JP2004043282A - Method of manufacturing titanium oxide - Google Patents

Method of manufacturing titanium oxide Download PDF

Info

Publication number
JP2004043282A
JP2004043282A JP2003006748A JP2003006748A JP2004043282A JP 2004043282 A JP2004043282 A JP 2004043282A JP 2003006748 A JP2003006748 A JP 2003006748A JP 2003006748 A JP2003006748 A JP 2003006748A JP 2004043282 A JP2004043282 A JP 2004043282A
Authority
JP
Japan
Prior art keywords
group
titanium
titanium oxide
elements
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003006748A
Other languages
Japanese (ja)
Inventor
Yoshiaki Sakatani
酒谷 能彰
Hironobu Koike
小池 宏信
Akinori Okusako
奥迫 顕仙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003006748A priority Critical patent/JP2004043282A/en
Publication of JP2004043282A publication Critical patent/JP2004043282A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing titanium oxide showing high photocatalytic activity. <P>SOLUTION: The method of manufacturing titanium oxide is performed by mixing a titanium compound and a 2nd ingredient composed of an element or the compound selected from group IIa elements, group IIIa elements, group Va elements, group VIa elements, group VIIa elements, group VIII elements, group Ib elements, group IIb elements, group IIIb elements, lanthanoid, silicon, germanium, tin, lead, antimony, bismuth, zirconium and hafnium with a solvent, reacting a base with the mixture under a condition in which the solubility of the hydroxide of the element constituting the 2nd ingredient is made ≤10<SP>-4</SP>g/L and firing the resultant solid. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は酸化チタンの製造方法に関するものであり、詳細には、光触媒用途に好適な酸化チタンの製造方法に関するものである。
【0002】
【従来の技術】
従来より、光触媒作用を利用して、大気中の悪臭物質を除去したり、また窓ガラスや道路壁に自己清浄作用を付与することが検討されている(特許文献1参照)。
【0003】
【特許文献1】
特開平9−57912号公報
【0004】
近年、可視光線の照射に対して光触媒活性を示す酸化チタンからなる光触媒体が開発され、紫外光線を照射できる光源が必要でなくなったことから、広範囲に適用できるようになった。例えば、以前は適用困難であったトンネル内などの屋内への用途開発が進められている。
【0005】
一方こうした屋内用途では、蛍光灯、ナトリウムランプのような照明装置からの光線をそのまま光触媒に照射するため、光触媒作用を得るのに必ずしも十分な光量が得られないことがあった。したがって、少ない光量でも高い光触媒活性が得られるように、素材である酸化チタンについて更なる活性向上が要望されている。
【0006】
【発明が解決しようとする課題】
本発明では、従来のものに比べてより高い光触媒活性を示す酸化チタンを製造できる方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者等は、酸化チタンの光触媒活性を向上させるため、その製造方法について種々検討を行った結果、本発明を完成するに至った。
【0008】
すなわち本発明は、チタン化合物と、IIa族元素、IIIa族元素、Va族元素、VIa族元素、VIIa族元素、VIII族元素、Ib族元素、IIb族元素、IIIb族元素、ランタノイド、ケイ素、ゲルマニウム、錫、鉛、アンチモン、ビスマス、ジルコニウムおよびハフニウムから選ばれる元素またはその化合物からなる第二成分と、溶媒とを混合し、この混合物に塩基を該第二成分を構成する該元素の水酸化物の溶解度が10−4g/L以下となる条件で反応させ、得られた固体を焼成することを特徴とする酸化チタンの製造方法を提供するものである。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明の製造方法では、最初に、チタン化合物と、チタン化合物以外の成分と、溶媒とを混合する。ここで用いるチタン化合物は、水の存在下で塩基との反応により水酸化チタンを生成するものであればよく、例えば、三塩化チタン〔TiCl〕、四塩化チタン〔TiCl〕、硫酸チタン〔Ti(SO・mHO、0≦m≦20〕、オキシ塩化チタン〔TiOCl〕、オキシ硫酸チタン〔TiOSO・nHO、0≦n≦20〕が挙げられ、中でも、オキシ硫酸チタンの適用が好ましい。
【0010】
チタン化合物以外の成分としては、例えば、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムのようなIIa族元素、スカンジウム、イットリウムのようなIIIa族元素、ジルコニウム、ハフニウムのようなIVa族元素、バナジウム、ニオブ、タンタルのようなVa族元素、クロム、モリブデン、タングステンのようなVIa族元素、マンガン、テクネチウム、レニウムのようなVIIa族元素、鉄、ルテニウム、オスミウム、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、白金のようなVIII族元素、銅、銀、金のようなIb族元素、亜鉛、カドミウムのようなIIb族元素、ホウ素、アルミニウム、ガリウム、インジウム、タリウムのようなIIIb族元素、ケイ素、ゲルマニウム、錫、鉛のようなIVb族元素、アンチモン、ビスマスのようなVb族元素、ランタン、セリウム、プラセオジウム、ネオジウム、サマリウム、ユウロピウム、ガドリニウムのようなランタノイドが挙げられ、好ましくは、亜鉛、ジルコニウム、ガリウム、インジウム、鉄、ニオブがあり、さらに好ましくは亜鉛、ニオブがある。チタン化合物以外の成分は、これらの1種であってもよいし、2種以上組み合わせたものであってもよい。チタン化合物以外の成分は、通常、化合物の状態でチタン化合物と混合されるが、溶媒中に均一に分散できる程度であれば、元素単体でチタン化合物と混合してもよい。チタン以外の元素の化合物としては、前記元素の各種の無機化合物や有機化合物が挙げられ、無機化合物としては、例えば、これら元素の硫酸塩、硝酸塩、塩化物などがあり、有機化合物としては、これら元素の蓚酸塩、蓚酸水素塩、酢酸塩などがある。チタン化合物以外の成分は、用いる溶媒に溶解するもの、またはその溶媒中でコロイド粒子として存在できるものが好ましい。チタン化合物以外の成分の量は、これを構成する前記元素を基準として、チタン化合物のチタンに対して0.00001mol倍以上、好ましくは0.0001mol倍以上、さらには0.001mol倍以上、また0.1mol倍以下、さらには0.05mol倍以下であることが好ましい。
【0011】
溶媒は、チタン化合物を溶解するものであればよく、通常、水、過酸化水素水が使用される。
【0012】
本発明では、ついで、チタン化合物とチタン化合物以外の成分と溶媒との混合物に塩基を反応させる。ここで用いる塩基としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、アンモニア、ヒドラジン、ヒドロキシルアミン、モノエタノールアミン、非環式アミン化合物、環式脂肪族アミン化合物などが挙げられる。中でもアンモニアの適用が好ましい。混合物との反応に際して、塩基を、その塩基が可溶な溶媒と混合してから用いるとき、この塩基の濃度は通常0.05重量%以上、50重量%以下である。
【0013】
上記の混合物と塩基の反応は、チタン化合物以外の成分について、その成分を構成する元素の水酸化物の溶解度が10−4g/L以下、好ましくは10−6g/L以下となる条件で行う。また、チタン化合物と混合される成分が2種以上のときには、これら成分を構成する元素の水酸化物の溶解度のいずれもが10−4g/L以下となる条件で反応を行うことが好ましい。反応を前記溶解度より低い条件で行うことによって、高い光触媒活性を示す酸化チタンが得られる理由は定かではないが、チタン化合物とチタン化合物以外の成分と溶媒との混合物に塩基を反応させたとき、この成分を構成する元素の水酸化物が溶媒中に溶解して残ることが少なく、生成する水酸化チタン中に均一に取り込まれることが影響していると考えられる。
【0014】
反応は、前記水酸化物の溶解度が10−4g/L以下となる条件であれば、溶媒を適宜選定したうえ、pHや温度などを調節することで行うことができる。溶媒として水を使用し、pHにて溶解度を調節する場合について、元素ごとにその水酸化物の溶解度が10−4g/L以下となるpHを以下に示す。このときのpHは、図1〜5に示すように、pH−金属水酸化物溶解度の相関図から求めることができ、亜鉛水酸化物〔Zn(OH)〕では、図1に示すようにpH7.4〜12.5である。亜鉛以外の元素として、例えば、ガリウム水酸化物〔Ga(OH)〕では、図2に示すようにpHは3.5〜10.5であり、インジウム水酸化物〔In(OH)〕では、図3に示すようにpHは4.2〜11.8であり、ジルコニウム水酸化物〔Zr(OH)・2HO〕では、図4に示すようにpHは2.5以上であり、鉄水酸化物〔Fe(OH)〕では、図5に示すようにpHは3.2以上である。また、元素ごとにその水酸化物の溶解度が10−6g/L以下となるpHについて、同様に示す。亜鉛水酸化物〔Zn(OH)〕では、pH8.4〜10.6(図1)、ガリウム水酸化物〔Ga(OH)〕では、pHは5.7〜9.2(図2)、インジウム水酸化物〔In(OH)〕では、pHは5.2〜9.8(図3)、ジルコニウム水酸化物〔Zr(OH)・2HO〕では、pHは3.5〜12.5(図4)、鉄水酸化物〔Fe(OH)〕では、pHは4.2以上(図5)である。
【0015】
また、ニオブ水酸化物〔Nb(OH)〕のように、広範囲のpH(概ね1〜13)において溶解度が10−4g/L以下であるものについては、この範囲内のいずれのpHでも反応を行うことができる。この場合、反応のpHは、チタン化合物とチタン化合物以外の成分と溶媒との混合物、およびこれと塩基の反応生成物の取扱い易さなどを考慮して決めることが好ましく、例えば、チタン化合物以外の成分を構成する元素がニオブのときの好適なpHは3〜5である。
【0016】
反応は、90℃以下で行われることが好ましい。反応温度が90℃より高いと、得られる酸化チタンの光触媒活性が低下することがある。反応温度は低いほど、より高い光触媒活性を示す酸化チタンが得られるので好ましく、例えば、60℃以下、さらには40℃以下が好ましい。一方、反応温度を低く維持するには、冷媒が多く必要となるなど冷却コストが高くなるので、1℃以上が適当である。このときの反応率は、通常、90%以上である。反応率は、溶媒の種類を選定または温度、時間、攪拌条件などを変えることにより調節することができる。なお、この反応率は、チタン化合物が塩基との反応により加水分解されて水酸化チタンに変化した割合を示す。
【0017】
反応は、具体的には、冷却ジャケット付き容器内に水を入れた後、この容器に、攪拌下、液温を所定の範囲に保ちながら、チタン化合物とチタン化合物以外の成分と水との混合物を供給するとともに、所定のpHとなるように塩基を供給する方法、または反応温度を制御できる冷却ジャケット付き管内に、チタン化合物とチタン化合物以外の成分と水との混合物および塩基を、所定のpHとなるように各々の量を調節しながら、連続供給する方法などで行うことができる。
【0018】
反応により得られる生成物には、熟成を施してもよい。熟成は、生成物を含むスラリーを、塩基存在下、一定温度に保持する方法などで行うことができる。熟成は、例えば、反応後の混合物から、反応により生じた塩(硫酸アンモニウムなど)を含む溶液を固液分離した後、得られた固体に塩基を添加し、一定温度に保持する方法で行うこともできる。この熟成を施すことにより、生成物を焼成して得られる酸化チタンは、可視光線の照射に対し優れた活性を示すものとなる。熟成に用いる塩基としては、例えば、アンモニア水などが挙げられ、その濃度は、通常0.05重量%以上、50重量%以下である。熟成温度は0℃以上、さらには10℃以上、また110℃以下、さらには80℃以下が好ましい。熟成時間は、塩基濃度、熟成温度により異なり一義的ではないが、通常0.01時間以上、好ましくは0.5時間以上であり、また60時間以内、好ましくは24時間以内である。熟成に用いる塩基と、上述した反応に用いる塩基は、同種でかつ同濃度、同種で異なる濃度、または異種のいずれであってもよい。
【0019】
上で述べた反応と、任意に行われる熟成に用いる塩基の合計量は、水の存在下でチタン化合物を水酸化チタンに変えるのに必要な塩基の化学量論量を超える量であることが好ましく、例えば、その化学量論量の1.1倍以上であることが好ましい。用いる塩基の量が多いほど最終的に得られる酸化チタンの光触媒活性が高くなる傾向にあるので、1.3倍以上がさらに好ましい。一方、塩基の量をあまり多くしても、量に見合う光触媒活性の向上効果が得られないので、20倍以下、さらには10倍以下が適当である。
【0020】
反応後のスラリーまたは熟成後の生成物を含むスラリーには、通常、固体を分離する操作を施す。分離は、加圧濾過、真空濾過、遠心分離、デカンテーションなどで行うことができ、またスラリーを噴霧乾燥機などを用いて液体を蒸発させる方法で行うこともできる。分離された固体は、必要に応じて洗浄、乾燥した後、焼成する。焼成は、300℃以上、好ましくは350℃以上、また600℃以下、好ましくは500℃以下、さらに好ましくは450℃以下の温度で行う。焼成温度があまり高くなると、十分な光触媒活性を示す酸化チタンを得ることが困難になる。焼成は、例えば、静置炉、トンネル炉、回転炉などで行うことができる。ここでは、スラリー中の固体を分離した後、この固体を焼成する方法について示したが、生成物またはこれを熟成したものを含むスラリーをフラッシュジェットドライヤーのような気流乾燥機を用いて、生成物を含むスラリーに固液分離操作を予め施すことなく、生成物の焼成を行ってもよい。
【0021】
上述した本発明の製造方法により得られる酸化チタンは、通常、結晶構造がアナターゼ型であり、可視光線の照射に対して高い光触媒活性を示すものである。またこの酸化チタンは紫外光線の照射に対しても光触媒活性を示す。
【0022】
【実施例】
以下、実施例により本発明をさらに詳細に説明するが、本発明は本実施例に限定されるものではない。
実施例1
〔酸化チタンの調製〕
オキシ硫酸チタン水和物(添川理化学製)102gを水408gに溶解して、pH約1のオキシ硫酸チタン水溶液を調製した。このオキシ硫酸チタン水溶液に硫酸亜鉛七水和物(試薬特級、和光純薬工業製)1.21gを添加し、溶解させて、混合水溶液を得た。この混合水溶液中の亜鉛の量は、チタンに対して0.01mol倍であった。
【0023】
pH電極と、このpH電極に接続され、25重量%アンモニア水(試薬特級、和光純薬工業製)を供給してpHを一定に調節する機構を有するpHコントローラーとを備え、かつ冷媒を使用した冷却機構を有する1Lフラスコに水300gを入れた後、フラスコを冷却した。pHコントローラーのpH設定値を9とし、水のpHを設定値に調節した。このフラスコ内に、400rpmで攪拌しながら、上で得られた混合水溶液511.21gを5ml/minで添加し、pHコントローラーによりフラスコ内に供給されるアンモニア水と反応させた。この間、フラスコ内に供給された25重量%アンモニア水の量は82.54gであった。
【0024】
フラスコ内の液のpHは、混合水溶液の添加を開始してから12分間はpH9.0〜9.8であり、添加開始12分後から添加終了まではpH8.9〜9.2であった。その間、フラスコ内の液温は1.1〜6.2℃であった。供給されたアンモニア水の合計量は、オキシ硫酸チタンを水酸化チタンに変えるのに必要な塩基の化学量論量の1.4倍であった。
【0025】
得られたスラリーを濾過、洗浄、乾燥し、この乾燥物を400℃の空気中で1時間焼成して、粒子状酸化チタンを得た。この酸化チタンについて、X線回折装置(商品名“RAD−IIA”、理学電機製)により分析した結果、その結晶構造はアナターゼ型であった。
【0026】
〔酸化チタンの活性評価〕
直径8cm、高さ10cm、容量約0.5Lの密閉式ガラス製反応容器内に、直径5cmのガラス製シャーレを置き、そのシャーレに、上で得られた粒子状アナターゼ型酸化チタン0.3gを入れた。反応容器内を酸素と窒素の体積比が1:4である混合ガスで満たし、アセトアルデヒドを13.4μmol封入した後、反応容器の外から可視光線を照射した。可視光線の照射には、500Wキセノンランプ(商品名“ランフ゜UXL−500SX”、ウシオ電機製)を取り付けた光源装置(商品名“オフ゜ティカルモシ゛ュレックスSX−UI500XQ”、ウシオ電機製)に、波長約430nm以下の紫外線をカットするフィルター(商品名“Y−45”、旭テクノガラス製)と波長約830nm以上の赤外線をカットするフィルター(商品名“スーハ゜ーコ゛ールト゛フィルター”、ウシオ電機製)とを装着したものを光源として用いた。可視光線の照射によりアセトアルデヒドが分解すると、二酸化炭素が発生するので、二酸化炭素の濃度を光音響マルチガスモニタ(型番“1312型”、INNOVA製)で経時的に測定し、濃度変化より算出した二酸化炭素の生成速度により、酸化チタンのアセトアルデヒドに対する光触媒作用を評価した。この例における二酸化炭素の生成速度は酸化チタン1gあたり31.2μmol/hであった。
【0027】
実施例2
1Lフラスコ内で、実施例1で用いたのと同じオキシ硫酸チタン水和物102gを水408gに溶解し、pH約1のオキシ硫酸チタン水溶液を調製した。このオキシ硫酸チタン水溶液に蓚酸水素ニオブ(三津和化学薬品製、Nbとして15重量%)0.39gを添加し、溶解させて、混合水溶液を調製した。この混合水溶液中のニオブの量は、チタンに対して0.001mol倍であった。
【0028】
実施例1の〔酸化チタンの調製〕で使用したと同じ1Lフラスコに水300gを入れた後、フラスコを冷却した。pHコントローラーのpH設定値を4とし、水のpHを設定値に調節した。このフラスコ内に、400rpmで攪拌しながら、上で得られた混合水溶液510.39gを5ml/minで添加し、pHコントローラーによりフラスコ内に供給されるアンモニア水と反応させた。
【0029】
フラスコ内の液のpHは、混合水溶液の添加を開始してから5分間はpH3.2〜4.9であり、添加開始5分後から添加終了まではpH3.8〜4.3であった。添加開始時のフラスコ内の液温は24℃であり、添加終了時の液温は26℃であった。
【0030】
得られたスラリーを、攪拌しながら1時間保持し、ついで25重量%アンモニア水(試薬特級、和光純薬工業製)を供給した後、さらに1時間攪拌して、生成物を熟成した。この間、スラリーの温度は24℃で一定であった。フラスコ内に供給されたアンモニア水の合計量は116gであり、オキシ硫酸チタンを水酸化チタンに変えるのに必要な塩基の化学量論量の2倍であった。
【0031】
熟成後の生成物を含むスラリーを濾過、洗浄、乾燥し、この乾燥物を400℃の空気中で1時間焼成した後、この焼成物を洗浄、乾燥して、粒子状アナターゼ型酸化チタンを得た。
【0032】
この酸化チタンについて、実施例1の〔酸化チタンの活性評価〕と同条件で評価した。この例における二酸化炭素の生成速度は酸化チタン1gあたり27.6μmol/hであった。
【0033】
実施例3
1Lフラスコ内で、実施例1で用いたのと同じオキシ硫酸チタン水和物102gを水238gに溶解し、pH約1のオキシ硫酸チタン水溶液を調製した。このオキシ硫酸チタン水溶液に硝酸インジウム三水和物(キシダ化学製)0.15gを添加し、溶解させ、ついで31%過酸化水素水46.43gを添加して、赤紫色の混合水溶液を得た。この混合水溶液中のインジウムの量は、チタンに対して0.001mol倍であった。
【0034】
実施例1の〔酸化チタンの調製〕で使用したと同じ1Lフラスコに水300gを入れた後、フラスコを冷却した。pHコントローラーのpH設定値を6とし、水のpHを設定値に調節した。このフラスコ内に、内容物を400rpmで攪拌しながら、上で得られた混合水溶液386.58gを5ml/minで添加し、pHコントローラーによりフラスコ内に供給されるアンモニア水と反応させた。
【0035】
フラスコ内の液のpHは、混合水溶液の添加を開始してから20分間はpH5.4〜6.9であり、添加開始20分後から添加終了まではpH5.9〜6.1であった。添加開始時のフラスコ内の液温は24℃であり、添加終了時の液温は30℃であった。
【0036】
得られたスラリーを、攪拌しながら1時間10分保持し、ついで25重量%アンモニア水(試薬特級、和光純薬工業製)を供給した後、さらに1時間攪拌して、生成物を熟成した。この間、スラリーの温度は27℃で一定であった。フラスコ内に供給されたアンモニア水の合計量は115gであり、オキシ硫酸チタンを水酸化チタンに変えるのに必要な塩基の化学量論量の2倍であった。
【0037】
熟成後の生成物を含むスラリーを濾過、洗浄、乾燥し、この乾燥物を400℃の空気中で1時間焼成した後、この焼成物を洗浄、乾燥して、粒子状アナターゼ型酸化チタンを得た。
【0038】
この酸化チタンについて、実施例1の〔酸化チタンの活性評価〕と同条件で評価した。この例における二酸化炭素の生成速度は酸化チタン1gあたり20.1μmol/hであった。
【0039】
実施例4
1Lフラスコ内で、実施例1で用いたのと同じオキシ硫酸チタン水和物102gを水158gに溶解し、pH約1のオキシ硫酸チタン水溶液を調製した。このオキシ硫酸チタン水溶液に硫酸ジルコニウム水和物(和光純薬工業製)0.15gを添加し、溶解させ、ついで31%過酸化水素水81.36gを添加して、赤紫色の混合水溶液を得た。この混合水溶液中のジルコニウムの量は、チタンに対して0.001mol倍であった。
【0040】
実施例1の〔酸化チタンの調製〕で使用したと同じ1Lフラスコに水300gを入れた後、フラスコを冷却した。pHコントローラーのpH設定値を7とし、水のpHを設定値に調節した。このフラスコ内に、内容物を400rpmで攪拌しながら、上で得られた混合水溶液341.51gを5ml/minで添加し、pHコントローラーによりフラスコ内に供給されるアンモニア水と反応させた。
【0041】
フラスコ内の液のpHは、混合水溶液の添加を開始してから17分間はpH6.1〜8.2であり、添加開始17分後から添加終了まではpH6.9〜7.0であった。添加開始時のフラスコ内の液温は23℃であり、添加終了時の液温は32℃であった。
【0042】
得られたスラリーを、攪拌しながら1時間保持し、ついで25重量%アンモニア水(試薬特級、和光純薬工業製)を供給した後、さらに1時間攪拌して、生成物を熟成した。この間、スラリーの温度は28℃で一定であった。フラスコ内に供給されたアンモニア水の合計量は115gであり、オキシ硫酸チタンを水酸化チタンに変えるのに必要な塩基の化学量論量の2倍であった。
【0043】
熟成後の生成物を含むスラリーを濾過、洗浄、乾燥し、この乾燥物を400℃の空気中で1時間焼成した後、この焼成物を洗浄、乾燥して、粒子状アナターゼ型酸化チタンを得た。
【0044】
この酸化チタンについて、実施例1の〔酸化チタンの活性評価〕と同条件で評価した。この例における二酸化炭素の生成速度は酸化チタン1gあたり22.6μmol/hであった。
【0045】
実施例5
1Lフラスコ内で、実施例1で用いたのと同じオキシ硫酸チタン水和物102gを水238gに溶解し、pH約1のオキシ硫酸チタン水溶液を調製した。このオキシ硫酸チタン水溶液に硝酸ガリウム水和物(和光純薬工業製)0.17gを添加し、溶解させ、ついで31%過酸化水素水46.76gを添加して、赤紫色の混合水溶液を得た。この混合水溶液中のガリウムの量は、チタンに対して0.001mol倍であった。
【0046】
実施例1の〔酸化チタンの調製〕で使用したと同じ1Lフラスコに水300gを入れた後、フラスコを冷却した。pHコントローラーのpH設定値を7とし、水のpHを設定値に調節した。このフラスコ内に、内容物を400rpmで攪拌しながら、上で得られた混合水溶液386.93gを5ml/minで添加し、pHコントローラーによりフラスコ内に供給されるアンモニア水と反応させた。
【0047】
フラスコ内の液のpHは、混合水溶液の添加を開始してから10分間はpH6.0〜7.9であり、添加開始10分後から添加終了まではpH6.9〜7.1であった。添加開始時のフラスコ内の液温は25℃であり、添加終了時の液温は30℃であった。
【0048】
得られたスラリーを、攪拌しながら1時間保持し、ついで25重量%アンモニア水(試薬特級、和光純薬工業製)を供給した後、さらに1時間攪拌して、生成物を熟成した。この間、スラリーの温度は29℃で一定であった。フラスコ内に供給されたアンモニア水の合計量は115gであり、オキシ硫酸チタンを水酸化チタンに変えるのに必要な塩基の化学量論量の2倍であった。
【0049】
熟成後の生成物を含むスラリーを濾過、洗浄、乾燥し、この乾燥物を400℃の空気中で1時間焼成した後、この焼成物を洗浄、乾燥して、粒子状アナターゼ型酸化チタンを得た。
【0050】
この酸化チタンについて、実施例1の〔酸化チタンの活性評価〕と同条件で評価した。この例における二酸化炭素の生成速度は酸化チタン1gあたり14.9μmol/hであった。
【0051】
比較例1
実施例1の〔酸化チタンの調製〕で使用した同じ1Lフラスコに、オキシ硫酸チタン水和物(添川理化学製)102gを水408gに溶解して調製したオキシ硫酸チタン水溶液を入れた後、このフラスコに、400rpmで攪拌しながら、25重量%アンモニア水(試薬特級、和光純薬工業製)を5ml/minで供給してオキシ硫酸チタン水溶液と反応させた。フラスコ内の液のpHは、アンモニア水の添加を開始してから1分間はpH0.7であり、添加終了後はpH4であった。アンモニア水の添加開始時のフラスコ内の液温は62℃であり、添加終了時の液温は65℃であった。フラスコ内に供給したアンモニア水の量は58gであり、オキシ硫酸チタンを水酸化チタンに変えるのに必要な塩基の化学量論量の1倍であった。
【0052】
このスラリーを濾過、洗浄、乾燥し、得られた乾燥物を400℃の空気中で1時間焼成して、粒子状アナターゼ型酸化チタンを得た。
【0053】
この酸化チタンについて、実施例1の〔酸化チタンの活性評価〕と同条件で評価した。この例における二酸化炭素の生成速度は酸化チタン1gあたり0μmol/hであった。
【0054】
【発明の効果】
本発明の製造方法によれば、可視光線の照射に対し優れた光触媒活性を示す酸化チタンを得ることができる。
【図面の簡単な説明】
【図1】pH−亜鉛水酸化物溶解度の相関図。
【図2】pH−ガリウム水酸化物溶解度の相関図。
【図3】pH−インジウム水酸化物溶解度の相関図。
【図4】pH−ジルコニウム水酸化物溶解度の相関図。
【図5】pH−鉄水酸化物溶解度の相関図。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing titanium oxide, and more particularly, to a method for producing titanium oxide suitable for photocatalytic applications.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, it has been studied to remove malodorous substances in the atmosphere by using a photocatalytic action and to impart a self-cleaning action to window glass and road walls (see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-9-57912
[0004]
In recent years, photocatalysts made of titanium oxide exhibiting photocatalytic activity against visible light irradiation have been developed, and since a light source capable of irradiating ultraviolet light is not required, it has become widely applicable. For example, application development for indoor use such as in a tunnel, which was previously difficult to apply, is being promoted.
[0005]
On the other hand, in such indoor use, a light beam from an illuminating device such as a fluorescent lamp or a sodium lamp is directly irradiated on the photocatalyst, and thus a sufficient amount of light for obtaining the photocatalytic action may not always be obtained. Therefore, further improvement in activity of titanium oxide as a raw material is demanded so that high photocatalytic activity can be obtained even with a small amount of light.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a method capable of producing titanium oxide having higher photocatalytic activity than conventional ones.
[0007]
[Means for Solving the Problems]
The present inventors have conducted various studies on a method for producing titanium oxide in order to improve the photocatalytic activity of titanium oxide, and as a result, have completed the present invention.
[0008]
That is, the present invention relates to a titanium compound, a group IIa element, a group IIIa element, a group Va element, a group VIa element, a group VIIa element, a group VIII element, a group Ib element, a group IIb element, a group IIIb element, a lanthanoid, silicon, and germanium. , Tin, lead, antimony, bismuth, zirconium and hafnium, a second component comprising the compound or a compound thereof, and a solvent, and mixing the mixture with a base and a hydroxide of the element constituting the second component. Has a solubility of 10 -4 It is intended to provide a method for producing titanium oxide, wherein the reaction is carried out under a condition of g / L or less, and the obtained solid is calcined.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. In the production method of the present invention, first, a titanium compound, a component other than the titanium compound, and a solvent are mixed. The titanium compound used here may be any compound that generates titanium hydroxide by reacting with a base in the presence of water. For example, titanium trichloride [TiCl 3 ], Titanium tetrachloride [TiCl 4 ], Titanium sulfate [Ti (SO 4 ) 2 ・ MH 2 O, 0 ≦ m ≦ 20], titanium oxychloride [TiOCl 2 ], Titanium oxysulfate [TiOSO 4 ・ NH 2 O, 0 ≦ n ≦ 20], among which titanium oxysulfate is preferably used.
[0010]
As components other than the titanium compound, for example, beryllium, magnesium, calcium, strontium, group IIa element such as barium, scandium, group IIIa element such as yttrium, zirconium, group IVa element such as hafnium, vanadium, niobium, Group Va element such as tantalum, chromium, molybdenum, group VIa element such as tungsten, manganese, technetium, group VIIa element such as rhenium, iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum Group VIII elements such as copper, silver, gold, Group Ib elements such as zinc, cadmium, boron, aluminum, gallium, indium, group IIIb elements such as thallium, silicon, germanium, tin, Like lead Group IVb elements such as IVb elements, antimony and bismuth, lanthanides such as lanthanum, cerium, praseodymium, neodymium, samarium, europium and gadolinium, preferably zinc, zirconium, gallium, indium, iron and niobium And more preferably zinc and niobium. The components other than the titanium compound may be used alone or in combination of two or more. Components other than the titanium compound are usually mixed with the titanium compound in the form of a compound, but may be mixed with the titanium compound alone as long as it can be uniformly dispersed in the solvent. Examples of the compound of the element other than titanium include various inorganic compounds and organic compounds of the element. Examples of the inorganic compound include sulfates, nitrates, and chlorides of these elements. Elemental oxalate, hydrogen oxalate, acetate and the like. It is preferable that the components other than the titanium compound are soluble in the solvent used or can be present as colloidal particles in the solvent. The amount of the component other than the titanium compound is 0.00001 mol times or more, preferably 0.0001 mol times or more, further 0.001 mol times or more, and 0% or less, based on the element constituting the titanium compound. It is preferably at most 0.1 mol times, more preferably at most 0.05 mol times.
[0011]
The solvent only needs to dissolve the titanium compound, and usually, water and aqueous hydrogen peroxide are used.
[0012]
In the present invention, the base is then reacted with a mixture of the titanium compound, a component other than the titanium compound, and the solvent. Examples of the base used herein include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, ammonia, hydrazine, hydroxylamine, monoethanolamine, acyclic amine compounds, and cyclic aliphatic amine compounds. . Among them, application of ammonia is preferred. When the base is used after mixing with a solvent in which the base is soluble in the reaction with the mixture, the concentration of the base is usually 0.05% by weight or more and 50% by weight or less.
[0013]
The reaction between the above mixture and the base is such that the solubility of the hydroxide of the constituent element of the component other than the titanium compound is 10%. -4 g / L or less, preferably 10 -6 g / L or less. When two or more components are mixed with the titanium compound, the solubility of the hydroxides of the elements constituting these components is 10% or less. -4 It is preferable to carry out the reaction under the condition of g / L or less. By performing the reaction under the conditions lower than the solubility, it is not clear why titanium oxide having high photocatalytic activity is obtained, but when a base is reacted with a mixture of a titanium compound and a component other than the titanium compound and a solvent, It is conceivable that the hydroxide of the element constituting this component rarely dissolves in the solvent and remains, and that it is influenced by the uniform incorporation into the generated titanium hydroxide.
[0014]
The reaction is performed when the solubility of the hydroxide is 10 -4 As long as the condition is not more than g / L, the reaction can be carried out by appropriately selecting a solvent and adjusting pH, temperature and the like. In the case where water is used as a solvent and the solubility is adjusted by pH, the solubility of the hydroxide is 10% for each element. -4 The pH below g / L is shown below. As shown in FIGS. 1 to 5, the pH at this time can be obtained from a correlation diagram of pH-metal hydroxide solubility, and zinc hydroxide [Zn (OH) 2 ], The pH is 7.4 to 12.5 as shown in FIG. As an element other than zinc, for example, gallium hydroxide [Ga (OH) 3 ], The pH is 3.5 to 10.5 as shown in FIG. 2 and indium hydroxide [In (OH) 3 ], The pH is 4.2 to 11.8 as shown in FIG. 3, and the zirconium hydroxide [Zr (OH) 2 ・ 2H 2 O], as shown in FIG. 4, the pH is 2.5 or more, and iron hydroxide [Fe (OH) 3 ], The pH is 3.2 or more as shown in FIG. In addition, the solubility of the hydroxide is 10 for each element. -6 The same applies to a pH value of not more than g / L. Zinc hydroxide [Zn (OH) 2 ], PH 8.4 to 10.6 (FIG. 1), gallium hydroxide [Ga (OH) 3 ], The pH is 5.7 to 9.2 (FIG. 2) and the indium hydroxide [In (OH) 3 ], The pH is 5.2 to 9.8 (FIG. 3) and the zirconium hydroxide [Zr (OH) 2 ・ 2H 2 O], the pH is 3.5 to 12.5 (FIG. 4) and the iron hydroxide [Fe (OH) 3 ], The pH is 4.2 or more (FIG. 5).
[0015]
In addition, niobium hydroxide [Nb (OH) 5 ] At a wide range of pH (approximately 1 to 13). -4 For those having a g / L or less, the reaction can be carried out at any pH within this range. In this case, the pH of the reaction is preferably determined in consideration of the mixture of the titanium compound and the components other than the titanium compound and the solvent, and the ease of handling of the reaction product of the base with the mixture. The preferred pH when the element constituting the component is niobium is 3-5.
[0016]
The reaction is preferably performed at 90 ° C. or lower. When the reaction temperature is higher than 90 ° C., the photocatalytic activity of the obtained titanium oxide may decrease. The lower the reaction temperature is, the more preferable it is to obtain titanium oxide exhibiting higher photocatalytic activity. For example, the reaction temperature is preferably 60 ° C or lower, more preferably 40 ° C or lower. On the other hand, in order to maintain a low reaction temperature, the cooling cost becomes high, for example, a large amount of refrigerant is required. The reaction rate at this time is usually 90% or more. The reaction rate can be adjusted by selecting the type of solvent or changing the temperature, time, stirring conditions, and the like. This reaction rate indicates the rate at which the titanium compound was hydrolyzed by the reaction with the base and changed to titanium hydroxide.
[0017]
In the reaction, specifically, after water is put in a container with a cooling jacket, a mixture of the titanium compound and a component other than the titanium compound and water is added to this container while stirring, while maintaining the liquid temperature within a predetermined range. And a method of supplying a base so as to have a predetermined pH, or a mixture of a titanium compound and a component other than the titanium compound and water and a base in a tube with a cooling jacket capable of controlling the reaction temperature, at a predetermined pH. It can be carried out by a continuous supply method or the like while adjusting the respective amounts so as to be as follows.
[0018]
The product obtained by the reaction may be aged. Aging can be performed by a method of keeping the slurry containing the product at a constant temperature in the presence of a base. Aging may be performed, for example, by subjecting a solution containing a salt (eg, ammonium sulfate) produced by the reaction to solid-liquid separation from the mixture after the reaction, adding a base to the obtained solid, and maintaining the solid at a constant temperature. it can. By performing this aging, the titanium oxide obtained by sintering the product exhibits excellent activity against irradiation with visible light. Examples of the base used for aging include ammonia water and the like, and the concentration is usually 0.05% by weight or more and 50% by weight or less. The aging temperature is preferably 0 ° C. or higher, more preferably 10 ° C. or higher, and 110 ° C. or lower, further preferably 80 ° C. or lower. The aging time varies depending on the base concentration and the aging temperature and is not unique, but is usually 0.01 hours or more, preferably 0.5 hours or more, and is 60 hours or less, preferably 24 hours or less. The base used for ripening and the base used for the above-mentioned reaction may be of the same kind and the same concentration, different concentrations of the same kind, or different types.
[0019]
The total amount of base used in the above-mentioned reaction and optional aging may exceed the stoichiometric amount of base required to convert the titanium compound to titanium hydroxide in the presence of water. Preferably, for example, it is preferably at least 1.1 times the stoichiometric amount. Since the photocatalytic activity of the finally obtained titanium oxide tends to increase as the amount of the base used increases, it is more preferably 1.3 times or more. On the other hand, if the amount of the base is too large, the effect of improving the photocatalytic activity commensurate with the amount cannot be obtained. Therefore, the amount is suitably 20 times or less, more preferably 10 times or less.
[0020]
The slurry after the reaction or the slurry containing the product after aging is usually subjected to an operation of separating a solid. Separation can be performed by pressure filtration, vacuum filtration, centrifugation, decantation, or the like, or can be performed by a method in which the slurry is used to evaporate the liquid using a spray dryer or the like. The separated solid is washed and dried if necessary, and then fired. The firing is performed at a temperature of 300 ° C. or higher, preferably 350 ° C. or higher, 600 ° C. or lower, preferably 500 ° C. or lower, more preferably 450 ° C. or lower. If the firing temperature is too high, it becomes difficult to obtain titanium oxide having sufficient photocatalytic activity. The firing can be performed, for example, in a standing furnace, a tunnel furnace, a rotary furnace, or the like. Here, the method of calcining the solid after separating the solid in the slurry has been described.However, the product or the slurry containing the matured product is dried using a flash dryer such as a flash jet drier to produce the product. The product may be calcined without previously performing a solid-liquid separation operation on the slurry containing.
[0021]
The titanium oxide obtained by the above-described production method of the present invention usually has a crystal structure of an anatase type and exhibits high photocatalytic activity against irradiation with visible light. This titanium oxide also shows photocatalytic activity against ultraviolet light irradiation.
[0022]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.
Example 1
(Preparation of titanium oxide)
102 g of titanium oxysulfate hydrate (manufactured by Soegawa Rikagaku) was dissolved in 408 g of water to prepare an aqueous solution of titanium oxysulfate having a pH of about 1. To this aqueous solution of titanium oxysulfate, 1.21 g of zinc sulfate heptahydrate (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) was added and dissolved to obtain a mixed aqueous solution. The amount of zinc in the mixed aqueous solution was 0.01 mol times with respect to titanium.
[0023]
A pH electrode, a pH controller connected to the pH electrode and having a mechanism for supplying 25% by weight of aqueous ammonia (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) to constantly adjust the pH, and using a refrigerant were used. After 300 g of water was put into a 1 L flask having a cooling mechanism, the flask was cooled. The pH set value of the pH controller was set to 9, and the pH of the water was adjusted to the set value. While stirring at 400 rpm, 511.21 g of the mixed aqueous solution obtained above was added at 5 ml / min into the flask, and reacted with ammonia water supplied into the flask by a pH controller. During this time, the amount of 25% by weight aqueous ammonia supplied into the flask was 82.54 g.
[0024]
The pH of the liquid in the flask was pH 9.0 to 9.8 for 12 minutes after the addition of the mixed aqueous solution was started, and pH 8.9 to 9.2 from 12 minutes after the start of the addition to the end of the addition. . During that time, the liquid temperature in the flask was 1.1 to 6.2 ° C. The total amount of supplied ammonia water was 1.4 times the stoichiometric amount of the base required to convert titanium oxysulfate to titanium hydroxide.
[0025]
The obtained slurry was filtered, washed and dried, and the dried product was fired in air at 400 ° C. for 1 hour to obtain particulate titanium oxide. The titanium oxide was analyzed by an X-ray diffractometer (trade name “RAD-IIA”, manufactured by Rigaku Corporation). As a result, the crystal structure was anatase type.
[0026]
(Activity evaluation of titanium oxide)
A glass petri dish having a diameter of 5 cm was placed in a sealed glass reaction vessel having a diameter of 8 cm, a height of 10 cm, and a capacity of about 0.5 L, and 0.3 g of the particulate anatase-type titanium oxide obtained above was placed on the petri dish. I put it. The inside of the reaction vessel was filled with a mixed gas in which the volume ratio of oxygen and nitrogen was 1: 4, and 13.4 μmol of acetaldehyde was sealed. Then, visible light was irradiated from outside the reaction vessel. For irradiation with visible light, a light source device (trade name “Offical Molex® SX-UI500XQ”, manufactured by Ushio Inc.) equipped with a 500 W xenon lamp (trade name “Lanf UXL-500SX”, manufactured by Ushio Inc.) was applied to a wavelength of about 430 nm. A filter equipped with the following UV-cut filter (trade name "Y-45", made by Asahi Techno Glass) and a filter that cuts infrared light with a wavelength of about 830 nm or more (trade name "Super Coulter Filter", manufactured by Ushio Inc.) Was used as a light source. When acetaldehyde is decomposed by irradiation with visible light, carbon dioxide is generated. Therefore, the concentration of carbon dioxide is measured over time with a photoacoustic multi-gas monitor (model number “1312”, manufactured by INNOVA), and carbon dioxide calculated from the change in concentration is measured. The photocatalytic action of titanium oxide on acetaldehyde was evaluated based on the rate of formation of. The generation rate of carbon dioxide in this example was 31.2 μmol / h per 1 g of titanium oxide.
[0027]
Example 2
In a 1 L flask, 102 g of the same titanium oxysulfate hydrate used in Example 1 was dissolved in 408 g of water to prepare a titanium oxysulfate aqueous solution having a pH of about 1. Niobium hydrogen oxalate (manufactured by Mitsuwa Chemicals, Nb 2 O 5 0.39 g) was added and dissolved to prepare a mixed aqueous solution. The amount of niobium in this mixed aqueous solution was 0.001 mol times with respect to titanium.
[0028]
After 300 g of water was placed in the same 1-L flask used in [Preparation of Titanium Oxide] of Example 1, the flask was cooled. The pH set value of the pH controller was set to 4, and the pH of the water was adjusted to the set value. While stirring at 400 rpm, 510.39 g of the mixed aqueous solution obtained above was added at 5 ml / min, and reacted with ammonia water supplied to the flask by a pH controller.
[0029]
The pH of the liquid in the flask was pH 3.2 to 4.9 for 5 minutes after the start of the addition of the mixed aqueous solution, and was pH 3.8 to 4.3 from 5 minutes after the start of the addition to the end of the addition. . The liquid temperature in the flask at the start of the addition was 24 ° C, and the liquid temperature at the end of the addition was 26 ° C.
[0030]
The obtained slurry was held for 1 hour with stirring, then 25% by weight aqueous ammonia (special grade reagent, manufactured by Wako Pure Chemical Industries) was supplied, and the mixture was further stirred for 1 hour to mature the product. During this time, the temperature of the slurry was constant at 24 ° C. The total amount of aqueous ammonia supplied into the flask was 116 g, twice the stoichiometric amount of the base required to convert titanium oxysulfate to titanium hydroxide.
[0031]
The slurry containing the aged product is filtered, washed, and dried. The dried product is fired in air at 400 ° C. for 1 hour, and the fired product is washed and dried to obtain particulate anatase-type titanium oxide. Was.
[0032]
This titanium oxide was evaluated under the same conditions as in [Evaluation of activity of titanium oxide] in Example 1. The generation rate of carbon dioxide in this example was 27.6 μmol / h per 1 g of titanium oxide.
[0033]
Example 3
In a 1 L flask, 102 g of the same titanium oxysulfate hydrate used in Example 1 was dissolved in 238 g of water to prepare an aqueous solution of titanium oxysulfate having a pH of about 1. 0.15 g of indium nitrate trihydrate (manufactured by Kishida Chemical) was added to and dissolved in this aqueous solution of titanium oxysulfate, and then 46.43 g of a 31% hydrogen peroxide solution was added to obtain a red-purple mixed aqueous solution. . The amount of indium in this mixed aqueous solution was 0.001 mol times with respect to titanium.
[0034]
After 300 g of water was placed in the same 1-L flask used in [Preparation of Titanium Oxide] of Example 1, the flask was cooled. The pH set value of the pH controller was set to 6, and the pH of the water was adjusted to the set value. While stirring the content at 400 rpm, 386.58 g of the mixed aqueous solution obtained above was added to the flask at 5 ml / min, and reacted with ammonia water supplied into the flask by a pH controller.
[0035]
The pH of the liquid in the flask was 5.4 to 6.9 for 20 minutes after the addition of the mixed aqueous solution was started, and was 5.9 to 6.1 from 20 minutes after the start of the addition to the end of the addition. . The liquid temperature in the flask at the start of the addition was 24 ° C, and the liquid temperature at the end of the addition was 30 ° C.
[0036]
The obtained slurry was held for 1 hour and 10 minutes with stirring, and then 25% by weight aqueous ammonia (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) was supplied, followed by further stirring for 1 hour to mature the product. During this time, the temperature of the slurry was constant at 27 ° C. The total amount of aqueous ammonia supplied into the flask was 115 g, twice the stoichiometric amount of the base required to convert titanium oxysulfate to titanium hydroxide.
[0037]
The slurry containing the aged product is filtered, washed, and dried. The dried product is fired in air at 400 ° C. for 1 hour, and the fired product is washed and dried to obtain particulate anatase-type titanium oxide. Was.
[0038]
This titanium oxide was evaluated under the same conditions as in [Evaluation of activity of titanium oxide] in Example 1. The generation rate of carbon dioxide in this example was 20.1 μmol / h per 1 g of titanium oxide.
[0039]
Example 4
In a 1 L flask, 102 g of the same titanium oxysulfate hydrate used in Example 1 was dissolved in 158 g of water to prepare an aqueous solution of titanium oxysulfate having a pH of about 1. 0.15 g of zirconium sulfate hydrate (manufactured by Wako Pure Chemical Industries) is added to and dissolved in this aqueous solution of titanium oxysulfate, and then 81.36 g of 31% hydrogen peroxide is added to obtain a red-purple mixed aqueous solution. Was. The amount of zirconium in this mixed aqueous solution was 0.001 mol times with respect to titanium.
[0040]
After 300 g of water was placed in the same 1-L flask used in [Preparation of Titanium Oxide] of Example 1, the flask was cooled. The pH set value of the pH controller was set to 7, and the pH of the water was adjusted to the set value. While stirring the content at 400 rpm, 341.51 g of the mixed aqueous solution obtained above was added at 5 ml / min into the flask, and reacted with ammonia water supplied into the flask by a pH controller.
[0041]
The pH of the liquid in the flask was pH 6.1 to 8.2 for 17 minutes from the start of the addition of the mixed aqueous solution, and was pH 6.9 to 7.0 from 17 minutes after the start of the addition to the end of the addition. . The liquid temperature in the flask at the start of the addition was 23 ° C, and the liquid temperature at the end of the addition was 32 ° C.
[0042]
The obtained slurry was held for 1 hour with stirring, then 25% by weight aqueous ammonia (special grade reagent, manufactured by Wako Pure Chemical Industries) was supplied, and the mixture was further stirred for 1 hour to mature the product. During this time, the temperature of the slurry was constant at 28 ° C. The total amount of aqueous ammonia supplied into the flask was 115 g, twice the stoichiometric amount of the base required to convert titanium oxysulfate to titanium hydroxide.
[0043]
The slurry containing the aged product is filtered, washed, and dried. The dried product is fired in air at 400 ° C. for 1 hour, and the fired product is washed and dried to obtain particulate anatase-type titanium oxide. Was.
[0044]
This titanium oxide was evaluated under the same conditions as in [Evaluation of activity of titanium oxide] in Example 1. The generation rate of carbon dioxide in this example was 22.6 μmol / h per 1 g of titanium oxide.
[0045]
Example 5
In a 1 L flask, 102 g of the same titanium oxysulfate hydrate used in Example 1 was dissolved in 238 g of water to prepare an aqueous solution of titanium oxysulfate having a pH of about 1. 0.17 g of gallium nitrate hydrate (manufactured by Wako Pure Chemical Industries) is added and dissolved in this aqueous solution of titanium oxysulfate, and then 46.76 g of 31% hydrogen peroxide is added to obtain a red-purple mixed aqueous solution. Was. The amount of gallium in the mixed aqueous solution was 0.001 mol times with respect to titanium.
[0046]
After 300 g of water was placed in the same 1-L flask used in [Preparation of Titanium Oxide] of Example 1, the flask was cooled. The pH set value of the pH controller was set to 7, and the pH of the water was adjusted to the set value. While stirring the contents at 400 rpm, 386.93 g of the mixed aqueous solution obtained above was added at 5 ml / min, and reacted with ammonia water supplied to the flask by a pH controller.
[0047]
The pH of the liquid in the flask was 6.0 to 7.9 for 10 minutes after the addition of the mixed aqueous solution was started, and was 6.9 to 7.1 from 10 minutes after the start of the addition to the end of the addition. . The liquid temperature in the flask at the start of the addition was 25 ° C, and the liquid temperature at the end of the addition was 30 ° C.
[0048]
The obtained slurry was held for 1 hour with stirring, then 25% by weight aqueous ammonia (special grade reagent, manufactured by Wako Pure Chemical Industries) was supplied, and the mixture was further stirred for 1 hour to mature the product. During this time, the temperature of the slurry was constant at 29 ° C. The total amount of aqueous ammonia supplied into the flask was 115 g, twice the stoichiometric amount of the base required to convert titanium oxysulfate to titanium hydroxide.
[0049]
The slurry containing the aged product is filtered, washed, and dried. The dried product is fired in air at 400 ° C. for 1 hour, and the fired product is washed and dried to obtain particulate anatase-type titanium oxide. Was.
[0050]
This titanium oxide was evaluated under the same conditions as in [Evaluation of activity of titanium oxide] in Example 1. The generation rate of carbon dioxide in this example was 14.9 μmol / h per 1 g of titanium oxide.
[0051]
Comparative Example 1
The same 1 L flask used in [Preparation of Titanium Oxide] of Example 1 was charged with an aqueous solution of titanium oxysulfate prepared by dissolving 102 g of titanium oxysulfate hydrate (manufactured by Soegawa Rikagaku) in 408 g of water. While stirring at 400 rpm, 25% by weight aqueous ammonia (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) was supplied at 5 ml / min to react with an aqueous solution of titanium oxysulfate. The pH of the liquid in the flask was 0.7 for 1 minute after the start of the addition of the aqueous ammonia, and was 4 after the addition was completed. The liquid temperature in the flask at the start of the addition of the ammonia water was 62 ° C, and the liquid temperature at the end of the addition was 65 ° C. The amount of aqueous ammonia supplied into the flask was 58 g, which was one time the stoichiometric amount of the base required to convert titanium oxysulfate to titanium hydroxide.
[0052]
The slurry was filtered, washed and dried, and the obtained dried product was calcined in air at 400 ° C. for 1 hour to obtain particulate anatase-type titanium oxide.
[0053]
This titanium oxide was evaluated under the same conditions as in [Evaluation of activity of titanium oxide] in Example 1. The generation rate of carbon dioxide in this example was 0 μmol / h per 1 g of titanium oxide.
[0054]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the manufacturing method of this invention, the titanium oxide which shows the outstanding photocatalytic activity with irradiation of visible light can be obtained.
[Brief description of the drawings]
FIG. 1 is a correlation diagram of pH and solubility of zinc hydroxide.
FIG. 2 is a correlation diagram of pH and gallium hydroxide solubility.
FIG. 3 is a correlation diagram of pH and indium hydroxide solubility.
FIG. 4 is a correlation diagram of pH-zirconium hydroxide solubility.
FIG. 5 is a correlation diagram of pH-iron hydroxide solubility.

Claims (5)

チタン化合物と、IIa族元素、IIIa族元素、Va族元素、VIa族元素、VIIa族元素、VIII族元素、Ib族元素、IIb族元素、IIIb族元素、ランタノイド、ケイ素、ゲルマニウム、錫、鉛、アンチモン、ビスマス、ジルコニウムおよびハフニウムから選ばれる元素またはその化合物からなる第二成分と、溶媒とを混合し、この混合物に塩基を該第二成分を構成する該元素の水酸化物の溶解度が10−4g/L以下となる条件で反応させ、得られた固体を焼成することを特徴とする酸化チタンの製造方法。A titanium compound, a group IIa element, a group IIIa element, a group Va element, a group VIa element, a group VIIa element, a group VIII element, a group Ib element, a group IIb element, a group IIIb element, a lanthanoid, silicon, germanium, tin, lead, A second component consisting of an element selected from antimony, bismuth, zirconium and hafnium or a compound thereof and a solvent are mixed, and a base is added to the mixture to form a base having a solubility of 10 − of a hydroxide of the element constituting the second component. A method for producing titanium oxide, comprising reacting under conditions of 4 g / L or less and calcining the obtained solid. チタン化合物が、三塩化チタン、四塩化チタン、硫酸チタン、オキシ塩化チタンおよびオキシ硫酸チタンから選ばれる請求項1記載の方法。The method of claim 1, wherein the titanium compound is selected from titanium trichloride, titanium tetrachloride, titanium sulfate, titanium oxychloride and titanium oxysulfate. 第二成分が、亜鉛、ジルコニウム、ガリウム、インジウム、鉄およびニオブから選ばれる元素またはその化合物からなる請求項1または2記載の方法。3. The method according to claim 1, wherein the second component comprises an element selected from zinc, zirconium, gallium, indium, iron and niobium, or a compound thereof. 第二成分が、亜鉛およびニオブから選ばれる元素またはその化合物からなる請求項1または2記載の方法。3. The method according to claim 1, wherein the second component comprises an element selected from zinc and niobium or a compound thereof. 塩基がアンモニアである請求項1〜4のいずれか1項に記載の方法。The method according to any one of claims 1 to 4, wherein the base is ammonia.
JP2003006748A 2002-05-20 2003-01-15 Method of manufacturing titanium oxide Pending JP2004043282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006748A JP2004043282A (en) 2002-05-20 2003-01-15 Method of manufacturing titanium oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002144256 2002-05-20
JP2003006748A JP2004043282A (en) 2002-05-20 2003-01-15 Method of manufacturing titanium oxide

Publications (1)

Publication Number Publication Date
JP2004043282A true JP2004043282A (en) 2004-02-12

Family

ID=31719525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006748A Pending JP2004043282A (en) 2002-05-20 2003-01-15 Method of manufacturing titanium oxide

Country Status (1)

Country Link
JP (1) JP2004043282A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005051541A1 (en) * 2003-11-25 2005-06-09 National Institute Of Advanced Industrial Science And Technology Zirconia-doped titania photocatalyst powder and process for producing the same
WO2007037321A1 (en) 2005-09-29 2007-04-05 Sumitomo Metal Industries, Ltd. Titanium oxide photocatalyst, method for producing same and use thereof
JP2009291717A (en) * 2008-06-05 2009-12-17 Sumitomo Chemical Co Ltd Manufacturing method of tungsten oxide photocatalyst
CN114349719A (en) * 2022-01-06 2022-04-15 润泰化学(泰兴)有限公司 Preparation method of tetrahydrofurfuryl alcohol isooctanoate
JPWO2022138187A1 (en) * 2020-12-22 2022-06-30

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06345438A (en) * 1993-06-04 1994-12-20 Ishihara Sangyo Kaisha Ltd Production of super-fine powdery titanium dioxide containing iron
JPH07187676A (en) * 1993-12-27 1995-07-25 Titan Kogyo Kk Titanium dioxide fine powder and its production
JPH07275704A (en) * 1994-04-06 1995-10-24 Ishihara Sangyo Kaisha Ltd Photocatalyst
JPH09192496A (en) * 1996-01-12 1997-07-29 Matsushita Electric Works Ltd Photocatalyst and self-cleaning articles having the same
JPH09267037A (en) * 1996-04-01 1997-10-14 Titan Kogyo Kk Photocatalyst with titanium dioxide as base material and its production
JPH11244706A (en) * 1997-12-30 1999-09-14 Sakai Chem Ind Co Ltd Photocatalyst comprising anatase-type titanium oxide and its manufacture
JP2003160745A (en) * 2001-08-21 2003-06-06 Sustainable Titania Technology Inc Film-forming aqueous liquid having electroconductivity and photocatalytic property, its production method and structure equipped with film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06345438A (en) * 1993-06-04 1994-12-20 Ishihara Sangyo Kaisha Ltd Production of super-fine powdery titanium dioxide containing iron
JPH07187676A (en) * 1993-12-27 1995-07-25 Titan Kogyo Kk Titanium dioxide fine powder and its production
JPH07275704A (en) * 1994-04-06 1995-10-24 Ishihara Sangyo Kaisha Ltd Photocatalyst
JPH09192496A (en) * 1996-01-12 1997-07-29 Matsushita Electric Works Ltd Photocatalyst and self-cleaning articles having the same
JPH09267037A (en) * 1996-04-01 1997-10-14 Titan Kogyo Kk Photocatalyst with titanium dioxide as base material and its production
JPH11244706A (en) * 1997-12-30 1999-09-14 Sakai Chem Ind Co Ltd Photocatalyst comprising anatase-type titanium oxide and its manufacture
JP2003160745A (en) * 2001-08-21 2003-06-06 Sustainable Titania Technology Inc Film-forming aqueous liquid having electroconductivity and photocatalytic property, its production method and structure equipped with film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005051541A1 (en) * 2003-11-25 2005-06-09 National Institute Of Advanced Industrial Science And Technology Zirconia-doped titania photocatalyst powder and process for producing the same
WO2007037321A1 (en) 2005-09-29 2007-04-05 Sumitomo Metal Industries, Ltd. Titanium oxide photocatalyst, method for producing same and use thereof
US7858201B2 (en) 2005-09-29 2010-12-28 Sumitomo Metal Industries, Ltd. Titanium oxide photocatalyst, method for producing same and use thereof
JP4803180B2 (en) * 2005-09-29 2011-10-26 住友金属工業株式会社 Titanium oxide photocatalyst, its production method and use
JP2009291717A (en) * 2008-06-05 2009-12-17 Sumitomo Chemical Co Ltd Manufacturing method of tungsten oxide photocatalyst
JPWO2022138187A1 (en) * 2020-12-22 2022-06-30
WO2022138187A1 (en) * 2020-12-22 2022-06-30 Dic株式会社 Titanium oxide composition
JP7235162B2 (en) 2020-12-22 2023-03-08 Dic株式会社 Titanium oxide composition
CN114349719A (en) * 2022-01-06 2022-04-15 润泰化学(泰兴)有限公司 Preparation method of tetrahydrofurfuryl alcohol isooctanoate

Similar Documents

Publication Publication Date Title
Grabowska Selected perovskite oxides: Characterization, preparation and photocatalytic properties—A review
US7763149B2 (en) Solar photocatalysis using transition-metal oxides combining d0 and d6 electron configurations
US6884753B2 (en) Method for producing ceramic dispersion composition
JP4755988B2 (en) Metal oxide solid solution, its production and use
US6726891B2 (en) Titanium oxide production process
KR102372694B1 (en) Titanium oxide fine particles and method for producing same
JPH1095617A (en) Plate-shaped titanium oxide, production thereof, and anti-sunburn cosmetic material, resin composition, coating material, adsorbent, ion exchanging resin, complex oxide precursor containing the same
CN105618050B (en) Visible light-responded composite catalyst of organic pollution and preparation method thereof in a kind of degraded brine waste
WO2008010585A1 (en) Process for producing composite metal oxide
JP4269621B2 (en) Method for producing titanium oxide
JP2002126517A (en) Photocatalyst, method for producing the same, and photocatalytic coating agent containing the same
JP4078479B2 (en) Method for producing titanium oxide
JP2004043282A (en) Method of manufacturing titanium oxide
CN105883910A (en) Preparation method and product for perovskite SrTiO3 porous nano particles
JP2003190811A (en) Photocatalytic body, method for manufacturing the same, and photocatalytic body coating agent obtained by using the same
JP2007268523A (en) Photocatalyst dispersion
JP4408349B2 (en) Method for producing photocatalyst-supported porous gel
KR20070092627A (en) Photocatalyst dispersion
JP4265685B2 (en) Photocatalyst body, method for producing the same, and photocatalyst body coating agent using the same
JP2003221230A (en) Ceramic dispersion and its production method
JP3981757B2 (en) Photocatalyst body and photocatalyst body coating agent using the same
JP3136339B2 (en) Titanium oxide photocatalyst and method for producing the same
JP2007069093A (en) Rutile type titanium dioxide ultrafine particle photocatalyst
JP4729681B2 (en) Method for producing perovskite complex oxide
JP3138738B1 (en) Photocatalyst and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080129

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020