JP2003163324A - Unit semiconductor device and manufacturing method thereof, and three-dimensional laminated semiconductor device - Google Patents

Unit semiconductor device and manufacturing method thereof, and three-dimensional laminated semiconductor device

Info

Publication number
JP2003163324A
JP2003163324A JP2001361366A JP2001361366A JP2003163324A JP 2003163324 A JP2003163324 A JP 2003163324A JP 2001361366 A JP2001361366 A JP 2001361366A JP 2001361366 A JP2001361366 A JP 2001361366A JP 2003163324 A JP2003163324 A JP 2003163324A
Authority
JP
Japan
Prior art keywords
semiconductor device
wiring pattern
semiconductor chip
unit
dimensional stacked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001361366A
Other languages
Japanese (ja)
Inventor
Takao Yamazaki
隆雄 山崎
Naonori Orito
直典 下戸
Sakae Hojo
栄 北城
Yuzo Shimada
勇三 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2001361366A priority Critical patent/JP2003163324A/en
Priority to PCT/JP2002/012362 priority patent/WO2003046987A1/en
Publication of JP2003163324A publication Critical patent/JP2003163324A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68345Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during the manufacture of self supporting substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0651Wire or wire-like electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06524Electrical connections formed on device or on substrate, e.g. a deposited or grown layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06572Auxiliary carrier between devices, the carrier having an electrical connection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06582Housing for the assembly, e.g. chip scale package [CSP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06582Housing for the assembly, e.g. chip scale package [CSP]
    • H01L2225/06586Housing with external bump or bump-like connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1017All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
    • H01L2225/1035All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the device being entirely enclosed by the support, e.g. high-density interconnect [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/1058Bump or bump-like electrical connections, e.g. balls, pillars, posts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • H01L2924/15331Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/162Disposition
    • H01L2924/1627Disposition stacked type assemblies, e.g. stacked multi-cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a unit semiconductor device that can mixedly mount various sizes and kinds of semiconductor chips easily and cope with change to a large memory, at the same time, can prevent decrease in a yield due to broken semiconductor chips or the like in handling, and can simply form a three- dimensional laminated semiconductor device having a compact package. <P>SOLUTION: The unit semiconductor device 14 comprises a semiconductor chip 11 having a chip electrode, a wiring pattern 16 for mounting the chip electrode on one surface, mold resin (12, 17) for covering the semiconductor chip 11 and a wiring pattern 16 in one piece, and a via plug 18 that passes through the mold resin outside the semiconductor chip 11 and whose one end comes into contact with the other surface of the wiring pattern 16 and the other is exposed from the mold resin. In this case, the other surface of the wiring pattern 16 is exposed on the surface of the mold resin. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ユニット半導体装
置及びその製造方法並びに3次元積層型半導体装置に関
し、更に詳しくは、複数段の積層構造を簡便に得ること
ができるコンパクトなユニット半導体装置、及びこのよ
うなユニット半導体装置の製造方法、並びに、このユニ
ット半導体装置を積層した3次元積層型半導体装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a unit semiconductor device, a method of manufacturing the same, and a three-dimensional laminated semiconductor device, and more specifically, a compact unit semiconductor device capable of easily obtaining a laminated structure having a plurality of stages, and The present invention relates to a method for manufacturing such a unit semiconductor device and a three-dimensional stacked semiconductor device in which the unit semiconductor devices are stacked.

【0002】[0002]

【従来の技術】従来の3次元積層型の半導体装置が、特
開平11-204720号公報に記載されている(第1の従来
例)。図30は、この公報に記載の3次元積層型の半導
体装置を示す断面図である。この半導体装置では、相互
にサイズが異なる半導体チップ101、102が、フェ
ースアップでインターポーザ基板106上に順次に積層
されている。テープ基板106と半導体チップ101、
及び半導体チップ101と半導体チップ102が夫々、
絶縁性接着剤107で接着される。半導体チップ10
1、102の各回路形成面の外周部に設けられた電極パ
ッドと、テープ基板106上の銅パターン104とが、
金ワイヤ103を介して接続される。
2. Description of the Related Art A conventional three-dimensional stacked semiconductor device is described in Japanese Patent Application Laid-Open No. 11-204720 (first conventional example). FIG. 30 is a sectional view showing the three-dimensional stacked semiconductor device described in this publication. In this semiconductor device, semiconductor chips 101 and 102 having different sizes are sequentially stacked face up on an interposer substrate 106. The tape substrate 106 and the semiconductor chip 101,
And the semiconductor chip 101 and the semiconductor chip 102,
It is adhered with an insulating adhesive 107. Semiconductor chip 10
The electrode pads provided on the outer peripheral portion of each circuit forming surface of Nos. 1 and 102 and the copper pattern 104 on the tape substrate 106 are
It is connected via a gold wire 103.

【0003】テープ基板106の裏面には、マザーボー
ドにフリップチップ実装するためのはんだバンプ105
が配列される。テープ基板106上の半導体チップ10
1、102、銅パターン104及び金ワイヤ103が封
止樹脂108で覆われている。このような構成の半導体
装置では、半導体チップ101、102が2段積層され
るにも拘わらず、インターポーザ基板106を1枚のみ
用いることで、チップサイズに近い小型パッケージが実
現できる。
On the back surface of the tape substrate 106, solder bumps 105 for flip chip mounting on a mother board are mounted.
Are arranged. Semiconductor chip 10 on tape substrate 106
1, 102, the copper pattern 104, and the gold wire 103 are covered with the sealing resin 108. In the semiconductor device having such a configuration, although the semiconductor chips 101 and 102 are stacked in two stages, by using only one interposer substrate 106, a small package close to the chip size can be realized.

【0004】別の3次元積層型の半導体装置が、特開平
5-283608号公報に記載されている(第2の従来例)。図
31は、この公報に記載の半導体装置を示す断面図であ
る。この半導体装置は、積層された4つのテープキャリ
アパッケージと、各テープキャリアパッケージ間に夫々
設けられたプリプレグ110とを有する。各テープキャ
リアパッケージは、導電バンプ112を介して相互に接
続された半導体チップ109及びフィルムキャリア11
1を有し、各プリプレグ110は、中心部分に形成され
た半導体チップ収納穴114と、周縁部の同じ位置に形
成された穴115とを有する。積層したプリプレグ11
0の穴115及びフィルムキャリア111を連続して貫
通する貫通穴に埋め込まれた導電性物質113により、
各半導体チップ109が相互に電気的に接続される。
Another three-dimensional laminated semiconductor device is disclosed in
It is described in Japanese Patent Publication No. 5-283608 (second conventional example). FIG. 31 is a sectional view showing the semiconductor device described in this publication. This semiconductor device has four stacked tape carrier packages and a prepreg 110 provided between each tape carrier package. Each tape carrier package includes a semiconductor chip 109 and a film carrier 11 which are connected to each other via conductive bumps 112.
1, each prepreg 110 has a semiconductor chip housing hole 114 formed at the center portion and a hole 115 formed at the same position on the peripheral portion. Laminated prepreg 11
By the conductive material 113 embedded in the through hole that continuously penetrates the hole 115 of 0 and the film carrier 111,
The semiconductor chips 109 are electrically connected to each other.

【0005】[0005]

【発明が解決しようとする課題】第1の従来例では、半
導体チップ101、102を複数個積層できる構造を有
するが、半導体チップ101、102は相互に導通され
ず、半導体チップ101、102が個々にインターポー
ザ基板106とワイヤボンディング接続されている。こ
のため、チップ回路形成面の外周部にワイヤボンディン
グのための広い空きスペースが必要になり、パッケージ
の小型化を損なう要因となっていた。
The first conventional example has a structure in which a plurality of semiconductor chips 101 and 102 can be stacked, but the semiconductor chips 101 and 102 are not electrically connected to each other, and the semiconductor chips 101 and 102 are individually connected. Is connected to the interposer substrate 106 by wire bonding. Therefore, a wide empty space for wire bonding is required on the outer peripheral portion of the chip circuit formation surface, which is a factor impairing the miniaturization of the package.

【0006】また、下段のチップサイズを上段のチップ
サイズよりも大きくしなければならず、サイズが異なる
異種チップの3次元積層型の半導体装置しか得ることが
できなかった。更に、チップサイズが限定されることに
より、封止樹脂108の厚みやワイヤボンディングの高
さ等を考慮しなければならず、情報機器のパッケージ厚
み仕様の1.2mm以下を満足させるには、異種チップの積
層個数は3〜4段が限界であった。このため、上段の半
導体チップほどサイズが小さくなり、メモリ大容量化に
は不利であった。
Further, the lower chip size must be made larger than the upper chip size, and only a three-dimensional stacked semiconductor device of different chips having different sizes can be obtained. Further, since the chip size is limited, the thickness of the sealing resin 108, the height of wire bonding, etc. must be taken into consideration. The number of stacked layers was limited to 3 to 4 layers. Therefore, the size of the upper semiconductor chip becomes smaller, which is disadvantageous for increasing the memory capacity.

【0007】第2の従来例では、半導体チップ109を
研削した後にフィルムキャリア111に接続するので、
例えば50μm以下に研削した場合、半導体チップ10
9をフィルムキャリア111に接続するハンドリング時
に半導体チップ109を割ることがあり、歩留まりの低
下を招くことがあった。従って、チップ厚を薄くするこ
とが技術的に可能であっても、組立て時に必要な強度を
得るために、最小でも50μmの厚みが必要になる。こ
のため、3次元積層型半導体装置の薄型化には限界があ
った。
In the second conventional example, since the semiconductor chip 109 is ground and then connected to the film carrier 111,
For example, when ground to 50 μm or less, the semiconductor chip 10
The semiconductor chip 109 may be broken during the handling of connecting 9 to the film carrier 111, which may lead to a decrease in yield. Therefore, even if it is technically possible to reduce the chip thickness, a minimum thickness of 50 μm is required to obtain the required strength during assembly. Therefore, there has been a limit to the reduction in thickness of the three-dimensional stacked semiconductor device.

【0008】また、第2の従来例では、フィルムキャリ
ア111上に半導体チップ109を搭載したパッケージ
を順次に積層した後、レーザで一括に穴115を形成し
てから、連続する穴115にペースト状の導電性物質1
13を流し込み、プレス加工して3次元積層構造を得
る。このため、同種のチップやパッケージの3次元積層
型には適するものの、異種チップの積層や、異種チップ
と同種チップとを混載した3次元積層型を得ることは困
難である。更に、プリプレグ110やフィルムキャリア
111等の他の導体パターンにまで穴を形成しなければ
ならず、極めて大きなパワーを要する。このため、廉価
であるがパワーが小さい炭酸ガスレーザを用いて穴11
5を形成することは難しく、パワーは大きいが高価なエ
キシマレーザやUV−YAGレーザ等の使用を余儀なく
され、これがコストアップの要因になっていた。
Further, in the second conventional example, after packages having the semiconductor chips 109 mounted thereon are sequentially laminated on the film carrier 111, holes 115 are collectively formed by a laser, and then paste is formed in the continuous holes 115. Conductive substance 1
13 is poured and pressed to obtain a three-dimensional laminated structure. Therefore, although it is suitable for a three-dimensional laminated type of chips and packages of the same type, it is difficult to obtain a laminated type of different types of chips or a mixed type of different types of chips and the same type of chips. Furthermore, holes must be formed even in other conductor patterns such as the prepreg 110 and the film carrier 111, which requires extremely large power. For this reason, it is possible to use a carbon dioxide laser that is inexpensive but has low power, and
It is difficult to form No. 5, and it is necessary to use an excimer laser, a UV-YAG laser, or the like, which has a high power but is expensive, which has been a factor of cost increase.

【0009】本発明は、上記に鑑み、種々のサイズ及び
/又は種類の半導体チップの混載が容易にできメモリ大
容量化に対応可能な構成を有しながらも、ハンドリング
時の半導体チップの破損等に起因する歩留まりの低下を
回避すると共に、パッケージが小型の3次元積層型半導
体装置を簡便に形成できるユニット半導体装置、及びこ
のようなユニット半導体装置を製造する製造方法、並び
に、このユニット半導体装置を積層したコンパクトな3
次元積層型半導体装置を提供することを目的とする。
In view of the above, the present invention has a structure in which semiconductor chips of various sizes and / or types can be easily mixed and can cope with an increase in memory capacity, but the semiconductor chips are damaged during handling. A unit semiconductor device capable of avoiding a decrease in yield due to the above-mentioned process and easily forming a three-dimensional stacked semiconductor device having a small package, a manufacturing method for manufacturing such a unit semiconductor device, and the unit semiconductor device. Stacked compact 3
An object is to provide a three-dimensional stacked semiconductor device.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係るユニット半導体装置は、チップ電極を
有する半導体チップと、一方の面で前記チップ電極をマ
ウントする配線パターンと、前記半導体チップ及び配線
パターンを一体的に覆うモールドレジンと、該モールド
レジンを前記半導体チップの外側で貫通し、一端が前記
配線パターンの前記一方の面に接触し、他端が前記モー
ルドレジンから露出する配線プラグとを備え、前記配線
パターンの他方の面が前記モールドレジンの表面に露出
していることを特徴とする。
In order to achieve the above object, a unit semiconductor device according to the present invention comprises a semiconductor chip having a chip electrode, a wiring pattern for mounting the chip electrode on one surface, and the semiconductor. A mold resin that integrally covers the chip and the wiring pattern, and wiring that penetrates the mold resin outside the semiconductor chip, one end of which contacts the one surface of the wiring pattern and the other end of which is exposed from the mold resin A plug, and the other surface of the wiring pattern is exposed on the surface of the mold resin.

【0011】本発明に係るユニット半導体装置では、一
のユニット半導体装置の配線プラグを、上段のユニット
半導体装置の配線パターンの露出面に接触させるだけ
で、種々のサイズ及び/又は種類の半導体チップを混載
することができ、メモリ大容量化に容易に対応すること
ができる。この場合、積層される半導体チップのサイズ
が異なっていても、各半導体チップを容易且つ確実に接
触、つまり電気的に結合させることができる。例えば、
上段のユニット半導体装置が一のユニット半導体装置よ
りもサイズが小さく、一のユニット半導体装置と上段の
ユニット半導体装置とにおける各配線プラグの位置が異
なっていても、配線パターンの露出面の面積により配線
プラグの位置ずれを吸収して、良好な接触状態を得るこ
とができる。これにより、サイズ及び/又は種類が異な
る複数のユニット半導体装置を容易に混載することがで
き、メモリ大容量化に対処することができる。また、導
電バンプと配線パターンとの接続によって半導体チップ
間の配線長が短くなるので、複数の半導体チップ相互の
接続後の導通状態がより良好になる。
In the unit semiconductor device according to the present invention, semiconductor chips of various sizes and / or types can be obtained by merely bringing the wiring plug of one unit semiconductor device into contact with the exposed surface of the wiring pattern of the upper unit semiconductor device. It can be mixedly mounted and can easily cope with an increase in memory capacity. In this case, even if the semiconductor chips to be stacked have different sizes, the semiconductor chips can be easily and surely contacted, that is, electrically coupled. For example,
Even if the size of the upper unit semiconductor device is smaller than that of the unit semiconductor device and the positions of the wiring plugs in the unit semiconductor device and the unit semiconductor device in the upper stage are different from each other, wiring is performed depending on the area of the exposed surface of the wiring pattern A good contact state can be obtained by absorbing the displacement of the plug. As a result, a plurality of unit semiconductor devices having different sizes and / or types can be easily mixedly mounted, and the memory capacity can be increased. Further, since the wiring length between the semiconductor chips is shortened by the connection between the conductive bumps and the wiring pattern, the conductive state after connecting the plurality of semiconductor chips to each other becomes better.

【0012】本発明の好ましいユニット半導体装置で
は、前記モールドレジンが、前記半導体チップと配線パ
ターンとの間に設けられた感光性接着剤を含む。例え
ば、半導体チップの回路形成面におけるチップ電極に導
電バンプが形成されている場合に、回路形成面全体に感
光性接着剤を塗布してから露光・現像することによっ
て、導電バンプの先端を容易に露出させることができ
る。
In a preferred unit semiconductor device of the present invention, the mold resin contains a photosensitive adhesive provided between the semiconductor chip and the wiring pattern. For example, when conductive bumps are formed on the chip electrodes on the circuit formation surface of a semiconductor chip, the tip of the conductive bumps can be easily formed by applying a photosensitive adhesive to the entire circuit formation surface and then exposing and developing. Can be exposed.

【0013】具体的には、前記半導体チップが5〜50
μmの厚みを有することが好ましい。この場合、1mm
以内の厚み中に半導体チップを約20枚実装することが
可能になり、メモリ大容量化の実現に寄与することがで
きる。
Specifically, the semiconductor chip is 5 to 50.
It preferably has a thickness of μm. In this case, 1 mm
It is possible to mount about 20 semiconductor chips in the thickness within the range, and it is possible to contribute to the realization of a large memory capacity.

【0014】本発明に係る3次元積層型半導体装置は、
前記ユニット半導体装置が複数段積層された3次元積層
型半導体装置であって、一のユニット半導体装置の前記
配線プラグが、上段のユニット半導体装置の前記配線パ
ターンの露出面に接触していることを特徴とする。
The three-dimensional stacked semiconductor device according to the present invention is
A three-dimensional stacked semiconductor device in which the unit semiconductor devices are stacked in a plurality of stages, wherein the wiring plug of one unit semiconductor device is in contact with an exposed surface of the wiring pattern of the upper unit semiconductor device. Characterize.

【0015】本発明に係る3次元積層型半導体装置で
は、一のユニット半導体装置の配線プラグが上段のユニ
ット半導体装置の配線パターンの露出面に接触する構成
を有するので、複数のユニット半導体装置を順次に積層
することで、情報機器のパッケージ厚み仕様を満足させ
た多段積層構造を容易に得ることができる。
In the three-dimensional stacked semiconductor device according to the present invention, since the wiring plug of one unit semiconductor device is in contact with the exposed surface of the wiring pattern of the upper unit semiconductor device, a plurality of unit semiconductor devices are sequentially arranged. The multi-layered structure that satisfies the package thickness specification of the information device can be easily obtained by stacking the two layers.

【0016】ここで、前記複数段積層されたユニット半
導体装置の半導体チップは、サイズ及び/又は種類が相
互に同じであることが好ましい。或いは、これに代え
て、前記複数段積層されたユニット半導体装置における
少なくとも一つの半導体チップのサイズ及び/又は種類
が、他の半導体チップのサイズ及び/又は種類と異なる
ことも好ましい態様である。これらにより、多くの混載
バリエーションを得ることができる。
Here, it is preferable that the semiconductor chips of the unit semiconductor devices stacked in a plurality of stages have the same size and / or type. Alternatively, it is also a preferable aspect that the size and / or type of at least one semiconductor chip in the unit semiconductor devices stacked in multiple stages is different from the size and / or type of other semiconductor chips. With these, many mixed mounting variations can be obtained.

【0017】また、最上段及び/又は最下段の露出する
面には絶縁膜が形成され、少なくとも一方の絶縁膜の露
出面には外部電極が形成されることも好ましい態様であ
る。これにより、最上段及び/又は最下段の露出面をよ
り確実に絶縁し、且つ積層する際の電気的結合が容易な
ユニット半導体装置を得ることができる。
It is also a preferred embodiment that an insulating film is formed on the exposed surface of the uppermost stage and / or the lowermost stage, and an external electrode is formed on the exposed surface of at least one of the insulating films. As a result, it is possible to obtain a unit semiconductor device that more reliably insulates the uppermost exposed surface and / or the lowermost exposed surface and facilitates electrical coupling when stacking.

【0018】また、最下段のユニット半導体装置が前記
絶縁膜を介してインターポーザ基板又はマザーボードに
接着され、最上段のユニット半導体装置には前記絶縁膜
上に前記外部電極が形成され、該外部電極は前記インタ
ーポーザ基板又はマザーボードに設けられた電極パッド
にワイヤボンディング接続されることが好ましい。この
場合、複数のユニット半導体装置を積層してから、最上
段の外部電極を電極パッドにワイヤボンディング接続す
ることができるので、3次元積層型半導体装置の製造が
簡便になる。
Further, the lowermost unit semiconductor device is adhered to the interposer substrate or the mother board through the insulating film, and the uppermost unit semiconductor device has the external electrodes formed on the insulating film. It is preferable that the electrode pads provided on the interposer substrate or the mother board are connected by wire bonding. In this case, after stacking a plurality of unit semiconductor devices, the uppermost external electrode can be connected to the electrode pad by wire bonding, so that the manufacturing of the three-dimensional stacked semiconductor device is simplified.

【0019】更に好ましくは、前記最上段のユニット半
導体装置上に、一の半導体チップがフェースアップで接
着され、前記一のユニット半導体装置のチップ電極と前
記電極パッドとがワイヤボンディング接続される。この
場合、3次元積層型半導体装置上に、サイズが異なる他
のユニット半導体装置を容易に搭載することができる。
More preferably, one semiconductor chip is face-up bonded onto the uppermost unit semiconductor device, and the chip electrode of the one unit semiconductor device and the electrode pad are connected by wire bonding. In this case, another unit semiconductor device having a different size can be easily mounted on the three-dimensional stacked semiconductor device.

【0020】また、前記複数段のユニット半導体装置と
前記インターポーザ基板又はマザーボードとを接着した
積層体が複数段形成されることも好ましい態様である。
この場合、パッケージ化した複数の3次元積層型半導体
装置を容易に積層、接続することができるので、メモリ
大容量化の実現が簡便になる。
It is also a preferable embodiment that a plurality of stacked layers are formed by bonding the plurality of stacked unit semiconductor devices to the interposer substrate or the mother board.
In this case, it is possible to easily stack and connect a plurality of packaged three-dimensional stacked semiconductor devices, which facilitates realization of a large memory capacity.

【0021】本発明に係る第1視点のユニット半導体装
置の製造方法は、仮基板上に配線パターンを形成する工
程と、少なくとも側部及び下部がモールドレジンで被覆
され、該モールドレジンを貫通するスルーホールを介し
て前記配線パターンに接続される半導体チップを前記配
線パターン上に搭載する工程と、前記配線パターン上
に、前記半導体チップの外側を通過し前記モールドレジ
ンを貫通する配線プラグを形成する工程と、前記仮基板
を除去する工程とを備えることを特徴とする。
A method of manufacturing a unit semiconductor device according to a first aspect of the present invention is a process of forming a wiring pattern on a temporary substrate, and a through hole which penetrates the mold resin by covering at least a side portion and a lower portion with the mold resin. Mounting a semiconductor chip connected to the wiring pattern through a hole on the wiring pattern; and forming a wiring plug on the wiring pattern, the wiring plug passing through the outside of the semiconductor chip and penetrating the mold resin. And a step of removing the temporary substrate.

【0022】本発明に係る第1視点のユニット半導体装
置の製造方法では、種々のサイズ及び/又は種類の半導
体チップの混載構造を実現し、メモリ大容量化に対応す
ることができ、パッケージをリアルチップサイズにした
3次元積層型の半導体装置を容易に得ることができる。
また、半導体チップを予め配線パターン上に搭載してか
ら半導体チップを所要の厚みに研削することが可能なの
で、従来のようにハンドリング時に半導体チップを破損
するような不具合の発生を回避することができる。更
に、配線プラグを設けるためのスルーホールを各ユニッ
ト半導体装置毎に形成できるので、廉価で小パワーの炭
酸ガスレーザ等を用いることができる。この炭酸ガスレ
ーザにより、半導体チップの極めて近い位置に配線プラ
グを位置精度良く設けることができるので、ユニット半
導体装置を積層した後にパッケージ化する際に、パッケ
ージ外形サイズをリアルチップサイズとして超小型化す
ることが可能になる。
In the method of manufacturing a unit semiconductor device according to the first aspect of the present invention, it is possible to realize a mixed mounting structure of semiconductor chips of various sizes and / or types, to cope with an increase in memory capacity, and to realize a package package. It is possible to easily obtain a three-dimensional stacked semiconductor device having a chip size.
Further, since the semiconductor chip can be ground to a required thickness after being mounted on the wiring pattern in advance, it is possible to avoid the occurrence of a problem such as the conventional case where the semiconductor chip is damaged during handling. . Furthermore, since a through hole for providing a wiring plug can be formed for each unit semiconductor device, an inexpensive and small power carbon dioxide laser or the like can be used. With this carbon dioxide laser, wiring plugs can be provided at positions very close to the semiconductor chip with high positional accuracy. Therefore, when unit semiconductor devices are stacked and then packaged, the package outer size is made extremely small as a real chip size. Will be possible.

【0023】前記モールドレジンが、前記半導体チップ
の下部を被覆する第1モールド部と、前記半導体チップ
の少なくとも側部を被覆する第2モールド部とから成
り、前記搭載工程が、前記第1モールド部の形成工程と
前記第2モールド部の形成工程とを含むことが好まし
い。この場合、半導体チップの下部を被覆してから側部
を被覆できるので、例えば半導体チップ下部に後からモ
ールドレジンを充填するような場合に比して、より確実
な被覆が実現できる。
The mold resin comprises a first mold part covering the lower part of the semiconductor chip and a second mold part covering at least a side part of the semiconductor chip, and the mounting step comprises the first mold part. And the step of forming the second mold portion. In this case, since the lower part of the semiconductor chip can be covered and then the side part can be covered, more reliable covering can be realized as compared with, for example, the case where the lower part of the semiconductor chip is later filled with the mold resin.

【0024】具体的には、前記第2モールド部の形成工
程に先立って、前記半導体チップの上部を研削し、該半
導体チップを5〜50μmの厚みに形成することができ
る。この場合、仮基板上に形成した配線パターンに半導
体チップを接続してから半導体チップ上部を研削するこ
とができるので、半導体チップを破損することなくチッ
プ厚を、回路パターン層厚レベル(5〜15μm)まで
極薄にすることが可能になる。これにより、1パッケー
ジ当たりの厚みを約50μmまで薄くすることができ、
厚み1mm以内に半導体チップを約20枚実装すること
が可能になる。
Specifically, prior to the step of forming the second mold portion, the upper portion of the semiconductor chip can be ground to form the semiconductor chip with a thickness of 5 to 50 μm. In this case, since the semiconductor chip can be ground after the semiconductor chip is connected to the wiring pattern formed on the temporary substrate, the chip thickness can be adjusted without damaging the semiconductor chip to the circuit pattern layer thickness level (5 to 15 μm). ) Can be made ultra thin. As a result, the thickness per package can be reduced to about 50 μm,
It becomes possible to mount about 20 semiconductor chips within a thickness of 1 mm.

【0025】また、前記配線プラグの形成工程に後続し
て、前記第2モールド部上に前記配線パターンを形成し
てから、前記搭載工程〜前記配線プラグの形成工程を繰
り返し行って3次元積層型の半導体装置に形成すること
ができる。これにより、メモリ大容量化に対応する3次
元積層型半導体装置を容易に得ることができる。
After the step of forming the wiring plug, the wiring pattern is formed on the second mold portion, and then the mounting step to the step of forming the wiring plug are repeated to form a three-dimensional laminated type. Can be formed into a semiconductor device. As a result, it is possible to easily obtain a three-dimensional stacked semiconductor device that is compatible with a large memory capacity.

【0026】本発明に係る第2視点のユニット半導体装
置の製造方法は、仮基板上に配線パターンを形成する工
程と、前記配線パターン上に半導体チップ及び該半導体
チップに隣接する配線プラグを形成する工程と、モール
ドレジンによって前記半導体チップ及び前記配線プラグ
を前記配線パターン上に埋め込む工程と、前記仮基板を
除去する工程とを備えることを特徴とする。
A second aspect of the method of manufacturing a unit semiconductor device according to the present invention is a step of forming a wiring pattern on a temporary substrate, and forming a semiconductor chip and a wiring plug adjacent to the semiconductor chip on the wiring pattern. The method is characterized by including a step, a step of embedding the semiconductor chip and the wiring plug on the wiring pattern by a mold resin, and a step of removing the temporary substrate.

【0027】本発明に係る第2視点のユニット半導体装
置の製造方法では、種々のサイズ及び/又は種類の半導
体チップの混載構造を実現し、メモリ大容量化に対応す
ることができ、パッケージをリアルチップサイズにした
3次元積層型の半導体装置を容易に得ることができる。
更に、上記第1視点のユニット半導体装置の製造方法と
同様の効果を得ることができる。
In the method of manufacturing a unit semiconductor device according to the second aspect of the present invention, a mixed mounting structure of semiconductor chips of various sizes and / or types can be realized, and it is possible to cope with an increase in memory capacity and to realize a package package. It is possible to easily obtain a three-dimensional stacked semiconductor device having a chip size.
Further, it is possible to obtain the same effect as that of the method of manufacturing the unit semiconductor device according to the first aspect.

【0028】本発明の好ましいユニット半導体装置の製
造方法では、前記モールドレジンが、前記半導体チップ
の下部を被覆する第1モールド部と、前記半導体チップ
の少なくとも側部を被覆する第2モールド部とから成
り、前記埋め込み工程が、前記第1モールド部の形成工
程と前記第2モールド部の形成工程とを含む。これによ
り、半導体チップの下部を被覆してから側部を被覆でき
るので、より信頼性が高い絶縁を実現することができ
る。
In a preferred method of manufacturing a unit semiconductor device according to the present invention, the mold resin includes a first mold portion that covers a lower portion of the semiconductor chip and a second mold portion that covers at least a side portion of the semiconductor chip. The embedding step includes a step of forming the first mold portion and a step of forming the second mold portion. As a result, since the lower part of the semiconductor chip can be covered and then the side parts can be covered, more reliable insulation can be realized.

【0029】具体的には、前記半導体チップ及び配線プ
ラグの埋め込み工程に後続して、前記半導体チップ及び
配線プラグの上部を研削し、該半導体チップを5〜50
μmの厚みに形成することができる。これにより、仮基
板上に形成した配線パターンに半導体チップを接続して
から半導体チップ上部を研削できるので、半導体チップ
を破損することなく、チップ厚を極薄に形成することが
できる。
Specifically, after the step of embedding the semiconductor chip and the wiring plug, the upper portions of the semiconductor chip and the wiring plug are ground to make the semiconductor chip 5 to 50.
It can be formed to a thickness of μm. As a result, since the semiconductor chip can be ground after the semiconductor chip is connected to the wiring pattern formed on the temporary substrate, the chip thickness can be formed extremely thin without damaging the semiconductor chip.

【0030】本発明の好ましいユニット半導体装置の製
造方法では、前記半導体チップ及び配線プラグの研削工
程に後続して、前記第2モールド部上に前記配線パター
ンを形成してから、前記半導体チップ及び該半導体チッ
プに隣接する配線プラグの形成工程〜前記埋め込み工程
を繰り返し行って3次元積層型の半導体装置に形成す
る。これにより、メモリ大容量化に対応する3次元積層
型半導体装置が容易に得られる。
In a preferred method of manufacturing a unit semiconductor device of the present invention, after the step of grinding the semiconductor chip and the wiring plug, the wiring pattern is formed on the second mold portion, and then the semiconductor chip and the wiring pattern are formed. The process of forming the wiring plug adjacent to the semiconductor chip to the embedding process are repeated to form a three-dimensional stacked semiconductor device. This makes it possible to easily obtain a three-dimensional stacked semiconductor device corresponding to an increase in memory capacity.

【0031】前記配線パターンの形成工程では、前記仮
基板上に予め絶縁被膜を形成してから、該絶縁被膜上に
前記配線パターンを形成することができる。この場合、
ケミカルエッチング等で仮基板を除去した後に露出すべ
き配線パターンの面を絶縁被膜で予め覆った状態が得ら
れるので、この構造のユニット半導体装置を、3次元積
層型半導体装置における最下部のユニット半導体装置と
して使用することができる。
In the step of forming the wiring pattern, after forming an insulating coating on the temporary substrate in advance, the wiring pattern can be formed on the insulating coating. in this case,
After removing the temporary substrate by chemical etching or the like, it is possible to obtain a state in which the surface of the wiring pattern to be exposed is covered with an insulating film in advance. It can be used as a device.

【0032】また、前記3次元積層型の最上段のユニッ
ト半導体装置における露出面を絶縁膜で覆い、該絶縁膜
の前記配線プラグ上に別のスルーホールを形成し、該別
のスルーホール内に、前記配線プラグに接触する外部電
極を形成することができる。
Further, the exposed surface of the uppermost unit semiconductor device of the three-dimensional laminated type is covered with an insulating film, another through hole is formed on the wiring plug of the insulating film, and the other through hole is formed in the other through hole. An external electrode that contacts the wiring plug can be formed.

【0033】好ましくは、前記3次元積層型の半導体装
置を積層方向と直交する平面方向に配列するように形成
してから、各3次元積層型の半導体装置毎に分割する。
この場合、複数の3次元積層型半導体装置を平面方向に
配列させた状態で一度に形成できるので、各3次元積層
型半導体装置間で仮基板を共通に使用し、仮基板上に配
線パターンを形成する工程以降、仮基板の除去工程まで
を、各層で同時進行的に実施することができる。これに
より、複数の3次元積層型半導体装置の形成工程を簡略
化し、個々の3次元積層型半導体装置を得るまでの所要
時間を短縮することができる。
Preferably, the three-dimensional stacked semiconductor devices are formed so as to be arranged in a plane direction orthogonal to the stacking direction, and then divided into each three-dimensional stacked semiconductor device.
In this case, since a plurality of three-dimensional stacked semiconductor devices can be formed at a time in a state of being arranged in the planar direction, a temporary substrate is commonly used among the three-dimensional stacked semiconductor devices and a wiring pattern is formed on the temporary substrate. After the step of forming and the step of removing the temporary substrate, the steps can be simultaneously performed in each layer. As a result, the process of forming a plurality of three-dimensional stacked semiconductor devices can be simplified and the time required to obtain each three-dimensional stacked semiconductor device can be shortened.

【0034】[0034]

【発明の実施の形態】以下、図面を参照し、本発明に係
る実施形態例に基づいて本発明を更に詳細に説明する。
なお、以下の各実施形態例で示す、ユニット半導体装置
14の積層段数、半導体チップ11のサイズや種類の組
み合わせ等は、本発明の理解を容易にするための一つの
例示であり、本発明はこの例示に限定されるものではな
く、パッケージの厚み仕様の範囲内であれば図示した段
数を超える段数の積層構造が可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below with reference to the drawings on the basis of embodiments of the present invention.
Note that the number of stacked layers of the unit semiconductor device 14, the combination of the size and type of the semiconductor chip 11, and the like shown in each of the following embodiments are examples for facilitating the understanding of the present invention, and the present invention is The present invention is not limited to this example, and a laminated structure having more stages than the illustrated number is possible within the range of the package thickness specifications.

【0035】半導体装置の第1実施形態例 図1(a)は本発明に係る第1実施形態例の3次元積層
型半導体装置の構成を示す断面図、図1(b)はその変
形例を示す断面図、図1(c)は更に別の変形例を示す
断面図である。
First Embodiment of Semiconductor Device FIG. 1A is a sectional view showing the structure of a three-dimensional stacked semiconductor device according to the first embodiment of the present invention, and FIG. 1B is a modification thereof. The cross-sectional view shown in FIG. 1C is a cross-sectional view showing still another modification.

【0036】図1(a)に示すように、本3次元積層型
半導体装置10Aは、サイズ及び/又は種類が同じ半導
体チップ11を有するユニット半導体装置14が2段積
層された構成を備える。各ユニット半導体装置14は、
チップ電極(図示せず)を有する半導体チップ11と、
一方の面でチップ電極をマウントする配線パターン16
と、半導体チップ11及び配線パターン16を一体的に
覆うモールドレジン(12、17)とを備える。半導体
チップ11の周囲の絶縁樹脂層17には、スルーホール
20aを形成した部分に、銅めっき等で形成したビアプ
ラグ(配線プラグ)18が形成されている。各ユニット
半導体装置14の半導体チップ11は夫々、5〜50μ
mの厚みを有する。
As shown in FIG. 1A, the present three-dimensional stacked semiconductor device 10A has a structure in which unit semiconductor devices 14 having semiconductor chips 11 of the same size and / or type are stacked in two stages. Each unit semiconductor device 14 is
A semiconductor chip 11 having a chip electrode (not shown),
Wiring pattern 16 for mounting the chip electrode on one surface
And a mold resin (12, 17) integrally covering the semiconductor chip 11 and the wiring pattern 16. In the insulating resin layer 17 around the semiconductor chip 11, a via plug (wiring plug) 18 formed by copper plating or the like is formed in a portion where the through hole 20a is formed. The semiconductor chip 11 of each unit semiconductor device 14 is 5 to 50 μm, respectively.
It has a thickness of m.

【0037】配線パターン16は、銅(Cu)又はアルミ
ニウム(Al)等で構成される。半導体チップ11のチッ
プ電極には、導電バンプ13が電気的且つ機械的に結合
している。配線パターン16の表面には、導電バンプ1
3を接続するための電極パッド15が形成されている。
導電バンプ13は、金(Au)、スズ-鉛(Sn-Pb)、スズ-銀
(Sn-Ag)、Sn-Cu、Sn-Ag-Cu、スズ-ビスマス(Sn-Bi)等か
ら成るはんだで構成され、電極パッド15は、ニッケル
/金(Ni/Au)、パラジウム(Pd)等で構成されている。導電
バンプ13と電極パッド15との接続は、導電バンプ1
3の構成材料によっても異なるが、約150〜350℃の温度
下の熱圧着法又はリフローによって容易に実現できる。
The wiring pattern 16 is made of copper (Cu), aluminum (Al) or the like. The conductive bumps 13 are electrically and mechanically coupled to the chip electrodes of the semiconductor chip 11. The conductive bumps 1 are formed on the surface of the wiring pattern 16.
Electrode pads 15 for connecting 3 are formed.
The conductive bumps 13 are gold (Au), tin-lead (Sn-Pb), tin-silver.
(Sn-Ag), Sn-Cu, Sn-Ag-Cu, tin-bismuth (Sn-Bi), etc., and the electrode pad 15 is made of nickel.
/ It is composed of gold (Ni / Au), palladium (Pd), etc. The conductive bumps 13 and the electrode pads 15 are connected by the conductive bumps 1
Although it depends on the constituent materials of No. 3, it can be easily realized by a thermocompression bonding method or reflow under a temperature of about 150 to 350 ° C.

【0038】ユニット半導体装置14は更に、モールド
レジンを半導体チップ11の外側で貫通し、一端が配線
パターン16の上記一方の面に接触(電気的に結合)
し、他端がモールドレジンから露出するビアプラグ18
を備え、配線パターン16の他方の面がモールドレジン
の表面に露出している。
The unit semiconductor device 14 further penetrates the mold resin outside the semiconductor chip 11 and has one end in contact with (electrically coupled to) the one surface of the wiring pattern 16.
And the other end is exposed from the mold resin via plug 18
And the other surface of the wiring pattern 16 is exposed on the surface of the mold resin.

【0039】モールドレジンは、半導体チップ11と配
線パターン16との間に設けられた感光性接着剤(第1
モールド部)12と、導体配線パターン16及びビアプ
ラグ18を含む半導体チップ11上を覆う絶縁樹脂層
(第2モールド部)17とを含んでいる。絶縁樹脂層1
7は、エポキシ系樹脂、ガラスクロスを含むエポキシ系
樹脂、又はポリイミド系樹脂等の絶縁樹脂で構成されて
いる。
The mold resin is a photosensitive adhesive (first adhesive) provided between the semiconductor chip 11 and the wiring pattern 16.
The insulating resin layer (second mold portion) 17 covering the semiconductor chip 11 including the conductor wiring pattern 16 and the via plugs 18 is included. Insulating resin layer 1
7 is made of an epoxy resin, an epoxy resin containing glass cloth, or an insulating resin such as a polyimide resin.

【0040】感光性接着剤12によって、半導体チップ
11の回路形成面、導電バンプ13、電極パッド15、
及び配線パターン16の一部が封止される。感光性接着
剤12には、導電バンプ13の先端を露出させるための
スルーホール12aが形成される。
With the photosensitive adhesive 12, the circuit forming surface of the semiconductor chip 11, the conductive bumps 13, the electrode pads 15,
And a part of the wiring pattern 16 is sealed. Through holes 12 a for exposing the tips of the conductive bumps 13 are formed in the photosensitive adhesive 12.

【0041】上記3次元積層型半導体装置10Aは、ユ
ニット半導体装置14の上面及び下面に、ソルダーレジ
スト膜(絶縁膜)23及び絶縁膜19が夫々形成されて
いる。上面のソルダーレジスト膜23には、スルーホー
ル23aが形成されている。スルーホール23a内に
は、ソルダーレジスト膜23から露出し且つビアプラグ
18に接触(電気的に結合)するNi/Au、Pd等から成る
外部電極27が設けられている。絶縁膜19は、エポキ
シ系樹脂、ガラスクロスを含むエポキシ系樹脂、ポリイ
ミド系樹脂等で構成される。
In the three-dimensional stacked semiconductor device 10A, a solder resist film (insulating film) 23 and an insulating film 19 are formed on the upper surface and the lower surface of the unit semiconductor device 14, respectively. Through holes 23a are formed in the solder resist film 23 on the upper surface. An external electrode 27 made of Ni / Au, Pd, or the like, which is exposed from the solder resist film 23 and is in contact with (electrically coupled to) the via plug 18, is provided in the through hole 23a. The insulating film 19 is made of epoxy resin, epoxy resin containing glass cloth, polyimide resin, or the like.

【0042】図1(b)に示す3次元積層型半導体装置
10Aは、図1(a)の3次元積層型半導体装置10と
基本構成は同様であるが、サイズ及び/又は種類が相互
に異なる半導体チップ11、24、25を3段積層した
構成を有する点で異なる。また、図1(c)の3次元積
層型半導体装置10Aも、図1(a)の3次元積層型半
導体装置10と同様の基本構成を有するが、サイズ及び
/又は種類が同じ各2段ずつの半導体チップ11及び2
4を合計4段積層した構成を有する点で異なる。
The three-dimensional stacked semiconductor device 10A shown in FIG. 1B has the same basic structure as the three-dimensional stacked semiconductor device 10 of FIG. 1A, but the sizes and / or types are different from each other. The difference is that the semiconductor chips 11, 24 and 25 are laminated in three stages. Further, the three-dimensional stacked semiconductor device 10A of FIG. 1C also has the same basic configuration as the three-dimensional stacked semiconductor device 10 of FIG. 1A, but each two stages have the same size and / or type. Semiconductor chips 11 and 2
It is different in that it has a structure in which four layers are stacked in total of four layers.

【0043】半導体装置の第2実施形態例 図2(a)、(b)は夫々、本実施形態例の3次元積層
型半導体装置10Bの構成を示す断面図及び平面図、図
2(c)はその変形例を示す断面図、図2(d)は別の
変形例を示す断面図である。
Second Embodiment of Semiconductor Device FIGS. 2A and 2B are a sectional view and a plan view showing the structure of a three-dimensional stacked semiconductor device 10B of the present embodiment, respectively, and FIG. 2C. Is a sectional view showing the modified example, and FIG. 2D is a sectional view showing another modified example.

【0044】図2(a)に示すように、本実施形態例の
3次元積層型半導体装置10Bは、図1(a)に示した
3次元積層型半導体装置10Aを2つ、同一平面内に隣
接して配設した構成を有する。このような3次元積層型
半導体装置10Bを、個々の3次元積層型半導体装置1
0Aに分割することによって、2個の3次元積層型半導
体装置10Aが得られる。
As shown in FIG. 2A, the three-dimensional stacked semiconductor device 10B of the present embodiment example has two three-dimensional stacked semiconductor devices 10A shown in FIG. 1A in the same plane. It has a configuration in which it is disposed adjacently. Such a three-dimensional stacked semiconductor device 10B is used as an individual three-dimensional stacked semiconductor device 1
By dividing into 0A, two three-dimensional stacked semiconductor devices 10A are obtained.

【0045】本実施形態例の3次元積層型半導体装置で
は、絶縁膜19及びソルダーレジスト膜23が、図1
(a)に比して約2倍の長さを有し、全体の中央部分に
位置する配線パターン16は、双方の3次元積層型半導
体装置10Aで共用されている。配線パターン16の共
用部分には、隣接する3次元積層型半導体装置10Aの
各ビアプラグ18が形成されている。
In the three-dimensional laminated semiconductor device of this embodiment, the insulating film 19 and the solder resist film 23 are formed as shown in FIG.
The wiring pattern 16 which is about twice as long as that in (a) and is located in the central portion of the whole is shared by both the three-dimensional stacked semiconductor devices 10A. In the shared portion of the wiring pattern 16, each via plug 18 of the adjacent three-dimensional stacked semiconductor device 10A is formed.

【0046】図2(b)では、理解を容易にするため
に、実際には平面位置が同じである絶縁膜19とソルダ
ーレジスト膜23との位置を若干ずらして記載してい
る。本3次元積層型半導体装置10Bは、ソルダーレジ
スト膜23における各半導体チップ11の周囲に、複数
の外部電極27が所定のピッチで連続して形成されてい
る。
In FIG. 2B, in order to facilitate understanding, the positions of the insulating film 19 and the solder resist film 23, which are actually the same in plane position, are shown with a slight offset. In the present three-dimensional stacked semiconductor device 10B, a plurality of external electrodes 27 are continuously formed at a predetermined pitch around each semiconductor chip 11 in the solder resist film 23.

【0047】図2(c)に示す3次元積層型半導体装置
10Bは、図2(a)の3次元積層型半導体装置10B
と基本構成は同様であるが、中央部分に形成されたビア
プラグ18が共用されて1つのみが配置されている点で
異なる。この構成により、図2(a)の3次元積層型半
導体装置10Bよりも、平面方向のサイズが一層コンパ
クトになる。
The three-dimensional laminated semiconductor device 10B shown in FIG. 2C is the same as the three-dimensional laminated semiconductor device 10B shown in FIG.
And the basic configuration is the same, except that the via plug 18 formed in the central portion is shared and only one is arranged. With this configuration, the size in the planar direction becomes more compact than that of the three-dimensional stacked semiconductor device 10B of FIG.

【0048】図2(d)に示す3次元積層型半導体装置
10Bは、図2(a)の3次元積層型半導体装置10B
と基本構成は同様であるが、平面方向に配列した3次元
積層型半導体装置10Aが2個ではなく3個になってい
る点で異なる。つまり、本例の3次元積層型半導体装置
10Bは、同一平面内に、積層した半導体チップ11の
サイズ及び/又は種類が異なる3次元積層型半導体装置
10Aを3個有している。平面上の一端部に位置する3
次元積層型半導体装置10Aでは、サイズ及び/又は種
類が同じ構成の半導体チップ11を4段積層している。
他端部に位置する3次元積層型半導体装置10Aでは、
相互にサイズ及び/又は種類が異なる半導体チップ1
1、24、25、26を4段積層している。中央部に位
置する3次元積層型半導体装置10Aでは、2種類の異
なる半導体チップ11、24を夫々2個ずつ、合計4段
積層している。
The three-dimensional stacked semiconductor device 10B shown in FIG. 2D is the same as the three-dimensional stacked semiconductor device 10B shown in FIG.
And the basic configuration is the same, except that the number of the three-dimensional stacked semiconductor devices 10A arranged in the plane direction is three instead of two. That is, the three-dimensional stacked semiconductor device 10B of this example has three three-dimensional stacked semiconductor devices 10A in which the size and / or type of the stacked semiconductor chips 11 are different in the same plane. Located at one end on the plane 3
In the three-dimensional stacked semiconductor device 10A, four semiconductor chips 11 having the same size and / or type are stacked.
In the three-dimensional stacked semiconductor device 10A located at the other end,
Semiconductor chips 1 different in size and / or type from each other
Four layers of 1, 24, 25 and 26 are stacked. In the three-dimensional stacked semiconductor device 10A located in the central portion, two semiconductor chips 11 and 24 of two different types are stacked in each of four layers in total of four layers.

【0049】半導体装置の第3実施形態例 図3(a)は本実施形態例の3次元積層型半導体装置1
0Aの構成を示す断面図、図2(b)はその変形例を示
す断面図である。
Third Embodiment of Semiconductor Device FIG. 3A shows a three-dimensional stacked semiconductor device 1 according to this embodiment.
FIG. 2B is a sectional view showing the configuration of 0A, and FIG. 2B is a sectional view showing a modification thereof.

【0050】図3(a)に示す3次元積層型半導体装置
10Aは、図1(a)の3次元積層型半導体装置10と
基本構成は同様であるが、下段のユニット半導体装置1
4が、下面の絶縁膜19から露出し且つ配線パターン1
6に導通する導電バンプ33を有する点で異なる。絶縁
膜19には、配線パターン16と対向する位置にスルー
ホール20bが設けられ、スルーホール20b内に、Ni
/Au等から成る電極パッド35がめっき法等で形成され
ている。この電極パッド35上には導電バンプ(外部電
極)33が形成されている。導電バンプ33は、Au、Sn
-Pb、Sn-Ag、Sn-Cu、Sn-Ag-Cu、Sn-Bi、Sn-Zn、Sn-Zn-B
i等で構成される。
The three-dimensional stacked semiconductor device 10A shown in FIG. 3A has the same basic structure as the three-dimensional stacked semiconductor device 10 shown in FIG.
4 is exposed from the insulating film 19 on the lower surface and the wiring pattern 1
6 is different in that it has conductive bumps 33 that are electrically connected to each other. A through hole 20b is provided in the insulating film 19 at a position facing the wiring pattern 16, and a Ni hole is formed in the through hole 20b.
The electrode pad 35 made of / Au or the like is formed by a plating method or the like. Conductive bumps (external electrodes) 33 are formed on the electrode pads 35. The conductive bumps 33 are Au, Sn
-Pb, Sn-Ag, Sn-Cu, Sn-Ag-Cu, Sn-Bi, Sn-Zn, Sn-Zn-B
i etc.

【0051】図3(b)に示す3次元積層型半導体装置
10Bは、図3(a)の3次元積層型半導体装置10A
を2つ、同一平面内に隣接して配設した構成を有する。
このような3次元積層型半導体装置10Bを、個々の3
次元積層型半導体装置10Aに分割することによって、
2個の3次元積層型半導体装置10Aが簡便に得られ
る。
The three-dimensional stacked semiconductor device 10B shown in FIG. 3B is the three-dimensional stacked semiconductor device 10A shown in FIG.
2 are arranged adjacent to each other in the same plane.
Such a three-dimensional stacked semiconductor device 10B is manufactured by
By dividing the three-dimensional stacked semiconductor device 10A,
Two three-dimensional stacked semiconductor devices 10A can be easily obtained.

【0052】本実施形態例の3次元積層型半導体装置1
0A、10Bでは、最上段の表面に露出する外部電極2
7と最下段に露出する導電バンプ33とを有するので、
積層する際に、上下方向に自在に積層しつつ相互に良好
な接続を得ることができる。
Three-dimensional stacked semiconductor device 1 of the present embodiment example
In 0A and 10B, the external electrode 2 exposed on the uppermost surface
7 and the conductive bumps 33 exposed at the bottom,
When laminating, it is possible to obtain good connection with each other while laminating vertically.

【0053】半導体装置の第4実施形態例 図4(a)は本発明に係る第4実施形態例の3次元積層
型半導体装置10Aを示す断面図、図4(b)は図4
(a)の3次元積層型半導体装置10Aを平面方向に2
つ配列した変形例を示す断面図である。図4(a)及び
(b)に示す3次元積層型半導体装置10A、10Bは
夫々、図3(a)、(b)に示した3次元積層型半導体
装置10A、10Bと基本構成は同様であるが、上段の
ユニット半導体装置14表面のソルダーレジスト膜23
にスルーホール20a及び外部電極27が形成されない
点で異なる。
Fourth Embodiment of Semiconductor Device FIG. 4A is a sectional view showing a three-dimensional stacked semiconductor device 10A according to a fourth embodiment of the present invention, and FIG. 4B is FIG.
2A of the three-dimensional stacked semiconductor device 10A of FIG.
It is sectional drawing which shows the modified example which arranged one. The three-dimensional stacked semiconductor devices 10A and 10B shown in FIGS. 4A and 4B have the same basic configuration as the three-dimensional stacked semiconductor devices 10A and 10B shown in FIGS. 3A and 3B, respectively. However, the solder resist film 23 on the surface of the upper unit semiconductor device 14
The difference is that the through hole 20a and the external electrode 27 are not formed.

【0054】製造方法の第1実施形態例 図5(a)〜(d)、図6(a)〜(d)、図7(a)
〜(d)、図8(a)〜(d)及び図9(a)、(b)
は夫々、図1(a)に示した3次元積層型半導体装置1
0Aを製造する本実施形態例の製造方法を段階的に示す
断面図である。
First Embodiment of Manufacturing Method FIGS. 5 (a) to 5 (d), 6 (a) to 6 (d), and 7 (a)
~ (D), Fig.8 (a) ~ (d) and Fig.9 (a), (b)
Are the three-dimensional stacked semiconductor devices 1 shown in FIG.
It is sectional drawing which shows the manufacturing method of this embodiment example which manufactures 0A in steps.

【0055】まず、図5(a)に示すように、Cu又は
Cu合金等から成る金属板(仮基板)34上に、真空プ
レス法等を用いて、上面に予め銅箔21を貼り付けた絶
縁膜19を貼り合わせる。絶縁膜19は、エポキシ系樹
脂、ガラスクロスを含有したエポキシ系樹脂、又は、ポ
リイミド系樹脂等で構成することができる。
First, as shown in FIG. 5A, a copper foil 21 is preliminarily attached to the upper surface of a metal plate (temporary substrate) 34 made of Cu or a Cu alloy by using a vacuum pressing method or the like. The insulating film 19 is attached. The insulating film 19 can be made of an epoxy resin, an epoxy resin containing glass cloth, a polyimide resin, or the like.

【0056】次いで、図5(b)に示すように、銅箔2
1上にレジスト膜(図示せず)を形成し、このレジスト
膜をパターニングした後に、めっき法を用いて、Ni/Au
等から成る電極パッド15を形成する。更に、レジスト
膜を除去してから、図5(c)に示すように、銅箔21
を配線パターン16に形成する。
Next, as shown in FIG. 5B, the copper foil 2
1 is used to form a resist film (not shown), and after patterning this resist film, a plating method is used to form Ni / Au.
The electrode pad 15 composed of the like is formed. Further, after removing the resist film, as shown in FIG.
Are formed on the wiring pattern 16.

【0057】続いて、図5(d)に示すように、金スタ
ッドバンプ等から成る導電バンプ13を備えた回路形成
面に、予め感光性接着剤12を設けた半導体チップ11
を電極パッド15に押し付け、熱圧着法等を用いて、導
電バンプ13を電極パッド15に接続しマウントする。
これにより、半導体チップ11の下面と、配線パターン
16の一部と、配線パターン16上の電極パッド15及
び導電バンプ13とが感光性接着剤12によって封止さ
れる。ここで、感光性接着剤12は、所定の露光・現像
工程によって、導電バンプ13の先端が露出するように
予めパターニングされている。
Subsequently, as shown in FIG. 5D, the semiconductor chip 11 in which the photosensitive adhesive 12 is previously provided on the circuit forming surface having the conductive bumps 13 such as gold stud bumps.
Is pressed against the electrode pad 15, and the conductive bump 13 is connected to the electrode pad 15 and mounted by using a thermocompression bonding method or the like.
As a result, the lower surface of the semiconductor chip 11, a part of the wiring pattern 16, the electrode pads 15 and the conductive bumps 13 on the wiring pattern 16 are sealed with the photosensitive adhesive 12. Here, the photosensitive adhesive 12 is previously patterned by a predetermined exposure / development process so that the tips of the conductive bumps 13 are exposed.

【0058】引き続き、導電バンプ13を感光性接着剤
12で封止した後に、化学機械研磨(CMP)等を用い
て、半導体チップ11の上部を研削し、図6(a)に示
すように、厚みが5〜50μmの極めて薄い半導体チッ
プ11を得る。続いて、熱プレス法又は真空熱プレス法
等により、図6(b)に示すように、半導体チップ11
の全体と、配線パターン16の感光性接着剤12から露
出した部分とを絶縁樹脂層17で覆い、硬化させる。
Subsequently, after the conductive bumps 13 are sealed with the photosensitive adhesive 12, the upper portion of the semiconductor chip 11 is ground by using chemical mechanical polishing (CMP) or the like, as shown in FIG. An extremely thin semiconductor chip 11 having a thickness of 5 to 50 μm is obtained. Subsequently, as shown in FIG. 6B, the semiconductor chip 11 is formed by a hot pressing method or a vacuum hot pressing method.
And the part of the wiring pattern 16 exposed from the photosensitive adhesive 12 are covered with an insulating resin layer 17 and cured.

【0059】次いで、図6(c)に示すように、炭酸ガ
スレーザ、UV−YAGレーザ、エキシマレーザ等を用
いて、配線パターン16上に、半導体チップ11の外側
を通過し絶縁樹脂層17を貫通するスルーホール20b
を形成する。更に、Cuめっき法によって、図6(d)
に示すように、スルーホール20b内にビアプラグ18
を形成したユニット半導体装置14を得る。
Then, as shown in FIG. 6C, a carbon dioxide gas laser, a UV-YAG laser, an excimer laser or the like is used to pass through the insulating resin layer 17 on the wiring pattern 16 outside the semiconductor chip 11. Through hole 20b
To form. Further, by the Cu plating method, FIG.
As shown in FIG.
A unit semiconductor device 14 having the above is obtained.

【0060】ビアプラグ18は、例えば図6(a)の工
程後に、Cuめっき法等で、配線パターン16上に直接
に形成することもできる。この場合には、ビアプラグ1
8の形成工程に続いて、ビアプラグ18を含む全体を絶
縁樹脂層17で覆った後に、炭酸ガスレーザ等で絶縁樹
脂層17を除去してビアプラグ18を露出させ、図6
(d)に示す構成を得る。
The via plug 18 may be directly formed on the wiring pattern 16 by Cu plating or the like after the step of FIG. 6A. In this case, via plug 1
After the step of forming 8 is covered with the insulating resin layer 17 including the via plug 18, the insulating resin layer 17 is removed by a carbon dioxide gas laser or the like to expose the via plug 18, and FIG.
The configuration shown in (d) is obtained.

【0061】次いで、めっき法等により、図7(a)に
示すように、Cuめっき膜32を形成してから、図5
(b)〜図6(d)までの工程と同様に、図7(b)〜
図7(d)の工程を行う。これにより、図7(d)に示
すように、図6(d)に示したユニット半導体装置14
を2段積層したユニット半導体装置14が得られる。
Then, a Cu plating film 32 is formed by a plating method or the like as shown in FIG.
7 (b) -FIG. 6 (d), the same as in FIG. 7 (b) -FIG.
The process of FIG. 7D is performed. As a result, as shown in FIG. 7D, the unit semiconductor device 14 shown in FIG.
A unit semiconductor device 14 having two stacked layers is obtained.

【0062】引き続き、上段のユニット半導体装置14
における、ビアプラグ18の上端部を含む絶縁樹脂層1
7上に、図8(a)に示すように、ソルダーレジスト膜
23を形成する。更に、図8(b)に示すように、絶縁
膜19に貼り合せていた金属板34を、ケミカルエッチ
ングによって除去する。
Subsequently, the upper unit semiconductor device 14
Of the insulating resin layer 1 including the upper end of the via plug 18 in
As shown in FIG. 8A, the solder resist film 23 is formed on the surface 7. Further, as shown in FIG. 8B, the metal plate 34 attached to the insulating film 19 is removed by chemical etching.

【0063】続いて、図8(c)に示すように、ソルダ
ーレジスト膜23における上段のビアプラグ18に対向
する位置に、炭酸ガスレーザ、UV−YAGレーザ、エ
キシマレーザ等で、スルーホール23aを形成する。更
に、めっき法等で、スルーホール23a内に、ビアプラ
グ18に接続する外部電極27を形成する。引き続き、
ビアプラグ18周囲の絶縁樹脂層17、配線パターン1
6、ソルダーレジスト膜23、及び絶縁膜19をダイシ
ングすることにより、図1(a)に示したように外形サ
イズがコンパクトな3次元積層型半導体装置10Aが得
られる。
Subsequently, as shown in FIG. 8C, a through hole 23a is formed at a position facing the upper via plug 18 in the solder resist film 23 by a carbon dioxide laser, a UV-YAG laser, an excimer laser or the like. . Further, an external electrode 27 connected to the via plug 18 is formed in the through hole 23a by a plating method or the like. Continuing,
Insulating resin layer 17 around the via plug 18, wiring pattern 1
By dicing 6, the solder resist film 23, and the insulating film 19, a three-dimensional stacked semiconductor device 10A having a compact outer size as shown in FIG. 1A is obtained.

【0064】或いは、図8(b)に後続して、炭酸ガス
レーザ等により、図8(d)に示すように、絶縁膜19
の電極パッド15に対応する位置にスルーホール20b
を形成し、このスルーホール20b内に電極パッド35
を形成することができる。この場合、電極パッド35
は、Ni/Au、Pd等を用いた無電解めっき法等によ
って形成する。更に、リフロー等により、図9(a)に
示すように、電極パッド35上に導電バンプ33を形成
する。
Alternatively, after the step shown in FIG. 8B, an insulating film 19 is formed by a carbon dioxide gas laser or the like as shown in FIG. 8D.
Through hole 20b at a position corresponding to the electrode pad 15 of
And the electrode pad 35 is formed in the through hole 20b.
Can be formed. In this case, the electrode pad 35
Is formed by an electroless plating method using Ni / Au, Pd, or the like. Further, as shown in FIG. 9A, the conductive bumps 33 are formed on the electrode pads 35 by reflow or the like.

【0065】次いで、ビアプラグ18周囲の絶縁樹脂層
17、配線パターン16、ソルダーレジスト膜23及び
絶縁膜19をダイシングすることによって、図4(a)
に示した外形サイズがコンパクトな3次元積層型半導体
装置10Aが得られる。
Next, the insulating resin layer 17, the wiring pattern 16, the solder resist film 23, and the insulating film 19 around the via plug 18 are diced to obtain the structure shown in FIG.
As a result, the three-dimensional stacked semiconductor device 10A having a compact outer size shown in FIG.

【0066】製造方法の第2実施形態例 図10(a)〜(e)、図11(a)〜(e)、図12
(a)〜(d)及び図13(a)〜(c)は夫々、図1
(a)に示した3次元積層型半導体装置10Aを製造す
る本実施形態例の製造方法を段階的に示す断面図であ
る。
Second Embodiment of Manufacturing Method FIGS. 10 (a) to (e), FIGS. 11 (a) to (e), and FIG.
(A)-(d) and FIG. 13 (a)-(c) are respectively FIG.
It is sectional drawing which shows the manufacturing method of the example of this embodiment which manufactures the three-dimensional laminated semiconductor device 10A shown to (a) in steps.

【0067】まず、図10(a)に示すように、Cu又
はCu合金等から成る金属板(仮基板)34上に、配線
パターン16を直接に形成する。次いで、配線パターン
16上にレジスト膜(図示せず)を形成し、このレジス
ト膜をパターニングした後、めっき法により、図10
(b)に示すように、Ni/Au等から成る電極パッド15
を形成する。
First, as shown in FIG. 10A, the wiring pattern 16 is directly formed on the metal plate (temporary substrate) 34 made of Cu or Cu alloy. Next, a resist film (not shown) is formed on the wiring pattern 16, the resist film is patterned, and then a plating method is performed as shown in FIG.
As shown in (b), the electrode pad 15 made of Ni / Au or the like
To form.

【0068】続いて、レジスト膜を除去してから、図1
0(c)に示すように、回路形成面に感光性接着剤12
を設けた半導体チップ11を電極パッド15に押し付
け、熱圧着法等を用いて、導電バンプ13と電極パッド
15とを接続する。ここで、感光性接着剤12には、導
電バンプ13の先端を露出させるスルーホール12aが
予め形成されている。
Then, after removing the resist film, the process shown in FIG.
As shown in 0 (c), the photosensitive adhesive 12 is formed on the circuit forming surface.
The semiconductor chip 11 provided with is pressed against the electrode pad 15, and the conductive bump 13 and the electrode pad 15 are connected by a thermocompression bonding method or the like. Here, the photosensitive adhesive 12 is preliminarily formed with a through hole 12a for exposing the tip of the conductive bump 13.

【0069】引き続き、図10(d)に示すように、半
導体チップ11の下部を感光性接着剤12で封止した
後、半導体チップ11の上部を研削して、厚みが5〜5
0μmの極めて薄い半導体チップ11を得る。
Subsequently, as shown in FIG. 10D, after sealing the lower part of the semiconductor chip 11 with the photosensitive adhesive 12, the upper part of the semiconductor chip 11 is ground to a thickness of 5 to 5
An extremely thin semiconductor chip 11 of 0 μm is obtained.

【0070】次いで、図10(e)に示すように、熱プ
レス法又は真空熱プレス法等を用いて、配線パターン1
6の露出部分を含む半導体チップ11全体を絶縁樹脂層
17で覆い、硬化させる。更に、炭酸ガスレーザ等を用
いて、半導体チップ11近傍の絶縁樹脂層17に、図1
1(a)に示すように、スルーホール20aを形成す
る。この後、めっき法により、図11(b)に示すよう
に、スルーホール20a内にCuめっきから成るビアプ
ラグ18を形成する。
Then, as shown in FIG. 10E, the wiring pattern 1 is formed by using a hot pressing method or a vacuum hot pressing method.
The entire semiconductor chip 11 including the exposed portions of 6 is covered with the insulating resin layer 17 and cured. Further, by using a carbon dioxide gas laser or the like, the insulating resin layer 17 near the semiconductor chip 11 is formed on the insulating resin layer 17 as shown in FIG.
As shown in FIG. 1A, the through hole 20a is formed. Then, as shown in FIG. 11B, a via plug 18 made of Cu plating is formed in the through hole 20a by a plating method.

【0071】或いは、上記に代えて、図10(d)の工
程後に、配線パターン16上にCuめっき法でビアプラ
グ18を形成してから、ビアプラグ18及び半導体チッ
プ11を含む全体を絶縁樹脂層17で覆うことができ
る。この場合には、更に、炭酸ガスレーザ等を用いて、
絶縁樹脂層17を選択的に除去してビアプラグ18の上
端を露出させ、図11(b)の状態を得ることもでき
る。
Alternatively, instead of the above, after the step of FIG. 10D, the via plug 18 is formed on the wiring pattern 16 by the Cu plating method, and then the entire insulating resin layer 17 including the via plug 18 and the semiconductor chip 11 is formed. Can be covered with. In this case, using a carbon dioxide laser, etc.,
It is also possible to selectively remove the insulating resin layer 17 to expose the upper end of the via plug 18 and obtain the state of FIG.

【0072】次いで、めっき法により、図11(c)に
示すように、ビアプラグ18上端面を含む絶縁樹脂層1
7上にCuめっき膜32を形成してから、図11(d)
〜図12(a)に示すように、図10(a)〜図11
(c)と同様の工程を繰り返し行い、図12(b)に示
すように、最上面にソルダーレジスト膜23を形成す
る。
Next, as shown in FIG. 11C, the insulating resin layer 1 including the upper end surface of the via plug 18 is formed by plating.
11 (d) after forming the Cu plating film 32 on 7
~ As shown in Fig. 12 (a), Fig. 10 (a) ~ Fig. 11
The same process as in (c) is repeated to form the solder resist film 23 on the uppermost surface as shown in FIG.

【0073】続いて、ケミカルエッチングによって、絶
縁膜19の下面に貼り付いている金属板34を図12
(c)に示すように除去する。更に、真空プレス法等を
用いて、図12(d)に示すように、下段のユニット半
導体装置14における、配線パターン16の露出面を含
む感光性接着剤12上に、エポキシ系樹脂等から成る絶
縁膜19を形成する。
Subsequently, the metal plate 34 adhered to the lower surface of the insulating film 19 is chemically etched, as shown in FIG.
Remove as shown in (c). Further, using a vacuum pressing method or the like, as shown in FIG. 12D, an epoxy resin or the like is formed on the photosensitive adhesive 12 including the exposed surface of the wiring pattern 16 in the lower unit semiconductor device 14. The insulating film 19 is formed.

【0074】次いで、炭酸ガスレーザ等を用いて、図1
3(a)に示すように、絶縁膜19における配線パター
ン16に対向する位置に、スルーホール20bを形成す
る。更に、無電解めっき法等によって、図13(b)に
示すように、スルーホール20a内に露出した配線パタ
ーン16上に、Ni/Au、Pd等から成る電極パッド35を
形成する。続いて、リフロー等により、電極パッド35
上に、Sn-Pb、Sn-Ag、Sn-Cu、Sn-Ag-Cu、Sn-Bi、Sn-Z
n、Sn-Zn-Bi等から成る導電バンプ33を形成する。
Then, using a carbon dioxide laser or the like, as shown in FIG.
As shown in FIG. 3A, a through hole 20b is formed in the insulating film 19 at a position facing the wiring pattern 16. Further, as shown in FIG. 13B, an electrode pad 35 made of Ni / Au, Pd or the like is formed on the wiring pattern 16 exposed in the through hole 20a by an electroless plating method or the like. Then, the electrode pad 35 is formed by reflow or the like.
On top, Sn-Pb, Sn-Ag, Sn-Cu, Sn-Ag-Cu, Sn-Bi, Sn-Z
A conductive bump 33 made of n, Sn-Zn-Bi or the like is formed.

【0075】引き続き、ビアプラグ18の周囲の絶縁樹
脂層17、配線パターン16、ソルダーレジスト膜23
及び絶縁膜19をダイシングすることにより、図4
(a)に示した3次元積層型半導体装置10Aを得る。
Subsequently, the insulating resin layer 17, the wiring pattern 16, and the solder resist film 23 around the via plug 18 are formed.
By dicing the insulating film 19 and the insulating film 19, as shown in FIG.
The three-dimensional stacked semiconductor device 10A shown in (a) is obtained.

【0076】或いは、上記に代えて、図12(c)の工
程に後続して、炭酸ガスレーザ、UV−YAGレーザ、
エキシマレーザ等を用いて、ソルダーレジスト膜23
に、ビアプラグ18に対応するスルーホール23a(図
1参照)を形成した後、無電解めっき法等で、スルーホ
ール内に電極パッド27(図1参照)を形成することが
できる。この場合、更に、最下層の配線パターン16下
面に、図12(d)に示す絶縁膜19を形成する。引き
続き、電極パッド27の周囲部分をダイシングすること
により、図1(a)に示した3次元積層型半導体装置1
0Aを得る。
Alternatively, instead of the above, following the step of FIG. 12C, a carbon dioxide gas laser, a UV-YAG laser,
The solder resist film 23 is formed by using an excimer laser or the like.
After forming the through hole 23a (see FIG. 1) corresponding to the via plug 18, the electrode pad 27 (see FIG. 1) can be formed in the through hole by an electroless plating method or the like. In this case, the insulating film 19 shown in FIG. 12D is further formed on the lower surface of the lowermost wiring pattern 16. Subsequently, by dicing the peripheral portion of the electrode pad 27, the three-dimensional stacked semiconductor device 1 shown in FIG.
You get 0A.

【0077】製造方法の第3実施形態例 図14(a)〜(d)及び図15(a)〜(c)は夫
々、図4に示した3次元積層型半導体装置を製造する本
実施形態例の製造方法を段階的に示す断面図である。
Third Embodiment of Manufacturing Method FIGS. 14A to 14D and FIGS. 15A to 15C respectively show the present embodiment for manufacturing the three-dimensional stacked semiconductor device shown in FIG. It is sectional drawing which shows the manufacturing method of an example in steps.

【0078】まず、図5(c)の工程に後続して、図1
4(b)に示すように、配線パターン16の電極パッド
15上に、導電バンプ13を有する回路形成面に感光性
接着剤12が設けられた半導体チップ11を熱圧着法等
により接続する。次いで、めっき法等により、配線パタ
ーン16上に、半導体チップに隣接する起立状態のビア
プラグ18を形成する。
First, after the step of FIG.
As shown in FIG. 4B, the semiconductor chip 11 having the photosensitive adhesive 12 provided on the circuit forming surface having the conductive bumps 13 is connected to the electrode pads 15 of the wiring pattern 16 by a thermocompression bonding method or the like. Then, a standing via plug 18 adjacent to the semiconductor chip is formed on the wiring pattern 16 by a plating method or the like.

【0079】引き続き、熱プレス法や真空熱プレス法等
によって、図14(c)に示すように、半導体チップ1
1、ビアプラグ18、及び配線パターン16の露出面を
絶縁樹脂層17で覆う。この後、図14(d)に示すよ
うに、絶縁樹脂層17の表面側から絶縁樹脂層17及び
半導体チップ11を研削し、厚みが5μm〜50μmの半
導体チップ11を得る。
Subsequently, as shown in FIG. 14C, the semiconductor chip 1 is formed by a hot pressing method or a vacuum hot pressing method.
1, the exposed surfaces of the via plug 18 and the wiring pattern 16 are covered with the insulating resin layer 17. Thereafter, as shown in FIG. 14D, the insulating resin layer 17 and the semiconductor chip 11 are ground from the surface side of the insulating resin layer 17 to obtain the semiconductor chip 11 having a thickness of 5 μm to 50 μm.

【0080】続いて、熱プレス法や真空熱プレス法等に
よって、図15(a)に示すように、絶縁樹脂層17表
面及びビアプラグ18上端面を含む半導体チップ11上
部に、絶縁膜37を形成する。更に、炭酸ガスレーザ、
UV−YAGレーザ、エキシマレーザ等を用いて、図1
5(b)に示すように、ビアプラグ18上の絶縁膜37
にスルーホール20aを形成し、ビアプラグ18を露出
させる。
Subsequently, as shown in FIG. 15A, an insulating film 37 is formed on the upper part of the semiconductor chip 11 including the surface of the insulating resin layer 17 and the upper end surface of the via plug 18 by a hot pressing method or a vacuum hot pressing method. To do. In addition, carbon dioxide laser,
Using a UV-YAG laser, excimer laser, etc., FIG.
As shown in FIG. 5B, the insulating film 37 on the via plug 18
A through hole 20a is formed in the substrate and the via plug 18 is exposed.

【0081】引き続き、図15(c)に示すように、ス
ルーホール20a内を含む絶縁樹脂37上に銅箔(3
6)を形成してから、配線パターン36に形成する。更
に、図14(a)〜図15(c)の工程を繰り返し行っ
た後、図8(a)〜図9(b)の工程を行って、図4
(a)に示す3次元積層型半導体装置10Aを得る。
Subsequently, as shown in FIG. 15C, a copper foil (3) is formed on the insulating resin 37 including the inside of the through hole 20a.
After forming 6), the wiring pattern 36 is formed. Further, after repeatedly performing the steps of FIGS. 14A to 15C, the steps of FIGS. 8A to 9B are performed, and the steps of FIG.
A three-dimensional stacked semiconductor device 10A shown in (a) is obtained.

【0082】製造方法の第4実施形態例 図16(a)〜(d)及び図17(a)〜(c)は夫
々、図4に示した3次元積層型半導体装置10Aを製造
する本実施形態例の製造方法を段階的に示す断面図であ
る。
Fourth Embodiment of Manufacturing Method FIGS. 16A to 16D and FIGS. 17A to 17C respectively show the present embodiment for manufacturing the three-dimensional stacked semiconductor device 10A shown in FIG. It is sectional drawing which shows the manufacturing method of a form example in steps.

【0083】まず、図16(a)に示すように、金属板
34上に配線パターン16を形成し、配線パターン16
上に電極パッド15を形成した後、図16(b)に示す
ように、製造方法の第3実施形態例と同様に、熱圧着法
等により、フェースダウンで半導体チップ11の導電バ
ンプ13を電極パッド15に接続する。
First, as shown in FIG. 16A, the wiring pattern 16 is formed on the metal plate 34, and then the wiring pattern 16 is formed.
After forming the electrode pads 15 on the upper surface, as shown in FIG. 16B, the conductive bumps 13 of the semiconductor chip 11 are electrode-down face down by a thermocompression bonding method or the like, as in the third embodiment of the manufacturing method. Connect to pad 15.

【0084】次いで、めっき法等を用いて、配線パター
ン16上に、ビアプラグ18を起立状態で形成する。更
に、熱プレス法や真空熱プレス法等によって、図16
(c)に示すように、半導体チップ11、ビアプラグ1
8、及び配線パターン16の露出面を絶縁樹脂層17で
覆う。この後、図16(d)に示すように、絶縁樹脂層
17の表面側から絶縁樹脂層17及び半導体チップ11
上部を研削し、厚みが5μm〜50μmの半導体チップ1
1を得る。
Next, a via plug 18 is formed in an upright state on the wiring pattern 16 by using a plating method or the like. Further, by a hot pressing method, a vacuum hot pressing method, or the like, as shown in FIG.
As shown in (c), the semiconductor chip 11 and the via plug 1
8 and the exposed surface of the wiring pattern 16 are covered with an insulating resin layer 17. Thereafter, as shown in FIG. 16D, the insulating resin layer 17 and the semiconductor chip 11 are arranged from the front surface side of the insulating resin layer 17.
The upper part is ground, and the semiconductor chip 1 has a thickness of 5 μm to 50 μm.
Get one.

【0085】続いて、熱プレス法や真空熱プレス法等を
用いて、絶縁樹脂層17と同じ材質の絶縁膜37で、図
17(a)に示すように、絶縁樹脂層17、ビアプラグ
18及び半導体チップ11上部を覆う。更に、炭酸ガス
レーザ、UV−YAGレーザ、エキシマレーザ等を用い
て、絶縁膜37にスルーホール20aを形成してビアプ
ラグ18を露出させる。引き続き、めっき法等により、
スルーホール20a内を含む表面全体を銅箔(36)で
覆った後、この銅箔(36)を配線パターン36に形成
する。続いて、図16(b)〜図17(c)までの工程
を繰り返し行った後、図8(a)〜図9(b)の工程を
行って、図4(a)に示す3次元積層型半導体装置10
Aを得る。
Then, using an insulating film 37 made of the same material as the insulating resin layer 17 by using a hot pressing method or a vacuum hot pressing method, as shown in FIG. The upper part of the semiconductor chip 11 is covered. Further, a carbon dioxide gas laser, a UV-YAG laser, an excimer laser or the like is used to form a through hole 20a in the insulating film 37 to expose the via plug 18. Then, by plating method,
After covering the entire surface including the inside of the through hole 20a with the copper foil (36), the copper foil (36) is formed on the wiring pattern 36. Subsequently, after repeatedly performing the steps of FIGS. 16B to 17C, the steps of FIGS. 8A to 9B are performed to perform the three-dimensional stacking shown in FIG. Type semiconductor device 10
Get A.

【0086】半導体装置の第5実施形態例 図18(a)及び(b)は夫々、本実施形態例の3次元
積層型半導体装置10Bを示す断面図である。図18
(a)に示す3次元積層型半導体装置10Bは、サイズ
及び/又は種類が同じ半導体チップ11の2段積層の3
次元積層型半導体装置10B(図2(a))を4段積層構
造にしたものである。この4段積層の3次元積層型半導
体装置10Bは、最上段のユニット半導体装置14の表
面を覆うソルダーレジスト膜23に、外部電極27(図
18(b))は形成されず、最下段のユニット半導体装置
14の下面を覆う絶縁膜19に、導電バンプ33(図3
(b))は形成されていない。また、図18(b)は、図
2(a)に示した3次元積層型半導体装置10Bにおけ
る導電バンプ33を無くした形態を示している。
Fifth Embodiment of Semiconductor Device FIGS. 18A and 18B are sectional views showing a three-dimensional stacked semiconductor device 10B of the present embodiment, respectively. FIG.
The three-dimensional stacked semiconductor device 10B shown in (a) has three stacked semiconductor chips 11 of the same size and / or type.
The three-dimensional stacked semiconductor device 10B (FIG. 2A) has a four-stage stacked structure. In this three-dimensional stacked semiconductor device 10B having four stacked layers, the external electrodes 27 (FIG. 18B) are not formed on the solder resist film 23 that covers the surface of the uppermost unit semiconductor device 14, and the lowermost unit is formed. The conductive bump 33 (see FIG. 3) is formed on the insulating film 19 that covers the lower surface of the semiconductor device 14.
(b)) is not formed. Further, FIG. 18B shows a form in which the conductive bump 33 in the three-dimensional stacked semiconductor device 10B shown in FIG. 2A is eliminated.

【0087】製造方法の第5実施形態例 図19(a)、(b)及び図20(a)、(b)は夫
々、図18(a)、(b)に示した3次元積層型半導体
装置10Bを製造する本実施形態例の製造方法を示す断
面図である。
Fifth Embodiment of Manufacturing Method FIGS. 19A and 19B and FIGS. 20A and 20B are three-dimensional laminated semiconductors shown in FIGS. 18A and 18B, respectively. It is sectional drawing which shows the manufacturing method of the example of this embodiment which manufactures the apparatus 10B.

【0088】図19及び図20に示す製造プロセスの概
要において、個々の3次元積層型半導体装置10Aを形
成する製造プロセスは、図5〜図9で説明した製造プロ
セスとほぼ同様である。しかし、本製造プロセスでは、
平面方向に長い金属板34を仮基板として使用し、金属
板34上に、ユニット半導体装置14を4段積層して、
平面方向に複数の3次元積層型半導体装置10Aを一括
して作製する。
In the outline of the manufacturing process shown in FIGS. 19 and 20, the manufacturing process for forming each of the three-dimensional stacked semiconductor devices 10A is substantially the same as the manufacturing process described with reference to FIGS. However, in this manufacturing process,
A metal plate 34 that is long in the plane direction is used as a temporary substrate, and four unit semiconductor devices 14 are stacked on the metal plate 34.
A plurality of three-dimensional stacked semiconductor devices 10A are collectively manufactured in the plane direction.

【0089】図19(a)、(b)に示す製造プロセス
では、金属板34上に絶縁膜19を形成してから、ユニ
ット半導体装置14を積層する。これに対し、図20
(a)、(b)に示す製造プロセスでは、金属板34上
に絶縁膜19を形成せずにユニット半導体装置14を積
層するため、ケミカルエッチングで金属板34を除去し
た際に露出する最下層の配線パターン16を絶縁膜19
で覆う。
In the manufacturing process shown in FIGS. 19A and 19B, the insulating film 19 is formed on the metal plate 34, and then the unit semiconductor device 14 is laminated. On the other hand, FIG.
In the manufacturing process shown in (a) and (b), since the unit semiconductor device 14 is laminated without forming the insulating film 19 on the metal plate 34, the lowermost layer exposed when the metal plate 34 is removed by chemical etching. The wiring pattern 16 of the insulating film 19
Cover with.

【0090】図19及び図20に示した製造プロセスで
は、金属板34を除去した後に露出する又は新たに形成
する絶縁膜19に、炭酸ガスレーザ等により、図9に示
すようなスルーホール20bを形成し、このスルーホー
ル20b内に電極パッド35を形成する。更に、スルー
ホール20b内に、リフロー等で導電バンプ33を形成
して電極パッド35に接続する。
In the manufacturing process shown in FIGS. 19 and 20, through holes 20b as shown in FIG. 9 are formed in the insulating film 19 exposed or newly formed after removing the metal plate 34 by a carbon dioxide laser or the like. Then, the electrode pad 35 is formed in the through hole 20b. Further, a conductive bump 33 is formed in the through hole 20b by reflowing or the like and connected to the electrode pad 35.

【0091】最後に、図19(b)及び図20(b)に
示す3次元積層型半導体装置10Bをダイシングし、3
次元積層型半導体装置10Aを個別化することにより、
図1(a)及び図4(a)に示した3次元積層構造を4
段にした3次元積層型半導体装置10Aを、一括して得
ることができる。このようにして作製した3次元積層型
半導体装置10Aをダイシングする際に、同一平面内に
複数の3次元積層型半導体装置10Aが残るようにすれ
ば、図2(a)、(c)、図3(b)、及び図4(b)
に示すような、3次元積層型半導体装置10Aを一括で
得ることができる。
Finally, the three-dimensional stacked semiconductor device 10B shown in FIGS. 19 (b) and 20 (b) is diced.
By individualizing the three-dimensional stacked semiconductor device 10A,
The three-dimensional laminated structure shown in FIG. 1A and FIG.
It is possible to collectively obtain the three-dimensional stacked semiconductor device 10A having a step. When dicing the three-dimensional stacked semiconductor device 10A produced in this manner, if a plurality of three-dimensional stacked semiconductor devices 10A are left in the same plane, FIG. 2A, FIG. 3 (b) and FIG. 4 (b)
It is possible to collectively obtain the three-dimensional stacked semiconductor device 10A as shown in FIG.

【0092】本実施形態例によると、複数の3次元積層
型半導体装置10Aを平面方向に配列させた状態で一度
に形成できるので、各3次元積層型半導体装置10A間
で金属板34を共通に使用し、金属板34上に配線パタ
ーン16を形成する工程以降、金属板34の除去工程ま
でを、各層で同時進行的に実施することができる。これ
により、複数の3次元積層型半導体装置10Aの形成工
程を簡略化し、個々の3次元積層型半導体装置10Aを
得るまでに要する時間を短縮することができる。
According to this embodiment, a plurality of three-dimensional stacked semiconductor devices 10A can be formed at a time in a state of being arranged in the plane direction, so that the metal plate 34 is commonly used among the three-dimensional stacked semiconductor devices 10A. After the step of forming the wiring pattern 16 on the metal plate 34 by using it, the steps up to the step of removing the metal plate 34 can be simultaneously performed in each layer. Thereby, the process of forming the plurality of three-dimensional stacked semiconductor devices 10A can be simplified, and the time required to obtain each of the three-dimensional stacked semiconductor devices 10A can be shortened.

【0093】半導体装置の第6実施形態例 図21は、封止絶縁膜41で覆ってパッケージ化した本
実施形態例の3次元積層型半導体装置10Aを示す断面
図である。本実施形態例では、図1(a)に示した3次
元積層型半導体装置10Aが、最下層の絶縁膜19をマ
ザーボード47又はインターポーザ基板49に接着され
ている。また、図1(a)に示したソルダーレジスト膜
23が除去されて電極パッド27が突出し、電極パッド
27と、マザーボード47又はインターポーザ基板49
上に形成された電極パッド45とが、金ワイヤ40でワ
イヤボンディング接続されている。更に、金ワイヤ40
を含む3次元積層型半導体装置10A全体が封止絶縁膜
41で封止されてパッケージ化されている。
Sixth Embodiment of Semiconductor Device FIG. 21 is a sectional view showing a three-dimensional stacked semiconductor device 10A of the present embodiment which is packaged by being covered with a sealing insulating film 41. In the present embodiment example, the three-dimensional stacked semiconductor device 10A shown in FIG. 1A has the lowermost insulating film 19 bonded to the mother board 47 or the interposer substrate 49. Further, the solder resist film 23 shown in FIG. 1A is removed and the electrode pads 27 are projected, and the electrode pads 27 and the mother board 47 or the interposer substrate 49 are formed.
The electrode pad 45 formed above is wire-bonded to the electrode pad 45 by a gold wire 40. Furthermore, the gold wire 40
The entire three-dimensional stacked semiconductor device 10A including is sealed by the sealing insulating film 41 and packaged.

【0094】半導体装置の第7実施形態例 図22は、封止絶縁膜41で覆ってパッケージ化した本
実施形態例の3次元積層型半導体装置10Aを示す断面
図である。本実施形態例では、図21に示した最上層の
半導体チップ11上に、サイズ及び/又は種類が異なる
半導体チップ25が、絶縁膜19を介してフェースアッ
プで接着されている。この半導体チップ25上に形成さ
れた電極パッド25aと、マザーボード17又はインタ
ーポーザ基板19上の電極パッド45とが、金ワイヤ4
0でワイヤボンディング接続されている。更に、金ワイ
ヤ40を含む3次元積層型半導体装置10A全体が封止
絶縁膜41で封止されてパッケージ化されている。
Seventh Embodiment of Semiconductor Device FIG. 22 is a sectional view showing a three-dimensional stacked semiconductor device 10A of the present embodiment which is packaged by being covered with a sealing insulating film 41. In the present embodiment example, semiconductor chips 25 of different sizes and / or types are bonded face-up via the insulating film 19 on the uppermost semiconductor chip 11 shown in FIG. The electrode pad 25a formed on the semiconductor chip 25 and the electrode pad 45 on the mother board 17 or the interposer substrate 19 are the gold wires 4
Wire bonding connection is made at 0. Furthermore, the entire three-dimensional stacked semiconductor device 10A including the gold wire 40 is sealed with a sealing insulating film 41 and packaged.

【0095】図22では、3次元積層型半導体装置10
A上に、この半導体装置10Aとはサイズが異なる半導
体チップ25を1枚積層した例を示したが、パッケージ
の厚み仕様の範囲内であれば、2枚以上の半導体チップ
25を同様の手法で積層することができる。
In FIG. 22, the three-dimensional stacked semiconductor device 10 is shown.
An example in which one semiconductor chip 25 having a size different from that of the semiconductor device 10A is stacked on A is shown. However, if the semiconductor chip 25 is within the package thickness specification, two or more semiconductor chips 25 are formed by the same method. It can be laminated.

【0096】半導体装置の第8実施形態例 図23は、本実施形態例の3次元積層型半導体装置10
Aを示す断面図である。本実施形態例の3次元積層型半
導体装置10Aでは、図3に示した3次元積層型半導体
装置10A上に、図4に示した構成とは導電バンプ33
の位置がやや異なる3次元積層型半導体装置10Aが積
層され、上段側の導電バンプ33を介して相互に接続さ
れている。この構成を実現するために、上層側の3次元
積層型半導体装置10Aでは、導電バンプ33がビアプ
ラグ18の下部に形成されている。本実施形態例では、
上下の3次元積層型半導体装置10A間のスペースに、
アンダーフィル樹脂を挿入することもできる。
Eighth Embodiment of Semiconductor Device FIG. 23 shows a three-dimensional stacked semiconductor device 10 according to this embodiment.
It is sectional drawing which shows A. In the three-dimensional stacked semiconductor device 10A of the present embodiment, the conductive bumps 33 are provided on the three-dimensional stacked semiconductor device 10A shown in FIG.
The three-dimensional stacked semiconductor devices 10A whose positions are slightly different are stacked and connected to each other through the conductive bumps 33 on the upper side. In order to realize this configuration, the conductive bump 33 is formed below the via plug 18 in the upper layer three-dimensional stacked semiconductor device 10A. In this embodiment example,
In the space between the upper and lower three-dimensional stacked semiconductor devices 10A,
An underfill resin can also be inserted.

【0097】半導体装置の第9実施形態例 図24は、本実施形態例のパッケージ化した3次元積層
型半導体装置10Aを示す断面図である。本実施形態例
では、図12(d)の3次元積層型半導体装置10A上
に、これとはサイズ及び/又は種類が異なる図1(a)
の3次元積層型半導体装置10Aが、絶縁膜19を介し
て積層され接着されている。また、下段の3次元積層型
半導体装置10Aの絶縁膜19が、マザーボード47又
はインターポーザ基板49上に接着され、上下の各3次
元積層型半導体装置10Aが夫々、マザーボード47又
はインターポーザ基板49上の電極パッド45に、ビア
プラグ18及び外部電極27を接続している。更に、金
ワイヤ40を含む3次元積層型半導体装置10A全体が
封止絶縁膜41で封止されて、パッケージ化されてい
る。
Ninth Embodiment of Semiconductor Device FIG. 24 is a sectional view showing a packaged three-dimensional stacked semiconductor device 10A according to this embodiment. In the present embodiment, the size and / or type of the three-dimensional stacked semiconductor device 10A of FIG. 12D is different from that of FIG.
The three-dimensional laminated semiconductor device 10A is laminated and adhered via the insulating film 19. The insulating film 19 of the lower three-dimensional stacked semiconductor device 10A is adhered onto the mother board 47 or the interposer substrate 49, and the upper and lower three-dimensional stacked semiconductor devices 10A are electrodes on the mother board 47 or the interposer substrate 49, respectively. The via plug 18 and the external electrode 27 are connected to the pad 45. Further, the entire three-dimensional stacked semiconductor device 10A including the gold wire 40 is sealed with the sealing insulating film 41 and packaged.

【0098】半導体装置の第10実施形態例 図25(a)は本実施形態例のパッケージ化した3次元
積層型半導体装置10Aを示す断面図、図25(b)は
図25(a)の変形例を示す断面図である。
Tenth Embodiment of Semiconductor Device FIG. 25 (a) is a sectional view showing a packaged three-dimensional stacked semiconductor device 10A of this embodiment, and FIG. 25 (b) is a modification of FIG. 25 (a). It is sectional drawing which shows an example.

【0099】本実施形態例では、マザーボード47又は
インターポーザ基板49上にパッケージ化された図1
(a)の3次元積層型半導体装置10Aが2段積層さ
れ、双方の3次元積層型半導体装置10Aが、導電バン
プ33を介して相互に接続されている。
In this embodiment, the package is provided on the mother board 47 or the interposer substrate 49 shown in FIG.
The three-dimensional laminated semiconductor device 10A of (a) is laminated in two stages, and both the three-dimensional laminated semiconductor devices 10A are connected to each other via the conductive bumps 33.

【0100】図25(a)に示すように、上段の3次元
積層型半導体装置10Aでは、最下部の絶縁膜19がマ
ザーボード47又はインターポーザ基板49上に接着さ
れている。上段のユニット半導体装置14の外部電極2
7が、マザーボード47又はインターポーザ基板49上
の電極パッド45に、金ワイヤ40を介してワイヤボン
ディング接続される。マザーボード47又はインターポ
ーザ基板49の下面には、電極パッド45に導通する電
極パッド59が形成され、この電極パッド59上に導電
バンプ33が形成される。更に、金ワイヤ40を含む3
次元積層型半導体装置10A全体が封止絶縁膜41で封
止されている。
As shown in FIG. 25A, in the upper three-dimensional stacked semiconductor device 10A, the lowermost insulating film 19 is adhered onto the mother board 47 or the interposer substrate 49. External electrode 2 of upper unit semiconductor device 14
7 is wire-bonded to the electrode pad 45 on the mother board 47 or the interposer substrate 49 via the gold wire 40. On the lower surface of the mother board 47 or the interposer substrate 49, electrode pads 59 that are electrically connected to the electrode pads 45 are formed, and the conductive bumps 33 are formed on the electrode pads 59. Furthermore, 3 including the gold wire 40
The entire three-dimensional stacked semiconductor device 10A is sealed with a sealing insulating film 41.

【0101】下段の3次元積層型半導体装置10Aは上
段と同様の構成を有するが、下段の半導体装置10Aで
は、マザーボード47又はインターポーザ基板49の上
面及び下面の双方に電極パッド60a、60bが形成さ
れている。上段と同様に、金ワイヤ40を含む3次元積
層型半導体装置10A全体が封止絶縁膜41で封止さ
れ、更に、封止絶縁膜41の上面が、上段のマザーボー
ド47又はインターポーザ基板49の下面に接着され
る。この状態で、上段側の電極パッド59と下段側の電
極パッド60aとが導電バンプ33を介して接続され、
電極パッド60b上には、別の導電バンプ33が形成さ
れる。
The lower three-dimensional stacked semiconductor device 10A has the same structure as the upper semiconductor device, but in the lower semiconductor device 10A, electrode pads 60a and 60b are formed on both the upper surface and the lower surface of the mother board 47 or the interposer substrate 49. ing. Similar to the upper step, the entire three-dimensional stacked semiconductor device 10A including the gold wire 40 is sealed with the sealing insulating film 41, and the upper surface of the sealing insulating film 41 is the lower surface of the upper motherboard 47 or the interposer substrate 49. Glued to. In this state, the upper electrode pad 59 and the lower electrode pad 60a are connected via the conductive bump 33,
Another conductive bump 33 is formed on the electrode pad 60b.

【0102】図25(b)に示す変形例では、下段の3
次元積層型半導体装置10Aが、マザーボード47又は
インターポーザ基板49より厚く、上面にのみ電極パッ
ド60が形成された絶縁樹脂層47上に接着される点
で、図25(a)の構成例と異なる。
In the modification shown in FIG. 25 (b), the lower 3
The three-dimensional stacked semiconductor device 10A is thicker than the mother board 47 or the interposer substrate 49, and is bonded on the insulating resin layer 47 having the electrode pads 60 formed only on the upper surface, which is different from the configuration example of FIG.

【0103】半導体装置の第11実施形態例 図26は、本実施形態例のパッケージ化した3次元積層
型半導体装置10Aを示す断面図である。本実施形態例
では、図22のパッケージ化した3次元積層型半導体装
置10Aを2段積層し、導電バンプ33を介して相互に
接続している。
Eleventh Embodiment of Semiconductor Device FIG. 26 is a sectional view showing a packaged three-dimensional stacked semiconductor device 10A according to this embodiment. In the present embodiment, the packaged three-dimensional stacked semiconductor devices 10A of FIG. 22 are stacked in two stages and are connected to each other via the conductive bumps 33.

【0104】半導体装置の第12実施形態例 図27(a)は本実施形態例の3次元積層型半導体装置
10Aを示す断面図、図27(b)はその変形例を示す
断面図である。本実施形態例では、図4に示した3次元
積層型半導体装置10Aをマザーボード47に実装して
いる。
[0104] Twelfth embodiment of the semiconductor device Figure 27 (a) is a sectional view showing a three-dimensional stacked semiconductor device 10A of the embodiment, FIG. 27 (b) is a sectional view showing a modified example thereof. In this embodiment, the three-dimensional laminated semiconductor device 10A shown in FIG. 4 is mounted on the mother board 47.

【0105】図27(a)に示す3次元積層型半導体装
置10Aでは、絶縁膜19とマザーボード47との間
に、アンダーフィル樹脂48が設けられている。このア
ンダーフィル樹脂48は、エポキシ樹脂を主成分とする
もので、パッケージの2次実装の信頼性を高めている。
In the three-dimensional laminated semiconductor device 10A shown in FIG. 27A, an underfill resin 48 is provided between the insulating film 19 and the mother board 47. The underfill resin 48 contains epoxy resin as a main component and enhances the reliability of the secondary mounting of the package.

【0106】また、図27(b)に示す変形例では、図
27(a)に示したアンダーフィル樹脂48が形成され
ず、従って、マザーボード47に形成された電極パッド
55に導電バンプ33を直接に接着して、絶縁膜19と
マザーボード47とで導電バンプ33を封止している。
In the modification shown in FIG. 27B, the underfill resin 48 shown in FIG. 27A is not formed, so that the conductive bump 33 is directly attached to the electrode pad 55 formed on the mother board 47. The conductive bumps 33 are sealed by the insulating film 19 and the mother board 47.

【0107】半導体装置の第13実施形態例 図28は本実施形態例のパッケージ化した3次元積層型
半導体装置10Aを夫々示す断面図であり、図28
(a)は個々の3次元積層型半導体装置単位に分割する
前の状態を示し、図28(b)及び(c)は分割後にマ
ザーボード47に実装した異なる構成例を夫々示す。
28. Thirteenth Embodiment of Semiconductor Device FIG. 28 is a sectional view showing a packaged three-dimensional stacked semiconductor device 10A according to this embodiment.
28A shows a state before being divided into individual three-dimensional stacked semiconductor device units, and FIGS. 28B and 28C show different configuration examples mounted on the motherboard 47 after the division.

【0108】図28(a)に示す3次元積層型半導体装
置10Aは、積層した複数の半導体チップが全てのサイ
ズ及び種類が異なる半導体チップ11、24、25、4
6を有している。この3次元積層型半導体装置10Aを
製造する製造プロセスでは、半導体チップの種類以外に
関する点は図10〜図13に示した製造プロセスと同様
である。
In the three-dimensional stacked semiconductor device 10A shown in FIG. 28A, a plurality of stacked semiconductor chips are semiconductor chips 11, 24, 25, 4 having different sizes and types.
Have six. The manufacturing process for manufacturing the three-dimensional stacked semiconductor device 10A is the same as the manufacturing process shown in FIGS. 10 to 13 except for the type of semiconductor chip.

【0109】図28(b)に示す構成例では、個別化し
た3次元積層型半導体装置10Aがマザーボード47上
にアンダーフィル樹脂48を介して接着されている。
In the configuration example shown in FIG. 28B, the individualized three-dimensional laminated semiconductor device 10A is bonded onto the mother board 47 via the underfill resin 48.

【0110】図28(c)の構成例では、3次元積層型
半導体装置とマザーボード47との間にアンダーフィル
樹脂48が形成されず、マザーボード47に形成された
電極パッド55に導電バンプ33が直接に接着されて、
絶縁膜19とマザーボード47とで導電バンプ33が封
止されている。
In the configuration example of FIG. 28C, the underfill resin 48 is not formed between the three-dimensional laminated semiconductor device and the motherboard 47, and the conductive bumps 33 are directly attached to the electrode pads 55 formed on the motherboard 47. Glued to
The conductive bump 33 is sealed by the insulating film 19 and the mother board 47.

【0111】半導体装置の第14実施形態例 図29は本実施形態例のパッケージ化した3次元積層型
半導体装置10Aを示す断面図であり、図29(a)は
個々の3次元積層型半導体装置10A単位に分割する前
の状態を示し、図29(b)及び(c)は分割後にマザ
ーボード47に実装した異なる構成例を夫々示す。
Fourteenth Embodiment of Semiconductor Device FIG. 29 is a sectional view showing a packaged three-dimensional stacked semiconductor device 10A according to this embodiment, and FIG. 29A shows an individual three-dimensional stacked semiconductor device. FIG. 29B and FIG. 29C show a state before being divided into units of 10 A, and FIGS. 29B and 29C show different configuration examples mounted on the mother board 47 after the division.

【0112】図29(a)に示す3次元積層型半導体装
置10Aでは、サイズ及び/又は種類が同じ半導体チッ
プ11を2段積層したユニット半導体装置14上に、サ
イズ及び/又は種類が同じ半導体チップ24を2段積層
したユニット半導体装置14が積層されている。この3
次元積層型半導体装置10Aを製造する製造プロセスで
は、半導体チップの種類以外に関する点は図10〜図1
3に示した製造プロセスと同様である。
In the three-dimensional stacked semiconductor device 10A shown in FIG. 29A, semiconductor chips 11 of the same size and / or type are stacked on the unit semiconductor device 14 in two stages, and semiconductor chips of the same size and / or type are stacked. The unit semiconductor device 14 in which 24 is stacked in two stages is stacked. This 3
In the manufacturing process for manufacturing the three-dimensional stacked semiconductor device 10A, points other than the type of semiconductor chip are shown in FIGS.
It is similar to the manufacturing process shown in FIG.

【0113】図29(b)の構成例では、3次元積層型
半導体装置10Aとマザーボード47との間にアンダー
フィル樹脂48が設けられている。図29(c)の構成
例では、3次元積層型半導体装置10Aとマザーボード
47とが、熱硬化性又は熱可塑性を有する絶縁膜19を
介して接着され、これにより、最下層の導電バンプ33
が封止されている。
In the configuration example of FIG. 29B, an underfill resin 48 is provided between the three-dimensional laminated semiconductor device 10A and the mother board 47. In the configuration example of FIG. 29C, the three-dimensional stacked semiconductor device 10A and the mother board 47 are adhered to each other via the insulating film 19 having thermosetting property or thermoplastic property, whereby the conductive bumps 33 of the lowermost layer are bonded.
Is sealed.

【0114】以上の各実施形態例では、積層したユニッ
ト半導体装置14の半導体チップ11(24、25、4
6)をビアプラグ18によって相互に機械的且つ電気的
に結合することができるので、半導体チップ11を多数
段積層した高密度で大容量の構成が得られ、多機能化、
高速化に適する廉価な3次元積層型半導体装置10Aを
簡便に得ることができる。
In each of the above embodiments, the semiconductor chips 11 (24, 25, 4) of the stacked unit semiconductor devices 14 are used.
Since 6) can be mechanically and electrically coupled to each other by the via plug 18, a high-density and large-capacity configuration in which a large number of semiconductor chips 11 are stacked can be obtained, and multi-functionalization can be achieved.
It is possible to easily obtain the inexpensive three-dimensional stacked semiconductor device 10A suitable for high speed.

【0115】以上、本発明をその好適な実施形態例に基
づいて説明したが、本発明に係るユニット半導体装置及
びその製造方法並びに3次元積層型半導体装置は、上記
実施形態例の構成にのみ限定されるものではなく、上記
実施形態例の構成から種々の修正及び変更を施したユニ
ット半導体装置及びその製造方法並びに3次元積層型半
導体装置も、本発明の範囲に含まれる。
Although the present invention has been described based on its preferred embodiments, the unit semiconductor device, the method for manufacturing the same, and the three-dimensional stacked semiconductor device according to the present invention are limited to the configurations of the above embodiments. However, a unit semiconductor device, a method of manufacturing the same, and a three-dimensional stacked semiconductor device in which various modifications and changes are made from the configuration of the above embodiment are also included in the scope of the present invention.

【0116】[0116]

【発明の効果】以上説明したように、本発明によると、
種々のサイズ及び/又は種類の半導体チップの混載が容
易にできメモリ大容量化に対応可能な構成を有しながら
も、ハンドリング時の半導体チップの破損等に起因する
歩留まりの低下を回避すると共に、パッケージが小型の
3次元積層型半導体装置を簡便に形成できるユニット半
導体装置、及びこのようなユニット半導体装置を製造す
る製造方法、並びに、このユニット半導体装置を積層し
たコンパクトな3次元積層型半導体装置を得ることがで
きる。
As described above, according to the present invention,
While having a configuration capable of easily mounting various sizes and / or types of semiconductor chips together and supporting a large memory capacity, while avoiding a decrease in yield due to damage of the semiconductor chips during handling, A unit semiconductor device capable of easily forming a three-dimensional stacked semiconductor device having a small package, a manufacturing method for manufacturing such a unit semiconductor device, and a compact three-dimensional stacked semiconductor device in which the unit semiconductor devices are stacked. Obtainable.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)は本発明の半導体装置の第1実施形
態例における一構成例を示す断面図、図1(b)はその
変形例を示す断面図、図1(c)は更に別の変形例を示
す断面図である。
FIG. 1 (a) is a sectional view showing a configuration example of a first embodiment of a semiconductor device of the present invention, FIG. 1 (b) is a sectional view showing a modification thereof, and FIG. It is sectional drawing which shows another modification.

【図2】図2(a)、(b)は夫々、本発明の半導体装
置の第2実施形態例における一構成例を示す断面図及び
平面図、図2(c)はその変形例を示す断面図、図2
(d)は別の変形例を示す断面図である。
2A and 2B are a cross-sectional view and a plan view showing a structural example of a second embodiment of a semiconductor device according to the present invention, and FIG. 2C shows a modified example thereof. Sectional view, Figure 2
(D) is sectional drawing which shows another modification.

【図3】図3(a)は本発明の半導体装置の第3実施形
態例における一構成例を示す断面図、図2(b)はその
変形例を示す断面図である。
FIG. 3 (a) is a sectional view showing a configuration example of a semiconductor device according to a third embodiment of the present invention, and FIG. 2 (b) is a sectional view showing a modification thereof.

【図4】図4(a)は本発明の半導体装置の第4実施形
態例における一構成例を示す断面図、図4(b)は図4
(a)の3次元積層型半導体装置10Aを平面方向に2
つ配列した変形例を示す断面図である。
FIG. 4A is a sectional view showing a configuration example of a fourth embodiment of a semiconductor device of the present invention, and FIG. 4B is FIG.
2A of the three-dimensional stacked semiconductor device 10A of FIG.
It is sectional drawing which shows the modified example which arranged one.

【図5】図5(a)〜(d)は本発明の製造方法の第1
実施形態例における製造工程を段階的に示す断面図であ
る。
5 (a) to 5 (d) are diagrams showing the first manufacturing method of the present invention.
It is sectional drawing which shows the manufacturing process in an example of an embodiment in steps.

【図6】図6(a)〜(d)は本発明の製造方法の第1
実施形態例における製造工程を段階的に示す断面図であ
る。
6 (a) to 6 (d) are diagrams showing a first manufacturing method of the present invention.
It is sectional drawing which shows the manufacturing process in an example of an embodiment in steps.

【図7】図7(a)〜(d)は本発明の製造方法の第1
実施形態例における製造工程を段階的に示す断面図であ
る。
7 (a) to 7 (d) are diagrams showing the first manufacturing method of the present invention.
It is sectional drawing which shows the manufacturing process in an example of an embodiment in steps.

【図8】図8(a)〜(d)は本発明の製造方法の第1
実施形態例における製造工程を段階的に示す断面図であ
る。
FIG. 8 (a) to FIG. 8 (d) are the first part of the manufacturing method of the present invention.
It is sectional drawing which shows the manufacturing process in an example of an embodiment in steps.

【図9】図9(a)、(b)は本発明の製造方法の第1
実施形態例における製造工程を段階的に示す断面図であ
る。
FIG. 9 (a) and FIG. 9 (b) are the first of the manufacturing method of the present invention.
It is sectional drawing which shows the manufacturing process in an example of an embodiment in steps.

【図10】図10(a)〜(e)は本発明の製造方法の
第2実施形態例における製造工程を段階的に示す断面図
である。
10 (a) to 10 (e) are sectional views showing step by step the manufacturing process in the second embodiment of the manufacturing method of the present invention.

【図11】図11(a)〜(e)は本発明の製造方法の
第2実施形態例における製造工程を段階的に示す断面図
である。
11 (a) to 11 (e) are sectional views showing step by step the manufacturing steps in the second embodiment of the manufacturing method of the present invention.

【図12】図12(a)〜(d)は本発明の製造方法の
第2実施形態例における製造工程を段階的に示す断面図
である。
12 (a) to 12 (d) are cross-sectional views showing step by step the manufacturing process in the second embodiment of the manufacturing method of the present invention.

【図13】図13(a)〜(c)は本発明の製造方法の
第2実施形態例における製造工程を段階的に示す断面図
である。
13 (a) to 13 (c) are sectional views showing step by step the manufacturing steps in the second embodiment of the manufacturing method of the present invention.

【図14】図14(a)〜(d)は本発明の製造方法の
第3実施形態例における製造工程を段階的に示す断面図
である。
14 (a) to 14 (d) are cross-sectional views showing stepwise a manufacturing process in a third embodiment of the manufacturing method of the present invention.

【図15】図15(a)〜(c)は本発明の製造方法の
第3実施形態例における製造工程を段階的に示す断面図
である。
15 (a) to 15 (c) are cross-sectional views showing step by step the manufacturing process in the third embodiment of the manufacturing method of the present invention.

【図16】図16(a)〜(d)は本発明の製造方法の
第4実施形態例における製造工程を段階的に示す断面図
である。
16 (a) to 16 (d) are sectional views showing step by step the manufacturing steps in the fourth embodiment of the manufacturing method of the present invention.

【図17】図17(a)〜(c)は本発明の製造方法の
第4実施形態例における製造工程を段階的に示す断面図
である。
17 (a) to 17 (c) are sectional views showing step by step the manufacturing steps in the fourth embodiment of the manufacturing method of the present invention.

【図18】図18(a)、(b)は本発明の半導体装置
の第5実施形態例における一構成例を示す断面図であ
る。
18A and 18B are cross-sectional views showing a configuration example of a fifth embodiment of the semiconductor device of the present invention.

【図19】図19(a)、(b)は本発明の製造方法の
第5実施形態例における製造工程を段階的に示す断面図
である。
19 (a) and 19 (b) are sectional views showing step by step the manufacturing steps in the fifth embodiment of the manufacturing method of the present invention.

【図20】図20(a)、(b)は本発明の製造方法の
第5実施形態例における製造工程を段階的に示す断面図
である。
20 (a) and 20 (b) are sectional views showing step by step the manufacturing process in the fifth embodiment of the manufacturing method of the present invention.

【図21】本発明の半導体装置の第6実施形態例におけ
る構成例を示す断面図である。
FIG. 21 is a cross-sectional view showing a configuration example of a semiconductor device according to a sixth embodiment of the present invention.

【図22】本発明の半導体装置の第7実施形態例におけ
る構成例を示す断面図である。
FIG. 22 is a cross-sectional view showing a configuration example of a semiconductor device according to a seventh embodiment of the present invention.

【図23】本発明の半導体装置の第8実施形態例におけ
る構成例を示す断面図である。
FIG. 23 is a cross-sectional view showing a configuration example of an eighth embodiment of the semiconductor device of the present invention.

【図24】本発明の半導体装置の第9実施形態例におけ
る構成例を示す断面図である。
FIG. 24 is a sectional view showing a configuration example of a semiconductor device according to a ninth embodiment of the present invention.

【図25】本発明の半導体装置の第10実施形態例にお
ける構成例を示す断面図である。
FIG. 25 is a sectional view showing a structural example of a semiconductor device according to a tenth exemplary embodiment of the present invention.

【図26】本発明の半導体装置の第11実施形態例にお
ける構成例を示す断面図である。
FIG. 26 is a sectional view showing a configuration example of an eleventh exemplary embodiment of a semiconductor device of the present invention.

【図27】本発明の半導体装置の第12実施形態例にお
ける構成例を示す断面図である。
FIG. 27 is a cross-sectional view showing a configuration example of a twelfth embodiment of the semiconductor device of the present invention.

【図28】本発明の半導体装置の第13実施形態例にお
ける構成例を示す断面図であり、図28(a)は各3次
元積層型半導体装置単位に分割する前の状態を示し、図
28(b)及び(c)は夫々、分割後にマザーボード4
7に実装した異なる構成例を示す。
28 is a cross-sectional view showing a structural example of a semiconductor device according to a thirteenth embodiment of the present invention, and FIG. 28A shows a state before being divided into respective three-dimensional stacked semiconductor device units; (B) and (c) respectively show the mother board 4 after division.
7 shows a different configuration example implemented in FIG.

【図29】本発明の半導体装置の第14実施形態例にお
ける構成例を示す断面図であり、図29(a)は各3次
元積層型半導体装置単位に分割する前の状態を示し、図
29(b)及び(c)は夫々、分割後にマザーボード4
7に実装した異なる構成例を示す。
29 is a cross-sectional view showing a structural example of a semiconductor device according to a fourteenth embodiment of the present invention, and FIG. 29 (a) shows a state before being divided into respective three-dimensional stacked semiconductor device units, and FIG. (B) and (c) respectively show the mother board 4 after division.
7 shows a different configuration example implemented in FIG.

【図30】従来の半導体装置の一構成例を示す断面図で
ある。
FIG. 30 is a cross-sectional view showing a configuration example of a conventional semiconductor device.

【図31】従来の半導体装置の別の構成例を示す断面図
である。
FIG. 31 is a sectional view showing another configuration example of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

10A、10B:3次元積層型半導体装置 11、24、25、46:半導体チップ 12:感光性接着剤(第1モールド部) 13:導電バンプ 14:ユニット半導体装置 15、35、45:電極パッド 16:配線パターン 17:絶縁樹脂層(第2モールド部) 18:ビアプラグ(配線プラグ) 19:絶縁膜 20a、20b、23a:スルーホール 21:銅箔 23:ソルダーレジスト膜 25a:電極パッド 27:外部電極 32:銅めっき膜 33:導電バンプ(外部電極) 34:金属板(仮基板) 37:絶縁膜 40:金ワイヤ線 41:封止樹脂 47:マザーボード 48:アンダーフィル樹脂 49:インターポーザ基板 55、59、60a、60b:電極パッド 101、102:半導体チップ 103:金ワイヤ 104:銅パターン 105:バンプ 106:テープ基板 107:絶縁性接着剤 108:封止樹脂 109:半導体チップ 110:プリプレグ 111:フィルムキャリア 112:導電バンプ 113:導電性物質 114:半導体チップ収納穴 115:穴 10A, 10B: Three-dimensional stacked semiconductor device 11, 24, 25, 46: Semiconductor chip 12: Photosensitive adhesive (first mold part) 13: Conductive bump 14: Unit semiconductor device 15, 35, 45: Electrode pad 16: Wiring pattern 17: Insulating resin layer (second mold part) 18: Via plug (wiring plug) 19: Insulating film 20a, 20b, 23a: through holes 21: Copper foil 23: Solder resist film 25a: Electrode pad 27: External electrode 32: Copper plating film 33: Conductive bump (external electrode) 34: Metal plate (temporary substrate) 37: Insulating film 40: Gold wire wire 41: Sealing resin 47: Motherboard 48: Underfill resin 49: Interposer substrate 55, 59, 60a, 60b: electrode pads 101, 102: semiconductor chip 103: Gold wire 104: Copper pattern 105: bump 106: tape substrate 107: Insulating adhesive 108: sealing resin 109: Semiconductor chip 110: prepreg 111: Film carrier 112: Conductive bump 113: conductive substance 114: Semiconductor chip storage hole 115: hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北城 栄 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 嶋田 勇三 東京都港区芝五丁目7番1号 日本電気株 式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Sakae Kitajo             5-7 Shiba 5-1, Minato-ku, Tokyo NEC Corporation             Inside the company (72) Inventor Yuzo Shimada             5-7 Shiba 5-1, Minato-ku, Tokyo NEC Corporation             Inside the company

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 チップ電極を有する半導体チップと、一
方の面で前記チップ電極をマウントする配線パターン
と、前記半導体チップ及び配線パターンを一体的に覆う
モールドレジンと、該モールドレジンを前記半導体チッ
プの外側で貫通し、一端が前記配線パターンの前記一方
の面に接触し、他端が前記モールドレジンから露出する
配線プラグとを備え、前記配線パターンの他方の面が前
記モールドレジンの表面に露出していることを特徴とす
るユニット半導体装置。
1. A semiconductor chip having a chip electrode, a wiring pattern for mounting the chip electrode on one surface, a mold resin integrally covering the semiconductor chip and the wiring pattern, and the mold resin of the semiconductor chip. A wiring plug penetrating on the outside, having one end in contact with the one surface of the wiring pattern and the other end exposed from the mold resin, and the other surface of the wiring pattern exposed on the surface of the mold resin. A unit semiconductor device characterized in that
【請求項2】 前記モールドレジンが、前記半導体チッ
プと配線パターンとの間に設けられた感光性接着剤を含
むことを特徴とする、請求項1に記載のユニット半導体
装置。
2. The unit semiconductor device according to claim 1, wherein the mold resin contains a photosensitive adhesive provided between the semiconductor chip and the wiring pattern.
【請求項3】 前記半導体チップが5〜50μmの厚み
を有することを特徴とする、請求項1又は2に記載のユ
ニット半導体装置。
3. The unit semiconductor device according to claim 1, wherein the semiconductor chip has a thickness of 5 to 50 μm.
【請求項4】 請求項1に記載のユニット半導体装置が
複数段積層された3次元積層型半導体装置であって、 一のユニット半導体装置の前記配線プラグが、上段のユ
ニット半導体装置の前記配線パターンの露出面に接触し
ていることを特徴とする3次元積層型半導体装置。
4. A three-dimensional stacked semiconductor device in which the unit semiconductor device according to claim 1 is stacked in a plurality of stages, wherein the wiring plug of one unit semiconductor device is the wiring pattern of the upper unit semiconductor device. A three-dimensional stacked semiconductor device, which is in contact with the exposed surface of the.
【請求項5】 前記複数段積層されたユニット半導体装
置の半導体チップは、サイズ及び/又は種類が相互に同
じであることを特徴とする、請求項4に記載の3次元積
層型半導体装置。
5. The three-dimensional stacked semiconductor device according to claim 4, wherein the semiconductor chips of the unit semiconductor devices stacked in a plurality of stages have the same size and / or type.
【請求項6】 前記複数段積層されたユニット半導体装
置における少なくとも一つの半導体チップのサイズ及び
/又は種類が、他の半導体チップのサイズ及び/又は種
類と異なることを特徴とする、請求項4に記載の3次元
積層型半導体装置。
6. The size and / or type of at least one semiconductor chip in the unit semiconductor device having a plurality of stacked layers is different from the size and / or type of other semiconductor chips. The three-dimensional stacked semiconductor device described.
【請求項7】 最上段及び/又は最下段の露出する面に
は絶縁膜が形成され、少なくとも一方の絶縁膜の露出面
には外部電極が形成されることを特徴とする、請求項4
〜6の内の何れか1項に記載の3次元積層型半導体装
置。
7. The insulating film is formed on the exposed surface of the uppermost stage and / or the lowermost stage, and the external electrode is formed on the exposed surface of at least one insulating film.
The three-dimensional stacked semiconductor device according to any one of items 1 to 6.
【請求項8】 最下段のユニット半導体装置が前記絶縁
膜を介してインターポーザ基板又はマザーボードに接着
され、最上段のユニット半導体装置には前記絶縁膜上に
前記外部電極が形成され、該外部電極は前記インターポ
ーザ基板又はマザーボードに設けられた電極パッドにワ
イヤボンディング接続されることを特徴とする、請求項
7に記載の3次元積層型半導体装置。
8. The lowermost unit semiconductor device is adhered to an interposer substrate or a mother board through the insulating film, and the uppermost unit semiconductor device is formed with the external electrode on the insulating film. The three-dimensional stacked semiconductor device according to claim 7, wherein the three-dimensional stacked semiconductor device is wire-bonded to an electrode pad provided on the interposer substrate or the mother board.
【請求項9】 前記最上段のユニット半導体装置上に、
一の半導体チップがフェースアップで接着され、前記一
のユニット半導体装置のチップ電極と前記電極パッドと
がワイヤボンディング接続されることを特徴とする、請
求項8に記載の3次元積層型半導体装置。
9. The unit semiconductor device at the uppermost stage,
9. The three-dimensional stacked semiconductor device according to claim 8, wherein one semiconductor chip is bonded face-up, and a chip electrode of the one unit semiconductor device and the electrode pad are connected by wire bonding.
【請求項10】 前記複数段のユニット半導体装置と前
記インターポーザ基板又はマザーボードとを接着した積
層体が複数段形成されることを特徴とする、請求項8又
は9に記載の3次元積層型半導体装置。
10. The three-dimensional stacked semiconductor device according to claim 8, wherein a plurality of stacked bodies are formed by bonding the plurality of stacked unit semiconductor devices to the interposer substrate or the mother board. .
【請求項11】 仮基板上に配線パターンを形成する工
程と、 少なくとも側部及び下部がモールドレジンで被覆され、
該モールドレジンを貫通するスルーホールを介して前記
配線パターンに接続される半導体チップを前記配線パタ
ーン上に搭載する工程と、 前記配線パターン上に、前記半導体チップの外側を通過
し前記モールドレジンを貫通する配線プラグを形成する
工程と、 前記仮基板を除去する工程とを備えることを特徴とする
ユニット半導体装置の製造方法。
11. A step of forming a wiring pattern on a temporary substrate, wherein at least a side portion and a lower portion are covered with a mold resin,
Mounting a semiconductor chip connected to the wiring pattern on the wiring pattern through a through hole penetrating the mold resin; and penetrating the molding resin on the wiring pattern outside the semiconductor chip. And a step of removing the temporary substrate, and a method of manufacturing a unit semiconductor device, comprising:
【請求項12】 前記モールドレジンが、前記半導体チ
ップの下部を被覆する第1モールド部と、前記半導体チ
ップの少なくとも側部を被覆する第2モールド部とから
成り、前記搭載工程が、前記第1モールド部の形成工程
と前記第2モールド部の形成工程とを含むことを特徴と
する、請求項11に記載のユニット半導体装置の製造方
法。
12. The molding resin comprises a first molding portion that covers a lower portion of the semiconductor chip and a second molding portion that covers at least a side portion of the semiconductor chip, and the mounting step includes the first molding portion. The method of manufacturing a unit semiconductor device according to claim 11, further comprising a forming step of a mold part and a forming step of the second mold part.
【請求項13】 前記第2モールド部の形成工程に先立
って、前記半導体チップの上部を研削し、該半導体チッ
プを5〜50μmの厚みに形成することを特徴とする、
請求項12に記載のユニット半導体装置の製造方法。
13. Prior to the step of forming the second mold portion, the upper portion of the semiconductor chip is ground to form the semiconductor chip with a thickness of 5 to 50 μm.
The method for manufacturing a unit semiconductor device according to claim 12.
【請求項14】 前記配線プラグの形成工程に後続し
て、前記第2モールド部上に前記配線パターンを形成し
てから、前記搭載工程〜前記配線プラグの形成工程を繰
り返し行って3次元積層型の半導体装置に形成すること
を特徴とする、請求項11〜13の内の何れか1項に記
載のユニット半導体装置の製造方法。
14. A three-dimensional stacking type, wherein after the step of forming the wiring plug, the wiring pattern is formed on the second mold portion, and then the mounting step to the step of forming the wiring plug are repeated. 14. The method for manufacturing a unit semiconductor device according to claim 11, wherein the unit semiconductor device is formed on the semiconductor device.
【請求項15】 仮基板上に配線パターンを形成する工
程と、 前記配線パターン上に半導体チップ及び該半導体チップ
に隣接する配線プラグを形成する工程と、 モールドレジンによって前記半導体チップ及び前記配線
プラグを前記配線パターン上に埋め込む工程と、 前記仮基板を除去する工程とを備えることを特徴とする
ユニット半導体装置の製造方法。
15. A step of forming a wiring pattern on a temporary substrate, a step of forming a semiconductor chip and a wiring plug adjacent to the semiconductor chip on the wiring pattern, and a step of forming the semiconductor chip and the wiring plug by a mold resin. A method of manufacturing a unit semiconductor device, comprising: a step of embedding on the wiring pattern; and a step of removing the temporary substrate.
【請求項16】 前記モールドレジンが、前記半導体チ
ップの下部を被覆する第1モールド部と、前記半導体チ
ップの少なくとも側部を被覆する第2モールド部とから
成り、前記埋め込み工程が、前記第1モールド部の形成
工程と前記第2モールド部の形成工程とを含むことを特
徴とする、請求項15に記載のユニット半導体装置の製
造方法。
16. The mold resin comprises a first mold portion that covers a lower portion of the semiconductor chip and a second mold portion that covers at least a side portion of the semiconductor chip, and the embedding step includes the first mold portion. The method for manufacturing a unit semiconductor device according to claim 15, further comprising a forming step of a mold part and a forming step of the second mold part.
【請求項17】 前記半導体チップ及び配線プラグの埋
め込み工程に後続して、前記半導体チップ及び配線プラ
グの上部を研削し、該半導体チップを5〜50μmの厚
みに形成することを特徴とする、請求項16に記載のユ
ニット半導体装置の製造方法。
17. The step of embedding the semiconductor chip and the wiring plug is followed by grinding the upper portions of the semiconductor chip and the wiring plug to form the semiconductor chip to a thickness of 5 to 50 μm. Item 17. A method for manufacturing a unit semiconductor device according to item 16.
【請求項18】 前記半導体チップ及び配線プラグの研
削工程に後続して、前記第2モールド部上に前記配線パ
ターンを形成してから、前記半導体チップ及び該半導体
チップに隣接する配線プラグの形成工程〜前記埋め込み
工程を繰り返し行って3次元積層型の半導体装置に形成
することを特徴とする、請求項17に記載のユニット半
導体装置の製造方法。
18. A step of forming the wiring pattern on the second mold part, after the step of grinding the semiconductor chip and the wiring plug, and then forming the semiconductor chip and a wiring plug adjacent to the semiconductor chip. The method of manufacturing a unit semiconductor device according to claim 17, wherein the embedding step is repeated to form a three-dimensional stacked semiconductor device.
【請求項19】 前記配線パターンの形成工程では、前
記仮基板上に予め絶縁被膜を形成してから、該絶縁被膜
上に前記配線パターンを形成することを特徴とする、請
求項15〜18の内の何れか1項に記載のユニット半導
体装置の製造方法。
19. The method according to claim 15, wherein in the step of forming the wiring pattern, an insulating coating is formed in advance on the temporary substrate, and then the wiring pattern is formed on the insulating coating. 9. The method for manufacturing a unit semiconductor device according to any one of the above.
【請求項20】 前記3次元積層型の最上段のユニット
半導体装置における露出面を絶縁膜で覆い、該絶縁膜の
前記配線プラグ上に別のスルーホールを形成し、該別の
スルーホール内に、前記配線プラグに接触する外部電極
を形成することを特徴とする、請求項14又は18に記
載のユニット半導体装置の製造方法。
20. An exposed surface of the uppermost unit semiconductor device of the three-dimensional stacked type is covered with an insulating film, another through hole is formed on the wiring plug of the insulating film, and the other through hole is formed in the other through hole. 19. The method for manufacturing a unit semiconductor device according to claim 14, wherein an external electrode that contacts the wiring plug is formed.
【請求項21】 前記3次元積層型の半導体装置を積層
方向と直交する平面方向に配列するように形成してか
ら、各3次元積層型の半導体装置毎に分割することを特
徴とする、請求項14及び18〜20の内の何れか1項
に記載のユニット半導体装置の製造方法。
21. The three-dimensional stacked semiconductor device is formed so as to be arranged in a plane direction orthogonal to the stacking direction, and then divided for each three-dimensional stacked semiconductor device. 21. A method for manufacturing a unit semiconductor device according to any one of items 14 and 18 to 20.
JP2001361366A 2001-11-27 2001-11-27 Unit semiconductor device and manufacturing method thereof, and three-dimensional laminated semiconductor device Pending JP2003163324A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001361366A JP2003163324A (en) 2001-11-27 2001-11-27 Unit semiconductor device and manufacturing method thereof, and three-dimensional laminated semiconductor device
PCT/JP2002/012362 WO2003046987A1 (en) 2001-11-27 2002-11-27 Unit semiconductor device, its manufacturing method, and three-dimensional laminated type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361366A JP2003163324A (en) 2001-11-27 2001-11-27 Unit semiconductor device and manufacturing method thereof, and three-dimensional laminated semiconductor device

Publications (1)

Publication Number Publication Date
JP2003163324A true JP2003163324A (en) 2003-06-06

Family

ID=19172042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361366A Pending JP2003163324A (en) 2001-11-27 2001-11-27 Unit semiconductor device and manufacturing method thereof, and three-dimensional laminated semiconductor device

Country Status (2)

Country Link
JP (1) JP2003163324A (en)
WO (1) WO2003046987A1 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100611204B1 (en) 2005-05-10 2006-08-10 삼성전자주식회사 Multi stack packaging chip and method thereof
JP2007134495A (en) * 2005-11-10 2007-05-31 Rohm Co Ltd Semiconductor device and manufacturing method therefor
JP2007287802A (en) * 2006-04-13 2007-11-01 Sony Corp Process for manufacturing three-dimensional semiconductor package
JP2008198972A (en) * 2007-02-15 2008-08-28 Headway Technologies Inc Method of manufacturing electronic component package, and wafer and basic structure used for manufacturing its electronic component package
JP2009141010A (en) * 2007-12-04 2009-06-25 Hitachi Chem Co Ltd Semiconductor device and method of manufacturing the same
WO2010111825A1 (en) * 2009-03-30 2010-10-07 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Electronic package and method of fabrication thereof
JP2010534951A (en) * 2007-07-27 2010-11-11 テッセラ,インコーポレイテッド Reconfigured wafer stack packaging with pad extension after application
JP2010536171A (en) * 2007-08-03 2010-11-25 テセラ・テクノロジーズ・ハンガリー・ケイエフティー Stacked package using recycled wafer
US7906838B2 (en) 2007-07-23 2011-03-15 Headway Technologies, Inc. Electronic component package and method of manufacturing same
JP2011181861A (en) * 2010-03-04 2011-09-15 Casio Computer Co Ltd Semiconductor device and method for manufacturing the same
JP2012094587A (en) * 2010-10-25 2012-05-17 Hitachi Chem Co Ltd Method for manufacturing optical semiconductor device and optical semiconductor device
US8358015B2 (en) 2011-06-09 2013-01-22 Headway Technologies, Inc. Layered chip package and method of manufacturing same
US8426946B2 (en) 2010-06-28 2013-04-23 Headway Technologies, Inc. Laminated semiconductor substrate, laminated chip package and method of manufacturing the same
US8426948B2 (en) 2010-08-02 2013-04-23 Headway Technologies, Inc. Laminated semiconductor wafer, laminated chip package and method of manufacturing the same
US8441112B2 (en) 2010-10-01 2013-05-14 Headway Technologies, Inc. Method of manufacturing layered chip package
US8455349B2 (en) 2010-04-28 2013-06-04 Headway Technologies, Inc. Layered chip package and method of manufacturing same
US8476774B2 (en) 2006-10-10 2013-07-02 Tessera, Inc. Off-chip VIAS in stacked chips
US8513794B2 (en) 2007-08-09 2013-08-20 Tessera, Inc. Stacked assembly including plurality of stacked microelectronic elements
US8541887B2 (en) 2010-09-03 2013-09-24 Headway Technologies, Inc. Layered chip package and method of manufacturing same
US8618646B2 (en) 2010-10-12 2013-12-31 Headway Technologies, Inc. Layered chip package and method of manufacturing same
US8629543B2 (en) 2007-06-11 2014-01-14 Invensas Corporation Electrically interconnected stacked die assemblies
US8652877B2 (en) 2010-12-06 2014-02-18 Headway Technologies, Inc. Method of manufacturing layered chip package
US8653639B2 (en) 2011-06-09 2014-02-18 Headway Technologies, Inc. Layered chip package and method of manufacturing same
US8680662B2 (en) 2008-06-16 2014-03-25 Tessera, Inc. Wafer level edge stacking
US8680687B2 (en) 2009-06-26 2014-03-25 Invensas Corporation Electrical interconnect for die stacked in zig-zag configuration
US8704379B2 (en) 2007-09-10 2014-04-22 Invensas Corporation Semiconductor die mount by conformal die coating
US8729690B2 (en) 2004-04-13 2014-05-20 Invensas Corporation Assembly having stacked die mounted on substrate
US8884403B2 (en) 2008-06-19 2014-11-11 Iinvensas Corporation Semiconductor die array structure
US8912661B2 (en) 2009-11-04 2014-12-16 Invensas Corporation Stacked die assembly having reduced stress electrical interconnects
US8999810B2 (en) 2006-10-10 2015-04-07 Tessera, Inc. Method of making a stacked microelectronic package
US9147583B2 (en) 2009-10-27 2015-09-29 Invensas Corporation Selective die electrical insulation by additive process
US9153517B2 (en) 2008-05-20 2015-10-06 Invensas Corporation Electrical connector between die pad and z-interconnect for stacked die assemblies
US9305862B2 (en) 2008-03-12 2016-04-05 Invensas Corporation Support mounted electrically interconnected die assembly
US9490195B1 (en) 2015-07-17 2016-11-08 Invensas Corporation Wafer-level flipped die stacks with leadframes or metal foil interconnects
US9508691B1 (en) 2015-12-16 2016-11-29 Invensas Corporation Flipped die stacks with multiple rows of leadframe interconnects
US9595511B1 (en) 2016-05-12 2017-03-14 Invensas Corporation Microelectronic packages and assemblies with improved flyby signaling operation
US9627358B2 (en) 2013-09-27 2017-04-18 Intel Corporation Method for interconnecting stacked semiconductor devices
CN106783634A (en) * 2016-12-26 2017-05-31 通富微电子股份有限公司 One kind is fanned out to packaging and its method for packing
US9728524B1 (en) 2016-06-30 2017-08-08 Invensas Corporation Enhanced density assembly having microelectronic packages mounted at substantial angle to board
US9825002B2 (en) 2015-07-17 2017-11-21 Invensas Corporation Flipped die stack
JP2017224847A (en) * 2013-09-27 2017-12-21 インテル・コーポレーション Semiconductor assembly and manufacturing method of semiconductor assembly
US9871019B2 (en) 2015-07-17 2018-01-16 Invensas Corporation Flipped die stack assemblies with leadframe interconnects
US10566310B2 (en) 2016-04-11 2020-02-18 Invensas Corporation Microelectronic packages having stacked die and wire bond interconnects
US12033983B2 (en) 2023-05-12 2024-07-09 Intel Corporation Method for interconnecting stacked semiconductor devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8194411B2 (en) 2009-03-31 2012-06-05 Hong Kong Applied Science and Technology Research Institute Co. Ltd Electronic package with stacked modules with channels passing through metal layers of the modules

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0793482B2 (en) * 1988-12-12 1995-10-09 シャープ株式会社 Circuit board connection method
JP3500995B2 (en) * 1998-12-18 2004-02-23 株式会社デンソー Manufacturing method of laminated circuit module
JP2001274324A (en) * 2000-03-24 2001-10-05 Hitachi Chem Co Ltd Semiconductor mounting substrate for multilayer semiconductor device, and semiconductor device and multilayer semiconductor device
JP2001298115A (en) * 2000-04-13 2001-10-26 Seiko Epson Corp Semiconductor device, manufacturing method for the same, circuit board as well as electronic equipment

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8729690B2 (en) 2004-04-13 2014-05-20 Invensas Corporation Assembly having stacked die mounted on substrate
KR100611204B1 (en) 2005-05-10 2006-08-10 삼성전자주식회사 Multi stack packaging chip and method thereof
JP2007134495A (en) * 2005-11-10 2007-05-31 Rohm Co Ltd Semiconductor device and manufacturing method therefor
JP2007287802A (en) * 2006-04-13 2007-11-01 Sony Corp Process for manufacturing three-dimensional semiconductor package
US8476774B2 (en) 2006-10-10 2013-07-02 Tessera, Inc. Off-chip VIAS in stacked chips
US9378967B2 (en) 2006-10-10 2016-06-28 Tessera, Inc. Method of making a stacked microelectronic package
US9048234B2 (en) 2006-10-10 2015-06-02 Tessera, Inc. Off-chip vias in stacked chips
US8999810B2 (en) 2006-10-10 2015-04-07 Tessera, Inc. Method of making a stacked microelectronic package
US9899353B2 (en) 2006-10-10 2018-02-20 Tessera, Inc. Off-chip vias in stacked chips
JP2008198972A (en) * 2007-02-15 2008-08-28 Headway Technologies Inc Method of manufacturing electronic component package, and wafer and basic structure used for manufacturing its electronic component package
US7927920B2 (en) * 2007-02-15 2011-04-19 Headway Technologies, Inc. Method of manufacturing electronic component package, and wafer and substructure used for manufacturing electronic component package
US20110115079A1 (en) * 2007-02-15 2011-05-19 Headway Technologies, Inc. Wafter and substructure for use in manufacturing electronic component packages
US8415793B2 (en) 2007-02-15 2013-04-09 Headway Technologies, Inc. Wafer and substructure for use in manufacturing electronic component packages
JP4577788B2 (en) * 2007-02-15 2010-11-10 ヘッドウェイテクノロジーズ インコーポレイテッド Manufacturing method of electronic component package and wafer and basic structure used for manufacturing electronic component package
US8723332B2 (en) 2007-06-11 2014-05-13 Invensas Corporation Electrically interconnected stacked die assemblies
US8629543B2 (en) 2007-06-11 2014-01-14 Invensas Corporation Electrically interconnected stacked die assemblies
US7906838B2 (en) 2007-07-23 2011-03-15 Headway Technologies, Inc. Electronic component package and method of manufacturing same
US8461672B2 (en) 2007-07-27 2013-06-11 Tessera, Inc. Reconstituted wafer stack packaging with after-applied pad extensions
US8883562B2 (en) 2007-07-27 2014-11-11 Tessera, Inc. Reconstituted wafer stack packaging with after-applied pad extensions
KR101458538B1 (en) 2007-07-27 2014-11-07 테세라, 인코포레이티드 A stacked microelectronic unit, and method of fabrication thereof
JP2010534951A (en) * 2007-07-27 2010-11-11 テッセラ,インコーポレイテッド Reconfigured wafer stack packaging with pad extension after application
US8551815B2 (en) 2007-08-03 2013-10-08 Tessera, Inc. Stack packages using reconstituted wafers
JP2010536171A (en) * 2007-08-03 2010-11-25 テセラ・テクノロジーズ・ハンガリー・ケイエフティー Stacked package using recycled wafer
US8513794B2 (en) 2007-08-09 2013-08-20 Tessera, Inc. Stacked assembly including plurality of stacked microelectronic elements
US9252116B2 (en) 2007-09-10 2016-02-02 Invensas Corporation Semiconductor die mount by conformal die coating
US9824999B2 (en) 2007-09-10 2017-11-21 Invensas Corporation Semiconductor die mount by conformal die coating
US8704379B2 (en) 2007-09-10 2014-04-22 Invensas Corporation Semiconductor die mount by conformal die coating
JP2009141010A (en) * 2007-12-04 2009-06-25 Hitachi Chem Co Ltd Semiconductor device and method of manufacturing the same
US9305862B2 (en) 2008-03-12 2016-04-05 Invensas Corporation Support mounted electrically interconnected die assembly
US9508689B2 (en) 2008-05-20 2016-11-29 Invensas Corporation Electrical connector between die pad and z-interconnect for stacked die assemblies
US9153517B2 (en) 2008-05-20 2015-10-06 Invensas Corporation Electrical connector between die pad and z-interconnect for stacked die assemblies
US8680662B2 (en) 2008-06-16 2014-03-25 Tessera, Inc. Wafer level edge stacking
US8884403B2 (en) 2008-06-19 2014-11-11 Iinvensas Corporation Semiconductor die array structure
WO2010111825A1 (en) * 2009-03-30 2010-10-07 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Electronic package and method of fabrication thereof
US8680687B2 (en) 2009-06-26 2014-03-25 Invensas Corporation Electrical interconnect for die stacked in zig-zag configuration
US9147583B2 (en) 2009-10-27 2015-09-29 Invensas Corporation Selective die electrical insulation by additive process
US9490230B2 (en) 2009-10-27 2016-11-08 Invensas Corporation Selective die electrical insulation by additive process
US8912661B2 (en) 2009-11-04 2014-12-16 Invensas Corporation Stacked die assembly having reduced stress electrical interconnects
JP2011181861A (en) * 2010-03-04 2011-09-15 Casio Computer Co Ltd Semiconductor device and method for manufacturing the same
US8455349B2 (en) 2010-04-28 2013-06-04 Headway Technologies, Inc. Layered chip package and method of manufacturing same
US8426946B2 (en) 2010-06-28 2013-04-23 Headway Technologies, Inc. Laminated semiconductor substrate, laminated chip package and method of manufacturing the same
US8426948B2 (en) 2010-08-02 2013-04-23 Headway Technologies, Inc. Laminated semiconductor wafer, laminated chip package and method of manufacturing the same
US8541887B2 (en) 2010-09-03 2013-09-24 Headway Technologies, Inc. Layered chip package and method of manufacturing same
US8441112B2 (en) 2010-10-01 2013-05-14 Headway Technologies, Inc. Method of manufacturing layered chip package
US8618646B2 (en) 2010-10-12 2013-12-31 Headway Technologies, Inc. Layered chip package and method of manufacturing same
JP2012094587A (en) * 2010-10-25 2012-05-17 Hitachi Chem Co Ltd Method for manufacturing optical semiconductor device and optical semiconductor device
US8652877B2 (en) 2010-12-06 2014-02-18 Headway Technologies, Inc. Method of manufacturing layered chip package
US8358015B2 (en) 2011-06-09 2013-01-22 Headway Technologies, Inc. Layered chip package and method of manufacturing same
US8653639B2 (en) 2011-06-09 2014-02-18 Headway Technologies, Inc. Layered chip package and method of manufacturing same
US9899354B2 (en) 2013-09-27 2018-02-20 Intel Corporation Method for interconnecting stacked semiconductor devices
US9627358B2 (en) 2013-09-27 2017-04-18 Intel Corporation Method for interconnecting stacked semiconductor devices
DE102014113299B4 (en) 2013-09-27 2024-02-22 Intel Corporation METHOD FOR CONNECTING STACKED SEMICONDUCTOR COMPONENTS AND STACKED SEMICONDUCTOR COMPONENT
US11676944B2 (en) 2013-09-27 2023-06-13 Intel Corporation Method for interconnecting stacked semiconductor devices
US11024607B2 (en) 2013-09-27 2021-06-01 Intel Corporation Method for interconnecting stacked semiconductor devices
JP2017224847A (en) * 2013-09-27 2017-12-21 インテル・コーポレーション Semiconductor assembly and manufacturing method of semiconductor assembly
US10643975B2 (en) 2013-09-27 2020-05-05 Intel Corporation Method for interconnecting stacked semiconductor devices
US9666513B2 (en) 2015-07-17 2017-05-30 Invensas Corporation Wafer-level flipped die stacks with leadframes or metal foil interconnects
US9825002B2 (en) 2015-07-17 2017-11-21 Invensas Corporation Flipped die stack
US9871019B2 (en) 2015-07-17 2018-01-16 Invensas Corporation Flipped die stack assemblies with leadframe interconnects
US9490195B1 (en) 2015-07-17 2016-11-08 Invensas Corporation Wafer-level flipped die stacks with leadframes or metal foil interconnects
US9859257B2 (en) 2015-12-16 2018-01-02 Invensas Corporation Flipped die stacks with multiple rows of leadframe interconnects
US9508691B1 (en) 2015-12-16 2016-11-29 Invensas Corporation Flipped die stacks with multiple rows of leadframe interconnects
US10566310B2 (en) 2016-04-11 2020-02-18 Invensas Corporation Microelectronic packages having stacked die and wire bond interconnects
US9595511B1 (en) 2016-05-12 2017-03-14 Invensas Corporation Microelectronic packages and assemblies with improved flyby signaling operation
US9728524B1 (en) 2016-06-30 2017-08-08 Invensas Corporation Enhanced density assembly having microelectronic packages mounted at substantial angle to board
CN106783634B (en) * 2016-12-26 2019-09-20 通富微电子股份有限公司 One kind being fanned out to packaging and its packaging method
CN106783634A (en) * 2016-12-26 2017-05-31 通富微电子股份有限公司 One kind is fanned out to packaging and its method for packing
US12033983B2 (en) 2023-05-12 2024-07-09 Intel Corporation Method for interconnecting stacked semiconductor devices

Also Published As

Publication number Publication date
WO2003046987A1 (en) 2003-06-05

Similar Documents

Publication Publication Date Title
JP2003163324A (en) Unit semiconductor device and manufacturing method thereof, and three-dimensional laminated semiconductor device
KR100459971B1 (en) Semiconductor device, method and device for producing the same, circuit board, and electronic equipment
US7915718B2 (en) Apparatus for flip-chip packaging providing testing capability
KR100565930B1 (en) Light thin stacked package semiconductor device and process for fabrication thereof
US7501696B2 (en) Semiconductor chip-embedded substrate and method of manufacturing same
JP5280014B2 (en) Semiconductor device and manufacturing method thereof
US6849945B2 (en) Multi-layered semiconductor device and method for producing the same
JP2000164618A (en) Metal foil with bumps, circuit board and semiconductor device using the same
KR100565961B1 (en) Manufacturing method for three demensional stack chip package
US20220045008A1 (en) Semiconductor package and method of fabricating the same
JP2003115560A (en) Semiconductor device, laminated semiconductor device, manufacturing method of semiconductor device, and manufacturing method of laminated semiconductor device
JP2008166439A (en) Semiconductor device and manufacturing method thereof
JP2001217337A (en) Semiconductor device and manufacturing method therefor
USRE43536E1 (en) Stackable layer containing ball grid array package
KR101245454B1 (en) Multipackage module having stacked packages with asymmetrically arranged die and molding
JP3826253B2 (en) Chip stack package
US9105626B2 (en) High-density package-on-package structure
JPWO2003012863A1 (en) Semiconductor device and manufacturing method thereof
JP2001077294A (en) Semiconductor device
CN112768437B (en) Multilayer stack packaging structure and preparation method thereof
US7265441B2 (en) Stackable single package and stacked multi-chip assembly
JP2988045B2 (en) Bare chip structure and bare chip mounting structure
JP2001332580A (en) Semiconductor device and method of manufacturing the same
KR20120031690A (en) Embedded package and method for forming the same
JP3490601B2 (en) Film carrier and laminated mounting body using the same