JP7421096B2 - Trimethylamine purification method - Google Patents

Trimethylamine purification method Download PDF

Info

Publication number
JP7421096B2
JP7421096B2 JP2020068456A JP2020068456A JP7421096B2 JP 7421096 B2 JP7421096 B2 JP 7421096B2 JP 2020068456 A JP2020068456 A JP 2020068456A JP 2020068456 A JP2020068456 A JP 2020068456A JP 7421096 B2 JP7421096 B2 JP 7421096B2
Authority
JP
Japan
Prior art keywords
trimethylamine
zeolite
crude
dimethylamine
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020068456A
Other languages
Japanese (ja)
Other versions
JP2021165239A (en
Inventor
直史 玉井
敬寿 谷口
啓之 大森
章史 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2020068456A priority Critical patent/JP7421096B2/en
Publication of JP2021165239A publication Critical patent/JP2021165239A/en
Priority to JP2024001939A priority patent/JP2024026698A/en
Application granted granted Critical
Publication of JP7421096B2 publication Critical patent/JP7421096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

本開示は、ゼオライトを用いてジメチルアミンを除去するトリメチルアミンの精製方法に関する。 The present disclosure relates to a method for purifying trimethylamine using zeolite to remove dimethylamine.

有機アミンの1つであるトリメチルアミンの粗体中には、不純物として1000体積ppm程度のジメチルアミンが含まれていることがある。トリメチルアミンとジメチルアミンは蒸気圧が近く、共沸となるため、蒸留ではジメチルアミンの濃度を400~500体積ppm程度までしか低減することができない。 Crude trimethylamine, which is one of the organic amines, may contain about 1000 volume ppm of dimethylamine as an impurity. Since trimethylamine and dimethylamine have close vapor pressures and are azeotropic, distillation can only reduce the concentration of dimethylamine to about 400 to 500 ppm by volume.

近年、有機アミンの粗体中に含まれる不純物を除去する方法として、合成ゼオライトを用いる方法が提案されている。
特許文献1では、平均直径が0.3nm又は0.4nmの細孔を有する合成ゼオライトを用いて、モノメチルアミンに含まれる低沸点不純物を除去する精製装置が開示されている。除去する低沸点不純物としては、水素、酸素、窒素、一酸化炭素、二酸化炭素及びメタンが挙げられている。更に特許文献1では、平均直径が0.5nmの細孔を有する合成ゼオライトを用いて、水分及び炭化水素を吸着することが開示されている。
In recent years, a method using synthetic zeolite has been proposed as a method for removing impurities contained in crude organic amines.
Patent Document 1 discloses a purification device that uses synthetic zeolite having pores with an average diameter of 0.3 nm or 0.4 nm to remove low-boiling impurities contained in monomethylamine. Low boiling impurities to be removed include hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide and methane. Further, Patent Document 1 discloses that a synthetic zeolite having pores with an average diameter of 0.5 nm is used to adsorb moisture and hydrocarbons.

特許文献2では、3A又は4Aのゼオライトを用いてトリメチルアミン含有ガス中の水及びアンモニアを除去し、5Aのゼオライトを用いてモノメチルアミン及び窒素を除去する、トリメチルアミンの精製方法が開示されている。 Patent Document 2 discloses a method for purifying trimethylamine in which water and ammonia in a trimethylamine-containing gas are removed using a 3A or 4A zeolite, and monomethylamine and nitrogen are removed using a 5A zeolite.

特開2016-150926号公報(特許第6441116号公報)JP2016-150926A (Patent No. 6441116) 米国特許第8,664,446号明細書US Patent No. 8,664,446

しかしながら、これまでは、不純物としてジメチルアミンを含むトリメチルアミン中のジメチルアミンを400体積ppm以下に低減する方法はなかった。なお特許文献2では、合成ゼオライトを用いてモノメチルアミンを除去する方法が開示されているが、合成ゼオライトを用いてジメチルアミンが除去されることは記載されておらず、従って、ジメチルアミンが除去されることはこれまで知られていない。 However, until now, there has been no method for reducing dimethylamine in trimethylamine containing dimethylamine as an impurity to 400 volume ppm or less. Note that Patent Document 2 discloses a method for removing monomethylamine using a synthetic zeolite, but does not describe that dimethylamine is removed using a synthetic zeolite. This has not been known until now.

本開示は、上記課題に鑑み、粗トリメチルアミン中のジメチルアミン濃度を低減させる新規な方法を提供することを目的とする。 In view of the above problems, the present disclosure aims to provide a novel method for reducing the dimethylamine concentration in crude trimethylamine.

本発明者らは、鋭意検討の結果、ジメチルアミンを含む粗トリメチルアミンを直径0.2~0.6nmの細孔を有するゼオライトに接触させることにより、ジメチルアミン濃度を低減させることができることを見出し、本開示を完成させるに至った。 As a result of extensive studies, the present inventors have discovered that the dimethylamine concentration can be reduced by bringing crude trimethylamine containing dimethylamine into contact with zeolite having pores with a diameter of 0.2 to 0.6 nm. We have now completed this disclosure.

具体的には、本開示のトリメチルアミンの精製方法は、少なくともジメチルアミンを含む粗トリメチルアミンを直径0.2~0.6nmの細孔を有するゼオライトに接触させ、上記粗トリメチルアミン中のジメチルアミン濃度を上記ゼオライト接触前よりも低減させることを特徴とする。
本開示のトリメチルアミンの精製方法によれば、蒸留のようにエネルギーを消費する必要がなく、粗トリメチルアミン中のジメチルアミンを除去することができる。
Specifically, the trimethylamine purification method of the present disclosure involves contacting crude trimethylamine containing at least dimethylamine with a zeolite having pores with a diameter of 0.2 to 0.6 nm, and adjusting the dimethylamine concentration in the crude trimethylamine to the above level. It is characterized by being lower than before contact with zeolite.
According to the trimethylamine purification method of the present disclosure, dimethylamine in crude trimethylamine can be removed without consuming energy unlike distillation.

本開示のトリメチルアミンの精製方法により、蒸留のようにエネルギーを消費することなく粗トリメチルアミン中のジメチルアミンを除去することができ、半導体製造工程においても使用することが可能な、極めて純度が高いトリメチルアミンを供給することができる。 The trimethylamine purification method of the present disclosure can remove dimethylamine from crude trimethylamine without consuming energy like distillation, producing extremely pure trimethylamine that can be used in semiconductor manufacturing processes. can be supplied.

以下、本開示について詳細に説明するが、以下に記載する構成要件の説明は本開示の実施形態の一例であり、これらの具体的内容に限定はされない。その要旨の範囲内で種々変形して実施することができる。 Hereinafter, the present disclosure will be described in detail, but the explanation of the constituent elements described below is an example of an embodiment of the present disclosure, and the present disclosure is not limited to these specific contents. Various modifications can be made within the scope of the gist.

本開示のトリメチルアミンの精製方法は、少なくともジメチルアミンを含む粗トリメチルアミンを直径0.2~0.6nmの細孔を有するゼオライトに接触させ、上記粗トリメチルアミン中のジメチルアミン濃度を上記ゼオライト接触前よりも低減させることを特徴とする。 The method for purifying trimethylamine of the present disclosure includes contacting crude trimethylamine containing at least dimethylamine with a zeolite having pores with a diameter of 0.2 to 0.6 nm, and increasing the dimethylamine concentration in the crude trimethylamine to a level higher than that before contact with the zeolite. It is characterized by reducing

本開示の精製方法で用いるゼオライトは、モレキュラーシーブ(分子篩)とも呼ばれる結晶性アルミノケイ酸塩であり、合成ゼオライト、人工ゼオライト、天然ゼオライトに分類される。本開示の精製方法においては、直径0.2~0.6nm、又は、直径3~5Åの細孔を有するゼオライトであれば、合成ゼオライト、人工ゼオライト、天然ゼオライトのいずれも用い得るが、純度が高い合成ゼオライトを用いることが好ましい。ゼオライトの細孔の直径が0.2nm未満であるか、0.6nmを超えると、粗トリメチルアミン中のジメチルアミン濃度の低減効果が小さくなる。 The zeolite used in the purification method of the present disclosure is a crystalline aluminosilicate also called a molecular sieve, and is classified into synthetic zeolite, artificial zeolite, and natural zeolite. In the purification method of the present disclosure, synthetic zeolite, artificial zeolite, and natural zeolite can be used as long as they have pores with a diameter of 0.2 to 0.6 nm or 3 to 5 Å, but purity Preference is given to using highly synthetic zeolites. When the diameter of the pores of the zeolite is less than 0.2 nm or more than 0.6 nm, the effect of reducing the dimethylamine concentration in crude trimethylamine becomes small.

直径0.2~0.6nmの細孔を有する合成ゼオライトとしては、3A型、4A型又は5A型の合成ゼオライトが好適である。なお、3A型、4A型又は5A型の合成ゼオライトにおける「A」とは、Å(オングストローム)のことを表す。
3A型の合成ゼオライトは、細孔径が0.3nmであり、直径が0.3nmまでの分子を通過させることができる。4A型の合成ゼオライトの細孔径は0.35nmであるが、通常の操作温度において、空洞内に入ってくる分子の伸縮と運動エネルギーのため、直径0.4nmまでの分子を通過させることができる。また、5A型の合成ゼオライトについても、それの細孔径は0.42nmであるが、同様の理由により、直径が0.5nmまでの分子を通過させることができる。
ここで、3A型、4A型又は5A型の合成ゼオライトの、通過できる分子の直径(吸着口径)の範囲を以下、明記する。
3A型 0.3nm以下
4A型 0.3nmを超えて、0.4nm以下
5A型 0.4nmを超えて、0.5nm以下
As the synthetic zeolite having pores with a diameter of 0.2 to 0.6 nm, 3A type, 4A type or 5A type synthetic zeolite is suitable. In addition, "A" in the 3A type, 4A type, or 5A type synthetic zeolite represents Å (angstrom).
Type 3A synthetic zeolite has a pore diameter of 0.3 nm and can pass molecules up to 0.3 nm in diameter. The pore diameter of type 4A synthetic zeolite is 0.35 nm, but at normal operating temperatures, molecules with a diameter of up to 0.4 nm can pass through due to the stretching and kinetic energy of the molecules entering the cavity. . Furthermore, although the pore diameter of type 5A synthetic zeolite is 0.42 nm, molecules with a diameter of up to 0.5 nm can pass through it for the same reason.
Here, the range of the diameter (adsorption aperture) of molecules that can pass through synthetic zeolite of type 3A, type 4A, or type 5A is specified below.
3A type: 0.3 nm or less 4A type: More than 0.3 nm, 0.4 nm or less 5A type: More than 0.4 nm, 0.5 nm or less

3A型、4A型、5A型の合成ゼオライトとしては、具体的には、ユニオン昭和社製のモレキュラーシーブ3A、モレキュラーシーブ4A、モレキュラーシーブ5A;富士フイルム和光純薬社製のモレキュラーシーブス3A、モレキュラーシーブス4A、モレキュラーシーブス5A等を用い得る。
本開示の精製方法で用いるゼオライトの形状は特に限定されず、ビーズ状、ペレット状、パウダー状等のいずれでもよいが、ビーズ状、ペレット状のものが化学工業プラントで用い易く好ましい。
Specifically, the synthetic zeolites of type 3A, type 4A, and type 5A include Molecular Sieve 3A, Molecular Sieve 4A, and Molecular Sieve 5A manufactured by Union Showa Co., Ltd.; Molecular Sieve 3A and Molecular Sieve manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. 4A, molecular sieves 5A, etc. may be used.
The shape of the zeolite used in the purification method of the present disclosure is not particularly limited, and may be bead-like, pellet-like, powder-like, etc., but bead-like and pellet-like are preferred because they are easy to use in chemical industrial plants.

本開示の精製方法で用いるゼオライトは、購入したものをそのまま用いることもできるが、使用する前に乾燥させることが好ましい。乾燥条件としては、1kPa以下、150℃以上で30分以上が好ましく、1kPa以下、150~200℃、30~60分がより好ましい。 The purchased zeolite used in the purification method of the present disclosure can be used as is, but it is preferable to dry it before use. The drying conditions are preferably 1 kPa or less, 150° C. or more for 30 minutes or more, and more preferably 1 kPa or less, 150 to 200° C., and 30 to 60 minutes.

粗トリメチルアミンをゼオライトに接触させる方法は特に限定されず、粗トリメチルアミンを貯留する容器等にゼオライトを添加して放置する方法(静置法)、ゼオライトをカラムや充填塔等に充填し、粗トリメチルアミンをカラムや充填塔に流通させてゼオライトに流通接触させる方法(カラム法)等が挙げられる。ジメチルアミンを除去する効果が高いこと、短時間で精製が行える点でカラム法が好ましい。しかしながら、粗トリメチルアミン中のジメチルアミンの濃度が高い場合は、カラム法を行う前に静置法を行い、ジメチルアミンの濃度を一定まで低減してからカラム法を行う等、静置法とカラム法とを組み合わせて行うこともできる。 The method of bringing crude trimethylamine into contact with zeolite is not particularly limited, and there are methods such as adding zeolite to a container for storing crude trimethylamine and leaving it there (standing method), filling zeolite into a column or packed tower, etc., and bringing crude trimethylamine into contact with the zeolite. Examples include a method of flowing through a column or a packed tower and bringing it into contact with zeolite (column method). A column method is preferred because it is highly effective in removing dimethylamine and purification can be performed in a short time. However, if the concentration of dimethylamine in the crude trimethylamine is high, the static method and column method can be used, such as performing the static method before the column method and reducing the concentration of dimethylamine to a certain level before performing the column method. It can also be done in combination.

粗トリメチルアミンをゼオライトに流通接触させる温度及び圧力条件は、20~30℃、大気圧以上が好ましい。圧力条件は、150~200kPaがより好ましい。
粗トリメチルアミンをゼオライトに流通接触させる時間は、50~200秒が好ましい。50秒未満であると、ジメチルアミンが十分除去されない場合がある。一方、200秒を超えて流通接触させても、ジメチルアミンを除去する効果が上がらない場合がある。粗トリメチルアミンをゼオライトに流通接触させる時間は、100~150秒がより好ましい。
The temperature and pressure conditions for flowing and contacting crude trimethylamine with zeolite are preferably 20 to 30°C and atmospheric pressure or higher. The pressure condition is more preferably 150 to 200 kPa.
The time period for which the crude trimethylamine is brought into contact with the zeolite by flowing is preferably 50 to 200 seconds. If the time is less than 50 seconds, dimethylamine may not be sufficiently removed. On the other hand, even if the flow contact is carried out for more than 200 seconds, the effect of removing dimethylamine may not be improved. The time period for which the crude trimethylamine is brought into contact with the zeolite in a flowing manner is more preferably 100 to 150 seconds.

本開示の精製方法において、好ましい態様は、気体状態の粗トリメチルアミンを、20~30℃、大気圧以上の条件下で、ゼオライトに100秒以上流通接触させることである。 In the purification method of the present disclosure, a preferred embodiment is to bring crude trimethylamine in a gaseous state into contact with zeolite in a flow for 100 seconds or more under conditions of 20 to 30°C and atmospheric pressure or higher.

粗トリメチルアミンをゼオライトに流通接触させる場合、粗トリメチルアミンの線速度は、0.001~0.1m/secが好ましい。より好ましくは0.01~0.1m/secである。 When crude trimethylamine is brought into contact with zeolite in a flowing manner, the linear velocity of crude trimethylamine is preferably 0.001 to 0.1 m/sec. More preferably, it is 0.01 to 0.1 m/sec.

本開示の精製方法で精製する対象となる粗トリメチルアミンは、少なくともジメチルアミンを不純物として含むトリメチルアミンである。粗トリメチルアミンは、トリメチルアミンを従来公知の方法(例えば、特開昭58-049340号公報に記載の方法等)で合成して得られたものであってもよいし、購入したものであってもよく、入手方法は特に限定されない。粗トリメチルアミンは、ジメチルアミン以外の他の不純物を含んでいてもよく、他の不純物としては、モノメチルアミン、水素、酸素、窒素、一酸化炭素、二酸化炭素、メタン、アンモニア、水等が挙げられる。 The crude trimethylamine to be purified by the purification method of the present disclosure is trimethylamine containing at least dimethylamine as an impurity. Crude trimethylamine may be obtained by synthesizing trimethylamine by a conventionally known method (for example, the method described in JP-A-58-049340), or may be purchased. , the method of acquisition is not particularly limited. Crude trimethylamine may contain impurities other than dimethylamine, and other impurities include monomethylamine, hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide, methane, ammonia, water, and the like.

粗トリメチルアミンは、トリメチルアミンを98重量%含むことが好ましく、99重量%以上含むことがより好ましく、99.9重量%以上含むことが更に好ましい。
粗トリメチルアミン中のジメチルアミンの濃度は、500~1500体積ppmが好ましい。粗トリメチルアミン中のジメチルアミンの濃度が上記の値より大きい場合、本開示の精製方法で処理する前に蒸留等の方法を用いてジメチルアミンを除去しておくか、又は、上記の静置法とカラム法とを組み合わせて行うことが考えられる。
The crude trimethylamine preferably contains 98% by weight of trimethylamine, more preferably 99% by weight or more, and even more preferably 99.9% by weight or more.
The concentration of dimethylamine in the crude trimethylamine is preferably 500 to 1500 ppm by volume. If the concentration of dimethylamine in crude trimethylamine is higher than the above value, the dimethylamine should be removed using a method such as distillation before being treated with the purification method of the present disclosure, or the above-mentioned standing method and It is conceivable to perform this in combination with a column method.

粗トリメチルアミン中のジメチルアミンは不安定で、気相中の濃度は安定しない。
好ましい態様において、本開示の精製方法で精製する粗トリメチルアミンは液体でも気体でもよいが、常温常圧で精製が行えることから気体が好ましい。
Dimethylamine in crude trimethylamine is unstable and its concentration in the gas phase is not stable.
In a preferred embodiment, the crude trimethylamine purified by the purification method of the present disclosure may be a liquid or a gas, but a gas is preferable since the purification can be performed at normal temperature and pressure.

本開示の精製方法では、粗トリメチルアミン中のジメチルアミン濃度を400体積ppm以下に低減することが好ましい。より好ましくは300体積ppm以下である。本開示の精製方法を用いれば、上述のような純度が高いトリメチルアミンを得ることができる。このような純度が高いトリメチルアミンは、シリコン酸化物のドライエッチング等の用途に好適に用いられる。 In the purification method of the present disclosure, it is preferable to reduce the dimethylamine concentration in crude trimethylamine to 400 volume ppm or less. More preferably, it is 300 volume ppm or less. By using the purification method of the present disclosure, trimethylamine with high purity as described above can be obtained. Trimethylamine with such high purity is suitably used for applications such as dry etching of silicon oxide.

以下、本開示の実施形態をより具体的に開示した実施例を示す。なお、本開示はこれらの実施例のみに限定されるものではない。なお、実施例で用いたモレキュラーシーブ3A、4A及び5Aは、それぞれ3A型、4A型又は5A型の合成ゼオライトに対応する。 Examples that more specifically disclose the embodiments of the present disclosure will be shown below. Note that the present disclosure is not limited to these examples. Note that the molecular sieves 3A, 4A, and 5A used in the examples correspond to 3A type, 4A type, or 5A type synthetic zeolite, respectively.

(粗トリメチルアミン)
本実施例で用いる粗トリメチルアミンは、従来の製造方法を参考に合成した。当該トリメチルアミンには、不純物として、気相にジメチルアミン500~2000体積ppm、水分100~1000体積ppmを含んでいた。不純物濃度は、ガスクロマトグラフ分析装置(GC-2014、株式会社島津製作所製、検出器:FID)で分析した。
(crude trimethylamine)
Crude trimethylamine used in this example was synthesized with reference to a conventional production method. The trimethylamine contained 500 to 2000 volume ppm of dimethylamine and 100 to 1000 volume ppm of water in the gas phase as impurities. The impurity concentration was analyzed using a gas chromatograph analyzer (GC-2014, manufactured by Shimadzu Corporation, detector: FID).

[実施例1]
直径10.6mm、長さ0.1mの充填塔1本に、ゼオライトとしてモレキュラーシーブ3A(細孔径0.3nm、ユニオン昭和社製)を充填し、減圧条件、150℃で30分間乾燥させたのち、粗トリメチルアミンを線速度0.02m/secで流通させ(ゼオライトへの接触時間5秒)、充填塔出口からトリメチルアミンを捕集してジメチルアミン濃度を分析した。結果を表1に示す。
[Example 1]
One packed column with a diameter of 10.6 mm and a length of 0.1 m was filled with Molecular Sieve 3A (pore diameter 0.3 nm, manufactured by Union Showa Co., Ltd.) as zeolite, and dried at 150°C for 30 minutes under reduced pressure conditions. Crude trimethylamine was passed through at a linear velocity of 0.02 m/sec (contact time to zeolite was 5 seconds), trimethylamine was collected from the outlet of the packed column, and the dimethylamine concentration was analyzed. The results are shown in Table 1.

[実施例2]
充填塔の長さを1mに変更した以外は、実施例1と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間50秒)、ジメチルアミン濃度を分析した。結果を表1に示す。
[Example 2]
Crude trimethylamine was passed through in the same manner as in Example 1 except that the length of the packed column was changed to 1 m (contact time to zeolite was 50 seconds), and the dimethylamine concentration was analyzed. The results are shown in Table 1.

[実施例3]
充填塔の本数を2本に変更した以外は、実施例2と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間100秒)、ジメチルアミン濃度を分析した。結果を表1に示す。
[Example 3]
Crude trimethylamine was passed in the same manner as in Example 2 except that the number of packed columns was changed to two (contact time to zeolite was 100 seconds), and the dimethylamine concentration was analyzed. The results are shown in Table 1.

[実施例4]
充填塔の本数を3本に変更した以外は、実施例2と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間150秒)、ジメチルアミン濃度を分析した。結果を表1に示す。
[Example 4]
Crude trimethylamine was passed in the same manner as in Example 2 except that the number of packed columns was changed to three (contact time to zeolite was 150 seconds), and the dimethylamine concentration was analyzed. The results are shown in Table 1.

[実施例5]
ゼオライトをモレキュラーシーブ4A(細孔径0.35nm、ユニオン昭和社製)に変更した以外は、実施例1と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間5秒)、ジメチルアミン濃度を分析した。結果を表1に示す。
[Example 5]
Crude trimethylamine was passed in the same manner as in Example 1, except that the zeolite was changed to Molecular Sieve 4A (pore size 0.35 nm, manufactured by Union Showa Co., Ltd.) (contact time to zeolite was 5 seconds), and dimethylamine concentration was analyzed. . The results are shown in Table 1.

[実施例6]
充填塔の長さを1mに変更した以外は、実施例5と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間50秒)、ジメチルアミン濃度を分析した。結果を表1に示す。
[Example 6]
Crude trimethylamine was passed through in the same manner as in Example 5, except that the length of the packed column was changed to 1 m (contact time to zeolite was 50 seconds), and the dimethylamine concentration was analyzed. The results are shown in Table 1.

[実施例7]
充填塔の本数を2本に変更した以外は、実施例6と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間100秒)、ジメチルアミン濃度を分析した。結果を表1に示す。
[Example 7]
Crude trimethylamine was passed in the same manner as in Example 6 except that the number of packed columns was changed to two (contact time to zeolite was 100 seconds), and the dimethylamine concentration was analyzed. The results are shown in Table 1.

[実施例8]
充填塔の本数を3本に変更した以外は、実施例6と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間150秒)、ジメチルアミン濃度を分析した。結果を表1に示す。
[Example 8]
Crude trimethylamine was passed through in the same manner as in Example 6, except that the number of packed columns was changed to three (contact time to zeolite: 150 seconds), and dimethylamine concentration was analyzed. The results are shown in Table 1.

[実施例9]
ゼオライトをモレキュラーシーブ5A(細孔径0.42nm、ユニオン昭和社製)に変更した以外は、実施例1と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間5秒)、ジメチルアミン濃度を分析した。結果を表1に示す。
[Example 9]
Crude trimethylamine was passed through in the same manner as in Example 1 (contact time to zeolite was 5 seconds), except that the zeolite was changed to Molecular Sieve 5A (pore size 0.42 nm, manufactured by Union Showa Co., Ltd.), and the dimethylamine concentration was analyzed. . The results are shown in Table 1.

[実施例10]
充填塔の長さを1mに変更した以外は、実施例9と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間50秒)、ジメチルアミン濃度を分析した。結果を表1に示す。
[Example 10]
Crude trimethylamine was passed through in the same manner as in Example 9 except that the length of the packed column was changed to 1 m (contact time to zeolite was 50 seconds), and the dimethylamine concentration was analyzed. The results are shown in Table 1.

[実施例11]
充填塔の本数を2本に変更した以外は、実施例10と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間100秒)、ジメチルアミン濃度を分析した。結果を表1に示す。
[Example 11]
Crude trimethylamine was passed through in the same manner as in Example 10 (contact time to zeolite was 100 seconds), except that the number of packed columns was changed to two, and the dimethylamine concentration was analyzed. The results are shown in Table 1.

[実施例12]
充填塔の本数を3本に変更した以外は、実施例10と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間150秒)、ジメチルアミン濃度を分析した。結果を表1に示す。
[Example 12]
Crude trimethylamine was passed through in the same manner as in Example 10, except that the number of packed columns was changed to three (contact time to zeolite: 150 seconds), and dimethylamine concentration was analyzed. The results are shown in Table 1.

[比較例1]
充填塔にゼオライトを充填しなかった以外は、実施例1と同様に粗トリメチルアミンを流通させ、ジメチルアミン濃度を分析した。結果を表1に示す。
[Comparative example 1]
Crude trimethylamine was passed through in the same manner as in Example 1, except that the packed tower was not filled with zeolite, and the dimethylamine concentration was analyzed. The results are shown in Table 1.

[比較例2]
ゼオライトをモレキュラーシーブ13X(細孔径1.0nm、ユニオン昭和社製)に変更した以外は、実施例1と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間5秒)、ジメチルアミン濃度を分析した。結果を表1に示す。
[Comparative example 2]
Crude trimethylamine was passed through in the same manner as in Example 1 (contact time to zeolite was 5 seconds), except that the zeolite was changed to Molecular Sieve 13X (pore diameter 1.0 nm, manufactured by Union Showa Co., Ltd.), and the dimethylamine concentration was analyzed. . The results are shown in Table 1.

[比較例3]
粗トリメチルアミンを、理論段数20段で全還流を72時間行った後、還流比200で塔頂部より仕込み量の30重量%のトリメチルアミンをパージし、液相のトリメチルアミン中のジメチルアミン濃度を分析した。結果を表1に示す。
[Comparative example 3]
After the crude trimethylamine was completely refluxed for 72 hours using 20 theoretical plates, 30% by weight of trimethylamine was purged from the top of the column at a reflux ratio of 200, and the concentration of dimethylamine in the liquid phase of trimethylamine was analyzed. The results are shown in Table 1.

Figure 0007421096000001
Figure 0007421096000001

表1の結果から明らかなように、実施例1~12では、充填剤を使用しなかった比較例1と比べて、精製後のジメチルアミンの濃度が著しく低くなった。ゼオライトとの接触時間が50秒以上の実施例2~4、6~8、10~12では、蒸留を行った比較例3よりもジメチルアミン濃度が低くなった。なお、ゼオライトとの接触時間が100秒以上の実施例3~4、7~8、11~12では、比較例3と比べてジメチルアミン濃度が半分以下となった。ゼオライトとしてモレキュラーシーブ13Xを用いた比較例2では、充填剤を使用しなかった比較例1と比べてジメチルアミンの濃度がほとんど変わらなかった。 As is clear from the results in Table 1, in Examples 1 to 12, the concentration of dimethylamine after purification was significantly lower than in Comparative Example 1 in which no filler was used. In Examples 2 to 4, 6 to 8, and 10 to 12, in which the contact time with zeolite was 50 seconds or more, the dimethylamine concentration was lower than in Comparative Example 3, in which distillation was performed. In addition, in Examples 3 to 4, 7 to 8, and 11 to 12, in which the contact time with zeolite was 100 seconds or more, the dimethylamine concentration was less than half that of Comparative Example 3. In Comparative Example 2 in which Molecular Sieve 13X was used as the zeolite, the concentration of dimethylamine was almost unchanged compared to Comparative Example 1 in which no filler was used.

Claims (5)

少なくともジメチルアミンを含む粗トリメチルアミンを直径0.2~0.6nmの細孔を有するゼオライトに接触させ、前記粗トリメチルアミン中のジメチルアミン濃度を前記ゼオライト接触前よりも低減させることを特徴とするトリメチルアミンの精製方法。 Crude trimethylamine containing at least dimethylamine is brought into contact with a zeolite having pores with a diameter of 0.2 to 0.6 nm, and the concentration of dimethylamine in the crude trimethylamine is lowered than before contact with the zeolite. Purification method. 前記粗トリメチルアミン中のジメチルアミン濃度を400体積ppm以下に低減させることを特徴とする請求項1記載のトリメチルアミンの精製方法。 The method for purifying trimethylamine according to claim 1, characterized in that the dimethylamine concentration in the crude trimethylamine is reduced to 400 volume ppm or less. 前記粗トリメチルアミンを接触させる前に、前記ゼオライトを1kPa以下、150℃以上の条件で30分以上乾燥させることを特徴とする請求項1又は2記載のトリメチルアミンの精製方法。 3. The method for purifying trimethylamine according to claim 1, wherein the zeolite is dried under conditions of 1 kPa or less and 150° C. or more for 30 minutes or more before contacting with the crude trimethylamine. 気体状態の前記粗トリメチルアミンを、20~30℃、大気圧以上の条件下で、前記ゼオライトに100秒以上流通接触させることを特徴とする請求項1~3のいずれか1項に記載のトリメチルアミンの精製方法。 The trimethylamine according to any one of claims 1 to 3, wherein the crude trimethylamine in a gaseous state is brought into contact with the zeolite in a flow for 100 seconds or more under conditions of 20 to 30°C and atmospheric pressure or higher. Purification method. ゼオライト接触前の粗トリメチルアミン中のジメチルアミン濃度が500~1500体積ppmであることを特徴とする請求項1~4のいずれか1項に記載のトリメチルアミンの精製方法。 The method for purifying trimethylamine according to any one of claims 1 to 4, characterized in that the concentration of dimethylamine in the crude trimethylamine before contact with the zeolite is 500 to 1500 ppm by volume.
JP2020068456A 2020-04-06 2020-04-06 Trimethylamine purification method Active JP7421096B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020068456A JP7421096B2 (en) 2020-04-06 2020-04-06 Trimethylamine purification method
JP2024001939A JP2024026698A (en) 2020-04-06 2024-01-10 Method for purifying trimethylamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020068456A JP7421096B2 (en) 2020-04-06 2020-04-06 Trimethylamine purification method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024001939A Division JP2024026698A (en) 2020-04-06 2024-01-10 Method for purifying trimethylamine

Publications (2)

Publication Number Publication Date
JP2021165239A JP2021165239A (en) 2021-10-14
JP7421096B2 true JP7421096B2 (en) 2024-01-24

Family

ID=78021444

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020068456A Active JP7421096B2 (en) 2020-04-06 2020-04-06 Trimethylamine purification method
JP2024001939A Pending JP2024026698A (en) 2020-04-06 2024-01-10 Method for purifying trimethylamine

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024001939A Pending JP2024026698A (en) 2020-04-06 2024-01-10 Method for purifying trimethylamine

Country Status (1)

Country Link
JP (2) JP7421096B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8664446B1 (en) 2012-12-31 2014-03-04 American Air Liquide, Inc. Purification of trimethylamine
JP5522681B2 (en) 2010-05-21 2014-06-18 一般財団法人電力中央研究所 Measuring method of cooking exhaust

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5522681B2 (en) 2010-05-21 2014-06-18 一般財団法人電力中央研究所 Measuring method of cooking exhaust
US8664446B1 (en) 2012-12-31 2014-03-04 American Air Liquide, Inc. Purification of trimethylamine

Also Published As

Publication number Publication date
JP2021165239A (en) 2021-10-14
JP2024026698A (en) 2024-02-28

Similar Documents

Publication Publication Date Title
Serna-Guerrero et al. Triamine-grafted pore-expanded mesoporous silica for CO 2 capture: effect of moisture and adsorbent regeneration strategies
US8557026B2 (en) Process for producing purified natural gas from natural gas comprising water and carbon dioxide
RU2380151C2 (en) Zeolite adsorbent composition, method of preparing said adsorbent and use thereof in removing h2o and/or co2 and/or h2s from gaseous or liquid mixtures
KR20100126660A (en) A plant and process for recovering carbon dioxide
JP5822299B2 (en) Propane purification method and purification system
JP5738900B2 (en) Ammonia purification system and ammonia purification method
BR112019003474B1 (en) ADSORPTION PROCESS FOR XENON RECOVERY
JP2012214325A (en) Ammonia purifying system and method for purifying ammonia
BR112020025549A2 (en) PSA MULTIPLE STAGE PROCESS TO REMOVE CONTAMINANT GASES FROM CRUDE METHANE FLOWS
JP7421096B2 (en) Trimethylamine purification method
JP5815968B2 (en) Ammonia purification system and ammonia purification method
JP6055920B2 (en) Hydrogen recovery method
US20100081851A1 (en) Adsorbent for drying ethanol
TWI537214B (en) Method for producing high purity germane by a continuous or semi-continuous process
CN212024774U (en) System for preparing 4N-purity hydrogen sulfide gas
KR100584686B1 (en) Purification method of high purity ammonia
WO2016121622A1 (en) Process for producing propane, and propane production device
CN113262628A (en) Production device and process for preparing electronic-grade high-purity methane from synthetic ammonia tail gas
WO2012132559A1 (en) Method for purifying ammonia and ammonia purification system
WO2022030522A1 (en) Method for purifying trialkylamine, trialkylamine production method and composition
JP2009249571A (en) Method for eliminating hydrogen sulfide contained in biogas
JP5544696B2 (en) Method for producing liquefied chlorine
RU2350552C1 (en) Nitrogen trifluoride purification method
Istadi GAS DEHYDRATION

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231225

R150 Certificate of patent or registration of utility model

Ref document number: 7421096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150