JP2008166439A - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP2008166439A
JP2008166439A JP2006353412A JP2006353412A JP2008166439A JP 2008166439 A JP2008166439 A JP 2008166439A JP 2006353412 A JP2006353412 A JP 2006353412A JP 2006353412 A JP2006353412 A JP 2006353412A JP 2008166439 A JP2008166439 A JP 2008166439A
Authority
JP
Japan
Prior art keywords
semiconductor device
electrode
land
connection electrode
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006353412A
Other languages
Japanese (ja)
Inventor
Naomi Masuda
直実 舛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spansion LLC
Original Assignee
Spansion LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spansion LLC filed Critical Spansion LLC
Priority to JP2006353412A priority Critical patent/JP2008166439A/en
Priority to TW96147833A priority patent/TWI376024B/en
Priority to US12/004,920 priority patent/US8598717B2/en
Priority to PCT/US2007/026428 priority patent/WO2008082615A2/en
Publication of JP2008166439A publication Critical patent/JP2008166439A/en
Priority to US14/067,717 priority patent/US8765529B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/1052Wire or wire-like electrical connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • H01L2924/15331Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device and a manufacturing method thereof wherein the semiconductor device can be miniaturized and a multilayer semiconductor device obtained by layering the semiconductor devices can be miniaturized. <P>SOLUTION: The semiconductor device includes a semiconductor chip (12), a wiring layer (40) electrically connected to the semiconductor chip (12), a connection electrode (44) having a stud bump as a through-electrode (42) provided on the top face of a first land electrode (34) constituting the wiring layer (40), and a sealing resin (16) penetrated by the connection electrode (44) and for sealing the semiconductor chip (12). The top face of the connection electrode (44) is provided above the top face of the sealing resin (16). The multilayer semiconductor device is obtained by layering the semiconductor devices, and the manufacturing methods for them are also provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は半導体装置およびその製造方法に関し、特に半導体装置を複数積層するための半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device for stacking a plurality of semiconductor devices and a manufacturing method thereof.

近年、例えば、移動体電話機のような携帯型電子機器やICメモリカードの不揮発性記憶媒体等に用いられる半導体装置はその小型化が求められている。そのためには、半導体チップを効率的にパッケージングする技術が必要とされている。その1つの手法として、半導体チップを搭載したパッケージを積層させるパッケージ・オン・パッケージの技術が開発されている。   In recent years, for example, a semiconductor device used for a portable electronic device such as a mobile phone or a nonvolatile storage medium of an IC memory card has been required to be downsized. For this purpose, a technique for efficiently packaging a semiconductor chip is required. As one of the techniques, a package-on-package technique for stacking packages on which semiconductor chips are mounted has been developed.

図1(a)および図1(b)と図2(a)および図2(b)とは、従来例1に係る半導体装置およびパッケージ・オン・パッケージを示した断面図である。図1(a)および図1(b)は半導体チップが例えばワイヤボンディングによりフェイスアップ構造で配線基板に搭載されている例である。一方、図2(a)および図2(b)は半導体チップが例えばスタッドバンプによりフェイスダウン構造で配線基板に搭載されている例である。図1(a)を参照に、配線基板10上にダイ付け材14を用い半導体チップ12が搭載されている。半導体チップ12と配線基板10とはワイヤ23により電気的に接続されている。半導体チップ12は封止樹脂16により封止されている。配線基板10の半導体チップ12の側にランド電極22が設けられている。配線基板10の半導体チップ12と反対の側にはランド電極20を介して半田ボール18が設けられている。ランド電極22と半田ボール18とは電気的に接続している。図1(b)は、図1(a)で示した半導体装置が積層されている半導体装置である。図1(b)を参照に、上部半導体装置24の半田ボール18と下部半導体装置26のランド電極22とが接続されている。これにより、上部半導体装置24と下部半導体装置26とは電気的に接続されている。   FIGS. 1A and 1B and FIGS. 2A and 2B are cross-sectional views showing a semiconductor device and a package-on-package according to Conventional Example 1. FIG. FIG. 1A and FIG. 1B are examples in which a semiconductor chip is mounted on a wiring board with a face-up structure by, for example, wire bonding. On the other hand, FIG. 2A and FIG. 2B are examples in which a semiconductor chip is mounted on a wiring board with a face-down structure by, for example, stud bumps. Referring to FIG. 1A, a semiconductor chip 12 is mounted on a wiring board 10 using a die attachment material 14. The semiconductor chip 12 and the wiring substrate 10 are electrically connected by a wire 23. The semiconductor chip 12 is sealed with a sealing resin 16. A land electrode 22 is provided on the side of the semiconductor chip 12 of the wiring substrate 10. Solder balls 18 are provided on the opposite side of the wiring substrate 10 from the semiconductor chip 12 via land electrodes 20. The land electrode 22 and the solder ball 18 are electrically connected. FIG. 1B illustrates a semiconductor device in which the semiconductor devices illustrated in FIG. Referring to FIG. 1B, the solder ball 18 of the upper semiconductor device 24 and the land electrode 22 of the lower semiconductor device 26 are connected. Thereby, the upper semiconductor device 24 and the lower semiconductor device 26 are electrically connected.

図2(a)を参照に、配線基板10上にスタッドバンプ28を用い半導体チップ12が搭載されている。半導体チップ12と配線基板10の間にはアンダーフィル30が充満されている。他の構成は図1(a)と同様であるため説明を省略する。図2(b)は、図2(a)で示した半導体装置が積層されている半導体装置である。積層の方法は、図1(b)と同様であるため説明を省略する。   With reference to FIG. 2A, the semiconductor chip 12 is mounted on the wiring board 10 using the stud bumps 28. An underfill 30 is filled between the semiconductor chip 12 and the wiring substrate 10. The other configuration is the same as that shown in FIG. FIG. 2B illustrates a semiconductor device in which the semiconductor devices illustrated in FIG. The lamination method is the same as that in FIG.

特許文献1には、チップ・サイズ・パッケージにおいて、半導体チップとパッケージの実装端子である半田ボールとを接続するために用いられる半導体ウエハの電極に形成されるビアポストをスタッドバンプにより形成する技術が開示されている。
特開2000−200800号公報
Patent Document 1 discloses a technique for forming a via post formed on an electrode of a semiconductor wafer used for connecting a semiconductor chip and a solder ball, which is a mounting terminal of the package, with a stud bump in a chip size package. Has been.
JP 2000-200800 A

従来例1において、半田ボール18は半導体装置の積層の時に電極として用いられる機能と半導体装置が例えばマザーボード等に搭載される時に電極として用いられる機能とを兼ねている。半田ボール18の電極ピッチ間隔を狭くすることにより半導体装置を小型化することができるが、半田ボールは主に球形もしくは楕円形の形状をしているため、半田ボールを溶融したときに隣の電極とショートが起こらないスペースが必要となる。また、あまり半田ボールの電極ピッチ間隔を狭くすると、例えばマザーボード等への実装工程において精度の高い搭載技術が要求され、また電気的検査工程においても高精度な検査冶具が要求される課題がある。このため、半田ボールの電極ピッチ間隔は広くとる必要があり、このことが半導体装置の小型化への足かせとなっている。   In Conventional Example 1, the solder ball 18 has both a function used as an electrode when stacking semiconductor devices and a function used as an electrode when the semiconductor device is mounted on, for example, a mother board. Although the semiconductor device can be reduced in size by narrowing the electrode pitch interval of the solder balls 18, the solder ball is mainly spherical or elliptical, so that the adjacent electrode when the solder ball is melted. And a space where short does not occur is required. If the electrode pitch interval of the solder balls is too narrow, there is a problem that a highly accurate mounting technique is required in a mounting process on a mother board or the like, and a highly accurate inspection jig is required in an electrical inspection process. For this reason, it is necessary to increase the electrode pitch interval of the solder balls, which is an obstacle to miniaturization of the semiconductor device.

本発明は上記課題に鑑みなされたものであり、半導体装置を小型化することおよび半導体装置を積層した場合の積層半導体装置を小型化することが可能な半導体装置およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a semiconductor device capable of downsizing a semiconductor device, and downsizing a stacked semiconductor device when the semiconductor devices are stacked, and a manufacturing method thereof. Objective.

本発明は、半導体チップと、前記半導体チップと電気的に接続する第1ランド電極と、前記第1ランド電極の上面に設けられ前記第1ランド電極と電気的に接続しスタッドバンプで形成される貫通電極と、からなる接続電極と、前記接続電極が貫通し、前記半導体チップを封止する封止樹脂と、を具備することを特徴とする半導体装置である。本発明によれば、貫通電極はスタッドバンプで形成される。このため、接続電極の電極ピッチ間隔を狭くすることができる。よって、半導体装置を小型化することが可能となる。   The present invention is formed of a semiconductor chip, a first land electrode electrically connected to the semiconductor chip, and a stud bump provided on the upper surface of the first land electrode and electrically connected to the first land electrode. A semiconductor device comprising: a connection electrode comprising a through electrode; and a sealing resin through which the connection electrode penetrates to seal the semiconductor chip. According to the present invention, the through electrode is formed of a stud bump. For this reason, the electrode pitch space | interval of a connection electrode can be narrowed. Therefore, the semiconductor device can be reduced in size.

上記構成において、前記半導体チップと電気的に接続し外部との接続に用いられる第2ランド電極を具備し、前記接続電極は前記半導体チップの周囲に設けられ、前記第2ランド電極は前記半導体チップの真下に設けられている構成とすることができる。この構成によれば、半導体装置の積層に用いる接続電極は半導体チップの周囲に配置され、例えばマザーボード等への実装や電気的試験に用いる第2ランド電極は半導体チップの真下に配置される。よって、第2ランド電極の電極ピッチ間隔は広く保ったまま、接続電極の電極ピッチ間隔を狭くすることができるため、例えばマザーボード等への実装や電気的試験の簡便性を損なわずに、半導体装置の小型化が可能となる。   In the above configuration, the semiconductor device includes a second land electrode that is electrically connected to the semiconductor chip and used for connection to the outside. The connection electrode is provided around the semiconductor chip, and the second land electrode is the semiconductor chip. It can be set as the structure provided directly under. According to this configuration, the connection electrode used for stacking the semiconductor devices is disposed around the semiconductor chip, and the second land electrode used for mounting on a mother board or the like or for an electrical test is disposed directly below the semiconductor chip. Therefore, the electrode pitch interval of the connection electrodes can be reduced while keeping the electrode pitch interval of the second land electrode wide, so that, for example, the semiconductor device can be mounted without impairing the ease of mounting on a mother board or the like or electrical testing. Can be reduced in size.

上記構成において、前記接続電極の上面が前記封止樹脂の上面より上に設けられている構成とすることができる。この構成によれば、半導体装置を積層する場合に、上に積層された半導体装置と下に積層された半導体装置との電気的接続を容易にかつ安定に接続することができる。   The said structure WHEREIN: The upper surface of the said connection electrode can be set as the structure provided above the upper surface of the said sealing resin. According to this configuration, when the semiconductor devices are stacked, the electrical connection between the semiconductor device stacked above and the semiconductor device stacked below can be easily and stably connected.

上記構成において、前記第1ランド電極と、前記第2ランド電極と、前記第1ランド電極と前記第2ランド電極とを電気的に接続する配線と、を含み一つの金属フィルムから形成されている配線層を具備する構成とすることができる。この構成によれば、配線層を同一面に設けることができる。このため、半導体装置を積層する場合や半導体装置を例えばマザーボード等へ搭載する場合に接合面を確実に接合させることができる。   In the above configuration, the first land electrode, the second land electrode, and a wiring that electrically connects the first land electrode and the second land electrode are formed from one metal film. A wiring layer may be provided. According to this configuration, the wiring layer can be provided on the same surface. For this reason, when the semiconductor devices are stacked or when the semiconductor device is mounted on, for example, a mother board or the like, the bonding surfaces can be reliably bonded.

上記構成において、隣接し合う前記第1ランド電極上に設けられた前記貫通電極が、互いに第1ランド電極の長手方向の異なった位置に設けられている構成とすることができる。この構成によれば、接続電極の電極ピッチ間隔をより狭くすることができる。これにより、半導体装置をより小型化することが可能となる。   The said structure WHEREIN: The said penetration electrode provided on the adjacent said 1st land electrode can be set as the structure provided in the position where the longitudinal direction of the 1st land electrode differs mutually. According to this configuration, the electrode pitch interval of the connection electrodes can be further narrowed. As a result, the semiconductor device can be further downsized.

上記構成において、前記貫通電極はスタッドバンプを二以上積層して設けられている構成とすることができる。この構成によれば、貫通電極の径を増大させることなく、貫通電極の高さを高くすることができる。このため、半導体装置の小型化を損なわずに貫通電極を高く設けることができる。また、半導体装置を積層した場合には、接続電極がより高く設けられているので、上に積層された半導体装置と下に積層された半導体装置の電気的接続をより容易にかつより安定に接続することができる。   The said structure WHEREIN: The said penetration electrode can be set as the structure provided by laminating | stacking two or more stud bumps. According to this configuration, the height of the through electrode can be increased without increasing the diameter of the through electrode. For this reason, a through-electrode can be provided high without impairing miniaturization of the semiconductor device. In addition, when the semiconductor devices are stacked, the connection electrode is provided higher, so that the electrical connection between the semiconductor device stacked above and the semiconductor device stacked below can be connected more easily and more stably. can do.

上記構成において、前記配線層は前記半導体チップの下面より下に設けられ、前記半導体チップがフェイスダウン実装で設けられている構成とすることができる。この構成によれば、半導体チップと配線層との電気的接続を半導体チップの下で行うことができるため、半導体装置を小型化することが可能となる。   In the above configuration, the wiring layer may be provided below the lower surface of the semiconductor chip, and the semiconductor chip may be provided by face-down mounting. According to this configuration, since the electrical connection between the semiconductor chip and the wiring layer can be performed under the semiconductor chip, the semiconductor device can be reduced in size.

上記構成において、前記半導体装置である第1半導体装置の第1接続電極と前記半導体装置である第2半導体装置の第2接続電極とが接合することで、前記第1半導体装置と前記第2半導体装置とが積層している構成とすることができる。この構成によれば、接続電極に含まれる貫通電極はスタッドバンプで形成されるため、半導体装置を積層した場合に嵩張りを小さくすることができる。このため、積層半導体装置を小型化することが可能となる。   In the above structure, the first connection electrode of the first semiconductor device, which is the semiconductor device, and the second connection electrode of the second semiconductor device, which is the semiconductor device, are joined, so that the first semiconductor device and the second semiconductor It can be set as the structure which the apparatus laminates | stacks. According to this configuration, since the through electrode included in the connection electrode is formed by the stud bump, the bulkiness can be reduced when the semiconductor devices are stacked. For this reason, it becomes possible to reduce the size of the stacked semiconductor device.

上記構成において、前記第1接続電極の上面と前記第2接続電極の下面との間に別のスタッドバンプが形成されている構成とすることができる。この構成によれば、第1半導体装置と第2半導体装置との積層において、電気的接続をより容易にかつより安定に接続することができる。   In the above configuration, another stud bump may be formed between the upper surface of the first connection electrode and the lower surface of the second connection electrode. According to this configuration, in the stacking of the first semiconductor device and the second semiconductor device, the electrical connection can be more easily and more stably connected.

上記構成において、前記第1接続電極と前記第2接続電極とが熱圧着または半田で接合している構成とすることができる。   In the above configuration, the first connection electrode and the second connection electrode may be bonded by thermocompression bonding or soldering.

本発明は、半導体チップと第1ランド電極とを電気的に接続する工程と、前記第1ランド電極の上面に前記第1ランド電極と電気的に接続する貫通電極をスタッドバンプにより形成し、前記第1ランド電極と前記貫通電極からなる接続電極を形成する工程と、前記接続電極が貫通し、前記半導体チップを封止する封止樹脂を形成する工程と、を有する半導体装置の製造方法である。本発明によれば、貫通電極をスタッドバンプで形成するため、電極ピッチ間隔の狭い接続電極の形成ができる。これにより、半導体装置を小型化することが可能となる。   The present invention includes a step of electrically connecting a semiconductor chip and a first land electrode, and a through electrode electrically connected to the first land electrode is formed on the upper surface of the first land electrode by a stud bump. A method of manufacturing a semiconductor device, comprising: forming a connection electrode including a first land electrode and the through electrode; and forming a sealing resin through which the connection electrode penetrates to seal the semiconductor chip. . According to the present invention, since the through electrode is formed by the stud bump, a connection electrode having a narrow electrode pitch interval can be formed. As a result, the semiconductor device can be reduced in size.

上記構成において、前記第1ランド電極と、前記半導体チップと電気的に接続し外部との接続に用いられる前記第2ランド電極と、前記第1ランド電極と前記第2ランド電極とを電気的に接続する配線と、を含む配線層を一つの金属フィルムから形成する工程を有する構成とすることができる。この構成によれば、配線層は同一面に形成されるため、半導体装置を積層する場合や半導体装置を例えばマザーボード等へ搭載する場合に接合面を確実に接合させることができる。また、配線層を一つのフィルムから一括に製造することが可能なため、簡便に配線層を形成することができる。   In the above configuration, the first land electrode, the second land electrode that is electrically connected to the semiconductor chip and used for connection to the outside, and the first land electrode and the second land electrode are electrically connected. It can be set as the structure which has the process of forming the wiring layer containing the wiring to connect from one metal film. According to this configuration, since the wiring layer is formed on the same surface, the bonding surfaces can be reliably bonded when the semiconductor devices are stacked or when the semiconductor devices are mounted on, for example, a mother board. Moreover, since a wiring layer can be manufactured collectively from one film, a wiring layer can be formed easily.

前記配線層を一つの金属フィルムから形成する工程は、金属フィルム付きテープ基板の金属フィルムをエッチングすることにより前記配線層を形成する工程である構成とすることができる。この構成によれば、テープ基板を支持体とすることができるため、厚さの薄い配線層を形成することができる。このため、半導体装置を小型化することが可能となる。   The step of forming the wiring layer from one metal film may be a step of forming the wiring layer by etching the metal film of the tape substrate with the metal film. According to this configuration, since the tape substrate can be used as a support, a thin wiring layer can be formed. For this reason, it is possible to reduce the size of the semiconductor device.

上記構成において、前記封止樹脂を形成する工程は、前記接続電極の上部をシートで覆い成型することにより、前記接続電極の上面が前記封止樹脂の上面より上に形成されるように封止樹脂を形成する工程である構成とすることができる。この構成によれば、半導体装置を積層する場合に、上に積層された半導体装置と下に積層された半導体装置の電気的接続を容易にかつ安定に接続することができる。   In the above configuration, the step of forming the sealing resin is performed by covering and molding the upper part of the connection electrode with a sheet so that the upper surface of the connection electrode is formed above the upper surface of the sealing resin. It can be set as the structure which is a process of forming resin. According to this configuration, when the semiconductor devices are stacked, the electrical connection between the semiconductor device stacked above and the semiconductor device stacked below can be easily and stably connected.

上記構成において、前記半導体チップと前記第1ランド電極とを電気的に接続する工程は、前記半導体チップをフェイスダウン実装する工程を含む構成とすることができる。この構成によれば、半導体チップと配線層との電気的接続を半導体チップの下で行うことができるため、半導体装置を小型化することが可能となる。   In the above configuration, the step of electrically connecting the semiconductor chip and the first land electrode may include a step of face-down mounting the semiconductor chip. According to this configuration, since the electrical connection between the semiconductor chip and the wiring layer can be performed under the semiconductor chip, the semiconductor device can be reduced in size.

上記構成において、前記貫通電極をスタッドバンプにより形成する工程は、スタッドバンプを形成する工程を複数回含む構成とすることができる。この構成によれば、貫通電極の径を増大させることなく、貫通電極の高さを高く形成することができる。このため、半導体装置の小型化を損なわずに貫通電極を高く形成することができる。また、半導体装置を積層した場合には、接続電極がより高く形成されているので、上に積層された半導体装置と下に積層された半導体装置の電気的接続をより容易にかつより安定に接続することができる。   The said structure WHEREIN: The process of forming the said penetration electrode by a stud bump can be set as the structure including the process of forming a stud bump in multiple times. According to this configuration, the height of the through electrode can be increased without increasing the diameter of the through electrode. For this reason, a through electrode can be formed high without impairing the miniaturization of the semiconductor device. In addition, when the semiconductor devices are stacked, the connection electrode is formed higher, so that the electrical connection between the semiconductor device stacked above and the semiconductor device stacked below can be connected more easily and stably. can do.

上記構成において、前記半導体装置である第1半導体装置の第1接続電極と前記半導体装置である第2半導体装置の第2接続電極とを接合する工程を有する構成とすることができる。この構成によれば、接続電極に含まれる貫通電極はスタッドバンプで形成されるため、半導体装置を積層した場合に嵩張りを小さくすることができる。このため、積層半導体装置を小型化することが可能となる。   The above structure may include a step of bonding the first connection electrode of the first semiconductor device that is the semiconductor device and the second connection electrode of the second semiconductor device that is the semiconductor device. According to this configuration, since the through electrode included in the connection electrode is formed by the stud bump, the bulkiness can be reduced when the semiconductor devices are stacked. For this reason, it becomes possible to reduce the size of the stacked semiconductor device.

上記構成において、前記第1接続電極と前記第2接続電極とを接合する工程は、前記第1接続電極の上面もしくは前記第2接続電極の下面に別のスタッドバンプを形成する工程を有する構成とすることができる。この構成によれば、第1半導体装置と第2半導体装置との積層において、電気的接続をより容易にかつより安定に接続することができる。   In the above configuration, the step of bonding the first connection electrode and the second connection electrode includes a step of forming another stud bump on the upper surface of the first connection electrode or the lower surface of the second connection electrode. can do. According to this configuration, in the stacking of the first semiconductor device and the second semiconductor device, the electrical connection can be more easily and more stably connected.

上記構成において、前記第1接続電極と前記第2接続電極とを接合する工程は、熱圧着または半田で接合する工程を含む構成とすることができる。   The said structure WHEREIN: The process of joining the said 1st connection electrode and the said 2nd connection electrode can be set as the structure containing the process of joining by thermocompression bonding or solder.

本発明によれば、半導体装置を小型化することおよび半導体装置を積層した場合の積層半導体装置を小型化することが可能な半導体装置およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the semiconductor device which can reduce the size of a semiconductor device, and can reduce the size of a laminated semiconductor device when the semiconductor devices are stacked, and a manufacturing method thereof can be provided.

以下図面を用い本発明に係る実施例について説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

図3は実施例1に係る半導体装置の断面図である。図3を参照に、半導体チップ12は第1ランド電極34の上面の一端にスタッドバンプ28を用いてフリップチップ接続によりフェイスダウン構造で搭載されている。第1ランド電極34の上面の他端には例えば金からなるスタッドバンプである貫通電極42が形成され、第1ランド電極34と貫通電極42とからなる接続電極44が設けられている。ここで、第1ランド電極34は貫通電極42を形成するために設けられた電極である。また、接続電極44は半導体装置を積層した際、上に積層された半導体装置と下に積層された半導体装置との電気的接続に用いられる。第1ランド電極34と、第2ランド電極36と、第1ランド電極34と第2ランド電極36とを接続する配線38と、を含む配線層40は例えば銅からなる一つの金属フィルムから形成されていて互いに電気的に接続している。配線層40は半導体チップ12の下面より下に設けられていて、接続電極44は半導体チップ12の周囲に、第2ランド電極36は半導体チップ12の真下に設けられている。半導体チップ12および接続電極44は封止樹脂16で封止されており、接続電極44は封止樹脂16を貫通している。半導体チップ12と第2ランド電極36との間にはアンダーフィル30が設けられている。第2ランド電極36には半田ボール18が接続されている。   FIG. 3 is a cross-sectional view of the semiconductor device according to the first embodiment. Referring to FIG. 3, the semiconductor chip 12 is mounted on one end of the upper surface of the first land electrode 34 in a face-down structure by flip chip connection using a stud bump 28. A through electrode 42 that is a stud bump made of gold, for example, is formed on the other end of the upper surface of the first land electrode 34, and a connection electrode 44 made up of the first land electrode 34 and the through electrode 42 is provided. Here, the first land electrode 34 is an electrode provided to form the through electrode 42. The connection electrode 44 is used for electrical connection between the semiconductor device stacked above and the semiconductor device stacked below when the semiconductor devices are stacked. The wiring layer 40 including the first land electrode 34, the second land electrode 36, and the wiring 38 that connects the first land electrode 34 and the second land electrode 36 is formed of, for example, one metal film made of copper. And are electrically connected to each other. The wiring layer 40 is provided below the lower surface of the semiconductor chip 12, the connection electrode 44 is provided around the semiconductor chip 12, and the second land electrode 36 is provided directly below the semiconductor chip 12. The semiconductor chip 12 and the connection electrode 44 are sealed with the sealing resin 16, and the connection electrode 44 penetrates the sealing resin 16. An underfill 30 is provided between the semiconductor chip 12 and the second land electrode 36. A solder ball 18 is connected to the second land electrode 36.

図4(a)から図9(b)を用い、実施例1に係る半導体装置の製造方法について説明する。図4(a)を参照に、金属フィルム付きテープ基板32の金属フィルムをエッチングすることにより、テープ基板32の上に、長方形の形をした第1ランド電極34と、円形の形をした第2ランド電極36と、第1ランド電極と第2ランド電極を電気的に接続する配線38と、を含む例えば銅からなる配線層40を形成する。ここで、テープ基板32は配線層40の支持体として用いられる。第1ランド電極34はテープ基板32の周囲に配置され、第2ランド電極36はテープ基板32の中央に配置される。ここで、第1ランド電極34の電極ピッチ間隔は約150μmであり、第2ランド電極36の電極ピッチ間隔は約500μmである。図4(b)は図4(a)のA−A間の断面図である。ここで、配線層40の厚さは約30μmである。   A method for manufacturing the semiconductor device according to the first embodiment will be described with reference to FIGS. 4A, by etching the metal film of the tape substrate 32 with the metal film, a rectangular first land electrode 34 and a second circular shape are formed on the tape substrate 32. A wiring layer 40 made of copper, for example, including the land electrode 36 and the wiring 38 that electrically connects the first land electrode and the second land electrode is formed. Here, the tape substrate 32 is used as a support for the wiring layer 40. The first land electrode 34 is disposed around the tape substrate 32, and the second land electrode 36 is disposed in the center of the tape substrate 32. Here, the electrode pitch interval of the first land electrodes 34 is about 150 μm, and the electrode pitch interval of the second land electrodes 36 is about 500 μm. FIG. 4B is a cross-sectional view taken along the line AA in FIG. Here, the thickness of the wiring layer 40 is about 30 μm.

図5(a)は第1ランド電極34の上に貫通電極42をスタッドバンプで形成した時のテープ基板32の上視図である。図5(a)を参照に、例えば金からなるスタッドバンプである貫通電極42は第1ランド電極34上に形成される。隣接し合う第1ランド電極34上の貫通電極42は、互いに第1ランド電極34の長手方向の異なった位置に形成される。貫通電極42が形成されることで、貫通電極42と第1ランド電極34とからなる接続電極44が形成される。図5(b)は図5(a)のA−A間の断面図である。貫通電極42の高さは約230μmである。第1ランド電極34の厚さは約30μmであるため接続電極44の高さは約260μmである。また、貫通電極42の直径は約100μmである。   FIG. 5A is a top view of the tape substrate 32 when the through electrode 42 is formed by a stud bump on the first land electrode 34. With reference to FIG. 5A, the through electrode 42 which is a stud bump made of gold, for example, is formed on the first land electrode 34. The through electrodes 42 on the adjacent first land electrodes 34 are formed at different positions in the longitudinal direction of the first land electrodes 34. By forming the through electrode 42, a connection electrode 44 including the through electrode 42 and the first land electrode 34 is formed. FIG.5 (b) is sectional drawing between AA of Fig.5 (a). The height of the through electrode 42 is about 230 μm. Since the thickness of the first land electrode 34 is about 30 μm, the height of the connection electrode 44 is about 260 μm. The through electrode 42 has a diameter of about 100 μm.

図6(a)は半導体チップ12を第1ランド電極34にスタッドバンプ28を用いてフリップチップ接続によりフェイスダウン実装した時のテープ基板32の上視図である。図6(b)は図6(a)のA−A間の断面図である。図6(b)を参照に、例えば厚さ150μmの半導体チップ12を第1ランド電極34の上面で貫通電極42が形成されてない側の一端に、スタッドバンプ28を用いてフリップチップ接続によりフェイスダウン実装で搭載する。ここで、スタッドバンプ28の高さは約30μmである。半導体チップ12とテープ基板32の間にはエポキシ樹脂からなるアンダーフィル30を形成する。   FIG. 6A is a top view of the tape substrate 32 when the semiconductor chip 12 is face-down mounted by flip chip connection using the stud bump 28 on the first land electrode 34. FIG. 6B is a cross-sectional view taken along a line AA in FIG. Referring to FIG. 6B, for example, the semiconductor chip 12 having a thickness of 150 μm is flip-chip connected to the end of the first land electrode 34 on the side where the through electrode 42 is not formed by using a stud bump 28. Mount with down mounting. Here, the height of the stud bump 28 is about 30 μm. An underfill 30 made of an epoxy resin is formed between the semiconductor chip 12 and the tape substrate 32.

図7(a)は封止樹脂16を形成する際に用いられる金型46とテープ基板32とを合わせた状態の上視図である。図7(b)と図7(c)とは図7(a)のA−A間の断面図である。図7(b)を参照に、封止樹脂16の形成に用いる金型46は凹型をしていて、凹型の底にシート48が設けられている。金型46の上面からシート48までの深さは約250μmである。図7(c)を参照に、金型46に例えば熱硬化性のエポキシ樹脂である封止樹脂16を未硬化状態で充填する。金型46を加熱し、封止樹脂16が溶融した状態でテープ基板32と金型46とを当接させる。このとき、金型46の上面からシート48までの深さは約250μmであり、接続電極44の高さは約260μmであるため、接続電極44の上部はシート48を押圧し、接続電極44の上部はシート48に覆われる。これにより、接続電極44の上部を封止樹脂16で封止させずに、半導体チップ12を封止樹脂16で封止することができる。   FIG. 7A is a top view of a state in which the mold 46 and the tape substrate 32 used when forming the sealing resin 16 are combined. FIG. 7B and FIG. 7C are cross-sectional views taken along the line A-A in FIG. Referring to FIG. 7B, the metal mold 46 used for forming the sealing resin 16 has a concave shape, and a sheet 48 is provided on the bottom of the concave shape. The depth from the upper surface of the mold 46 to the sheet 48 is about 250 μm. Referring to FIG. 7C, the mold 46 is filled with, for example, a sealing resin 16 which is a thermosetting epoxy resin in an uncured state. The mold 46 is heated, and the tape substrate 32 and the mold 46 are brought into contact with each other in a state where the sealing resin 16 is melted. At this time, since the depth from the upper surface of the mold 46 to the sheet 48 is about 250 μm and the height of the connection electrode 44 is about 260 μm, the upper part of the connection electrode 44 presses the sheet 48, The upper part is covered with a sheet 48. Thus, the semiconductor chip 12 can be sealed with the sealing resin 16 without sealing the upper portion of the connection electrode 44 with the sealing resin 16.

図8(a)は封止樹脂16を形成した後のテープ基板32の上視図である。図8(b)は図8(a)のA−A間の断面図である。図8(b)を参照に、封止樹脂16の形成に用いた金型46を外すと、接続電極44の上部を除いて、半導体チップ12と接続電極44とが封止樹脂16で封止される。つまり、接続電極44は封止樹脂16を貫通していることになる。ここで、封止樹脂16で封止されていない接続電極44の上部の高さは約10μmである。   FIG. 8A is a top view of the tape substrate 32 after the sealing resin 16 is formed. FIG. 8B is a cross-sectional view taken along the line A-A in FIG. Referring to FIG. 8B, when the mold 46 used for forming the sealing resin 16 is removed, the semiconductor chip 12 and the connection electrode 44 are sealed with the sealing resin 16 except for the upper portion of the connection electrode 44. Is done. That is, the connection electrode 44 penetrates the sealing resin 16. Here, the height of the upper portion of the connection electrode 44 not sealed with the sealing resin 16 is about 10 μm.

図9(a)はテープ基板32を剥がし、第2ランド電極36に半田ボール18を形成した時の上視図である。図9(b)は図9(a)のA−A間の断面図である。図9(b)を参照に、テープ基板32を剥がし、露出した第2ランド電極36に半田ボール18を形成する。半田ボール18の直径は約300μmである。これにより、図3に示す半導体装置が完成する。   FIG. 9A is a top view when the tape substrate 32 is peeled off and the solder ball 18 is formed on the second land electrode 36. FIG. 9B is a cross-sectional view taken along the line A-A in FIG. Referring to FIG. 9B, the tape substrate 32 is peeled off, and the solder ball 18 is formed on the exposed second land electrode 36. The diameter of the solder ball 18 is about 300 μm. Thereby, the semiconductor device shown in FIG. 3 is completed.

実施例1によれば、図3のように半導体チップ12の周囲に接続電極44が設けられている。従来例1では、半導体チップ12の周囲には半田ボール18が設けられている。ここで、従来例1の半田ボール18は半導体装置の積層用としても、例えばマザーボード等への実装や電気的試験用としても用いられるが、実施例1の接続電極44は半導体装置の積層用にのみ用いられ、例えばマザーボード等への実装および電気的試験には用いられない。このため、接続電極44は実装や電気的試験の際の簡便性は考慮しなくてよいため、接続電極44の電極ピッチ間隔を狭くすることができる。さらに、接続電極44にある貫通電極42はスタッドバンプで形成されるため、貫通電極42の径を半田ボール18の径に比べ小さく形成することができる。これらより、接続電極44の電極ピッチ間隔は半田ボール18の電極ピッチ間隔より狭くでき、実施例1に係る半導体装置は従来例1に係る半導体装置に比べ小型化することが可能となる。   According to the first embodiment, the connection electrode 44 is provided around the semiconductor chip 12 as shown in FIG. In Conventional Example 1, solder balls 18 are provided around the semiconductor chip 12. Here, the solder balls 18 of the conventional example 1 are used for stacking semiconductor devices, for example, for mounting on a mother board or for electrical testing, but the connection electrodes 44 of the first embodiment are used for stacking semiconductor devices. For example, it is not used for mounting on a mother board or the like and for electrical testing. For this reason, since it is not necessary to consider the convenience at the time of mounting and an electrical test, the connection electrode 44 can make the electrode pitch space | interval of the connection electrode 44 narrow. Further, since the through electrode 42 in the connection electrode 44 is formed of a stud bump, the diameter of the through electrode 42 can be made smaller than the diameter of the solder ball 18. Accordingly, the electrode pitch interval of the connection electrodes 44 can be narrower than the electrode pitch interval of the solder balls 18, and the semiconductor device according to the first embodiment can be downsized compared to the semiconductor device according to the first conventional example.

また、図3のように第2ランド電極36には半田ボール18が設けられている。半田ボール18は例えばマザーボード等への実装に用いられ、半田ボール18が設けられる前の第2ランド電極36は半導体装置の電気的試験に用いられる。半田ボール18もしくは第2ランド電極36は半導体チップ12の真下に設けられるため、半田ボール18もしくは第2ランド電極36の電極ピッチ間隔を広く取っても半導体装置が大型化することはない。このため、半導体装置の小型化を図りつつ、例えばマザーボード等への実装および電気的試験の簡便性も損なわない半導体装置が可能となる。   Further, as shown in FIG. 3, the solder ball 18 is provided on the second land electrode 36. The solder ball 18 is used for mounting on a mother board or the like, for example, and the second land electrode 36 before the solder ball 18 is provided is used for an electrical test of the semiconductor device. Since the solder ball 18 or the second land electrode 36 is provided directly below the semiconductor chip 12, even if the electrode pitch interval between the solder ball 18 or the second land electrode 36 is wide, the semiconductor device does not increase in size. For this reason, it is possible to provide a semiconductor device that does not impair the simplicity of mounting and electrical testing on a mother board or the like, for example, while reducing the size of the semiconductor device.

さらに、図4(a)のように、第1ランド電極34と、第2ランド電極36と、第1ランド電極34と第2ランド電極36とを電気的に接続する配線38と、を含む配線層40はテープ基板を支持体とする一つのフィルムから形成される。これにより、厚さの薄い配線層40を容易に形成することができる。よって、半導体装置をより小型化することが可能となる。   Further, as shown in FIG. 4A, a wiring including a first land electrode 34, a second land electrode 36, and a wiring 38 that electrically connects the first land electrode 34 and the second land electrode 36. Layer 40 is formed from a single film with a tape substrate as a support. Thereby, the thin wiring layer 40 can be easily formed. Therefore, the semiconductor device can be further downsized.

さらに、図5(a)のように隣接する第1ランド電極34上にスタッドバンプで形成される貫通電極42は、互いに第1ランド電極34の長手方向の異なった位置に形成される。これにより、接続電極44の電極ピッチ間隔をさらに狭くすることができる。このため、半導体装置のさらなる小型化が可能となる。   Further, as shown in FIG. 5A, the through electrodes 42 formed by stud bumps on the adjacent first land electrodes 34 are formed at different positions in the longitudinal direction of the first land electrodes 34. Thereby, the electrode pitch interval of the connection electrodes 44 can be further narrowed. For this reason, the semiconductor device can be further miniaturized.

実施例2は実施例1に係る半導体装置を積層した場合の一つの例である。図10は実施例2に係る積層半導体装置の断面図である。図10を参照に、第1半導体装置50の第1接続電極45の上面と第2半導体装置51の第2接続電極47の下面とを熱圧着することにより接合し、第1半導体装置50と第2半導体装置51とが積層している。ここで、第1半導体装置50には半田ボール18が設けられているが、第2半導体装置51には半田ボール18が設けられていない。また、第1半導体装置50と第2半導体装置51との間には接合強度を確保するため接着剤52が設けられている。これにより、実施例2に係る積層半導体装置が完成する。   Example 2 is an example in which the semiconductor devices according to Example 1 are stacked. FIG. 10 is a cross-sectional view of the stacked semiconductor device according to the second embodiment. Referring to FIG. 10, the upper surface of the first connection electrode 45 of the first semiconductor device 50 and the lower surface of the second connection electrode 47 of the second semiconductor device 51 are joined by thermocompression bonding, and the first semiconductor device 50 and the first semiconductor device 50 are joined. Two semiconductor devices 51 are stacked. Here, the solder ball 18 is provided in the first semiconductor device 50, but the solder ball 18 is not provided in the second semiconductor device 51. In addition, an adhesive 52 is provided between the first semiconductor device 50 and the second semiconductor device 51 in order to ensure the bonding strength. Thereby, the laminated semiconductor device according to Example 2 is completed.

実施例1に係る半導体装置において、図4(a)および図4(b)のように、配線層40は金属フィルム付きテープ基板32の金属フィルムをエッチングすることにより形成される。このため、配線層40は同一面に形成される。よって、半導体装置を積層する場合や例えばマザーボード等に搭載する場合に接合面を確実に接合させることができる。また、金属フィルムをエッチングすることで一括に配線層40を形成できるため、簡便に製造することができる。   In the semiconductor device according to Example 1, as shown in FIGS. 4A and 4B, the wiring layer 40 is formed by etching the metal film of the tape substrate 32 with the metal film. For this reason, the wiring layer 40 is formed on the same surface. Therefore, when the semiconductor devices are stacked or mounted on, for example, a mother board or the like, the bonding surfaces can be reliably bonded. Moreover, since the wiring layer 40 can be collectively formed by etching the metal film, it can be easily manufactured.

実施例1に係る半導体装置は、図7(a)から図7(c)ように、封止樹脂16を形成する際に、シート48が設けられた金型46を用いるため、接続電極44の上部が封止樹脂16の上面よりわずかに凸状になっている半導体装置が形成される。この凸量は従来例1で上部半導体装置24と下部半導体装置26との接続に用いる半田ボール18に比べ小さいため、積層された半導体装置の嵩張りを抑えることができ、積層半導体装置の小型化が可能となる。また、実施例2では、第1半導体装置50と第2半導体装置51との積層は第1接続電極45および第2接続電極47を接合することで行われる。このため、第1半導体装置50と第2半導体装置51との電気的接続が容易にかつ安定になされることができる。   Since the semiconductor device according to Example 1 uses the mold 46 provided with the sheet 48 when forming the sealing resin 16 as shown in FIGS. A semiconductor device having an upper portion slightly convex from the upper surface of the sealing resin 16 is formed. Since this convex amount is smaller than that of the solder ball 18 used for connection between the upper semiconductor device 24 and the lower semiconductor device 26 in Conventional Example 1, the bulk of the stacked semiconductor devices can be suppressed, and the stacked semiconductor device can be reduced in size. Is possible. In the second embodiment, the first semiconductor device 50 and the second semiconductor device 51 are stacked by bonding the first connection electrode 45 and the second connection electrode 47. For this reason, the electrical connection between the first semiconductor device 50 and the second semiconductor device 51 can be easily and stably performed.

また、実施例1に係る半導体装置において、第2ランド電極36は半導体装置の電気的試験に用いられる。このため、積層半導体装置を形成する前に個々の半導体装置について電気的試験を行うことが可能である。よって、積層半導体装置を形成する前に個々の半導体装置の良不良を識別することが可能となるため、歩留まりの向上と部材の無駄を省くことができる。   In the semiconductor device according to the first embodiment, the second land electrode 36 is used for an electrical test of the semiconductor device. Therefore, it is possible to perform an electrical test on each semiconductor device before forming the stacked semiconductor device. Therefore, since it is possible to identify the quality of individual semiconductor devices before forming the laminated semiconductor device, it is possible to improve yield and waste of members.

さらに、半導体装置の積層はスタッドバンプを用いるため、フリップチップ接続技術を用いることができ、簡便に積層をすることが可能である。   Further, since stacking of semiconductor devices uses stud bumps, flip chip connection technology can be used, and stacking can be performed easily.

実施例3は実施例1に係る半導体装置を積層した場合の一つの例である。図11は実施例3に係る積層半導体装置の断面図である。図11を参照に、第1半導体装置50の第1接続電極45の上面に別途スタッドバンプ54を設け、第1接続電極45の凸量を増大させる。凸量が増大した第1半導体装置50の第1接続電極45の上面と第2半導体装置51の第2接続電極47の下面とを熱圧着することにより接合し、第1半導体装置50と第2半導体装置51とを積層している。ここで、第1半導体装置50には半田ボール18が設けられているが、第2半導体装置51には半田ボール18が設けられていない。また、第1半導体装置50と第2半導体装置51との間には接合強度を確保するため接着剤52が設けられている。これにより、実施例3に係る積層半導体装置が完成する。   Example 3 is an example in which the semiconductor devices according to Example 1 are stacked. FIG. 11 is a cross-sectional view of the stacked semiconductor device according to the third embodiment. Referring to FIG. 11, a stud bump 54 is separately provided on the upper surface of the first connection electrode 45 of the first semiconductor device 50 to increase the convex amount of the first connection electrode 45. The upper surface of the first connection electrode 45 of the first semiconductor device 50 having the increased convex amount and the lower surface of the second connection electrode 47 of the second semiconductor device 51 are bonded by thermocompression bonding, and the first semiconductor device 50 and the second semiconductor device 50 are bonded to each other. The semiconductor device 51 is stacked. Here, the solder ball 18 is provided in the first semiconductor device 50, but the solder ball 18 is not provided in the second semiconductor device 51. In addition, an adhesive 52 is provided between the first semiconductor device 50 and the second semiconductor device 51 in order to ensure the bonding strength. Thereby, the laminated semiconductor device according to Example 3 is completed.

実施例3によれば、第1半導体装置50の第1接続電極45の上面に別途スタッドバンプ54を設けているため凸量が増大している。このため、実施例2に比べ、第1半導体装置50と第2半導体装置51との電気的接続をより容易にかつ安定して接続することができる。   According to the third embodiment, since the stud bump 54 is separately provided on the upper surface of the first connection electrode 45 of the first semiconductor device 50, the convex amount is increased. Therefore, compared to the second embodiment, the electrical connection between the first semiconductor device 50 and the second semiconductor device 51 can be more easily and stably connected.

実施例3では、第1半導体装置50の第1接続電極45の上面に別途スタッドバンプ54を設ける例を示したが、第2半導体装置51の第2接続電極47の下面に別途スタッドバンプ54を設けても、実施例3と同様な効果を得ることができる。   In the third embodiment, the stud bump 54 is separately provided on the upper surface of the first connection electrode 45 of the first semiconductor device 50. However, the stud bump 54 is separately provided on the lower surface of the second connection electrode 47 of the second semiconductor device 51. Even if it provides, the same effect as Example 3 can be acquired.

実施例4は実施例1に係る半導体装置を積層した場合の一つの例である。図12は実施例4に係る積層半導体装置の断面図である。図12を参照に、第1半導体装置50の第1接続電極45の上面と第2半導体装置51の第2接続電極47の下面とを例えば共晶はんだや鉛フリーはんだである半田56を用いて接合し、第1半導体装置50と第2半導体装置51とを積層している。ここで、第1半導体装置50には半田ボール18が設けられているが、第2半導体装置51には半田ボール18が設けられていない。また、第1半導体装置50と第2半導体装置51との間には接合強度を確保するため接着剤52が設けられている。これにより、実施例4に係る積層半導体装置が完成する。   Example 4 is an example in which the semiconductor devices according to Example 1 are stacked. FIG. 12 is a cross-sectional view of the stacked semiconductor device according to the fourth embodiment. Referring to FIG. 12, the upper surface of the first connection electrode 45 of the first semiconductor device 50 and the lower surface of the second connection electrode 47 of the second semiconductor device 51 are, for example, soldered using eutectic solder or lead-free solder. The first semiconductor device 50 and the second semiconductor device 51 are stacked by bonding. Here, the solder ball 18 is provided in the first semiconductor device 50, but the solder ball 18 is not provided in the second semiconductor device 51. In addition, an adhesive 52 is provided between the first semiconductor device 50 and the second semiconductor device 51 in order to ensure the bonding strength. Thereby, the laminated semiconductor device according to Example 4 is completed.

実施例4によれば、半田56を用いて第1半導体装置50と第2半導体装置51とを積層しているため、熱圧着により第1半導体装置50と第2半導体装置51とを積層している実施例2および実施例3に比べ、より強度な接合を得ることができる。   According to the fourth embodiment, since the first semiconductor device 50 and the second semiconductor device 51 are stacked using the solder 56, the first semiconductor device 50 and the second semiconductor device 51 are stacked by thermocompression bonding. Compared to the second and third embodiments, a stronger bond can be obtained.

実施例5はスタッドバンプが二以上積層された貫通電極42を有する半導体装置の例である。図13は実施例5に係る半導体装置の断面図である。図13を参照に、第1ランド電極34の上面にスタッドバンプを形成する工程を複数回実施して貫通電極42が積層するような接続電極44を形成する。その他の構成は図3と同様であるため説明を省略する。   Example 5 is an example of a semiconductor device having a through electrode 42 in which two or more stud bumps are stacked. FIG. 13 is a cross-sectional view of the semiconductor device according to the fifth embodiment. Referring to FIG. 13, the step of forming stud bumps on the upper surface of the first land electrode 34 is performed a plurality of times to form connection electrodes 44 on which the through electrodes 42 are laminated. Other configurations are the same as those in FIG.

貫通電極42の高さは、スタッドバンプの形成に用いる金線の材質と太さによって制御できる。貫通電極42の高さを確保するため、金線を太くすると貫通電極42の径も大きくなってしまう。このため、貫通電極42をスタッドバンプで形成することで接続電極44の電極ピッチ間隔を狭く形成できるという利点が損なわれてしまう。実施例5によれば、細い金線を用いてスタッドバンプを形成する工程を複数回実施することで、貫通電極42の径は増大させずに、高さを確保した貫通電極42が形成できる。これにより、接続電極44の電極ピッチ間隔を狭く保ったまま、高さの高い接続電極44の形成が可能となる。このため、実施例1に係る半導体装置を積層した場合に比べ、実施例5に係る半導体装置を積層した場合は、上に積層された半導体装置と下に積層された半導体装置の電気的接続をより容易にかつ安定して接続することができる。   The height of the through electrode 42 can be controlled by the material and thickness of the gold wire used for forming the stud bump. If the gold wire is thickened to secure the height of the through electrode 42, the diameter of the through electrode 42 also increases. For this reason, the advantage that the electrode pitch interval of the connection electrode 44 can be narrowly formed by forming the through electrode 42 by the stud bump is impaired. According to the fifth embodiment, the through electrode 42 having a sufficient height can be formed without increasing the diameter of the through electrode 42 by performing the step of forming the stud bump using a thin gold wire a plurality of times. As a result, it is possible to form the connection electrode 44 having a high height while keeping the electrode pitch interval of the connection electrode 44 narrow. For this reason, compared with the case where the semiconductor device according to the first embodiment is stacked, when the semiconductor device according to the fifth embodiment is stacked, electrical connection between the semiconductor device stacked above and the semiconductor device stacked below is performed. It is possible to connect more easily and stably.

実施例2から実施例4において、接着剤52の塗布は接着剤52の形状を整えることができるという観点から、第1半導体装置50の第1接続電極45と第2半導体装置51の第2接続電極47とを接合する前に行うことが望ましい。また、第1半導体装置50の半田ボール18の形成は、第1半導体装置50の第1接続電極45と第2半導体装置51の第2接続電極47とを接合する工程の簡便化と不良な半導体装置への半田ボール18の形成を防止する観点から、第1接続電極45と第2接続電極47とを接合する工程が終わった後に半田ボール18を形成することが望ましい。   In the second to fourth embodiments, the application of the adhesive 52 allows the shape of the adhesive 52 to be adjusted, and the second connection between the first connection electrode 45 of the first semiconductor device 50 and the second semiconductor device 51. It is desirable to perform this before joining the electrode 47. Further, the formation of the solder ball 18 of the first semiconductor device 50 is simplified in the process of joining the first connection electrode 45 of the first semiconductor device 50 and the second connection electrode 47 of the second semiconductor device 51 and a defective semiconductor. From the viewpoint of preventing the formation of the solder ball 18 on the device, it is desirable to form the solder ball 18 after the step of joining the first connection electrode 45 and the second connection electrode 47 is completed.

実施例2から実施例4では、実施例1に係る半導体装置の積層の例について示したが、実施例5に係る半導体装置を実施例2から実施例4のように積層した場合でも同様の効果を得ることができる。   In the second to fourth embodiments, the example of the stacking of the semiconductor devices according to the first embodiment has been described. However, the same effect can be obtained even when the semiconductor devices according to the fifth embodiment are stacked as in the second to fourth embodiments. Can be obtained.

実施例2から実施例4では、熱圧着や半田により半導体装置を積層する例を示したが、これらの方法に限られるものでなく、超音波を用いた方法やその他の方法も適宜利用することができる。   Examples 2 to 4 show examples in which semiconductor devices are stacked by thermocompression bonding or soldering. However, the present invention is not limited to these methods, and a method using ultrasonic waves and other methods may be used as appropriate. Can do.

以上、本発明の好ましい実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the specific embodiments, and various modifications can be made within the scope of the gist of the present invention described in the claims.・ Change is possible.

図1(a)は従来例1に係る半導体装置の断面図(その1)であり、図1(b)は図1(a)に係る半導体装置をパッケージ・オン・パッケージした場合の断面図である。FIG. 1A is a cross-sectional view of a semiconductor device according to Conventional Example 1 (Part 1), and FIG. 1B is a cross-sectional view of the semiconductor device according to FIG. is there. 図2(a)は従来例1に係る半導体装置の断面図(その2)であり、図2(b)は図2(a)に係る半導体装置をパッケージ・オン・パッケージした場合の断面図である。2A is a cross-sectional view (part 2) of the semiconductor device according to Conventional Example 1, and FIG. 2B is a cross-sectional view when the semiconductor device according to FIG. 2A is packaged on package. is there. 図3は実施例1に係る半導体装置の断面図である。FIG. 3 is a cross-sectional view of the semiconductor device according to the first embodiment. 図4(a)は実施例1に係る半導体装置の製造工程を示す上視図(その1)であり、図4(b)は図4(a)のA−A間の断面図である。FIG. 4A is a top view (part 1) illustrating the manufacturing process of the semiconductor device according to the first embodiment, and FIG. 4B is a cross-sectional view taken along a line AA in FIG. 図5(a)は実施例1に係る半導体装置の製造工程を示す上視図(その2)であり、図5(b)は図5(a)のA−A間の断面図である。FIG. 5A is a top view (part 2) illustrating the manufacturing process of the semiconductor device according to the first embodiment, and FIG. 5B is a cross-sectional view taken along the line A-A in FIG. 図6(a)は実施例1に係る半導体装置の製造工程を示す上視図(その3)であり、図6(b)は図6(a)のA−A間の断面図である。FIG. 6A is a top view (part 3) illustrating the manufacturing process of the semiconductor device according to the first embodiment, and FIG. 6B is a cross-sectional view taken along the line A-A in FIG. 図7(a)は実施例1に係る半導体装置の製造工程を示す上視図(その4)であり、図7(b)および図7(c)は図7(a)のA−A間の断面図である。FIG. 7A is a top view (part 4) illustrating the manufacturing process of the semiconductor device according to the first embodiment. FIGS. 7B and 7C are cross-sectional views taken along the line A-A in FIG. FIG. 図8(a)は実施例1に係る半導体装置の製造工程を示す上視図(その5)であり、図8(b)は図8(a)のA−A間の断面図である。FIG. 8A is a top view (part 5) illustrating the manufacturing process of the semiconductor device according to the first embodiment, and FIG. 8B is a cross-sectional view taken along the line A-A in FIG. 図9(a)は実施例1に係る半導体装置の製造工程を示す上視図(その6)であり、図9(b)は図9(a)のA−A間の断面図である。FIG. 9A is a top view (part 6) illustrating the manufacturing process of the semiconductor device according to the first embodiment, and FIG. 9B is a cross-sectional view taken along the line A-A in FIG. 図10は実施例2に係る積層半導体装置の断面図である。FIG. 10 is a cross-sectional view of the stacked semiconductor device according to the second embodiment. 図11は実施例3に係る積層半導体装置の断面図である。FIG. 11 is a cross-sectional view of the stacked semiconductor device according to the third embodiment. 図12は実施例4に係る積層半導体装置の断面図である。FIG. 12 is a cross-sectional view of the stacked semiconductor device according to the fourth embodiment. 図13は実施例5に係る半導体装置の断面図である。FIG. 13 is a cross-sectional view of the semiconductor device according to the fifth embodiment.

符号の説明Explanation of symbols

10 配線基板
12 半導体チップ
14 ダイ付け材
16 封止樹脂
18 半田ボール
20 ランド電極
22 ランド電極
23 ワイヤ
24 上部半導体装置
26 下部半導体装置
28 スタッドバンプ
30 アンダーフィル
32 テープ基板
34 第1ランド電極
36 第2ランド電極
38 配線
40 配線層
42 貫通電極
44 接続電極
45 第1接続電極
46 金型
47 第2接続電極
48 シート
50 第1半導体装置
51 第2半導体装置
52 接着剤
54 スタッドバンプ
56 半田
DESCRIPTION OF SYMBOLS 10 Wiring board 12 Semiconductor chip 14 Die attachment material 16 Sealing resin 18 Solder ball 20 Land electrode 22 Land electrode 23 Wire 24 Upper semiconductor device 26 Lower semiconductor device 28 Stud bump 30 Underfill 32 Tape substrate 34 1st land electrode 36 2nd Land electrode 38 Wiring 40 Wiring layer 42 Through electrode 44 Connection electrode 45 First connection electrode 46 Mold 47 Second connection electrode 48 Sheet 50 First semiconductor device 51 Second semiconductor device 52 Adhesive 54 Stud bump 56 Solder

Claims (19)

半導体チップと、
前記半導体チップと電気的に接続する第1ランド電極と、前記第1ランド電極の上面に設けられ前記第1ランド電極と電気的に接続しスタッドバンプで形成される貫通電極と、からなる接続電極と、
前記接続電極が貫通し、前記半導体チップを封止する封止樹脂と、を具備することを特徴とする半導体装置。
A semiconductor chip;
A connection electrode comprising: a first land electrode electrically connected to the semiconductor chip; and a through electrode provided on an upper surface of the first land electrode and electrically connected to the first land electrode and formed by a stud bump. When,
And a sealing resin that seals the semiconductor chip through the connection electrode.
前記半導体チップと電気的に接続し外部との接続に用いられる第2ランド電極を具備し、前記接続電極は前記半導体チップの周囲に設けられ、前記第2ランド電極は前記半導体チップの真下に設けられていることを特徴とする請求項1記載の半導体装置。   A second land electrode electrically connected to the semiconductor chip and used for connection to the outside; the connection electrode is provided around the semiconductor chip; and the second land electrode is provided directly below the semiconductor chip. The semiconductor device according to claim 1, wherein the semiconductor device is provided. 前記接続電極の上面が前記封止樹脂の上面より上に設けられていることを特徴とする請求項1または2記載の半導体装置。   The semiconductor device according to claim 1, wherein an upper surface of the connection electrode is provided above an upper surface of the sealing resin. 前記第1ランド電極と、前記第2ランド電極と、前記第1ランド電極と前記第2ランド電極とを電気的に接続する配線と、を含み一つの金属フィルムから形成されている配線層を具備することを特徴とする請求項1から3のいずれか一項記載の半導体装置。   A wiring layer formed of a single metal film including the first land electrode, the second land electrode, and a wiring that electrically connects the first land electrode and the second land electrode; The semiconductor device according to claim 1, wherein the semiconductor device is a semiconductor device. 隣接し合う前記第1ランド電極上に設けられた前記貫通電極が、互いに第1ランド電極の長手方向の異なった位置に設けられていることを特徴とする請求項1から4のいずれか一項記載の半導体装置。   5. The penetrating electrodes provided on the adjacent first land electrodes are provided at different positions in the longitudinal direction of the first land electrodes, respectively. The semiconductor device described. 前記貫通電極はスタッドバンプを二以上積層して設けられていることを特徴とする請求項1から5のいずれか一項記載の半導体装置。   The semiconductor device according to claim 1, wherein the through electrode is provided by stacking two or more stud bumps. 前記配線層は前記半導体チップの下面より下に設けられ、前記半導体チップがフェイスダウン実装で設けられていることを特徴とする請求項4から6のいずれか一項記載の半導体装置。   The semiconductor device according to claim 4, wherein the wiring layer is provided below a lower surface of the semiconductor chip, and the semiconductor chip is provided by face-down mounting. 請求項1から7のいずれか一項記載の半導体装置である第1半導体装置の第1接続電極と請求項1から7のいずれか一項記載の半導体装置である第2半導体装置の第2接続電極とが接合することで、前記第1半導体装置と前記第2半導体装置とが積層していることを特徴とする積層半導体装置。   The first connection electrode of the first semiconductor device, which is the semiconductor device according to any one of claims 1 to 7, and the second connection of the second semiconductor device, which is a semiconductor device according to any one of claims 1 to 7. A laminated semiconductor device, wherein the first semiconductor device and the second semiconductor device are laminated by bonding with an electrode. 前記第1接続電極の上面と前記第2接続電極の下面との間に別のスタッドバンプが形成されていることを特徴とする請求項8記載の積層半導体装置。   9. The stacked semiconductor device according to claim 8, wherein another stud bump is formed between the upper surface of the first connection electrode and the lower surface of the second connection electrode. 前記第1接続電極と前記第2接続電極とが熱圧着または半田で接合していることを特徴とする請求項8または9記載の積層半導体装置。   10. The laminated semiconductor device according to claim 8, wherein the first connection electrode and the second connection electrode are joined by thermocompression bonding or soldering. 半導体チップと第1ランド電極とを電気的に接続する工程と、
前記第1ランド電極の上面に前記第1ランド電極と電気的に接続する貫通電極をスタッドバンプにより形成し、前記第1ランド電極と前記貫通電極とからなる接続電極を形成する工程と、
前記接続電極が貫通し、前記半導体チップを封止する封止樹脂を形成する工程と、を有する半導体装置の製造方法。
Electrically connecting the semiconductor chip and the first land electrode;
Forming a through electrode electrically connected to the first land electrode on the upper surface of the first land electrode by a stud bump, and forming a connection electrode composed of the first land electrode and the through electrode;
Forming a sealing resin that seals the semiconductor chip through the connection electrode.
前記第1ランド電極と、前記半導体チップと電気的に接続し外部との接続に用いられる前記第2ランド電極と、前記第1ランド電極と前記第2ランド電極とを電気的に接続する配線と、を含む配線層を一つの金属フィルムから形成する工程を有することを特徴とする請求項11記載の半導体装置の製造方法。   A first land electrode; a second land electrode that is electrically connected to the semiconductor chip and used for connection to the outside; and a wiring that electrically connects the first land electrode and the second land electrode. 12. The method of manufacturing a semiconductor device according to claim 11, further comprising a step of forming a wiring layer including a single metal film. 前記配線層を一つの金属フィルムから形成する工程は、金属フィルム付きテープ基板の金属フィルムをエッチングすることにより前記配線層を形成する工程であることを特徴とする請求項12記載の半導体装置の製造方法。   13. The method of manufacturing a semiconductor device according to claim 12, wherein the step of forming the wiring layer from one metal film is a step of forming the wiring layer by etching a metal film of a tape substrate with a metal film. Method. 前記封止樹脂を形成する工程は、前記接続電極の上部をシートで覆い成型することにより、前記接続電極の上面が前記封止樹脂の上面より上に形成されるように封止樹脂を形成する工程であることを特徴とする請求項11から13のいずれか一項記載の半導体装置の製造方法。   The step of forming the sealing resin includes forming the sealing resin so that the upper surface of the connection electrode is formed above the upper surface of the sealing resin by covering and molding the upper portion of the connection electrode with a sheet. The method of manufacturing a semiconductor device according to claim 11, wherein the method is a process. 前記半導体チップと前記第1ランド電極とを電気的に接続する工程は、前記半導体チップをフェイスダウン実装する工程を含むことを特徴とする請求項11から14のいずれか一項記載の半導体装置の製造方法。   15. The semiconductor device according to claim 11, wherein the step of electrically connecting the semiconductor chip and the first land electrode includes a step of face-down mounting the semiconductor chip. Production method. 前記貫通電極をスタッドバンプにより形成する工程は、スタッドバンプを形成する工程を複数回含むことを特徴とする請求項11から15のいずれか一項記載の半導体装置の製造方法。   16. The method of manufacturing a semiconductor device according to claim 11, wherein the step of forming the through electrode by the stud bump includes a step of forming the stud bump a plurality of times. 請求項1から7のいずれか一項記載の半導体装置である第1半導体装置の第1接続電極と請求項1から7のいずれか一項記載の半導体装置である第2半導体装置の第2接続電極とを接合する工程を有することを特徴とする積層半導体装置の製造方法。   The first connection electrode of the first semiconductor device, which is the semiconductor device according to any one of claims 1 to 7, and the second connection of the second semiconductor device, which is a semiconductor device according to any one of claims 1 to 7. A method for manufacturing a laminated semiconductor device, comprising a step of bonding an electrode. 前記第1接続電極と前記第2接続電極とを接合する工程は、前記第1接続電極の上面もしくは前記第2接続電極の下面に別のスタッドバンプを形成する工程を有することを特徴とする請求項17記載の積層半導体装置。   The step of bonding the first connection electrode and the second connection electrode includes a step of forming another stud bump on the upper surface of the first connection electrode or the lower surface of the second connection electrode. Item 18. A laminated semiconductor device according to Item 17. 前記第1接続電極と前記第2接続電極とを接合する工程は、熱圧着または半田で接合する工程を含むことを特徴とする請求項17または18記載の積層半導体装置の製造方法。   19. The method for manufacturing a laminated semiconductor device according to claim 17, wherein the step of bonding the first connection electrode and the second connection electrode includes a step of bonding by thermocompression bonding or soldering.
JP2006353412A 2006-12-27 2006-12-27 Semiconductor device and manufacturing method thereof Pending JP2008166439A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006353412A JP2008166439A (en) 2006-12-27 2006-12-27 Semiconductor device and manufacturing method thereof
TW96147833A TWI376024B (en) 2006-12-27 2007-12-14 Semiconductor device and method for manufacturing the same
US12/004,920 US8598717B2 (en) 2006-12-27 2007-12-21 Semiconductor device and method for manufacturing the same
PCT/US2007/026428 WO2008082615A2 (en) 2006-12-27 2007-12-27 Semiconductor device and method for manufacturing the same
US14/067,717 US8765529B2 (en) 2006-12-27 2013-10-30 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006353412A JP2008166439A (en) 2006-12-27 2006-12-27 Semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2008166439A true JP2008166439A (en) 2008-07-17

Family

ID=39695532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006353412A Pending JP2008166439A (en) 2006-12-27 2006-12-27 Semiconductor device and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP2008166439A (en)
TW (1) TWI376024B (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015508240A (en) * 2012-02-24 2015-03-16 インヴェンサス・コーポレイション Method for package-on-package assembly having wire bonds to sealing surfaces
US9349706B2 (en) 2012-02-24 2016-05-24 Invensas Corporation Method for package-on-package assembly with wire bonds to encapsulation surface
US9412714B2 (en) 2014-05-30 2016-08-09 Invensas Corporation Wire bond support structure and microelectronic package including wire bonds therefrom
US9502390B2 (en) 2012-08-03 2016-11-22 Invensas Corporation BVA interposer
US9553076B2 (en) 2010-07-19 2017-01-24 Tessera, Inc. Stackable molded microelectronic packages with area array unit connectors
US9570382B2 (en) 2010-07-19 2017-02-14 Tessera, Inc. Stackable molded microelectronic packages
US9570416B2 (en) 2004-11-03 2017-02-14 Tessera, Inc. Stacked packaging improvements
US9583411B2 (en) 2014-01-17 2017-02-28 Invensas Corporation Fine pitch BVA using reconstituted wafer with area array accessible for testing
US9601454B2 (en) 2013-02-01 2017-03-21 Invensas Corporation Method of forming a component having wire bonds and a stiffening layer
US9615456B2 (en) 2012-12-20 2017-04-04 Invensas Corporation Microelectronic assembly for microelectronic packaging with bond elements to encapsulation surface
US9659848B1 (en) 2015-11-18 2017-05-23 Invensas Corporation Stiffened wires for offset BVA
US9685365B2 (en) 2013-08-08 2017-06-20 Invensas Corporation Method of forming a wire bond having a free end
US9691731B2 (en) 2011-05-03 2017-06-27 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
US9728527B2 (en) 2013-11-22 2017-08-08 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US9735084B2 (en) 2014-12-11 2017-08-15 Invensas Corporation Bond via array for thermal conductivity
US9761558B2 (en) 2011-10-17 2017-09-12 Invensas Corporation Package-on-package assembly with wire bond vias
US9761554B2 (en) 2015-05-07 2017-09-12 Invensas Corporation Ball bonding metal wire bond wires to metal pads
US9812402B2 (en) 2015-10-12 2017-11-07 Invensas Corporation Wire bond wires for interference shielding
US9842745B2 (en) 2012-02-17 2017-12-12 Invensas Corporation Heat spreading substrate with embedded interconnects
US9852969B2 (en) 2013-11-22 2017-12-26 Invensas Corporation Die stacks with one or more bond via arrays of wire bond wires and with one or more arrays of bump interconnects
US9888579B2 (en) 2015-03-05 2018-02-06 Invensas Corporation Pressing of wire bond wire tips to provide bent-over tips
US9911718B2 (en) 2015-11-17 2018-03-06 Invensas Corporation ‘RDL-First’ packaged microelectronic device for a package-on-package device
US9917073B2 (en) 2012-07-31 2018-03-13 Invensas Corporation Reconstituted wafer-level package dram with conductive interconnects formed in encapsulant at periphery of the package
US9935075B2 (en) 2016-07-29 2018-04-03 Invensas Corporation Wire bonding method and apparatus for electromagnetic interference shielding
US9953914B2 (en) 2012-05-22 2018-04-24 Invensas Corporation Substrate-less stackable package with wire-bond interconnect
US9984901B2 (en) 2005-12-23 2018-05-29 Tessera, Inc. Method for making a microelectronic assembly having conductive elements
US9984992B2 (en) 2015-12-30 2018-05-29 Invensas Corporation Embedded wire bond wires for vertical integration with separate surface mount and wire bond mounting surfaces
US10008469B2 (en) 2015-04-30 2018-06-26 Invensas Corporation Wafer-level packaging using wire bond wires in place of a redistribution layer
US10008477B2 (en) 2013-09-16 2018-06-26 Invensas Corporation Microelectronic element with bond elements to encapsulation surface
US10026717B2 (en) 2013-11-22 2018-07-17 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US10181457B2 (en) 2015-10-26 2019-01-15 Invensas Corporation Microelectronic package for wafer-level chip scale packaging with fan-out
US10299368B2 (en) 2016-12-21 2019-05-21 Invensas Corporation Surface integrated waveguides and circuit structures therefor
US10332854B2 (en) 2015-10-23 2019-06-25 Invensas Corporation Anchoring structure of fine pitch bva
US10381326B2 (en) 2014-05-28 2019-08-13 Invensas Corporation Structure and method for integrated circuits packaging with increased density
US10460958B2 (en) 2013-08-07 2019-10-29 Invensas Corporation Method of manufacturing embedded packaging with preformed vias
US10490528B2 (en) 2015-10-12 2019-11-26 Invensas Corporation Embedded wire bond wires

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9570416B2 (en) 2004-11-03 2017-02-14 Tessera, Inc. Stacked packaging improvements
US9984901B2 (en) 2005-12-23 2018-05-29 Tessera, Inc. Method for making a microelectronic assembly having conductive elements
US9570382B2 (en) 2010-07-19 2017-02-14 Tessera, Inc. Stackable molded microelectronic packages
US10128216B2 (en) 2010-07-19 2018-11-13 Tessera, Inc. Stackable molded microelectronic packages
US9553076B2 (en) 2010-07-19 2017-01-24 Tessera, Inc. Stackable molded microelectronic packages with area array unit connectors
US10062661B2 (en) 2011-05-03 2018-08-28 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
US11424211B2 (en) 2011-05-03 2022-08-23 Tessera Llc Package-on-package assembly with wire bonds to encapsulation surface
US10593643B2 (en) 2011-05-03 2020-03-17 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
US9691731B2 (en) 2011-05-03 2017-06-27 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
US11735563B2 (en) 2011-10-17 2023-08-22 Invensas Llc Package-on-package assembly with wire bond vias
US11189595B2 (en) 2011-10-17 2021-11-30 Invensas Corporation Package-on-package assembly with wire bond vias
US10756049B2 (en) 2011-10-17 2020-08-25 Invensas Corporation Package-on-package assembly with wire bond vias
US9761558B2 (en) 2011-10-17 2017-09-12 Invensas Corporation Package-on-package assembly with wire bond vias
US9842745B2 (en) 2012-02-17 2017-12-12 Invensas Corporation Heat spreading substrate with embedded interconnects
JP2017038074A (en) * 2012-02-24 2017-02-16 インヴェンサス・コーポレイション Method for assembling microelectronic package
JP2015508240A (en) * 2012-02-24 2015-03-16 インヴェンサス・コーポレイション Method for package-on-package assembly having wire bonds to sealing surfaces
US9349706B2 (en) 2012-02-24 2016-05-24 Invensas Corporation Method for package-on-package assembly with wire bonds to encapsulation surface
US9691679B2 (en) 2012-02-24 2017-06-27 Invensas Corporation Method for package-on-package assembly with wire bonds to encapsulation surface
US10510659B2 (en) 2012-05-22 2019-12-17 Invensas Corporation Substrate-less stackable package with wire-bond interconnect
US9953914B2 (en) 2012-05-22 2018-04-24 Invensas Corporation Substrate-less stackable package with wire-bond interconnect
US10170412B2 (en) 2012-05-22 2019-01-01 Invensas Corporation Substrate-less stackable package with wire-bond interconnect
US9917073B2 (en) 2012-07-31 2018-03-13 Invensas Corporation Reconstituted wafer-level package dram with conductive interconnects formed in encapsulant at periphery of the package
US9502390B2 (en) 2012-08-03 2016-11-22 Invensas Corporation BVA interposer
US10297582B2 (en) 2012-08-03 2019-05-21 Invensas Corporation BVA interposer
US9615456B2 (en) 2012-12-20 2017-04-04 Invensas Corporation Microelectronic assembly for microelectronic packaging with bond elements to encapsulation surface
US9601454B2 (en) 2013-02-01 2017-03-21 Invensas Corporation Method of forming a component having wire bonds and a stiffening layer
US10460958B2 (en) 2013-08-07 2019-10-29 Invensas Corporation Method of manufacturing embedded packaging with preformed vias
US9685365B2 (en) 2013-08-08 2017-06-20 Invensas Corporation Method of forming a wire bond having a free end
US10008477B2 (en) 2013-09-16 2018-06-26 Invensas Corporation Microelectronic element with bond elements to encapsulation surface
US10629567B2 (en) 2013-11-22 2020-04-21 Invensas Corporation Multiple plated via arrays of different wire heights on same substrate
US9852969B2 (en) 2013-11-22 2017-12-26 Invensas Corporation Die stacks with one or more bond via arrays of wire bond wires and with one or more arrays of bump interconnects
US10026717B2 (en) 2013-11-22 2018-07-17 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US9728527B2 (en) 2013-11-22 2017-08-08 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US10290613B2 (en) 2013-11-22 2019-05-14 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US10529636B2 (en) 2014-01-17 2020-01-07 Invensas Corporation Fine pitch BVA using reconstituted wafer with area array accessible for testing
US11404338B2 (en) 2014-01-17 2022-08-02 Invensas Corporation Fine pitch bva using reconstituted wafer with area array accessible for testing
US9583411B2 (en) 2014-01-17 2017-02-28 Invensas Corporation Fine pitch BVA using reconstituted wafer with area array accessible for testing
US9837330B2 (en) 2014-01-17 2017-12-05 Invensas Corporation Fine pitch BVA using reconstituted wafer with area array accessible for testing
US10381326B2 (en) 2014-05-28 2019-08-13 Invensas Corporation Structure and method for integrated circuits packaging with increased density
US9412714B2 (en) 2014-05-30 2016-08-09 Invensas Corporation Wire bond support structure and microelectronic package including wire bonds therefrom
US9947641B2 (en) 2014-05-30 2018-04-17 Invensas Corporation Wire bond support structure and microelectronic package including wire bonds therefrom
US9735084B2 (en) 2014-12-11 2017-08-15 Invensas Corporation Bond via array for thermal conductivity
US9888579B2 (en) 2015-03-05 2018-02-06 Invensas Corporation Pressing of wire bond wire tips to provide bent-over tips
US10806036B2 (en) 2015-03-05 2020-10-13 Invensas Corporation Pressing of wire bond wire tips to provide bent-over tips
US10008469B2 (en) 2015-04-30 2018-06-26 Invensas Corporation Wafer-level packaging using wire bond wires in place of a redistribution layer
US9761554B2 (en) 2015-05-07 2017-09-12 Invensas Corporation Ball bonding metal wire bond wires to metal pads
US10115678B2 (en) 2015-10-12 2018-10-30 Invensas Corporation Wire bond wires for interference shielding
US11462483B2 (en) 2015-10-12 2022-10-04 Invensas Llc Wire bond wires for interference shielding
US10490528B2 (en) 2015-10-12 2019-11-26 Invensas Corporation Embedded wire bond wires
US9812402B2 (en) 2015-10-12 2017-11-07 Invensas Corporation Wire bond wires for interference shielding
US10559537B2 (en) 2015-10-12 2020-02-11 Invensas Corporation Wire bond wires for interference shielding
US10332854B2 (en) 2015-10-23 2019-06-25 Invensas Corporation Anchoring structure of fine pitch bva
US10181457B2 (en) 2015-10-26 2019-01-15 Invensas Corporation Microelectronic package for wafer-level chip scale packaging with fan-out
US9911718B2 (en) 2015-11-17 2018-03-06 Invensas Corporation ‘RDL-First’ packaged microelectronic device for a package-on-package device
US10043779B2 (en) 2015-11-17 2018-08-07 Invensas Corporation Packaged microelectronic device for a package-on-package device
US9659848B1 (en) 2015-11-18 2017-05-23 Invensas Corporation Stiffened wires for offset BVA
US9984992B2 (en) 2015-12-30 2018-05-29 Invensas Corporation Embedded wire bond wires for vertical integration with separate surface mount and wire bond mounting surfaces
US10325877B2 (en) 2015-12-30 2019-06-18 Invensas Corporation Embedded wire bond wires for vertical integration with separate surface mount and wire bond mounting surfaces
US10658302B2 (en) 2016-07-29 2020-05-19 Invensas Corporation Wire bonding method and apparatus for electromagnetic interference shielding
US9935075B2 (en) 2016-07-29 2018-04-03 Invensas Corporation Wire bonding method and apparatus for electromagnetic interference shielding
US10299368B2 (en) 2016-12-21 2019-05-21 Invensas Corporation Surface integrated waveguides and circuit structures therefor

Also Published As

Publication number Publication date
TWI376024B (en) 2012-11-01
TW200834846A (en) 2008-08-16

Similar Documents

Publication Publication Date Title
JP2008166439A (en) Semiconductor device and manufacturing method thereof
US8786102B2 (en) Semiconductor device and method of manufacturing the same
JP5601751B2 (en) Semiconductor device
JP5192825B2 (en) Semiconductor device, manufacturing method thereof, and manufacturing method of laminated semiconductor device
JP3481444B2 (en) Semiconductor device and manufacturing method thereof
JP5095074B2 (en) Package stacking structure
KR100459971B1 (en) Semiconductor device, method and device for producing the same, circuit board, and electronic equipment
US20180114786A1 (en) Method of forming package-on-package structure
KR101376378B1 (en) Semiconductor device and method of manufacturing the same, and semiconductor module using the same
JP2003115560A (en) Semiconductor device, laminated semiconductor device, manufacturing method of semiconductor device, and manufacturing method of laminated semiconductor device
JP2007123595A (en) Semiconductor device and its mounting structure
JP2009099697A (en) Semiconductor apparatus and method of manufacturing the same
JP2003197857A (en) Semiconductor device and its manufacturing method, circuit board, and electronic equipment
US9972560B2 (en) Lead frame and semiconductor device
JP2006295183A (en) Multi-package module provided with stacked packages having asymmetrically disposed die and molding
JP4175138B2 (en) Semiconductor device
JP4829853B2 (en) Semiconductor POP equipment
JP6486855B2 (en) Semiconductor device and manufacturing method of semiconductor device
US20100269333A1 (en) Method for Mounting Flip Chip and Substrate Used Therein
US8975758B2 (en) Semiconductor package having interposer with openings containing conductive layer
JP4339032B2 (en) Semiconductor device
JP2010098225A (en) Semiconductor device
KR100592785B1 (en) Stack package stacking chip scale packageCSP
JP2008311347A (en) Semiconductor module and its manufacturing method
JP2003037244A (en) Tape carrier for semiconductor device and semiconductor device using the same