JP2003160745A - Film-forming aqueous liquid having electroconductivity and photocatalytic property, its production method and structure equipped with film - Google Patents

Film-forming aqueous liquid having electroconductivity and photocatalytic property, its production method and structure equipped with film

Info

Publication number
JP2003160745A
JP2003160745A JP2002231970A JP2002231970A JP2003160745A JP 2003160745 A JP2003160745 A JP 2003160745A JP 2002231970 A JP2002231970 A JP 2002231970A JP 2002231970 A JP2002231970 A JP 2002231970A JP 2003160745 A JP2003160745 A JP 2003160745A
Authority
JP
Japan
Prior art keywords
film
conductivity
forming
titanium
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002231970A
Other languages
Japanese (ja)
Inventor
Shiro Ogata
四郎 緒方
Yoshimitsu Matsui
義光 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sustainable Titania Technology Inc
Original Assignee
Sustainable Titania Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sustainable Titania Technology Inc filed Critical Sustainable Titania Technology Inc
Priority to JP2002231970A priority Critical patent/JP2003160745A/en
Publication of JP2003160745A publication Critical patent/JP2003160745A/en
Pending legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film-forming aqueous liquid having high electroconductivity and a photocatalytic property which can exhibit various functions, such as photocatalytic, antibacterial, stainproof, antistatic and electromagnetic shielding properties, to the surfaces of various substrates, such as glasses, ceramics, metals and plastics, and to provide a production method thereof and a structure having the film. <P>SOLUTION: In any process in which a tetravalent titanium salt solution is reacted with a basic solution to obtain a titanium hydroxide, the resulting hydroxide is peroxidized with an oxidizing agent and further heated to convert into an anatase type titanium peroxide resulting in the liquid, an electroconductivity-improving substance fine particle is added and the liquid having the photocatalytic property and the electroconductivity is produced for forming the film containing the electroconductivity-improving substance fine particle and a titanium oxide fine particle with a surface resistance value less than 10<SP>11</SP>Ω/square. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被膜形成用水液を
被膜形成対象物に塗布等により被膜を形成するだけ又は
それに加えて加熱処理することで、被膜形成対象物表面
に光触媒性能と表面導電性とを付与することができる被
膜形成用水液、その製造方法及び該被膜を備える構造体
に関する。より詳しくは、該被膜の表面抵抗値が1011
Ω/□未満である被膜を形成する光触媒性能と導電性と
を有する被膜形成用水液、その製造方法及び該被膜を備
える構造体に関する。
TECHNICAL FIELD The present invention relates to a photocatalytic property and a surface conductivity on a surface of a film-forming object, which is obtained by applying a water solution for forming a film to a film-forming object only by forming a film by applying it or by heat treatment. And a method for producing the same, and a structure having the coating. More specifically, the surface resistance value of the coating is 10 11
The present invention relates to a water solution for forming a film having photocatalytic performance and electrical conductivity for forming a film having an Ω / □, a method for producing the same, and a structure provided with the film.

【0002】更に、具体的に言及すれば、近年多くの提
案や商品が開発されている光触媒機能により発現する防
汚、抗菌、ガス分解、有害有機物分解等の各種浄化機能
と、導電性機能により発現する帯電、浮遊塵やガス付着
あるいは分解中間生成物の表面付着等の回避、電磁シー
ルド性、防錆性能とを合わせ有する被膜を形成するため
の水液、その製造方法及び該被膜を備える構造体に関す
る。
More specifically, many proposals and products have been developed in recent years, and various purifying functions such as antifouling, antibacterial, gas decomposition, and decomposition of harmful organic substances, which are exhibited by a photocatalytic function, and a conductive function are used. Aqueous liquid for forming a film having a combination of electric charge that develops, floating dust and gas adhesion, surface adhesion of decomposition intermediate products, electromagnetic shielding properties, and rust prevention performance, a method for producing the same, and a structure including the film. Regarding the body

【0003】[0003]

【従来の技術】チタン含有物質を、板ガラス、白磁器、
金属板あるいはタイルなどの建材等の各種材料表面に塗
布して酸化チタン(チタニア)からなる被膜を形成し、
表面汚染防止などの基体表面保護、光触媒、誘電体、半
導体、紫外線カット、着色コーティング等の各種機能を
発現させることが従前から行なわれている。その酸化チ
タン被膜の形成方法については、酸化チタンの微粒子を
含有した分散液あるいはチタン化合物溶液を基体表面に
塗布し、塗布した後に乾燥あるいは更に必要に応じ低温
焼成する等の方法が知られている。
2. Description of the Related Art Titanium-containing substances are used for plate glass, white porcelain,
It is applied to the surface of various materials such as metal plates or building materials such as tiles to form a film made of titanium oxide (titania),
It has been performed for a long time to exhibit various functions such as protection of the surface of a substrate such as prevention of surface contamination, photocatalyst, dielectric, semiconductor, UV cut, and colored coating. As a method for forming the titanium oxide film, a method is known in which a dispersion liquid or titanium compound solution containing fine particles of titanium oxide is applied to the surface of the substrate, and after the application, drying or further low temperature baking is applied. .

【0004】特に光触媒性能を発現させるために使用す
るチタン酸化物としては、アナターゼ型あるいはルチル
型酸化チタン等の二酸化チタンのみでなく、ペルオキソ
基を有する酸化チタン、すなわち過酸化チタンも利用で
きることが知られている。その過酸化チタンについて
は、アモルファス型のものは触媒能がなく、アナターゼ
型のもののみが触媒性能を有することも知られている
(特開平9−124865号公報)。
It is known that not only titanium dioxide such as anatase-type or rutile-type titanium oxide but also titanium oxide having a peroxo group, that is, titanium peroxide can be used as the titanium oxide used for exhibiting photocatalytic performance. Has been. Regarding the titanium peroxide, it is also known that the amorphous type does not have a catalytic ability, and only the anatase type has a catalytic ability (JP-A-9-124865).

【0005】そのアナターゼ型過酸化チタンは、前記し
たとおり光触媒性能を有することから各種構造体の基体
表面に被膜を形成し、光触媒膜として利用することも前
記公報に記載されている。アモルファス型のものについ
ては、前記したとおり触媒性能はないが結合性能が優れ
ており、光触媒被膜を形成する際の光触媒粒子のバイン
ダーとして利用することが提案されている(特開平9−
262481号公報)。
Since the anatase type titanium peroxide has photocatalytic performance as described above, it is also described in the above publication that it is used as a photocatalytic film by forming a film on the surface of the substrate of various structures. As described above, the amorphous type does not have catalytic performance but has excellent binding performance, and it has been proposed to use it as a binder for photocatalyst particles when forming a photocatalyst film (Japanese Patent Laid-Open No. 9-
No. 262481).

【0006】前述のようにアナターゼ型過酸化チタンに
よって形成された被膜は、光触媒性能を有し、それと共
に他のチタン酸化物からなる光触媒と同様に表面汚染防
止等の基体表面保護、誘電体、半導体、紫外線カット、
着色コーティングなどの各種機能を発現させることがで
きるが、その被膜の導電性能は十分なものとはいい難
く、電磁波シールドあるいは帯電防止などとして利用す
るには満足し難いものであった。
As described above, the coating film formed of anatase type titanium peroxide has a photocatalytic performance, and in addition to the photocatalyst composed of other titanium oxides, it also protects the surface of the substrate such as surface contamination prevention, the dielectric, Semiconductor, UV protection,
Although various functions such as a colored coating can be exhibited, it is difficult to say that the coating has sufficient conductivity and it is difficult to use it as an electromagnetic wave shield or an antistatic material.

【0007】特に、光触媒性能を発現している光励起時
には高抵抗状態であり電磁波シールド性あるいは帯電防
止性などは到底満足し難いものであった。また、非励起
時においてもそれら性能は決して満足できるものではな
かった。その結果光触媒機能面は帯電傾向にあり、光触
媒により分解された分子、中間生成物あるいは浮遊塵は
その機能面から離脱しがたく、機能面への吸着、付着あ
るいは残留し、光触媒能が低下するという問題があっ
た。
In particular, it is in a high resistance state at the time of photoexcitation exhibiting photocatalytic performance, and it is very difficult to satisfy electromagnetic wave shielding property or antistatic property. In addition, the performances were not satisfactory even in the non-excitation state. As a result, the photocatalytic function surface tends to be charged, and molecules, intermediate products, or suspended dust decomposed by the photocatalyst are difficult to separate from the function surface, and are adsorbed, adhered, or remain on the function surface, and the photocatalytic activity decreases. There was a problem.

【0008】また、チタン酸化物等の光触媒では、励起
時にその機能面で空気中のH2Oを分解し、水酸基(O
-)が生成すると言われており、そこに水分が付着す
ると超親水現象が生ずるとされている。その際機能膜表
面において超親水現象を維持し、高導電性を保持するに
は前記水酸基との間に水分が付着していることが前提と
なるが、そのためには機能面の散水や雨水による着水が
必要となる。
Further, in the case of a photocatalyst such as titanium oxide, H 2 O in the air is decomposed due to its function when excited, and a hydroxyl group (O
H -) are said to produce, is the therein moisture adheres the superhydrophilic phenomenon occurs. At that time, in order to maintain the superhydrophilic phenomenon on the functional film surface and maintain high conductivity, it is premised that water adheres to the hydroxyl groups, but for that purpose, water sprinkling or rainwater on the functional surface is required. Landing is required.

【0009】しかしながら、水分は晴天時には大気中に
蒸発し、元の状態に戻ることになり、それと同時に導電
性が低下するため、その低下を回避するには散水が必要
であり、また吸着や残留による汚染を低減するためには
水洗浄によって除去するしかない。更に自然降雨による
セルフクリーニングが期待しがたい箇所や構造の場合に
も水洗が必要ということになる。以上のとおりであるか
ら、光触媒能に基づく表面汚染防止等の基体表面保護性
能は満足すべきものではない。
However, when the water is fine, the water evaporates into the atmosphere and returns to its original state, and at the same time, the conductivity decreases, so water spraying is necessary to avoid the decrease, and adsorption and residue remain. The only way to reduce the pollution by water is to remove it by washing with water. Furthermore, it is necessary to wash with water even in places and structures where it is difficult to expect self-cleaning due to natural rainfall. As described above, the substrate surface protection performance based on photocatalytic activity such as surface contamination prevention is not satisfactory.

【0010】他方、構造体表面に導電性を付与する技術
としては、タイルの釉薬において酸化銅、酸化アンチモ
ンを等を混入させるもの(特公平3−349号公報)、
釉薬上に酸化スズ、酸化鉄などの粉末を一部未溶融状態
で含有させた釉薬とするもの(特公平4−36229号
公報)があるが、必要とする表面導電性を得るために
は、混入する酸化銅等の材料の必要量が多量なものとな
る。また、これらの混入により釉薬の発色に影響を与
え、意匠性が制約されることになる。
On the other hand, as a technique for imparting electric conductivity to the surface of the structure, a technique of mixing copper oxide, antimony oxide or the like in the glaze of a tile (Japanese Patent Publication No. 3-349),
There is a glaze in which a powder of tin oxide, iron oxide or the like is partly contained in a non-molten state on the glaze (Japanese Patent Publication No. 4-36229), but in order to obtain the required surface conductivity, The required amount of the material such as copper oxide mixed in becomes large. Further, the mixture of these affects the color development of the glaze, and the designability is restricted.

【0011】それ以外の導電性を発現する材料として
は、ポリアニリンあるいはポリピロール等の導電性高分
子があり、それについては携帯電話,テレビ,パソコ
ン,家電製品等から発生する電磁波をシールドする電磁
波シールド材、電池用電極、静電防止剤、キャパシタ
ー、ダイオード,トランジスタ等の各種電子デバイス、
エレクトロクロミック素子、各種センサー等への利用が
期待され多くの研究開発が行われている。
Other materials that exhibit conductivity include conductive polymers such as polyaniline and polypyrrole, which are electromagnetic wave shielding materials that shield electromagnetic waves generated from mobile phones, televisions, personal computers, home appliances and the like. , Battery electrodes, antistatic agents, capacitors, diodes, various electronic devices such as transistors,
Many researches and developments have been conducted with the expectation that they will be used in electrochromic devices and various sensors.

【0012】この導電性高分子は、以上のような用途へ
の利用が期待されており、そのために液剤とし構造体表
面に被膜を形成することが試みられているものの、単独
では被膜形成対象の構造体の基体との結合力はほとんど
なく、それを改善するために樹脂等の結合成分を有機溶
剤等に溶解した有機結合剤、シリカゾル、シリコーン化
合物あるいはITO等の結合助剤と併用されるが、その
場合においても結合性は十分なものではなかった。
[0012] This conductive polymer is expected to be used for the above-mentioned applications, and although it has been attempted to form a coating film on the surface of the structure as a liquid agent for that purpose, it is an object of film formation alone. The structure has almost no binding force to the substrate, and in order to improve it, it is used in combination with an organic binder in which a binding component such as a resin is dissolved in an organic solvent, a silica sol, a silicone compound, or a binding aid such as ITO. , Even in that case, the binding property was not sufficient.

【0013】さらに、その結合力を向上させるために高
温での処理が必要であったり、あるいは固着強度が期待
したほど向上しない等の問題があった。なお、被膜形成
にあたり有機物質を使用した場合には作業環境等に格別
の配慮を必要とする等の取扱上利便性に欠ける点もあっ
た。加えて、その導電特性も状態によって変化するもの
であり、導電性も十分発現することができない場合があ
る。以上のとおり光触媒性能を発現する被膜形成技術及
び導電性能を発現する被膜形成技術は、各種のものが存
在するものの、それらは、前述のとおり性能は満足すべ
ものではなかった。
Further, there are problems that treatment at a high temperature is required to improve the bonding force, or the fixing strength is not improved as expected. In addition, when an organic substance is used for forming the film, there is also a point that it is not convenient in handling because special consideration needs to be given to the work environment and the like. In addition, the conductive property also changes depending on the state, and the conductivity may not be sufficiently exhibited. As described above, there are various kinds of film forming technology that exhibits photocatalytic performance and film forming technology that exhibits conductive performance, but these are not satisfactory in performance as described above.

【0014】また、光触媒性能及び導電性能を個別に発
現する被膜形成技術のみでなく、両性能を同時に発現す
る被膜形成技術も既に提案されている(特開平11−3
155921号公報)。その被膜形成技術は、光触媒性
能を発現する被膜と導電性能を発現する被膜とを積層し
て形成し、両被膜が表面に露出するように構造を工夫す
ることにより導電性能と光触媒性能を付与するものであ
る。
Further, not only a film forming technique for individually expressing photocatalytic performance and conductive property, but also a film forming technique for simultaneously expressing both properties has been proposed (Japanese Patent Laid-Open No. 11-3.
155921). The film forming technology is to form a film that exhibits photocatalytic performance and a film that exhibits conductive performance by stacking them, and imparts conductive performance and photocatalytic performance by devising the structure so that both coatings are exposed on the surface. It is a thing.

【0015】その構造について更に言及すれば、表面側
に露出する被膜については、多数の小欠落部分を有する
構造とし、この欠落部分から下側の被膜が外部に露出す
ることにより、構造体表面に導電性能と光触媒性能を付
与するものである。例えば、基体側に導電性能を発現す
る被膜を形成し、ついで、その表面に光触媒性能を発現
する被膜を形成することになるが、その際に表面側の光
触媒性能を発現する被膜については、多数の小欠落部分
を形成することが必要となる。
To further describe the structure, the coating exposed on the surface side has a structure having a large number of small missing portions, and the lower coating is exposed to the outside from the missing portions, so that the structure surface is exposed. It imparts conductivity and photocatalytic performance. For example, a coating that develops conductive performance is formed on the substrate side, and then a coating that develops photocatalytic performance is formed on the surface. At that time, many coatings that develop photocatalytic performance on the surface side are formed. It is necessary to form a small missing part of

【0016】前述のとおりであるから、1回の塗布操作
で基体全面に被膜を形成する場合と比較すると、被膜形
成工程の工程数が増加する。また、光触媒性能と導電性
能とを適切なものとするために、欠落部分の均等配置及
び両性能を発現する面積比が適正なものとなるよう配慮
することが必要であり、その結果、被膜形成工程が複雑
なものとなる。
As described above, the number of film forming steps is increased as compared with the case of forming a film on the entire surface of the substrate by one coating operation. In addition, in order to make the photocatalytic performance and the conductive performance appropriate, it is necessary to consider the even arrangement of the missing parts and the area ratio that exhibits both performances to be appropriate, and as a result, film formation. The process becomes complicated.

【0017】[0017]

【発明が解決しようとする課題】以上のとおりであるか
ら、従前の被膜形成液では達成不可能である、1回で、
かつ塗布あるいは散布操作などの単純な造膜操作で導電
性能と光触媒性能を有する被膜が形成できる被膜形成用
水液の出現が望まれた。そのようなことで、光触媒能を
有すると共に、電磁波シールドあるいは帯電防止等にお
いて所定の性能が発現できる導電性を有する被膜形成用
水液の出現が望まれている。
As described above, since it is impossible to achieve with the conventional film-forming liquid,
In addition, the appearance of a water solution for forming a film, which can form a film having a conductive property and a photocatalytic property by a simple film forming operation such as coating or spraying, has been desired. Under such circumstances, it has been desired to develop a coating-forming aqueous solution which has a photocatalytic activity and which has a conductivity capable of exhibiting a predetermined performance in electromagnetic wave shielding or antistatic properties.

【0018】特に、光触媒性能を発揮するチタン酸化物
等の物質は、光触媒性能発現時には、導電性が低下する
ことから、その状態において電磁波シールドあるいは帯
電防止に関し所定の機能が発現できる導電性を有する被
膜形成用水液の出現が望まれている。本発明者も、チタ
ン酸化物、特に過酸化チタン含有被膜及び該被膜形成用
塗布液の有する高機能性及び施工簡便性に着目し、従前
より鋭意研究開発に努めており、その結果既に開発した
多くの成果を提案している。その後も継続して鋭意研究
開発を進めており、その結果、開発に成功したのが、今
回提案の発明であり、これにより前述した問題を解消す
ることができた。
In particular, a substance such as titanium oxide exhibiting photocatalytic performance has a conductivity that is reduced when the photocatalytic performance is exhibited, and thus has a conductivity capable of exhibiting a predetermined function for electromagnetic wave shielding or antistatic in that state. The appearance of a water solution for forming a film is desired. The present inventor also paid attention to the high functionality and the workability of the titanium oxide, particularly titanium peroxide-containing coating and the coating liquid for forming the coating, and has been making diligent research and development for a long time. Proposes many achievements. Since then, we have continued to earnestly carry out research and development, and as a result, the invention that was proposed this time was successfully developed, and as a result, the above-mentioned problems could be solved.

【0019】したがって、本発明は、前記した性能を発
現する被膜形成用水液を提供することを発明の解決課題
とするものであり、具体的には被膜の表面抵抗値が10
11Ω/□未満であるものを形成する光触媒性能と導電性
能とを有する被膜形成用水液を提供することを目的とす
る。また、特に光触媒性能発現時に被膜の表面抵抗値が
1011Ω/□未満であるものを形成する被膜形成用水液
を提供することを狙いとする。
Therefore, it is an object of the present invention to provide an aqueous solution for forming a film that exhibits the above-mentioned performance, and specifically, the surface resistance value of the film is 10
It is an object of the present invention to provide a water solution for forming a film, which has photocatalytic performance and conductive performance for forming a film having a resistance of less than 11 Ω / □. Another object of the present invention is to provide a water solution for forming a film, which particularly forms a film having a surface resistance value of less than 10 11 Ω / □ when the photocatalytic performance is exhibited.

【0020】[0020]

【課題を解決するための手段】本発明は、前記課題を解
決するために、被膜形成用水液、その製造方法及び該被
膜を備える構造体を提供するものであり、そのうちの被
膜形成用水液は、ペルオキソ基を有するアナターゼ型チ
タン酸化物微細粒子と導電性向上物質微粒子とを含有
し、表面抵抗値が1011Ω/□未満の被膜を形成する光
触媒性能と導電性とを有する被膜を形成するのものであ
る。
In order to solve the above-mentioned problems, the present invention provides a film forming water solution, a method for producing the same, and a structure having the film, wherein the film forming water solution is Forming a film having a surface resistance value of less than 10 11 Ω / □, containing anatase type titanium oxide fine particles having a peroxo group and fine particles of a conductivity enhancing substance, and forming a film having photocatalytic performance and conductivity. belongs to.

【0021】また、その被膜形成用水液の製造方法は、
4価チタンの塩溶液と塩基性溶液とを反応させて、チタ
ンの水酸化物を形成し、この水酸化物を酸化剤でペルオ
キソ化し、更に加熱処理することによりアナターゼ型過
酸化チタンに転移させて被膜形成用水液を形成するいず
れかの過程において、導電性向上物質微粒子を添加し
て、導電性向上物質微粒子及びチタン酸化物微細粒子を
含有する表面抵抗値が1011Ω/□未満の被膜を形成す
るための光触媒性能と導電性とを有する被膜形成用水液
を製造するものである。さらに、その構造体は、その水
液により形成された被膜を有するものである。
The method for producing the film-forming aqueous solution is as follows:
A salt solution of tetravalent titanium is reacted with a basic solution to form titanium hydroxide, and the hydroxide is peroxidized with an oxidizing agent and further heat-treated to transform it into anatase-type titanium peroxide. In any of the steps of forming a water solution for forming a film by adding fine particles of a conductivity improving substance and containing the fine particles of a conductivity improving substance and fine particles of titanium oxide and having a surface resistance value of less than 10 11 Ω / □. A film forming water liquid having photocatalytic performance and conductivity for forming a film is produced. Furthermore, the structure has a coating film formed by the water solution.

【0022】以上は、本発明の好ましい態様であるアナ
ターゼ型チタン酸化物微細粒子を含有する被膜形成用水
液の技術に関するものであるが、本発明においては、ア
モルファス型チタン酸化物微細粒子と導電性向上物質微
粒子とを含有する被膜形成用水液を用いた場合にも、表
面抵抗値が1011Ω/□未満で、かつ光触媒性能と導電
性とを有する被膜を形成することは可能であり、その技
術は以下のとおりである。すなわち、その被膜形成用水
液は、ペルオキソ基を有するアモルファス型チタン酸化
物微細粒子と導電性向上物質微粒子とを含有し、造膜後
加熱処理して表面抵抗値が1011Ω/□未満の被膜を形
成する光触媒性能と導電性とを有する被膜形成するもの
である。
The above is related to the technique of the water solution for forming a film containing the anatase type titanium oxide fine particles which is a preferred embodiment of the present invention. In the present invention, however, the amorphous type titanium oxide fine particles and the electroconductivity are used. It is possible to form a film having a surface resistance value of less than 10 11 Ω / □ and having photocatalytic performance and conductivity even when a water solution for forming a film containing fine particles of an enhancing substance is used. The technology is as follows. That is, the aqueous solution for forming a film contains amorphous titanium oxide fine particles having a peroxo group and fine particles of a conductivity improving substance, and a film having a surface resistance value of less than 10 11 Ω / □ by heat treatment after film formation. To form a film having photocatalytic performance and conductivity.

【0023】また、その製造方法は、4価チタンの塩溶
液と塩基性溶液とを反応させて、チタンの水酸化物を形
成し、この水酸化物を酸化剤でペルオキソ化してアモル
ファス型過酸化チタンを形成するいずれかの過程におい
て、導電性向上物質微粒子を添加して、導電性向上物質
微粒子及びチタン酸化物微細粒子を含有し、造膜後加熱
処理して表面抵抗値が1011Ω/□未満の被膜を形成す
るための光触媒性能と導電性とを有する被膜形成用水液
を製造するものである。さらに、その構造体は、その水
液により造膜した後加熱処理した被膜を有するものであ
る。
Further, the manufacturing method thereof is that a salt solution of tetravalent titanium is reacted with a basic solution to form a hydroxide of titanium, and this hydroxide is peroxoed with an oxidizing agent to form an amorphous peroxide. In any process of forming titanium, the conductivity improving substance fine particles are added to contain the conductivity improving substance fine particles and the titanium oxide fine particles, and the surface resistance value is 10 11 Ω / A water solution for forming a film having photocatalytic performance and electrical conductivity for forming a film of less than □ is produced. Further, the structure has a coating film formed by the aqueous solution and then heat-treated.

【0024】そして、本発明の被膜形成用水液により形
成された被膜には、ペルオキソ基を有するアナターゼ型
チタン酸化物微細粒子と導電性向上物質微粒子とが合わ
せて共存されており、その結果、光触媒性能と、電磁波
シールドあるいは帯電防止等を適性に発現することので
きる表面抵抗値が1011Ω/□未満の高導電性能の両者
の特性を発現させることができる。
The anatase-type titanium oxide fine particles having a peroxo group and the electroconductivity-improving substance particles coexist in the film formed by the film-forming aqueous solution of the present invention. As a result, the photocatalyst is used. It is possible to exhibit both properties of high performance and high conductivity with a surface resistance value of less than 10 11 Ω / □ capable of appropriately exhibiting electromagnetic wave shielding or antistatic property.

【0025】すなわち、ペルオキソ基を有するチタン酸
化物が発現する光触媒能に基づく機能である、帯電低減
性、電磁シールド性、防汚性、抗菌性、防曇性、超親水
性あるいは有機物質分解性等の性能を発現することがで
きると共に、それに加えて錫、銀、銅、インジウム等の
導電性向上無機物質、あるいは導電性高分子などの導電
性向上物質を共存することにより、光触媒性能が発現し
ている際においても、表面抵抗値が1011Ω/□未満の
高導電性能を発現させることができ、その結果帯電防止
性、電磁シールド性等において、一層優れた性能を発現
できる。
That is, the function based on the photocatalytic ability expressed by the titanium oxide having a peroxo group, is a property of reducing charge, electromagnetic shielding property, antifouling property, antibacterial property, antifogging property, superhydrophilic property or degradability of organic substances. And the like, and in addition to these, the coexistence of a conductivity improving inorganic substance such as tin, silver, copper, indium, or a conductivity improving substance such as a conductive polymer causes the photocatalytic performance to develop. Even when it is being carried out, it is possible to develop high conductivity performance with a surface resistance value of less than 10 11 Ω / □, and as a result, it is possible to develop even more excellent performance in terms of antistatic properties, electromagnetic shielding properties, and the like.

【0026】[0026]

【発明の実施の形態】本発明は、前述したとおり被膜形
成用水液、その製造方法及び該被膜を備える構造体を提
供するものであり、その被膜形成用水液は、ペルオキソ
基を有するアナターゼ型チタン酸化物微細粒子と導電性
向上物質微粒子とを含有し、表面抵抗値が1011Ω/□
未満の被膜を形成する光触媒性能と導電性とを有する被
膜を形成するものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides a water solution for forming a film, a method for producing the same, and a structure having the film as described above. The water solution for forming a film is anatase-type titanium having a peroxo group. Contains oxide fine particles and fine particles of conductivity improving substance, and has a surface resistance value of 10 11 Ω / □.
It forms a film having photocatalytic performance and electrical conductivity.

【0027】また、その水液の製造方法は、4価チタン
の塩溶液と塩基性溶液とを反応させて、チタンの水酸化
物を形成し、この水酸化物を酸化剤でペルオキソ化し、
更に加熱処理することによりアナターゼ型過酸化チタン
に転移させて被膜形成用水液を形成するいずれかの過程
において、導電性向上物質微粒子を添加して、導電性向
上物質微粒子及びチタン酸化物微細粒子を含有する表面
抵抗値が1011Ω/□未満の被膜を形成するための光触
媒性能と導電性とを有する被膜形成用の水液を製造する
ものである。さらに、その構造体は、前記水液により形
成された被膜を有するものである。
Further, in the method for producing the aqueous solution, a salt solution of tetravalent titanium is reacted with a basic solution to form a hydroxide of titanium, and the hydroxide is peroxo-ized with an oxidizing agent,
In any process of transferring to anatase-type titanium peroxide by heat treatment to form an aqueous solution for forming a film, the conductivity improving substance fine particles are added, and the conductivity improving substance fine particles and titanium oxide fine particles are added. A water solution for forming a coating, which has photocatalytic performance and conductivity for forming a coating having a surface resistance value of less than 10 11 Ω / □, is produced. Further, the structure has a coating film formed by the water solution.

【0028】以上は、本発明の好ましい態様であるアナ
ターゼ型チタン酸化物微細粒子を含有する被膜形成用水
液の技術に関するものであるが、本発明においては、ア
モルファス型チタン酸化物微細粒子と導電性向上物質微
粒子とを含有する被膜形成用水液を用いた場合にも、表
面抵抗値が1011Ω/□未満で、かつ光触媒性能と導電
性とを有する被膜を形成することは可能であり、その技
術は以下のとおりである。すなわち、その被膜形成用水
液は、ペルオキソ基を有するアモルファス型チタン酸化
物微細粒子と導電性向上物質微粒子とを含有し、造膜後
加熱処理して表面抵抗値が1011Ω/□未満の被膜を形
成する光触媒性能と導電性とを有する被膜を形成するも
のである。
The above is related to the technique of the water solution for forming a film containing the anatase type titanium oxide fine particles, which is a preferred embodiment of the present invention. In the present invention, the amorphous type titanium oxide fine particles and the electroconductivity are used. It is possible to form a film having a surface resistance value of less than 10 11 Ω / □ and having photocatalytic performance and conductivity even when a water solution for forming a film containing fine particles of an enhancing substance is used. The technology is as follows. That is, the aqueous solution for forming a film contains amorphous titanium oxide fine particles having a peroxo group and fine particles of a conductivity improving substance, and a film having a surface resistance value of less than 10 11 Ω / □ by heat treatment after film formation. To form a coating having photocatalytic performance and conductivity.

【0029】また、その製造方法は、4価チタンの塩溶
液と塩基性溶液とを反応させて、チタンの水酸化物を形
成し、この水酸化物を酸化剤でペルオキソ化してアモル
ファス型過酸化チタンを形成するいずれかの過程におい
て、導電性向上物質微粒子を添加して、導電性向上物質
微粒子及びチタン酸化物微細粒子を含有し、造膜後加熱
処理して表面抵抗値が1011Ω/□未満の被膜を形成す
るための光触媒性能と導電性とを有する被膜形成用水液
を製造するものである。さらに、その構造体は、その水
液により造膜した後加熱処理した被膜を有するものであ
る。
Further, the manufacturing method thereof is such that a salt solution of tetravalent titanium is reacted with a basic solution to form titanium hydroxide, and this hydroxide is peroxo-ized with an oxidizing agent to form an amorphous peroxide. In any process of forming titanium, the conductivity improving substance fine particles are added to contain the conductivity improving substance fine particles and the titanium oxide fine particles, and the surface resistance value is 10 11 Ω / A water solution for forming a film having photocatalytic performance and electrical conductivity for forming a film of less than □ is produced. Further, the structure has a coating film formed by the aqueous solution and then heat-treated.

【0030】本発明の被膜形成用水液の製造に使用する
4価チタンの塩溶液としては、アンモニア水、苛性ソー
ダ溶液等の塩基性溶液と反応させた際にオルトチタン酸
(H 4TiO4)とも呼称される水酸化チタンのゲルを形
成できるものであれば各種のチタン化合物が使用でき、
それには例えば、4塩化チタン、硫酸チタン、硝酸チタ
ンあるいはリン酸チタン等のチタンの水溶性無機酸塩が
ある。それ以外にも蓚酸チタン等の水溶性有機酸塩も例
示できる。なお、これらの各種チタン化合物の中では、
製造された被膜形成用水液中にチタン化合物中のチタン
以外の成分が残留しない点で4塩化チタンが好ましい。
Used in the production of the film-forming aqueous solution of the present invention
As a tetravalent titanium salt solution, ammonia water, caustic so can be used.
Orthotitanic acid when reacted with a basic solution such as da solution
(H FourTiOFour) Shaped titanium hydroxide gel, also called
Various titanium compounds can be used if they can be made,
For example, titanium tetrachloride, titanium sulfate, titanium nitrate
Or water-soluble inorganic acid salt of titanium such as titanium phosphate
is there. In addition, water-soluble organic acid salts such as titanium oxalate are also examples.
I can show you. Among these various titanium compounds,
Titanium in titanium compound in the produced water solution for film formation
Titanium tetrachloride is preferred because no other components remain.

【0031】また、これらの4価チタンの塩溶液と反応
させる塩基性溶液は、4価チタンの塩溶液と反応して水
酸化チタンのゲルを形成できるものであれば、各種のも
のが使用可能であり、それには例えばアンモニア水、苛
性ソーダ溶液、炭酸ソーダ溶液あるいは苛性カリ溶液等
が例示できるが、アンモニア水が好ましい。その後形成
された水酸化チタンを酸化する酸化剤としては、酸化後
ペルオキソ化物が形成できるものであれば各種の酸化剤
が制限なく使用できるが、製造された被膜形成液中に、
金属イオンあるいは酸イオン等の残留物の生じない過酸
化水素が望ましい。
Various basic solutions can be used as the basic solution to be reacted with the salt solution of tetravalent titanium as long as it can form a gel of titanium hydroxide by reacting with the salt solution of tetravalent titanium. Examples thereof include ammonia water, caustic soda solution, sodium carbonate solution, caustic potash solution, and the like, and ammonia water is preferable. As the oxidizing agent for oxidizing the titanium hydroxide formed thereafter, various oxidizing agents can be used without limitation as long as they can form a peroxodide after oxidation, but in the produced film forming solution,
Hydrogen peroxide that does not produce residues such as metal ions or acid ions is desirable.

【0032】4価チタンの塩溶液及び塩基性溶液の両溶
液の濃度については、反応時の濃度が、水酸化チタンの
ゲルが形成できる範囲であれば特に制限されるものでは
ないものの比較的希薄な溶液がよい。具体的には、4価
チタン塩溶液は5〜0.01wt%がよく、好ましくは
0.9〜0.3wt%がよい。また、塩基性溶液は10
〜0.5wt%がよく、好ましくは4.0〜 2.0w
t%がよい。特に塩基性溶液にアンモニアを使用した場
合の濃度は、前記した範囲の10〜0.5wt%がよ
く、好ましくは4.0〜 2.0wt%がよい。
The concentration of both the tetravalent titanium salt solution and the basic solution is not particularly limited as long as the concentration during the reaction is within the range in which a titanium hydroxide gel can be formed, but it is relatively dilute. A good solution is good. Specifically, the tetravalent titanium salt solution is preferably 5 to 0.01 wt%, and more preferably 0.9 to 0.3 wt%. Also, the basic solution is 10
~ 0.5 wt% is good, preferably 4.0-2.0w
t% is good. Particularly, when ammonia is used in the basic solution, the concentration is preferably 10 to 0.5 wt% within the above range, and more preferably 4.0 to 2.0 wt%.

【0033】導電性向上物質としては、形成された被膜
の表面抵抗値を1011Ω/□未満とせしめるものであれ
ば、金属塩等の各種物質が使用可能である。特に光触媒
性能発揮時である光励起時には導電性が低下するが、そ
の際においても被膜の表面抵抗値を1011Ω/□未満と
せしめることができるものが望ましい。前記金属塩とし
ては、例えば、アルミニウム、錫、クロム、ニッケル、
アンチモン、鉄、銀、セシウム、インジウム、セリウ
ム、セレン、銅、マンガン、カルシウム、白金、タング
ステン、ジルコニウム、亜鉛等の金属塩があり、それ以
外にも一部の金属あるいは非金属等については水酸化物
あるいは酸化物も使用可能である。
As the conductivity improving substance, various substances such as metal salts can be used as long as the surface resistance value of the formed coating film is less than 10 11 Ω / □. In particular, the conductivity is lowered during photoexcitation, which is when the photocatalytic performance is exhibited, and it is desirable that the surface resistance of the film can be made less than 10 11 Ω / □ even at that time. Examples of the metal salt include aluminum, tin, chromium, nickel,
There are metal salts such as antimony, iron, silver, cesium, indium, cerium, selenium, copper, manganese, calcium, platinum, tungsten, zirconium, zinc, etc. A substance or an oxide can also be used.

【0034】それらについてより具体的に物質名で示す
と、塩化アルミニウム、塩化第1及び第2錫、塩化クロ
ム、塩化ニッケル、塩化第1及び第2アンチモン、塩化
第1及び第2鉄、硝酸銀、塩化セシウム、三塩化インジ
ウム、塩化第1セリウム、四塩化セレン、塩化第2銅、
塩化マンガン、塩化カルシウム、塩化第2白金、四塩化
タングステン、オキシ二塩化タングステン、タングステ
ン酸カリウム、塩化第2金、オキシ塩化ジルコニウム、
塩化亜鉛等の各種の金属塩が例示できる。また、金属塩
以外の化合物としては、水酸化インジウム、ケイタング
ステン酸、シリカゾル、水酸化カルシウム等が例示でき
る。
More specifically, the substance names of these substances are aluminum chloride, stannous chloride and stannic chloride, chromium chloride, nickel chloride, ferrous and antimony chloride, ferrous and ferric chloride, and silver nitrate. Cesium chloride, indium trichloride, cerium chloride, selenium tetrachloride, cupric chloride,
Manganese chloride, calcium chloride, secondary platinum chloride, tungsten tetrachloride, tungsten oxydichloride, potassium tungstate, secondary gold chloride, zirconium oxychloride,
Various metal salts such as zinc chloride can be exemplified. Examples of compounds other than metal salts include indium hydroxide, silicotungstic acid, silica sol, calcium hydroxide and the like.

【0035】導電性向上物質としては、前記した無機物
質以外も使用可能であり、それにはポリアニリンあるい
はポリピロール等の導電性高分子がある。この導電性高
分子については、多くの物質が既に開発されており、そ
れには、前記したポリアニリン、ポリピロールの外に
も、ポリチオフェン、ポリチオフェンビニレン、ポリイ
ソチアナフテン、ポリアセチレン、ポリアルキルピロー
ル、ポリアルキルチオフェン、ポリ−p−フェニレン、
ポリフェニレンビニレン、ポリメトキシフェニレン、ポ
リフェニレンスルファイド、ポリフェニレンオキシド、
ポリアントラセン、ポリナフタレン、ポリピレン、ポリ
アズレンあるいはこれらの誘導体の重合体があげられる
が、これらはいずれも使用可能である。なお、これらの
導電性向上物質は、単独又は2種類以上の混合物として
用いることができる。
As the conductivity improving substance, other than the above-mentioned inorganic substances can be used, and examples thereof include conductive polymers such as polyaniline and polypyrrole. Many substances have already been developed for this conductive polymer, and in addition to the above-mentioned polyaniline and polypyrrole, polythiophene, polythiophene vinylene, polyisothianaphthene, polyacetylene, polyalkylpyrrole, and polyalkylthiophene. , Poly-p-phenylene,
Polyphenylene vinylene, polymethoxyphenylene, polyphenylene sulfide, polyphenylene oxide,
Examples thereof include polymers of polyanthracene, polynaphthalene, polypyrene, polyazulene and derivatives thereof, and any of these can be used. These conductivity improving substances can be used alone or as a mixture of two or more kinds.

【0036】これらの導電性高分子は、ドーピングする
ことができ、このドーピングにより導電性が一層向上
し、その結果電磁波シールド性が向上するので、本発明
ではドーピングすることが好ましい。そのドーパントと
しては、Li,Na,K等のアルカリ金属、Ca等のア
ルカリ土類金属等のドナー型ドーパント、あるいはCl
2,Br2,I2等のハロゲン、PF3,AsF5,BF3
のルイス酸、HF,HCl,HNO3,H2SO4,HC
lO4等のプロトン酸、FeCl3,FeOCl2,Ti
Cl4,WCl3等の遷移金属化合物、Cl-,Br-,I
-,ClO4 -,PF3 -,BF3 -,AsF3 -等の電解質ア
ニオンのアクセプター型ドーパントを用いることができ
る。
These conductive polymers are doped
It is possible to improve the conductivity by this doping.
However, as a result, the electromagnetic wave shielding property is improved.
Then, it is preferable to dope. With that dopant
As a result, alkali metals such as Li, Na, K, and Ca
Donor type dopant such as Lucari earth metal, or Cl
2, Br2, I2Such as halogen, PF3, AsFFive, BF3etc
Lewis acid, HF, HCl, HNO3, H2SOFour, HC
10FourProtic acid such as FeCl3, FeOCl2, Ti
ClFour, WCl3Transition metal compounds such as Cl-, Br-, I
-, ClOFour -, PF3 -, BF3 -, AsF3 -Electrolyte such as
Nion acceptor type dopants can be used
It

【0037】これらの導電性高分子の導電性という特性
は、酸化もしくは還元反応、特に電気的酸化還元反応、
又は酸もしくは塩基との反応により変化することも知ら
れている。特に電子供与体及び電子受容体の性能を持つ
導電性高分子はこれらの反応により電気的特性変化を発
現する。例えば、ポリアニリンは、酸化もしくは還元反
応、又は酸もしくは塩基との反応により下記の式1の反
応式により変化することが知られている(「高分子新素
材 One Point−5 導電性ポリマー」、吉村進
著、高分子学会編17〜18頁)。
The characteristic of the conductivity of these conductive polymers is that the oxidation or reduction reaction, especially the electric redox reaction,
It is also known to change by reaction with an acid or a base. In particular, a conductive polymer having the functions of an electron donor and an electron acceptor exhibits changes in electrical characteristics due to these reactions. For example, polyaniline is known to change according to the reaction formula of the following Formula 1 by an oxidation or reduction reaction or a reaction with an acid or a base (“New Polymer One Point-5 Conductive Polymer”, Yoshimura). Susumu, The Polymer Society of Japan, pp. 17-18).

【0038】[0038]

【化1】 [Chemical 1]

【0039】その結果、ポリアニリンを酸化した場合に
は、電導性は金属状態で色は緑色になり、還元した場合
には電導性は絶縁状態で青色から無色透明となる。ま
た、酸と反応させ酸性化した場合には、電導性は向上し
緑色になり、塩基と反応させ塩基性化した場合には、導
電性は低下し色は青色となる。
As a result, when polyaniline is oxidized, its electrical conductivity is metallic and its color is green, and when it is reduced, its electrical conductivity is insulating and changes from blue to colorless and transparent. When it is acidified by reacting with an acid, the conductivity is improved and becomes green, and when it is made basic by reacting with a base, the conductivity is decreased and the color is blue.

【0040】さらに、前記以外の物質も導電性向上物質
として使用可能であり、それには空気中の水分を吸着
し、イオンで電気を移動させるイオン導電型と呼称され
る一群の物質がある。具体的には、塩化カリウム、塩化
ナトリウムもしくはシロキサン等の無機系の物質があ
り、また帯電防止用の界面活性剤であるグリセリン脂肪
酸エステル、ポリオキシエチレンアルキルエーテル、ポ
リオキシエチレンアルキルアミン、アルキルスルホン酸
塩、テトラアルキルアンモニウム塩、アルキルベタイ
ン、ポリエチレンオキシド鎖を有するポリエーテルを親
水基成分とするもの及び共重合体等の有機系の物質があ
る。
Further, substances other than the above can be used as the conductivity improving substance, and there is a group of substances called ion conductive type which adsorb moisture in the air and move electricity by ions. Specifically, there are inorganic substances such as potassium chloride, sodium chloride, or siloxane, and glycerin fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl amine, alkyl sulfonic acid, which is an antistatic surfactant. There are organic substances such as salts, tetraalkylammonium salts, alkylbetaines, those having a polyether group having a polyethylene oxide chain as a hydrophilic group component, and copolymers.

【0041】本発明の被膜形成用水液の製造に当たって
は、まず、4価チタンの塩溶液と塩基性溶液とを反応さ
せて水酸化チタンゲルを形成することになる。その際の
反応液の濃度及び温度については、特に限定されるわけ
ではないが、希薄溶液及び常温で実施するのが好まし
い。この反応は中和反応であり、酸性から中性、すなわ
ちpH7になることが確認できるまで行うのが望まし
い。その反応後は形成された水酸化チタンゲルを重力沈
降あるいは遠心分離等により固液分離し、分離後同ゲル
を水洗するのが好ましい。
In the production of the water solution for forming a coating film of the present invention, first, a salt solution of tetravalent titanium is reacted with a basic solution to form a titanium hydroxide gel. The concentration and temperature of the reaction solution at that time are not particularly limited, but it is preferable to carry out the reaction in a dilute solution and at room temperature. This reaction is a neutralization reaction, and it is desirable to carry out the reaction until it is confirmed that the pH becomes 7 from acidic to neutral. After the reaction, the formed titanium hydroxide gel is preferably subjected to solid-liquid separation by gravity settling or centrifugation, and after separation, the gel is preferably washed with water.

【0042】本発明で使用する導電性向上物質は、4価
チタンの塩溶液と塩基性溶液とを反応させて水酸化チタ
ンを形成する際に共存させるのが望ましく、そのために
は水酸化物形成反応前に4価チタンの塩溶液中に添加等
により存在させるか、該反応時に反応系に添加するのが
好ましい。このようにすることにより添加される導電性
向上物質によっては水酸化物形成反応時に水酸化チタン
と同様に水酸化物が形成されて共沈することができる。
The conductivity-improving substance used in the present invention is preferably made to coexist when a salt solution of tetravalent titanium is reacted with a basic solution to form titanium hydroxide, and for that purpose, a hydroxide is formed. It is preferable to add it to a salt solution of tetravalent titanium before the reaction by addition or to add it to the reaction system during the reaction. By doing so, depending on the conductivity-enhancing substance added, a hydroxide can be formed and coprecipitated during the hydroxide formation reaction, similar to titanium hydroxide.

【0043】前記のようにして得られた水酸化チタン
は、それに過酸化水素等の酸化剤を添加しペルオキソ化
することにより導電性を有する超微小粒子のアモルファ
ス型過酸化チタンが形成され、その粒子の粒径は2nm
〜10nmである。このようにして得られたアモルファ
ス型過酸化チタンを含有する被膜形成用水液は、このま
までは固着力に優れた被膜の形成は可能であるものの触
媒性能はない。
The titanium hydroxide obtained as described above is added with an oxidizing agent such as hydrogen peroxide and peroxidized to form amorphous titanium peroxide of ultrafine particles having conductivity. The particle size is 2 nm
-10 nm. The aqueous solution for forming a film containing the amorphous titanium peroxide thus obtained can form a film excellent in fixing force as it is, but has no catalytic performance.

【0044】しかしながら、アモルファス型過酸化チタ
ンを含有する水液を使用して表面抵抗値が1011Ω/□
未満で光触媒性能と導電性能とを有する被膜を形成する
ことも可能であり、その場合にも、アナターゼ型過酸化
チタンを含有する被膜形成用水液の場合と同様に導電性
向上物質微粒子及びチタン酸化物微細粒子を共存させる
ことが必要であり、そのために図1に図示するようにア
モルファス型過酸化チタンを含有する水液が作製される
までの過程において、導電性向上物質微粒子を添加する
ことが必要である。
However, the surface resistance value is 10 11 Ω / □ by using an aqueous solution containing amorphous titanium peroxide.
It is also possible to form a coating having a photocatalytic performance and a conductive performance at less than, in that case, also in the same manner as in the case of a water solution for forming a coating containing anatase type titanium peroxide, the conductivity improving substance fine particles and titanium oxide. It is necessary to coexist with fine particles of a substance, and for that reason, it is necessary to add fine particles of a conductivity improving substance in the process until an aqueous solution containing amorphous titanium peroxide is prepared as shown in FIG. is necessary.

【0045】また、これを用いて表面抵抗値が1011Ω
/□未満で光触媒性能と導電性能とを有する被膜を形成
するには、アナターゼ型過酸化チタンを含有する被膜形
成用水液の場合とは異なり、塗布等により造膜した後に
加熱処理することが必要である。その際の加熱処理は、
アモルファス型過酸化チタンをアナターゼ型に転移させ
るためのものであり、温度150〜650℃で、5〜6
0分間行なうのがよく、好ましくは温度200〜550
℃で、15〜30分間行なうのがよい。
Using this, the surface resistance value is 10 11 Ω.
In order to form a film having a photocatalytic performance and a conductive property of less than / □, it is necessary to perform heat treatment after forming a film by coating, unlike the case of a water solution for forming a film containing anatase type titanium peroxide. Is. The heat treatment at that time is
It is for transferring amorphous titanium peroxide to anatase type, and is 5 to 6 at a temperature of 150 to 650 ° C.
It is better to carry out for 0 minutes, preferably at a temperature of 200 to 550.
It is good to carry out at 30 degreeC for 15 to 30 minutes.

【0046】これに対して、本発明の好ましい態様であ
るアナターゼ型過酸化チタンを含有する被膜形成用水液
を製造するには、前記で形成された超微小粒子のアモル
ファス型過酸化チタン分散液を加熱し、それによりアナ
ターゼ型に転移させる。その際の加熱温度は80〜20
0℃がよく、特に大気圧下での加熱が簡便で好ましく、
このようにして得られた被膜形成用水液は透明性が高
い。そのため形成された被膜は透明度が高く、視界性能
あるいは装飾性能を求められる用途には好適であり、か
つ暗所でも親水性を呈する。また、その被膜は表面抵抗
値が1011Ω/□未満で光触媒性能と導電性能とを有す
るものである。
On the other hand, in order to produce a water solution for forming a coating film containing anatase-type titanium peroxide, which is a preferred embodiment of the present invention, the ultrafine particle amorphous titanium titanium dispersion liquid formed above is prepared. Is heated, thereby transferring to the anatase form. The heating temperature at that time is 80 to 20.
0 ° C is good, and heating at atmospheric pressure is particularly convenient and preferable,
The water solution for film formation thus obtained has high transparency. Therefore, the formed film has high transparency, is suitable for applications requiring visual performance or decorative performance, and exhibits hydrophilicity even in a dark place. Further, the coating film has a surface resistance value of less than 10 11 Ω / □ and has photocatalytic performance and conductive performance.

【0047】特に、被膜形成用水液を製造する際には、
導電性向上化合物と4価チタンの塩溶液とを塩基性溶液
との反応時に両者とも水酸化物として共沈させ、その後
チタン酸化物を酸化してペルオキソ化し、ついで加熱し
てアナターゼ型に転移させることにより透明性の高い分
散液が形成でき、これを使用して被膜を形成した場合に
は透明性の高い親水性被膜が形成でき、その結果視界性
能あるいは装飾性が重要視される建築物の窓ガラスや光
学ガラスあるいはプラスチック板等の透光性透明基板に
は好適である。なお、塩化銅及び塩化第2鉄を導電性向
上物質として使用する場合については、ペルオキソ化後
それら化合物を添加するのが好ましい。
In particular, when producing a water solution for forming a film,
During the reaction between the conductivity improving compound and the salt solution of tetravalent titanium with the basic solution, both are co-precipitated as hydroxides, then the titanium oxides are oxidized to peroxo, and then heated to transform into anatase type. With this, a highly transparent dispersion can be formed, and when a film is formed using this, a highly transparent hydrophilic film can be formed, and as a result, visibility or decorativeness is important for buildings. It is suitable for a transparent transparent substrate such as a window glass, an optical glass or a plastic plate. When copper chloride and ferric chloride are used as the conductivity improving substance, it is preferable to add the compounds after peroxolation.

【0048】以下において、本発明の被膜形成用水液の
製造方法の実施の形態について、図面に基づいて好まし
い態様を中心にしてより詳細に説明する。本発明の被膜
形成用水液は、アモルファス型過酸化チタンを経由して
製造されるものであり、図1に示す各種の態様で製造で
きる。そのアモルファス型過酸化チタンを生成するに当
たっては、まず、高濃度の四塩化チタン溶液及びアンモ
ニア水を希釈する。希釈は希釈後の濃度がそれぞれ5.
0〜0.01重量%及び10.0〜0.5重量%になる
ように行なうのがよく、好ましくはそれぞれ0.7〜
0.3重量%及び4.0〜2.0重量%になるようにす
るのがよい。
Hereinafter, embodiments of the method for producing a water solution for forming a coating film of the present invention will be described in more detail with reference to the drawings, focusing on preferred embodiments. The film forming aqueous solution of the present invention is produced via amorphous titanium peroxide, and can be produced in various modes shown in FIG. In producing the amorphous titanium peroxide, first, a high-concentration titanium tetrachloride solution and ammonia water are diluted. Dilution has a concentration of 5.
It is preferable to carry out so as to be 0 to 0.01% by weight and 10.0 to 0.5% by weight, preferably 0.7 to
It is preferable to make it 0.3% by weight and 4.0 to 2.0% by weight.

【0049】希釈後両溶液を混合して水酸化チタンゲル
を形成するが、その反応時には導電性向上物質が反応系
中に共存するのがよく、そのために前記混合を行なう前
に四塩化チタン溶液中に導電性向上物質を混合しておく
のがよい。導電性向上物質は前記したとおり各種のもの
が使用できるが、好ましくは塩化銅、第1,第2塩化
錫、第1,第2塩化鉄、塩化亜鉛あるいは三塩化インジ
ウム等がよい。なお、前記した時点で導電性向上物質を
混入させた場合には、混入される導電性向上物質によっ
ては水酸化物形成反応時に水酸化チタンと同様に水酸化
物が形成されて共沈する。
After the dilution, both solutions are mixed to form a titanium hydroxide gel, and it is preferable that the conductivity improving substance coexist in the reaction system during the reaction, and therefore, the titanium tetrachloride solution is mixed in the titanium tetrachloride solution before the mixing. It is preferable to mix a conductivity enhancing substance with the above. As the conductivity improving substance, various substances can be used as described above, but copper chloride, first and second tin chlorides, first and second iron chlorides, zinc chloride, indium trichloride and the like are preferable. When the conductivity improving substance is mixed at the above-mentioned time point, depending on the conductivity improving substance to be mixed, a hydroxide is formed in the same manner as titanium hydroxide during the hydroxide forming reaction and coprecipitates.

【0050】チタン酸化物形成反応の反応液温度につい
ては、特に限定されるわけではないが、常温で実施する
のが好ましい。この反応は中和反応であり、酸性から中
性、すなわちpH7になることが確認できる程度まで行
うのが望ましい。その反応後は形成された水酸化チタン
ゲルを重力沈降あるいは遠心分離等により固液分離し、
分離後同ゲルから共存する塩素イオン等の陰イオンを除
去するために水洗するのが好ましい。
The reaction liquid temperature of the titanium oxide forming reaction is not particularly limited, but it is preferably carried out at room temperature. This reaction is a neutralization reaction, and it is desirable to carry out the reaction to the extent that it can be confirmed that the pH becomes 7 from acidic to neutral. After the reaction, the titanium hydroxide gel formed is subjected to solid-liquid separation by gravity sedimentation or centrifugation,
After separation, it is preferable to wash with water to remove coexisting anions such as chlorine ions from the gel.

【0051】ついで、酸化剤により酸化チタンをペルオ
キソ化することになるが、その前に冷却するのが好まし
い。その際の冷却は水酸化チタンが1〜5℃になるよう
に行うのがよい。ペルオキソ化する際の酸化剤として
は、過酸化水素が望ましく、その濃度は特に制限される
ことはないが、30〜40%のものがよい。なお、酸化
剤については、過酸化水素に制限されるものではなく、
前述したとおりペルオキソ化物、すなわち過酸化チタン
が形成できるものであれば各種のものが使用できる。
Next, the titanium oxide will be peroxo-oxidized by the oxidizing agent, but it is preferable to cool it before that. Cooling at that time is preferably performed so that titanium hydroxide has a temperature of 1 to 5 ° C. Hydrogen peroxide is preferably used as an oxidizing agent for peroxidation, and the concentration thereof is not particularly limited, but is preferably 30 to 40%. The oxidizing agent is not limited to hydrogen peroxide,
As described above, various compounds can be used as long as they can form a peroxo compound, that is, a titanium peroxide.

【0052】前記のように酸化チタンと過酸化水素とを
混合することによりペルオキソ化反応が次第に進行し、
アモルファス型過酸化チタンの分散液が形成される。得
られた分散液は通常黄色であるが、使用した導電性向上
物質によっては、その影響を受け、緑あるいは青等のも
のとなる。なお、透明性の優れた分散液を得るには、超
微小粒子の粒径は、ほぼ2nm〜20nmがよく、10
nm以下の場合には透明度の高いものとなり望ましい。
By mixing titanium oxide and hydrogen peroxide as described above, the peroxonation reaction gradually progresses,
A dispersion of amorphous titanium peroxide is formed. The resulting dispersion is usually yellow, but depending on the conductivity-enhancing substance used, it is affected by the substance and becomes green or blue. In addition, in order to obtain a dispersion having excellent transparency, the particle size of the ultrafine particles is preferably about 2 nm to 20 nm.
When the thickness is less than or equal to nm, the transparency becomes high, which is desirable.

【0053】このアモルファス型過酸化チタン含有分散
液により形成される被膜は疎水性であり、その結果、親
水性基体のみでなく疎水性基体にも強固着力の被膜を形
成することができる。また、その被膜には触媒性能がな
く、そのため基体は光による酸化劣化を回避できる。し
たがって、この分散液は、本発明の被膜形成用水液によ
りプラスチックに被膜形成する際のプライマーとして利
用するのが好ましい。
The coating formed by this amorphous titanium peroxide-containing dispersion is hydrophobic, and as a result, a coating having a strong adhesion force can be formed not only on the hydrophilic substrate but also on the hydrophobic substrate. Also, the coating has no catalytic performance, so that the substrate can avoid oxidative degradation due to light. Therefore, this dispersion is preferably used as a primer when forming a film on a plastic with the water solution for forming a film of the present invention.

【0054】なお、この分散液を使用して造膜した場合
においても前述したとおり造膜後加熱処理することによ
り過酸化チタンはアモルファス型からアナターゼ型に転
移させることができ、その分散液中に導電性向上物質が
共存した場合には、被膜は表面抵抗値が1011Ω/□未
満で光触媒性能と導電性能とを有するものとすることが
でき本発明の被膜形成用水液ということになる。
Even when a film is formed using this dispersion, titanium peroxide can be transferred from the amorphous type to the anatase type by heat treatment after film formation as described above. When the electroconductivity-improving substance coexists, the coating film can have a surface resistance value of less than 10 11 Ω / □ and have photocatalytic performance and conductive performance, which is the coating liquid of the present invention.

【0055】前述のようにして生成された分散液中のア
モルファス型過酸化チタンのアナターゼ型への転移は、
その分散液を加熱することにより行うことができる。そ
の際の加熱温度は80〜200℃でよく、好ましくは9
0〜120℃がよい。また、その加熱は、電気あるいは
燃焼熱によるだけでも可能ではあるが、これらに電磁波
による加熱を併用し、可能な限り加熱時間を短縮するの
がよい。
The conversion of amorphous titanium peroxide in the dispersion liquid produced as described above to the anatase type is
This can be done by heating the dispersion. The heating temperature at that time may be 80 to 200 ° C., preferably 9
0-120 degreeC is good. Further, the heating can be performed only by electricity or combustion heat, but it is preferable to use heating by electromagnetic waves in combination with these to shorten the heating time as much as possible.

【0056】前記併用加熱を採用した場合にはアモルフ
ァス型からアナターゼ型への転移が短縮できると共に超
微小粒子の粒径の成長や凝集を抑制することができ、か
つペリオキソ基の減少及びH2Oとの反発力(ゼーター
電位)を弱めることもない透明分散液ができる。このよ
うにして得られるアナターゼ型過酸化チタンの超微小粒
子の粒径は2〜20nmがよく、望ましくは10nm以
下がよい。
When the combined heating is adopted, the transition from the amorphous type to the anatase type can be shortened, the growth and aggregation of the particle size of the ultrafine particles can be suppressed, and the peroxo group can be reduced and H 2 can be reduced. A transparent dispersion liquid that does not weaken the repulsive force (Zeta potential) with O is obtained. The particle size of the ultrafine particles of the anatase-type titanium peroxide thus obtained is preferably 2 to 20 nm, and more preferably 10 nm or less.

【0057】本発明の被膜形成用水液の製造方法におけ
る導電性向上物質の添加時期については、前述のとおり
四塩化チタン等の4価チタンの塩溶液と塩基性溶液との
反応前又は反応時が好ましく、これにより透明度、導電
性、固着性等の各種特性に関し優れたものが得られるこ
とも前述のとおりである。
Regarding the timing of addition of the conductivity improving substance in the method for producing a water solution for forming a coating film of the present invention, as described above, it may be before or during the reaction between the salt solution of tetravalent titanium such as titanium tetrachloride and the basic solution. As described above, it is preferable that excellent properties can be obtained with respect to various properties such as transparency, conductivity, and stickiness.

【0058】しかしながら、前記添加時期については、
前記以外の時期を採用しても被膜形成用水液は製造でき
るのであり、その時期としては水洗前の固液分離後の沈
殿物ゲル生成時、ペルオキソ化反応後に行う限外濾過後
の濃度調整被膜形成液製造時あるいはアナターゼ型転移
後に行う限外濾過後の濃度調整被膜形成液製造時等があ
る。
However, regarding the addition timing,
A water solution for forming a film can be produced by adopting a time other than the above, and as the time, a concentration adjusting film after ultrafiltration performed after precipitation gel formation after solid-liquid separation before washing with water and after peroxidation reaction is performed. For example, it may be the time of manufacturing the forming solution or the time of manufacturing the concentration-adjusting film forming solution after ultrafiltration performed after the anatase-type transition.

【0059】本発明の被膜形成用水液の使用対象物とし
ては、光触媒性能と、高導電性能の両性能の発現を必要
とするものが好適なものである。それらの性能に関し、
より具体的に言及すれば、光触媒性能に基づく性能に
は、抗菌性能、防汚性能、ガス分解性能、防曇性能等が
あり、高導電性能に基づく性能には、帯電防止能、防錆
性、電磁シールド性等がある。
As the object of use of the water solution for forming a coating film of the present invention, those which are required to exhibit both photocatalytic performance and high conductive performance are preferable. Regarding their performance,
More specifically, performance based on photocatalytic performance includes antibacterial performance, antifouling performance, gas decomposition performance, antifogging performance, etc., and performance based on high conductivity performance includes antistatic performance and rust resistance. It has electromagnetic shielding properties.

【0060】したがって、使用対象物は、光触媒性能
と、高導電性能の両性能に基づく、前述した具体的性能
を発現することを必要とする各種材料あるいは構造物が
好適なものである。それら材料としては、板ガラス、セ
ラミック、ステンレス,アルミ等の金属板、アクリル,ポ
リカーボネート,PET等のプラスチック板、綿布ある
いは繊維等が例示できる。
Therefore, the object to be used is preferably various materials or structures which are required to exhibit the above-mentioned specific performance based on both the photocatalytic performance and the high conductive performance. Examples of these materials include plate glass, ceramics, metal plates such as stainless steel and aluminum, plastic plates such as acrylic, polycarbonate and PET, cotton cloth and fibers.

【0061】また、構造物としては、建築物,自動車等
の窓ガラス、自動車等の車両外装材、タンク、観賞用等
の各種水槽、金属,プラスチック等のパイプ、衛生陶
器、眼鏡、レンズ、レンズフィルター、貯湯器、浴槽機
器、洗面機器、流し台、ドア取手、水道用水栓、道路用
ミラー、基板等の半導体材料、複写機内部部品等の各種
ものが例示できる。
As the structure, a building, a window glass of an automobile, a vehicle exterior material of an automobile, a tank, various aquariums for ornamental use, pipes of metal, plastic, etc., sanitary ware, glasses, lenses, lenses Examples thereof include a filter, a hot water storage device, a bathtub device, a washbasin device, a sink, a door handle, a water faucet, a road mirror, a semiconductor material such as a substrate, and various parts such as internal parts of a copying machine.

【0062】本発明の被膜形成用水液により形成された
被膜は、前述したとおり導電性に優れており、その結果
光触媒能が発揮しがたい金属、プラスチック等のパイプ
内面に被膜を形成した場合においても、軟質もしくは硬
質スケール、スライム又は鉄錆等の汚染物がパイプ内面
に形成もしくは付着しにくく、防汚性能に優れている。
特に水道管に使用した場合には、スケール、スライム又
は錆びが発生し難く好適である。
As described above, the film formed from the water solution for forming a film of the present invention is excellent in conductivity, and as a result, when a film is formed on the inner surface of a pipe such as metal or plastic which is hard to exhibit photocatalytic activity. Also, contaminants such as soft or hard scale, slime or iron rust hardly form or adhere to the inner surface of the pipe, and have excellent antifouling performance.
In particular, when it is used for a water pipe, scale, slime or rust hardly occurs, which is preferable.

【0063】なお、本発明のアナターゼ型過酸化チタン
含有の被膜形成用水液の製造過程で生成するアモルファ
ス型過酸化チタン分散液は、各種の構造物に固着性に優
れた被膜を造膜できるが、造膜しただけでは前述のとお
り光触媒能がない。その結果構造物基体がプラスチック
の場合においても、太陽光による分解の危惧もなく、プ
ラスチックに前記本発明の被膜形成用水液により被膜を
形成する場合には、前記分散液による被膜を下地膜(プ
ライマー)として形成するのが好ましい。
Although the amorphous titanium peroxide dispersion produced in the process of producing the anatase-type titanium peroxide-containing water solution for forming a film of the present invention can form a film excellent in adhesion to various structures. However, as described above, there is no photocatalytic ability just by forming a film. As a result, even when the structure substrate is plastic, there is no danger of decomposition by sunlight, and when a film is formed on the plastic by the water solution for forming a film of the present invention, the film formed by the dispersion liquid is used as a base film (primer film). ) Is preferable.

【0064】また、本発明の前記被膜形成用水液及び前
記分散液により形成された被膜は、耐久性、結合性に優
れ、かつ透明性も優れているので、窓ガラス、又はアク
リル,ポリカーボネート,PET等の透明プラスチック板
もしくは容器の場合には、視覚性能に優れていると共に
防汚性能及び防曇性能も優れており好ましい。
Further, since the coating film formed by the coating liquid and the dispersion liquid of the present invention is excellent in durability, binding property and transparency, it can be used for window glass or acrylic, polycarbonate, PET. In the case of a transparent plastic plate or container such as the above, it is preferable because it has excellent visual performance as well as antifouling performance and antifogging performance.

【0065】[0065]

【実施例】以下において、本発明の被膜形成用水液を製
造する実施例及び比較対照水液を製造する比較例を記載
する。また、合わせてそれら実施例及び比較例を用いて
形成した評価用試料を使用して導電性評価試験及び光触
媒性能評価試験を行い、それらの評価試験手順及び結果
に関し記載するが、本発明はこれらの例及び評価試験に
よって何等限定されるものではなく、特許請求の範囲の
記載によって特定されるものであることはいうまでもな
い。
EXAMPLES Examples for producing the water solution for forming a film of the present invention and comparative examples for producing a comparative control aqueous solution will be described below. In addition, a conductivity evaluation test and a photocatalytic performance evaluation test are performed using the evaluation samples formed by using the examples and the comparative examples in combination, and the evaluation test procedures and results thereof will be described, but the present invention is not limited to these. It is needless to say that the present invention is not limited by the examples and the evaluation test, and is specified by the description of the claims.

【0066】[実施例1]純水500mlに純度99.9
9%InCl3・xH2O(添川理化学(株)製)0.77
2gを完全に溶かした溶液に、更に50%四塩化チタン
溶液(住友シチックス(株)製)10gを添加し純水を加
え1000mlにした溶液を準備する。これに25%ア
ンモニア水(高杉製薬(株)製)を10倍希釈したアンモ
ニア水を滴下してpH7.0に調整して水酸化インジウ
ムと水酸化チタンとの混合物を沈殿させた。
[Example 1] Purity of 99.9 in 500 ml of pure water
9% InCl 3 · xH 2 O (manufactured by Soegawa Rikagaku Co., Ltd.) 0.77
To a solution in which 2 g was completely dissolved, 10 g of 50% titanium tetrachloride solution (Sumitomo Sitix Co., Ltd.) was further added, and pure water was added to 1000 ml to prepare a solution. 25% ammonia water (manufactured by Takasugi Pharmaceutical Co., Ltd.) was diluted 10 times, and the pH was adjusted to 7.0 by adding ammonia water to precipitate a mixture of indium hydroxide and titanium hydroxide.

【0067】この沈殿物を純水で上澄み液中の導電率が
0.8mS/m以下になるまで洗浄を継続し、導電率が
0.724mS/mになったところで洗浄を終了する
と、0.64wt%濃度の水酸化物の含有液が308g
作製された。次いで、この含有液を1〜5℃に冷却しな
がら35%過酸化水素(タイキ薬品工業(株)製)を56
g添加し16時間攪拌すると黄褐色の透明なインジウム
がドープされた0.73wt%濃度のアモルファス型過
酸化チタンの分散液360gが得られた。
Washing the precipitate with pure water until the conductivity in the supernatant liquid was 0.8 mS / m or less, and when the conductivity was 0.724 mS / m, the washing was completed. 308g of liquid containing 64wt% hydroxide
Was made. Then, while cooling the contained liquid to 1 to 5 ° C, 56% of 35% hydrogen peroxide (Taiki Yakuhin Kogyo Co., Ltd.) was added.
When g was added and stirred for 16 hours, 360 g of a dispersion liquid of yellow-brown transparent indium-doped amorphous titanium peroxide having a concentration of 0.73 wt% was obtained.

【0068】この得られたアモルファス型過酸化チタン
分散液を100g秤量し100℃で5時間加熱すると淡
黄色のインジウムがドープされたアナターゼ型過酸化チ
タンゾルが1.1wt%濃度の分散液66gが得られ
た。これを純水で希釈して、アナターゼ型過酸化チタン
を濃度0.85wt%(Ti換算、チタン濃度に関して
特に断りがない限り、本明細書ではいずれもチタン換算
である)で含有する被膜形成用の水液88gを調製し
た。
100 g of the obtained amorphous titanium peroxide dispersion was weighed and heated at 100 ° C. for 5 hours to obtain 66 g of a 1.1 wt% concentration of the pale yellow indium-doped anatase titanium peroxide sol. Was given. This is diluted with pure water to form a film containing anatase type titanium peroxide at a concentration of 0.85 wt% (Ti equivalent, unless otherwise specified, titanium equivalent is used in the present specification) 88 g of the water solution was prepared.

【0069】[実施例2]純水500gに30wt%シリ
カゾル2.5gと50wt%四塩化チタン溶液(住友シ
チックス(株)製)10gを添加し純水を加え1000g
にした溶液を準備する。これに25%アンモニア水(高
杉製薬(株)製)を10倍希釈したアンモニア水を滴下し
てpH6.9に調整してシリカと水酸化チタンとの混合
物を沈殿させた。この沈殿物を純水で上澄み液中の導電
率が0.8mS/m以下になるまで洗浄を継続し、導電
率が0.688mS/mになったところで洗浄を終了す
ると、0.96wt%濃度の水酸化物の含有液が350
g作製された。
[Example 2] To 500 g of pure water, 2.5 g of 30 wt% silica sol and 10 g of 50 wt% titanium tetrachloride solution (manufactured by Sumitomo Sitix Corporation) were added, and pure water was added to 1000 g.
Prepare the solution. Ammonia water obtained by diluting 25% ammonia water (manufactured by Takasugi Pharmaceutical Co., Ltd.) 10 times was added dropwise to the mixture to adjust the pH to 6.9 to precipitate a mixture of silica and titanium hydroxide. This precipitate was continuously washed with pure water until the conductivity in the supernatant became 0.8 mS / m or less, and when the conductivity was 0.688 mS / m, the washing was completed. The solution containing hydroxide of 350
g produced.

【0070】次いで、この含有液を1〜5℃に冷却しな
がら35%過酸化水素(タイキ薬品工業(株)製)を25
g添加し16時間攪拌するとシリカがドープされたアモ
ルファス型過酸化チタンの1.05wt%濃度の分散液
370gが得られた。この得られたアモルファス型過酸
化チタン分散液を100g秤量し100℃で5時間加熱
するとシリカがドープされたアナターゼ型過酸化チタン
ゾルが1.72wt%濃度で60g得られた。
Next, while cooling the contained liquid to 1 to 5 ° C., 25% hydrogen peroxide (Taiki Yakuhin Kogyo Co., Ltd.) was added to 25%.
After adding g and stirring for 16 hours, 370 g of a dispersion of silica-doped amorphous titanium peroxide having a concentration of 1.05 wt% was obtained. 100 g of the obtained amorphous titanium peroxide dispersion was weighed and heated at 100 ° C. for 5 hours to obtain 60 g of silica-doped anatase titanium peroxide sol at a concentration of 1.72 wt%.

【0071】その後、これを純水で希釈してアナターゼ
型過酸化チタン0.85wt%濃度の分散液120gに
調製した。このアナターゼ型過酸化チタン0.85wt
%濃度の分散液60gに対し、硝酸銀を濃度0.005
mol/lになるように0.050g添加し、シリカ及
び銀がドープされた被膜形成用のアナターゼ型過酸化チ
タン分散液を調製した。
Then, this was diluted with pure water to prepare 120 g of a dispersion liquid having an anatase type titanium peroxide concentration of 0.85 wt%. This anatase type titanium peroxide 0.85wt
The concentration of silver nitrate is 0.005 with respect to 60 g of the dispersion having a concentration of 0.5%.
0.050 g was added so as to be mol / l to prepare an anatase type titanium peroxide dispersion liquid for forming a film, which was doped with silica and silver.

【0072】[実施例3]純水500gに50wt%四塩
化チタン溶液(住友シチックス(株)製)10gを添加し
純水を加え1000gにした溶液を準備する。これに2
5%アンモニア水(高杉製薬(株)製)を10倍に希釈し
て調製した希釈アンモニア水を滴下してpH6.9に調
整して水酸化チタンを沈殿させた。この沈殿物を純水で
上澄み液の導電率が0.8mS/m以下になるまで洗浄
を継続し、導電率が0.738mS/mになったところ
で洗浄を終了すると0.73wt%濃度の水酸化物の含
有液が430g作製された。
[Example 3] 10 g of 50 wt% titanium tetrachloride solution (manufactured by Sumitomo Sitix Co., Ltd.) was added to 500 g of pure water, and pure water was added to 1000 g to prepare a solution. 2 to this
Diluted ammonia water prepared by diluting 5% ammonia water (manufactured by Takasugi Pharmaceutical Co., Ltd.) 10 times was added dropwise to adjust the pH to 6.9 to precipitate titanium hydroxide. This precipitate is continuously washed with pure water until the conductivity of the supernatant liquid becomes 0.8 mS / m or less, and when the conductivity is 0.738 mS / m, the washing is terminated and water having a concentration of 0.73 wt% is added. 430 g of an oxide-containing liquid was prepared.

【0073】次いで、この含有液を1〜5℃に冷却しな
がら35%過酸化水素(タイキ薬品工業(株)製)を25
g添加し16時間攪拌すると淡黄褐色の0.86wt%
濃度のアモルファス型過酸化チタン分散液450gが得
られた。この過酸化チタン分散液を100g秤量し10
0℃で5時間加熱すると淡黄色のアナターゼ型過酸化チ
タン分散液が1.52wt%濃度で55g得られた。
Next, while cooling this contained liquid to 1 to 5 ° C., 25% hydrogen peroxide (Taiki Yakuhin Kogyo Co., Ltd.) was added to 25%.
Add g and stir for 16 hours to give 0.86 wt% of light yellowish brown
450 g of an amorphous titanium peroxide dispersion having a concentration was obtained. 100 g of this titanium peroxide dispersion was weighed and
When heated at 0 ° C. for 5 hours, 55 g of a pale yellow anatase type titanium peroxide dispersion was obtained at a concentration of 1.52 wt%.

【0074】これを純水で希釈してアナターゼ型過酸化
チタン0.85wt%濃度の分散液98gに調製した。
この分散液にTi含有量に対し導電性高分子ポリアニリ
ン4wt%含有分散液(独オルメコン社製D1500
W)を、チタン:ポリアニリン=1:4(重量比)とな
るように混合し、ポリアニリンがドープされたアナター
ゼ型過酸化チタン分散液を調製した。
This was diluted with pure water to prepare 98 g of a dispersion liquid having a concentration of 0.85 wt% of anatase type titanium peroxide.
This dispersion contains 4 wt% of conductive polymer polyaniline with respect to the Ti content (D1500 manufactured by Olmecon, Germany).
W) was mixed such that titanium: polyaniline = 1: 4 (weight ratio) to prepare an anatase-type titanium peroxide dispersion liquid doped with polyaniline.

【0075】[比較例1]純水500gに50wt%四塩
化チタン溶液(住友シチックス(株)製)10gを添加し
純水を加え1000gにした溶液を準備する。これに2
5%アンモニア水(高杉製薬(株)製)を10倍希釈した
アンモニア水を滴下してpH6.9に調整し水酸化チタ
ンを沈殿させた。
Comparative Example 1 10 g of a 50 wt% titanium tetrachloride solution (manufactured by Sumitomo Sitix Co., Ltd.) was added to 500 g of pure water, and pure water was added to 1000 g to prepare a solution. 2 to this
Ammonia water diluted 10 times with 5% ammonia water (manufactured by Takasugi Pharmaceutical Co., Ltd.) was added dropwise to adjust the pH to 6.9 to precipitate titanium hydroxide.

【0076】この沈殿物を純水で上澄み液中の導電率が
0.8mS/m以下になるまで洗浄を継続し、導電率が
0.738mS/mになったところで洗浄を終了する
と、0.73wt%濃度の水酸化物の含有液が430g
作製された。次いで、この含有液を1〜5℃に冷却しな
がら35%過酸化水素(タイキ薬品工業(株)製)を25
g添加し16時間攪拌すると淡黄褐色0.86wt%濃
度のアモルファス型過酸化チタンの分散液450gが得
られた。
The precipitate was washed with pure water until the conductivity in the supernatant became 0.8 mS / m or less, and when the conductivity was 0.738 mS / m, the washing was completed. 430 g of the liquid containing 73 wt% hydroxide
Was made. Next, while cooling the contained liquid to 1 to 5 ° C, 25% hydrogen peroxide (Taiki Yakuhin Kogyo Co., Ltd.)
After adding g and stirring for 16 hours, 450 g of a dispersion liquid of amorphous titanium peroxide having a light yellowish brown color of 0.86 wt% concentration was obtained.

【0077】[比較例2]比較例1で得られたアモルファ
ス型過酸化チタン分散液を100g秤量し100℃で5
時間加熱すると淡黄色のアナターゼ型過酸化チタン分散
液が1.52wt%濃度で55g得られた。これを純水
で希釈して、濃度0.85wt%の被膜形成用のアナタ
ーゼ型過酸化チタン分散液98gを調製した。
[Comparative Example 2] 100 g of the amorphous titanium peroxide dispersion obtained in Comparative Example 1 was weighed and heated at 100 ° C. for 5 hours.
When heated for 55 hours, 55 g of a pale yellow anatase type titanium peroxide dispersion was obtained at a concentration of 1.52 wt%. This was diluted with pure water to prepare 98 g of anatase-type titanium peroxide dispersion liquid for forming a film having a concentration of 0.85 wt%.

【0078】[比較例3]比較例2で得られたアナターゼ
型過酸化チタン0.85wt%濃度の分散液1Lに導電
性界面活性剤(プロファン128EX):三洋化成工
業)を0.15mol添加して被膜形成用のアナターゼ
型過酸化チタン分散液を調製した。
Comparative Example 3 0.15 mol of a conductive surfactant (Prophan 128EX): Sanyo Kasei Co., Ltd. was added to 1 L of the anatase type titanium peroxide 0.85 wt% concentration dispersion liquid obtained in Comparative Example 2. Then, an anatase type titanium peroxide dispersion liquid for forming a film was prepared.

【0079】[比較例4]比較例2で得られたアナターゼ
型過酸化チタン分散液と、シリカゾル(日産化学(株)
製)とを、重量比で1:1で混合し、被膜形成用のシリ
カ混合アナターゼ型過酸化チタン分散液を調製した。
Comparative Example 4 Anatase-type titanium peroxide dispersion obtained in Comparative Example 2 and silica sol (Nissan Chemical Co., Ltd.)
Was mixed with each other in a weight ratio of 1: 1 to prepare a silica-mixed anatase-type titanium peroxide dispersion for forming a film.

【0080】[被膜形成用水液により形成される被膜の
性能評価試験概要]前記実施例及び比較例の被膜形成用
水液を用いて、性能評価用試料を作成し、各試料につい
て、導電性能及び光触媒性能を評価した。導電性能の評
価は形成された被膜の表面抵抗値を測定することにより
行った。その測定は光触媒性能が発現している条件下
と、していない条件下とで実施した。
[Outline of Performance Evaluation Test of Film Formed by Water for Forming Film] Using the water liquid for film formation of the above-mentioned Examples and Comparative Examples, samples for performance evaluation were prepared. The performance was evaluated. The conductive performance was evaluated by measuring the surface resistance value of the formed film. The measurement was carried out under the condition that the photocatalytic performance was exhibited and under the condition that the photocatalytic performance was not exhibited.

【0081】[評価用試料の作製]試料4及び5を除い
て、評価用試料は以下のとおり作製した。すなわち、1
00×100mm、厚さ4mmのフロート法透明板ガラ
スに、前記実施例あるいは比較例の被膜形成用水液を塗
布して造膜した後、100℃で10分乾燥し被膜を形成
して評価用試料を作製した。その作製に使用した被膜形
成用水液及び形成した被膜の厚さ等は表1に示すとおり
である。
[Preparation of Evaluation Sample] Except for Samples 4 and 5, evaluation samples were prepared as follows. Ie 1
A float transparent glass plate having a thickness of 00 × 100 mm and a thickness of 4 mm was coated with the water solution for forming a coating film of the above-mentioned Example or Comparative Example to form a film, and then dried at 100 ° C. for 10 minutes to form a film, and an evaluation sample was prepared. It was made. Table 1 shows the water solution for film formation used in the preparation, the thickness of the formed film, and the like.

【0082】[0082]

【表1】 [Table 1]

【0083】前記除外された試料のうち試料4は、被膜
形成用基板は板ガラスではなく、光触媒反応により分解
される恐れのあるポリカーボネート板(50×90m
m)を使用し、2層積層構造の被膜を形成した。その具
体的調製方法は以下のとおりである。前記ポリカーボネ
ート板に、まず比較例1で得たアモルファス型過酸化チ
タン分散液を希釈して0.4wt%濃度のアモルファス
型過酸化チタンの分散液を調製し、これを0.15g/
100cm2(wet)塗布し、0.07μmになるように
造膜した。
In the sample 4 out of the excluded samples, the film-forming substrate is not a plate glass but a polycarbonate plate (50 × 90 m) which may be decomposed by a photocatalytic reaction.
m) was used to form a film having a two-layer laminated structure. The specific preparation method is as follows. First, the amorphous titanium peroxide dispersion obtained in Comparative Example 1 was diluted into the polycarbonate plate to prepare a dispersion of amorphous titanium peroxide having a concentration of 0.4 wt%.
100 cm 2 (wet) was applied, and a film was formed to a thickness of 0.07 μm.

【0084】次いで、実施例2で得たシリカ及び銀をド
ープしたアナターゼ型過酸化チタン分散液を希釈してア
ナターゼ型過酸化チタン0.40wt%濃度のシリカ及
び銀がドープされたアナターゼ型過酸化チタン分散液を
調製した。この分散液を0.25g/100cm2(wet)
塗布し、乾燥時0.15μmになるように造膜し、10
0℃で10分乾燥した。
Next, the anatase-type titanium peroxide dispersion liquid doped with silica and silver obtained in Example 2 was diluted to give anatase-type titanium peroxide with an anatase-type titanium peroxide concentration of 0.40 wt%. A titanium dispersion was prepared. 0.25 g / 100 cm 2 (wet) of this dispersion liquid
After coating, a film is formed to have a thickness of 0.15 μm when dried, and 10
It was dried at 0 ° C. for 10 minutes.

【0085】また、試料5は、前記試料4以外の場合と
同様に、被膜形成用基板としてフロート法透明板ガラス
を用い、これに実施例1の中途段階で生成されるインジ
ウムがドープされた0.96wt%濃度のアモルファス
型過酸化チタンの分散液を0.6g/100cm2(we
t)で塗布し常温乾燥した(乾燥後膜厚0.3μm)。
乾燥後電気炉において200℃で、15分間加熱処理し
アナターゼ型に転移させ、インジウムがドープされたア
ナターゼ型被膜を形成し評価用試料5とした。
In the same manner as in the case of the sample 4 other than the sample 4, the sample 5 uses the float method transparent plate glass as the film forming substrate, and the indium doped in the intermediate step of Example 1 is added to the sample. A dispersion liquid of amorphous titanium peroxide having a concentration of 96 wt% was added to 0.6 g / 100 cm 2 (we
and then dried at room temperature (film thickness after drying was 0.3 μm).
After drying, it was heat-treated in an electric furnace at 200 ° C. for 15 minutes to be transferred to an anatase type film to form an anatase type coating film doped with indium, which was used as an evaluation sample 5.

【0086】[導電性評価試験]導電性能評価試験を以下
のとおり実施した。すなわち、各試料について、以下の
2種の態様で表面抵抗値を測定した。 (1)前記で作製した試料をあらためて80℃、15分間
加熱乾燥して、表面湿分を除去した直後 (2)乾燥後直ちにブラックライト(照射波長UV360
nm)15Wを20mm離間した位置において照射継続
[Conductivity Evaluation Test] Conductivity performance evaluation test was carried out as follows. That is, the surface resistance value of each sample was measured in the following two modes. (1) The sample prepared above was again heat-dried at 80 ° C. for 15 minutes to remove surface moisture (2) Immediately after drying, a black light (irradiation wavelength UV360
Irradiation is continued at a position of 20 mm apart from 15 W.

【0087】そして、前記測定においてブラックライト
照射継続中に表面抵抗値を測定しているが、その理由
は、光触媒性能発現状態、すなわち光励起時における導
電性を測るためである。また、測定には、ロレスターG
P及びロレスターUPを使用した。その際前記のように
2種の測定器を使用するのは、1種の測定器では全範囲
をカバーできないからであり、ロレスターGPは表面抵
抗値が10-3〜107の範囲、ロレスターUPは104
1013の範囲で使用する。
In the above measurement, the surface resistance value is measured while the black light irradiation is being continued, because the reason is to measure the photocatalytic performance manifestation state, that is, the conductivity at the time of photoexcitation. Also, for the measurement, Lorester G
P and Lorester UP were used. At this time, two types of measuring instruments are used as described above because one type of measuring instrument cannot cover the entire range, and LORESTER GP has a surface resistance value in the range of 10 −3 to 10 7 and LORESTER UP. Is 10 4 ~
It is used in the range of 10 13 .

【0088】[触媒性能評価試験]触媒性能評価試験は、
各試料について、その表面に有機化合物を色素とする染
料(パイロット社製赤インク(市販品))を純水で20
倍に希釈し、それをスプレーにて0.5g/100cm
2で散布し、試料表面を着色した。その後乾燥し、気温
16℃、湿度60%において直射日光に曝露し消色する
までの時間を測定し、それにより有機結合に対する光触
媒の酸化還元力を評価した。
[Catalyst Performance Evaluation Test] The catalyst performance evaluation test is
For each sample, a dye having an organic compound as a pigment (red ink manufactured by Pilot Co., Ltd. (commercial product)) was applied to the surface of the sample with pure water.
Dilute twice and spray it with 0.5g / 100cm
The sample surface was colored by spraying with 2 . After that, it was dried and exposed to direct sunlight at a temperature of 16 ° C. and a humidity of 60%, and the time until decoloring was measured to evaluate the redox power of the photocatalyst with respect to an organic bond.

【0089】[導電性能評価試験結果]導電性能評価試験
結果は、表2に示すとおりであり、それによれば、本発
明の被膜形成用水液で形成された被膜を備える試料1〜
5は、湿分除去直後も、またブラックライト照射中、す
なわち光触媒能発現中も、表面抵抗値が1011Ω/□未
満である。また、本発明で形成される被膜は、触媒能発
現中と、非発現中の表面抵抗値の差が、比較例により形
成される被膜と比べて少ないこともわかる。さらに、シ
リカと銀がドープされたアナターゼ型過酸化チタン分散
液により形成された試料2の被膜は、導電性が特に優れ
ていることがわかる。
[Results of Conductive Performance Evaluation Test] The results of the conductive performance evaluation test are shown in Table 2. According to the results, Samples 1 to 1 having a coating film formed from the coating liquid according to the present invention were used.
No. 5 has a surface resistance value of less than 10 11 Ω / □ immediately after removing moisture and during black light irradiation, that is, while developing photocatalytic activity. It is also found that the coating film formed by the present invention has a smaller difference in surface resistance value between when the catalytic ability is being expressed and when the catalytic ability is not being expressed, as compared with the coating film formed by the comparative example. Further, it can be seen that the coating of Sample 2 formed from the anatase type titanium peroxide dispersion liquid doped with silica and silver has particularly excellent conductivity.

【0090】[0090]

【表2】 [Table 2]

【0091】そして、試料4は、プラスチックであるポ
リカーボネート板に、光触媒性能のないアモルファス型
過酸化チタン被膜を形成し、次いで光触媒性能のあるア
ナターゼ型過酸化チタン被膜を形成したものであるが、
この場合にも表面のアナターゼ型過酸化チタン被膜が、
本発明で規定する導電性を有することがわかる。なお、
このような積層構造を採用することによって、基板であ
るプラスッチク板の光触媒による分解を抑制できる。ま
た、試料5は、造膜後アモルファス型過酸化チタン被膜
を加熱処理してアナターゼ型に転移させたものである
が、その場合にも本発明で規定する導電性を有すること
がわかる。
Sample 4 was obtained by forming an amorphous titanium peroxide film having no photocatalytic performance on a polycarbonate plate which is a plastic, and then forming an anatase type titanium peroxide film having photocatalytic performance.
Also in this case, the anatase type titanium peroxide coating on the surface is
It can be seen that it has the conductivity specified in the present invention. In addition,
By adopting such a laminated structure, it is possible to suppress decomposition of the plastic plate which is the substrate by the photocatalyst. Further, Sample 5 is an amorphous titanium peroxide coating film formed by heat treatment after film formation and converted to anatase type, and it can be seen that even in that case, it has the conductivity specified in the present invention.

【0092】[光触媒性能評価試験結果]光触媒性能評価
試験結果は、表3に示すとおりであり、それによれば、
アモルファス型過酸化チタンの被膜を形成した試料6を
除いて、いずれの試料もアナターゼ型過酸化チタンの被
膜が露出形成されており光触媒性能を有することがわか
る。特にシリカと銀がドープされたアナターゼ型過酸化
チタン分散液により形成された被膜は、光触媒性能も一
番優れている。この被膜は表2及び3より光触媒性能と
導電性の両性能において優れていることがわかる。
[Results of Photocatalyst Performance Evaluation Test] The results of the photocatalyst performance evaluation test are shown in Table 3. According to the results,
It can be seen that, except for Sample 6 in which the amorphous titanium peroxide coating film was formed, the anatase-type titanium peroxide coating film was exposed and formed in all the samples, and thus each sample has photocatalytic performance. In particular, the coating film formed from the anatase type titanium peroxide dispersion liquid doped with silica and silver has the best photocatalytic performance. It can be seen from Tables 2 and 3 that this coating is excellent in both photocatalytic performance and conductivity.

【0093】[0093]

【表3】 [Table 3]

【0094】なお、試料5は、アモルファス型過酸化チ
タン被膜を造膜した後、アナターゼ型に転移させたもの
であるが、その場合にも光触媒能を発現することがわか
る。また、試料4は、前述のとおりプラスッチク板の光
触媒による分解を懸念し、まず光触媒能のないアモルフ
ァス型過酸化チタン被膜を形成し、次いで光触媒性能の
あるアナターゼ型過酸化チタン被膜を形成したものであ
るが、単独で被膜を形成した場合の試料2の被膜に比
し、4倍近い消色時間を有しており、光触媒能が相当低
下しているようにみえる。
Sample 5 was prepared by forming an amorphous titanium peroxide coating film and then transferring it to the anatase type. It can be seen that the photocatalytic activity is also exhibited in that case. Further, Sample 4 is a sample in which an amorphous titanium peroxide coating having no photocatalytic ability was formed first, and then an anatase titanium peroxide coating having photocatalytic performance was formed, because of concern about decomposition of the plastic plate by the photocatalyst as described above. However, as compared with the film of Sample 2 in the case where the film was formed by itself, it has a decoloring time nearly four times, and it seems that the photocatalytic activity is considerably reduced.

【0095】特に試料2の被膜は、実施例2のシリカと
銀がドープされたアナターゼ型過酸化チタン分散液によ
り形成された被膜であり、単独で被膜を形成した試料2
の場合には、一番光触媒能が優れているにもかかわら
ず、比較例1の水液を使用して形成したアモルファス型
過酸化チタン被膜の上に実施例2の被膜形成用水液を希
釈したアナターゼ型過酸化チタン分散液を使用して形成
した被膜を積層して形成した試料の4の場合には、実施
例2以外の被膜形成用水液を用いて形成した本発明に該
当する試料の場合は勿論のこと、比較例の被膜形成用水
液を用いて形成した光触媒能を有する試料の場合より
も、光触媒能が低いことがわかる。
In particular, the coating film of sample 2 is a coating film formed from the anatase type titanium peroxide dispersion liquid doped with silica and silver of example 2, and the coating film of sample 2 formed alone.
In the case of, even though the photocatalytic activity was the best, the water solution for forming a film of Example 2 was diluted on the amorphous titanium peroxide film formed using the water solution of Comparative Example 1. In the case of the sample 4 formed by laminating the coating film formed by using the anatase type titanium peroxide dispersion liquid, in the case of the sample corresponding to the present invention formed by using the coating liquid other than Example 2 It is needless to say that the photocatalytic activity is lower than that of the sample having the photocatalytic activity formed by using the water solution for film formation of the comparative example.

【0096】[0096]

【発明の効果】本発明の被膜形成用水液は、光触媒性能
を有すると同時に表面抵抗値が1011Ω/□未満の高導
電性の被膜を、板ガラス、タイル等のセラミック、金属
板、プラスチック板等の各種の基体表面に形成すること
ができる。そのため、この被膜により光触媒性能及び高
導電性を発現することができ、微生物等の有害物分解
能、抗菌性能、タイルあるいはガラス表面等の防汚性
能、防曇性能、複写機機内などの帯電防止性能、電磁シ
ールド性等の各種の優れた機能を発現させることができ
る。
EFFECTS OF THE INVENTION The water solution for forming a coating film of the present invention has a photocatalytic property and at the same time a highly conductive coating film having a surface resistance value of less than 10 11 Ω / □ is applied to a plate glass, a ceramic such as a tile, a metal plate or a plastic plate. Etc. can be formed on the surface of various substrates. Therefore, this coating can exhibit photocatalytic performance and high conductivity, and can decompose harmful substances such as microorganisms, antibacterial performance, antifouling performance of tiles or glass surfaces, antifogging performance, antistatic performance in copiers, etc. Various excellent functions such as electromagnetic shielding property can be exhibited.

【0097】その結果、高導電性と光触媒能との両機能
を求められる用途に好適に使用でき、そのような用途に
は、例えば窓ガラス、レンズ、センサー保護ガラスある
いはプラズマディスプレイマスクがある。また、形成さ
れた被膜は、光触媒能を有するだけでなく、透明で、親
水性であり、かつ安定性、固着性にも優れている。その
ため導電性、防汚性能及び防曇性能を有すると同時に透
明性に優れた被膜が安定かつ強結合で形成でき、その結
果窓ガラス等の視覚性能を求められる基体に使用する際
に好適である。
As a result, it can be suitably used for applications requiring both high conductivity and photocatalytic ability, and examples of such applications include window glass, lenses, sensor protection glass, and plasma display masks. Further, the formed coating film has not only a photocatalytic ability, but also is transparent and hydrophilic, and is excellent in stability and adhesion. Therefore, a film having conductivity, antifouling property and antifogging property, and at the same time excellent in transparency can be formed stably and with strong bonding, and as a result, it is suitable for use in a substrate requiring visual performance such as window glass. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の被膜形成用水液の製造方法の概要を示
す図。
FIG. 1 is a diagram showing an outline of a method for producing a water solution for forming a coating film of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 23/50 B01J 23/50 M 31/38 31/38 M 35/02 35/02 J B32B 7/02 104 B32B 7/02 104 C01G 23/04 C01G 23/04 C C09D 5/00 C09D 5/00 Z 5/24 5/24 7/12 7/12 (72)発明者 松井 義光 佐賀県藤津郡嬉野町大字岩屋川内甲425− 2 サスティナブル・テクノロジー株式会 社佐賀研究所内 Fターム(参考) 4F100 AA21B AB02B AB17B AB18B AB21B AK01B AT00A BA02 BA03 BA07 BA10A BA10B EJ65C GB90 JC00 JG01B JG04B JL06 JL08B YY00B 4G047 AA02 AA07 AB01 AC02 AC03 AD02 4G069 AA03 AA08 BA02B BA04B BA21B BA48A BC22B BC32B EA08 FB09 4H011 AA02 BA01 BB18 4J038 DC002 DJ012 HA186 HA201 HA246 HA256 HA326 HA366 MA08 NA02 NA05 NA20 PC02 PC03 PC08 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) B01J 23/50 B01J 23/50 M 31/38 31/38 M 35/02 35/02 J B32B 7/02 104 B32B 7/02 104 C01G 23/04 C01G 23/04 C C09D 5/00 C09D 5/00 Z 5/24 5/24 7/12 7/12 (72) Inventor Yoshimitsu Matsui Ureshino, Fujitsu-gun, Saga Iwaya Kawauchi 425-2 Sustainable Technology Co., Ltd. Saga Research Institute F-term (reference) 4F100 AA21B AB02B AB17B AB18B AB21B AK01B AT00A BA02 BA03 BA07 BA10A BA10B EJ65C GB90 JC00 JG01B JG04B A01A0A02A02A02A02A02A02A02A02A02A02A02A02A02A02A02A02A02A02A02A02A02A02A02A02A02A02A02A02A02A02A02A02 AA08 BA02B BA04B BA21B BA48A BC22B BC32B EA08 FB09 4H011 AA02 BA01 BB18 4J038 DC002 DJ012 HA186 HA201 HA246 HA256 HA326 HA366 MA08 NA02 NA05 NA20 PC02 PC03 PC08

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ペルオキソ基を有するアナターゼ型チタ
ン酸化物微細粒子と導電性向上物質微粒子とを含有し、
表面抵抗値が1011Ω/□未満の被膜を形成する光触媒
性能と導電性とを有する被膜形成用水液。
1. Containing anatase-type titanium oxide fine particles having a peroxo group and fine particles of a conductivity enhancing substance,
A water solution for forming a film, which has photocatalytic performance and conductivity for forming a film having a surface resistance value of less than 10 11 Ω / □.
【請求項2】 ペルオキソ基を有するアモルファス型チ
タン酸化物微細粒子と導電性向上物質微粒子とを含有
し、造膜後加熱処理して表面抵抗値が1011Ω/□未満
の被膜を形成する光触媒性能と導電性とを有する被膜形
成用水液。
2. A photocatalyst containing amorphous titanium oxide fine particles having a peroxo group and fine particles of a conductivity enhancing substance, which are subjected to heat treatment after film formation to form a film having a surface resistance value of less than 10 11 Ω / □. A water solution for forming a film having performance and conductivity.
【請求項3】 導電性向上物質が銅、錫、鉄、亜鉛、イ
ンジウムもしくは銀の塩、又は導電性高分子である請求
項1又は2に記載の被膜形成用水液。
3. The water solution for forming a film according to claim 1, wherein the conductivity improving substance is a salt of copper, tin, iron, zinc, indium or silver, or a conductive polymer.
【請求項4】 4価チタンの塩溶液と塩基性溶液とを反
応させて、チタンの水酸化物を形成し、この水酸化物を
酸化剤でペルオキソ化し、更に加熱処理することにより
アナターゼ型過酸化チタンに転移させるいずれかの過程
において、導電性向上物質微粒子を添加して、導電性向
上物質微粒子及びチタン酸化物微細粒子を含有する表面
抵抗値が1011Ω/□未満の被膜を形成するための光触
媒性能と導電性とを有する被膜形成用水液の製造方法。
4. A tetravalent titanium salt solution is reacted with a basic solution to form titanium hydroxide, which is peroxidized with an oxidizing agent and further heat-treated to obtain anatase-type peroxide. In any process of transferring to titanium oxide, fine particles of the conductivity improving substance are added to form a film containing the fine particles of the conductivity improving substance and the titanium oxide fine particles and having a surface resistance value of less than 10 11 Ω / □. For producing a water solution for forming a film, which has photocatalytic performance and electrical conductivity.
【請求項5】 4価チタンの塩溶液と塩基性溶液とを反
応させて、チタンの水酸化物を形成し、この水酸化物を
酸化剤でペルオキソ化してアモルファス型過酸化チタン
を形成するいずれかの過程において、導電性向上物質微
粒子を添加して、導電性向上物質微粒子及びチタン酸化
物微細粒子を含有し、造膜後加熱処理して表面抵抗値が
1011Ω/□未満の被膜を形成するための光触媒性能と
導電性とを有する被膜形成用水液の製造方法。
5. A method in which a salt solution of tetravalent titanium is reacted with a basic solution to form a hydroxide of titanium, and the hydroxide is peroxo-oxidized with an oxidizing agent to form amorphous titanium peroxide. In the process, a fine particle of the conductivity improving substance is added to contain the fine particle of the conductivity improving substance and the fine particles of titanium oxide, and a film having a surface resistance value of less than 10 11 Ω / □ is formed by heat treatment after film formation. A method for producing an aqueous solution for forming a film, which has photocatalytic performance and electrical conductivity for forming.
【請求項6】 基体に請求項1、3又は4に記載の被膜
形成用水液により形成された、表面抵抗値が1011Ω/
□未満の光触媒性能と導電性とを有する被膜を持つ構造
体。
6. A substrate having a surface resistance value of 10 11 Ω /, which is formed on the substrate by the coating liquid according to claim 1.
A structure having a coating having a photocatalytic performance of less than □ and conductivity.
【請求項7】 基体に請求項2、3又は5に記載の被膜
形成用水液を用いて造膜し、次いで加熱処理された表面
抵抗値が1011Ω/□未満の光触媒性能と導電性とを有
する被膜を持つ構造体。
7. A photocatalytic performance and a conductivity of which surface resistance is less than 10 11 Ω / □, which is obtained by forming a film on the substrate using the water solution for forming a film according to claim 2, 3 or 5, and then subjecting the film to heat treatment. A structure having a coating with.
【請求項8】 基体に光触媒性能のないプライマー層を
有し、その上に更に請求項1、3又は4に記載の被膜形
成用水液により形成された表面抵抗値が10 11Ω/□未
満の光触媒性能と導電性とを有する被膜を持つ耐光分解
性又は耐光劣化性の構造体。
8. A primer layer having no photocatalytic performance is provided on a substrate.
A coating form according to any one of claims 1 to 3, further comprising:
The surface resistance value formed by the working water solution is 10 11Ω / □
Photodegradation resistance with a coating having full photocatalytic performance and conductivity
Structure that is resistant to light or deteriorated by light.
JP2002231970A 2001-08-21 2002-08-08 Film-forming aqueous liquid having electroconductivity and photocatalytic property, its production method and structure equipped with film Pending JP2003160745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002231970A JP2003160745A (en) 2001-08-21 2002-08-08 Film-forming aqueous liquid having electroconductivity and photocatalytic property, its production method and structure equipped with film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001250468 2001-08-21
JP2001-250468 2001-08-21
JP2002231970A JP2003160745A (en) 2001-08-21 2002-08-08 Film-forming aqueous liquid having electroconductivity and photocatalytic property, its production method and structure equipped with film

Publications (1)

Publication Number Publication Date
JP2003160745A true JP2003160745A (en) 2003-06-06

Family

ID=26620739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002231970A Pending JP2003160745A (en) 2001-08-21 2002-08-08 Film-forming aqueous liquid having electroconductivity and photocatalytic property, its production method and structure equipped with film

Country Status (1)

Country Link
JP (1) JP2003160745A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043282A (en) * 2002-05-20 2004-02-12 Sumitomo Chem Co Ltd Method of manufacturing titanium oxide
JP2005105138A (en) * 2003-09-30 2005-04-21 Sustainable Titania Technology Inc Aqueous liquid for formation of photocatalyst film excellent in transparency and stability, method for producing the same and method for producing structure by using the same
WO2005063481A1 (en) * 2003-12-25 2005-07-14 Murakami Corporation Cloud-preventive device
EP1743763A1 (en) * 2004-05-06 2007-01-17 Sustainable Titania Technology Incorporated Base protection method
JP2007022844A (en) * 2005-07-15 2007-02-01 Sustainable Titania Technology Inc Oxide composite film, coating liquid for forming the film, method of manufacturing the coating liquid and method of forming the film
JP2007039270A (en) * 2005-08-02 2007-02-15 Bridgestone Corp Method for crystallizing metal-doped tio2 thin film, and laminate having metal-doped tio2 thin film
JP2008073957A (en) * 2006-09-21 2008-04-03 Mitsubishi Plastics Ind Ltd Laminate with combined antistatic and photocatalytic actions
JP2008512721A (en) * 2004-09-09 2008-04-24 インテル・コーポレーション Conductive lithography polymer and device fabrication method using the same
JP2010000412A (en) * 2008-06-18 2010-01-07 Shin-Etsu Chemical Co Ltd Method for producing thin film of titanium oxide-based photocatalyst
WO2011145385A1 (en) * 2010-05-18 2011-11-24 信越化学工業株式会社 Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof
JP2012075823A (en) * 2010-10-06 2012-04-19 Mitsubishi Electric Corp Hand dryer
CN102784645A (en) * 2011-05-17 2012-11-21 王东宁 Metal particle combination TiO2 photocatalyst reinforcement anti-bacterial composition and preparation method thereof
JP2014031470A (en) * 2012-08-06 2014-02-20 Sustainable Titania Technology Inc Method for maintaining the hydrophilicity of a substrate surface
WO2017115637A1 (en) * 2015-12-28 2017-07-06 サスティナブル・テクノロジー株式会社 Particulate laminated material for forming charges on substrate surface and film shaping liquid for forming charges on substrate surface

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286114A (en) * 1994-04-19 1995-10-31 Catalysts & Chem Ind Co Ltd Coating liquid for forming film and substrate with film applied thereto
JPH0895401A (en) * 1994-09-21 1996-04-12 Bridgestone Corp Business machine roller
JPH08315946A (en) * 1995-03-14 1996-11-29 Fujikura Rubber Ltd Connecting method and connecting device of base
JPH09217028A (en) * 1995-12-04 1997-08-19 Catalysts & Chem Ind Co Ltd Coating composition for forming transparent coating membrane having photocatalytic activity and base material with transparent coating membrane
JPH10286456A (en) * 1997-04-14 1998-10-27 Tao:Kk Adsorbing functional body
JPH1171521A (en) * 1997-06-23 1999-03-16 Fuji Xerox Co Ltd Lubricant-releasing material composition, lubricant-releasing material, production of lubricant-releasing membrane, lubricant-releasing membrane, member for fixation, fixing device, and color image formation
JPH11188270A (en) * 1997-12-26 1999-07-13 Catalysts & Chem Ind Co Ltd Coating solution for forming transparent coating film having photocatalytic activity and substrate with transparent coating film
JP2000001668A (en) * 1998-04-13 2000-01-07 Tao:Kk Base with hydrophilic surface
JP2001109091A (en) * 1999-10-04 2001-04-20 Dainippon Printing Co Ltd Pattern forming body, pattern forming method and functional element, color filter and microlens each using same
JP2001155791A (en) * 1999-11-25 2001-06-08 Catalysts & Chem Ind Co Ltd Photoelectric cell
JP2001181535A (en) * 1999-12-27 2001-07-03 Nippon Parkerizing Co Ltd Photocatalytic coating material for environmental cleaning
JP2001219073A (en) * 2000-02-10 2001-08-14 Sharp Corp Photooxidation catalyst

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286114A (en) * 1994-04-19 1995-10-31 Catalysts & Chem Ind Co Ltd Coating liquid for forming film and substrate with film applied thereto
JPH0895401A (en) * 1994-09-21 1996-04-12 Bridgestone Corp Business machine roller
JPH08315946A (en) * 1995-03-14 1996-11-29 Fujikura Rubber Ltd Connecting method and connecting device of base
JPH09217028A (en) * 1995-12-04 1997-08-19 Catalysts & Chem Ind Co Ltd Coating composition for forming transparent coating membrane having photocatalytic activity and base material with transparent coating membrane
JPH10286456A (en) * 1997-04-14 1998-10-27 Tao:Kk Adsorbing functional body
JPH1171521A (en) * 1997-06-23 1999-03-16 Fuji Xerox Co Ltd Lubricant-releasing material composition, lubricant-releasing material, production of lubricant-releasing membrane, lubricant-releasing membrane, member for fixation, fixing device, and color image formation
JPH11188270A (en) * 1997-12-26 1999-07-13 Catalysts & Chem Ind Co Ltd Coating solution for forming transparent coating film having photocatalytic activity and substrate with transparent coating film
JP2000001668A (en) * 1998-04-13 2000-01-07 Tao:Kk Base with hydrophilic surface
JP2001109091A (en) * 1999-10-04 2001-04-20 Dainippon Printing Co Ltd Pattern forming body, pattern forming method and functional element, color filter and microlens each using same
JP2001155791A (en) * 1999-11-25 2001-06-08 Catalysts & Chem Ind Co Ltd Photoelectric cell
JP2001181535A (en) * 1999-12-27 2001-07-03 Nippon Parkerizing Co Ltd Photocatalytic coating material for environmental cleaning
JP2001219073A (en) * 2000-02-10 2001-08-14 Sharp Corp Photooxidation catalyst

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043282A (en) * 2002-05-20 2004-02-12 Sumitomo Chem Co Ltd Method of manufacturing titanium oxide
JP2005105138A (en) * 2003-09-30 2005-04-21 Sustainable Titania Technology Inc Aqueous liquid for formation of photocatalyst film excellent in transparency and stability, method for producing the same and method for producing structure by using the same
WO2005063481A1 (en) * 2003-12-25 2005-07-14 Murakami Corporation Cloud-preventive device
EP1743763A4 (en) * 2004-05-06 2012-12-26 Sustainable Titania Technology Inc Base protection method
EP1743763A1 (en) * 2004-05-06 2007-01-17 Sustainable Titania Technology Incorporated Base protection method
JP2008512721A (en) * 2004-09-09 2008-04-24 インテル・コーポレーション Conductive lithography polymer and device fabrication method using the same
US7700246B2 (en) 2004-09-09 2010-04-20 Intel Corporation Conductive lithographic polymer and method of making devices using same
JP2007022844A (en) * 2005-07-15 2007-02-01 Sustainable Titania Technology Inc Oxide composite film, coating liquid for forming the film, method of manufacturing the coating liquid and method of forming the film
JP2007039270A (en) * 2005-08-02 2007-02-15 Bridgestone Corp Method for crystallizing metal-doped tio2 thin film, and laminate having metal-doped tio2 thin film
JP2008073957A (en) * 2006-09-21 2008-04-03 Mitsubishi Plastics Ind Ltd Laminate with combined antistatic and photocatalytic actions
JP2010000412A (en) * 2008-06-18 2010-01-07 Shin-Etsu Chemical Co Ltd Method for producing thin film of titanium oxide-based photocatalyst
CN102639242A (en) * 2010-05-18 2012-08-15 信越化学工业株式会社 Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof
WO2011145385A1 (en) * 2010-05-18 2011-11-24 信越化学工業株式会社 Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof
US8986580B2 (en) 2010-05-18 2015-03-24 Shin-Etsu Chemical Co., Ltd. Visible-light-responsive titanium oxide microparticle dispersion, and process for production thereof
JP2012075823A (en) * 2010-10-06 2012-04-19 Mitsubishi Electric Corp Hand dryer
CN102784645A (en) * 2011-05-17 2012-11-21 王东宁 Metal particle combination TiO2 photocatalyst reinforcement anti-bacterial composition and preparation method thereof
JP2014031470A (en) * 2012-08-06 2014-02-20 Sustainable Titania Technology Inc Method for maintaining the hydrophilicity of a substrate surface
WO2017115637A1 (en) * 2015-12-28 2017-07-06 サスティナブル・テクノロジー株式会社 Particulate laminated material for forming charges on substrate surface and film shaping liquid for forming charges on substrate surface
JPWO2017115637A1 (en) * 2015-12-28 2018-06-07 サスティナブル・テクノロジー株式会社 Substrate surface charge forming particulate laminate and substrate surface charge forming film forming liquid

Similar Documents

Publication Publication Date Title
JP4408702B2 (en) Superhydrophilic photocatalyst film forming liquid, structure provided with the film, and method for producing the same
KR100849150B1 (en) Base protection method
JP4398869B2 (en) Titania-metal composite, method for producing the same, and film forming method using the composite dispersion
JP2003160745A (en) Film-forming aqueous liquid having electroconductivity and photocatalytic property, its production method and structure equipped with film
Katsumata et al. Preparation and characterization of self-cleaning glass for vehicle with niobia nanosheets
US6099969A (en) Multifunctional coating agent
WO2008013148A1 (en) Method for protecting base body
CN101945964A (en) Hybrid binder system
WO2007077712A1 (en) Method for protecting base
JP2002212463A (en) Titanium oxide-containing conductive film-forming liquid, production method thereof, and structure equipped with titanium oxide-containing film
JP2007022844A (en) Oxide composite film, coating liquid for forming the film, method of manufacturing the coating liquid and method of forming the film
JPH10167727A (en) Modified titanium oxide sol, photocatalyst composition and its forming agent
JP2002348540A (en) Film-forming aqueous solution containing electrically- conductive polymer, method for producing the film- forming aqueous solution, and structure having the formed film
JP3885248B2 (en) Photocatalyst composition
JP2002241522A (en) Method and apparatus for carrying out prevention of pollution, purification of polluted fluid or production of radical by electroconductive polymer and electroconductive polymer and structure therefor
JP5936132B2 (en) Method for protecting substrate surface
JP2005105138A (en) Aqueous liquid for formation of photocatalyst film excellent in transparency and stability, method for producing the same and method for producing structure by using the same
JP2010113158A (en) Reflectance improving agent for base substance and method of manufacturing high reflection type base substance using the same
JP3730897B2 (en) A method for preventing or purifying contamination by a conductive polymer film, and a structure having the ability to prevent or purify contamination.
WO2017115637A1 (en) Particulate laminated material for forming charges on substrate surface and film shaping liquid for forming charges on substrate surface
WO2005090067A1 (en) Laminate and method for production thereof
JP2005008707A (en) Dispersion for forming photocatalytic coating film having excellent transparency and stability, method for producing the same and method for producing structure using the same
KR20030023390A (en) Photocatalyst sol having high transparency and photoactivity and preparation method for the smae
JP2003210996A (en) Aqueous liquid for forming photocatalytic high hardness coating film, structure provided with the coating film and method for manufacturing them
JP2006283061A (en) Method of forming clay compound film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090210