-purity liquid ammonia even though it does not include a distillation removal step by a distillation column. It can be seen that ammonia can be efficiently purified while suppressing energy consumption.
 また、実施例3では、純度の低い(不純物の濃度が高い)粗アンモニアBを用いたにもかかわらず、最終的には(再分縮処理後:凝縮2回目)、実施例1,2および比較例1と同等以上の高純度の液体アンモニアを得ることができる。この結果より、実施例3のアンモニアの精製方法は、回収タンク内において気化されたアンモニアの再分縮処理を行うので、より精製された液体アンモニアを得ることができる、ということがわかる。 Further, in Example 3, although crude ammonia B having low purity (high impurity concentration) was used, finally (after re-denaturation treatment: second condensation), Examples 1, 2 and High purity liquid ammonia equivalent to or higher than that of Comparative Example 1 can be obtained. From this result, it can be seen that the ammonia purification method of Example 3 performs re-denaturation treatment of the ammonia vaporized in the recovery tank, so that more purified liquid ammonia can be obtained.
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本発明の範囲は請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、請求の範囲に属する変形や変更は全て本発明の範囲内のものである。 The present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely an example in all points, and the scope of the present invention is shown in the scope of claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the claims are within the scope of the present invention.
 1 原料貯留容器
 2 吸着部
 3,207 分縮部
 4 回収タンク
 5 流量調整器
 6 圧力計
 7 製品タンク
 21 第1吸着塔
 22 第2吸着塔
 31 第1コンデンサ
 32 第2コンデンサ
 61 分析部
 71 第1配管
 72 第2配管
 73 第3配管
 74 第4配管
 75 第5配管
 76 第6配管
 77 第7配管
 78 第8配管
 79 第9配管
 81 第1バルブ
 82 第2バルブ
 83 第3バルブ
 84 第4バルブ
 85 第5バルブ
 86 第6バルブ
 87 第7バルブ
 88 第8バルブ
 89 第9バルブ
 100,200 アンモニア精製システム
 201 第10配管
 202 第10バルブ
 203 気化器
 204 第11配管
 205 第11バルブ
 206 第12配管
DESCRIPTION OF SYMBOLS 1 Raw material storage container 2 Adsorption part 3,207 Partial reduction part 4 Collection | recovery tank 5 Flow regulator 6 Pressure gauge 7 Product tank 21 1st adsorption tower 22 2nd adsorption tower 31 1st capacitor 32 2nd capacitor 61 Analysis part 71 1st Piping 72 2nd piping 73 3rd piping 74 4th piping 75 5th piping 76 6th piping 77 7th piping 78 8th piping 79 9th piping 81 1st valve 82 2nd valve 83 3rd valve 84 4th valve 85 5th valve 86 6th valve 87 7th valve 88 8th valve 89 9th valve 100,200 Ammonia purification system 201 10th piping 202 10th valve 203 Vaporizer 204 11th piping 205 11th valve 206 12th piping

Claims (7)

  1.  不純物が含まれる粗アンモニアを精製する方法であって、
     粗アンモニアに含まれる不純物を、水分および炭化水素に対する吸着能を単独で有する吸着剤により吸着除去する吸着除去工程と、
     前記吸着除去工程で不純物が吸着除去されたアンモニアを分縮して気相成分と液相成分とに分離することで、水素、窒素、酸素、アルゴン、一酸化炭素、二酸化炭素、および炭素数1~8の炭化水素を気相成分として分離除去し、液相成分として液体アンモニアを得る分縮工程と、を含むことを特徴とするアンモニアの精製方法。
    A method for purifying crude ammonia containing impurities,
    An adsorption removal step of adsorbing and removing impurities contained in the crude ammonia by an adsorbent having an adsorption ability for moisture and hydrocarbons alone;
    Ammonia from which impurities have been adsorbed and removed in the adsorption removal step is fractionated and separated into a gas phase component and a liquid phase component, so that hydrogen, nitrogen, oxygen, argon, carbon monoxide, carbon dioxide, and carbon number 1 And a fractionation step of separating and removing hydrocarbons of 8 to 8 as a gas phase component to obtain liquid ammonia as a liquid phase component.
  2.  前記分縮工程で得られた液体アンモニアを気化し、その気化されたアンモニアを分縮して気相成分と液相成分とに分離することで、不純物を気相成分として分離除去し、液相成分として液体アンモニアを得る再分縮工程をさらに含むことを特徴とする請求項1に記載のアンモニアの精製方法。 The liquid ammonia obtained in the partial condensation step is vaporized, and the vaporized ammonia is separated and separated into a gas phase component and a liquid phase component, whereby impurities are separated and removed as a gas phase component, and a liquid phase The method for purifying ammonia according to claim 1, further comprising a re-denaturation step of obtaining liquid ammonia as a component.
  3.  前記吸着除去工程で用いる前記吸着剤が、多孔質の合成ゼオライトであることを特徴とする請求項1または2に記載のアンモニアの精製方法。 The method for purifying ammonia according to claim 1 or 2, wherein the adsorbent used in the adsorption removal step is a porous synthetic zeolite.
  4.  前記合成ゼオライトが、5~9Åの細孔径を有する合成ゼオライトであることを特徴とする請求項3に記載のアンモニアの精製方法。 The method for purifying ammonia according to claim 3, wherein the synthetic zeolite is a synthetic zeolite having a pore diameter of 5 to 9 mm.
  5.  前記分縮工程では、前記吸着除去工程で不純物が吸着除去されたアンモニアの70~99体積%を凝縮して気相成分と液相成分とに分離することを特徴とする請求項1~4のいずれか1つに記載のアンモニアの精製方法。 5. The partial reduction process according to claim 1, wherein 70 to 99% by volume of ammonia from which impurities have been adsorbed and removed in the adsorption removal process is condensed and separated into a gas phase component and a liquid phase component. The method for purifying ammonia according to any one of the above.
  6.  前記分縮工程では、前記吸着除去工程で不純物が吸着除去されたアンモニアを、-77~50℃の温度下で凝縮して気相成分と液相成分とに分離することを特徴とする請求項1~5のいずれか1つに記載のアンモニアの精製方法。 The ammonia in which impurities have been adsorbed and removed in the adsorption removal step is condensed in the partial condensation step at a temperature of −77 to 50 ° C. to be separated into a gas phase component and a liquid phase component. 6. The method for purifying ammonia according to any one of 1 to 5.
  7.  不純物が含まれる粗アンモニアを精製するアンモニア精製システムであって、
     粗アンモニアに含まれる不純物を、水分および炭化水素に対する吸着能を単独で有する吸着剤により吸着除去する吸着部と、
     前記吸着部により不純物が吸着除去されたアンモニアを分縮して気相成分と液相成分とに分離することで、水素、窒素、酸素、アルゴン、一酸化炭素、二酸化炭素、および炭素数1~8の炭化水素を気相成分として分離除去し、液相成分として液体アンモニアを得る分縮部と、を含むことを特徴とするアンモニア精製システム。
    An ammonia purification system for purifying crude ammonia containing impurities,
    An adsorbing part that adsorbs and removes impurities contained in the crude ammonia by an adsorbent having an adsorption ability for water and hydrocarbons alone;
    The ammonia from which the impurities are adsorbed and removed by the adsorbing part is fractionated and separated into a gas phase component and a liquid phase component, so that hydrogen, nitrogen, oxygen, argon, carbon monoxide, carbon dioxide, and carbon number of 1 to And a fractionation unit for separating and removing 8 hydrocarbons as a gas phase component to obtain liquid ammonia as a liquid phase component.
PCT/JP2012/052778 2011-03-31 2012-02-07 Method for purifying ammonia and ammonia purification system WO2012132559A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2012800041886A CN103269979A (en) 2011-03-31 2012-02-07 Method for purifying ammonia and ammonia purification system
KR1020137013884A KR20130140755A (en) 2011-03-31 2012-02-07 Method for purifying ammonia and ammonia purification system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-080275 2011-03-31
JP2011080275 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012132559A1 true WO2012132559A1 (en) 2012-10-04

Family

ID=46930325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052778 WO2012132559A1 (en) 2011-03-31 2012-02-07 Method for purifying ammonia and ammonia purification system

Country Status (5)

Country Link
JP (1) JP2013047169A (en)
KR (1) KR20130140755A (en)
CN (1) CN103269979A (en)
TW (1) TW201238897A (en)
WO (1) WO2012132559A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213507A (en) * 2021-05-12 2021-08-06 浙江凯圣氟化学有限公司 Method for removing impurity ions in liquid ammonia

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109126358B (en) * 2017-06-27 2024-02-20 昆明先导新材料科技有限责任公司 Purification process and purification device for special gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240407A (en) * 1993-08-31 1995-09-12 L'air Liquide Method and equipment for refining medicine for semiconductor process by partial condensation
US6065306A (en) * 1998-05-19 2000-05-23 The Boc Group, Inc. Method and apparatus for purifying ammonia
JP2002037623A (en) * 2000-07-28 2002-02-06 Japan Pionics Co Ltd Method for purifying ammonia
JP2003183021A (en) * 2001-10-12 2003-07-03 Taiyo Toyo Sanso Co Ltd Method and apparatus for continuously purifying ammonia gas

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG76635A1 (en) * 1999-03-10 2000-11-21 Japan Pionics Process and apparatus for recovering ammonia
US6749819B2 (en) * 2000-07-28 2004-06-15 Japan Pionics Co., Ltd. Process for purifying ammonia

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240407A (en) * 1993-08-31 1995-09-12 L'air Liquide Method and equipment for refining medicine for semiconductor process by partial condensation
US6065306A (en) * 1998-05-19 2000-05-23 The Boc Group, Inc. Method and apparatus for purifying ammonia
JP2002037623A (en) * 2000-07-28 2002-02-06 Japan Pionics Co Ltd Method for purifying ammonia
JP2003183021A (en) * 2001-10-12 2003-07-03 Taiyo Toyo Sanso Co Ltd Method and apparatus for continuously purifying ammonia gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOLECULARSIEVE SOGO CATALOG, 13 April 2012 (2012-04-13), Retrieved from the Internet <URL:http://www.uskk.co.jp/assets/files/PDF/catalog-molecularsieve.pdf> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213507A (en) * 2021-05-12 2021-08-06 浙江凯圣氟化学有限公司 Method for removing impurity ions in liquid ammonia

Also Published As

Publication number Publication date
CN103269979A (en) 2013-08-28
TW201238897A (en) 2012-10-01
KR20130140755A (en) 2013-12-24
JP2013047169A (en) 2013-03-07

Similar Documents

Publication Publication Date Title
TWI491558B (en) Ammonia purification system and ammonia purification method
KR101423090B1 (en) Ammonia purification system
JP2012214325A (en) Ammonia purifying system and method for purifying ammonia
JP5815968B2 (en) Ammonia purification system and ammonia purification method
TWI554497B (en) Purifying method and purifying system for propane
CN113321184B (en) High-purity electronic-grade chlorine purification production device and technology thereof
WO2012132559A1 (en) Method for purifying ammonia and ammonia purification system
WO2013190731A1 (en) Ammonia purification system
WO2012132560A1 (en) Method for purifying ammonia and ammonia purification system
KR100881763B1 (en) The Refining method of Ammonia and apparatus thereof
JP7142417B2 (en) Propane production method and propane production apparatus
JP2013163599A (en) Method for purifying ammonia and ammonia purification system
JP2012153545A (en) Ammonia purification system and ammonia purification method
JP7421096B2 (en) Trimethylamine purification method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137013884

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763663

Country of ref document: EP

Kind code of ref document: A1