JPH07275704A - Photocatalyst - Google Patents

Photocatalyst

Info

Publication number
JPH07275704A
JPH07275704A JP6093718A JP9371894A JPH07275704A JP H07275704 A JPH07275704 A JP H07275704A JP 6093718 A JP6093718 A JP 6093718A JP 9371894 A JP9371894 A JP 9371894A JP H07275704 A JPH07275704 A JP H07275704A
Authority
JP
Japan
Prior art keywords
titanium oxide
photocatalyst
vanadium compound
vanadium
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6093718A
Other languages
Japanese (ja)
Other versions
JP3579082B2 (en
Inventor
Yoichi Takaoka
陽一 高岡
Masanori Tomonari
雅則 友成
Yoshiki Kinoshita
義樹 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP09371894A priority Critical patent/JP3579082B2/en
Publication of JPH07275704A publication Critical patent/JPH07275704A/en
Application granted granted Critical
Publication of JP3579082B2 publication Critical patent/JP3579082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce a titanium oxide photocatalyst by incorporating the titanium oxide and vanadium compd, which catalyst is improved in photocatalyst function of titanium oxide, capable of efficiently removing a material exerting adverse effect on human body or living environment and also hardly causes pollution to environment even if the catalyst is disposed of. CONSTITUTION:The photocatalyst is composed by incorporating the titanium oxide and vanadium compd. In this case, the vanadium compd. is deposited on the surface of titanium oxide particles, and, 0.001-10wt.% vanadium compd. expressed in terms of V is incorporated per TiO2 wt. basing on the titanium oxide. Moreover, 0.5-5000mug vanadium compd. expressed in terms of V is deposited per 1m<2> surface area of the titanium oxide particles. In this way, the photocatalyst function of the titanium oxide is improved. Therefore, this catalyst can efficiently remove the material exerting adverse effect on the human body or the living environment, can be utilized as a deodorant and/or a disinfectant, and also hardly causing pollution to environment even if the catalyst is disposed of.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は優れた光触媒機能を有す
る酸化チタン光触媒体に関する。
FIELD OF THE INVENTION The present invention relates to a titanium oxide photocatalyst having an excellent photocatalytic function.

【0002】[0002]

【従来の技術】酸化チタンにそのバンドギャップ以上の
エネルギーを持つ波長の光を照射すると光励起により伝
導帯に電子を、価電子帯に正孔を生じる。この光励起に
より生じた電子の持つ強い還元力や正孔の持つ強い酸化
力は、有害物質の分解・浄化、アンモニア、アルデヒド
類、アミン類などの悪臭ガスの脱臭のほか、水の分解、
細菌、放線菌、菌類、藻類などの殺菌・殺藻などの光触
媒反応に利用されている。たとえば、特公平2−985
0号公報には、酸化チタンなどの光触媒を用いて廃棄物
中の有害物質を分解し、浄化することが記載されてい
る。また、特公平4−78326号公報には、酸化チタ
ンなどの光触媒を用いてトイレのし尿臭、ペットの臭
い、たばこの臭い、調理臭、体臭などを脱臭することが
記載されている。さらに、特公平4−29393号公報
には、光照射により酸化チタンなどの光触媒に生起した
所定電圧を細胞に接触印可して細胞を殺すことが記載さ
れている。
2. Description of the Related Art When titanium oxide is irradiated with light having a wavelength having an energy larger than its band gap, photoexcitation produces electrons in the conduction band and holes in the valence band. The strong reducing power of electrons and the strong oxidizing power of holes generated by this photoexcitation are due to decomposition and purification of harmful substances, deodorization of malodorous gases such as ammonia, aldehydes and amines, and decomposition of water.
It is used for photocatalytic reactions such as sterilization / algicidal of bacteria, actinomycetes, fungi, and algae. For example, Japanese Patent Publication 2-985
Japanese Unexamined Patent Application Publication No. 0-202 describes that a photocatalyst such as titanium oxide is used to decompose and purify harmful substances in waste. Further, Japanese Patent Publication No. 4-78326 describes that a photocatalyst such as titanium oxide is used to deodorize toilet excrement odor, pet odor, cigarette odor, cooking odor, body odor, and the like. Furthermore, Japanese Patent Publication No. 4-29393 describes that a predetermined voltage generated on a photocatalyst such as titanium oxide by light irradiation is applied to cells to kill them.

【0003】[0003]

【発明が解決しようとする課題】前記の光触媒反応に用
いる光触媒体は、光触媒反応の処理時間を短縮したり、
光触媒反応に用いる装置を小型化したりするため、一層
優れた光触媒機能を有する光触媒体が嘱望されている
が、充分満足できる光触媒体はない。
The photocatalyst used in the above photocatalytic reaction shortens the processing time of the photocatalytic reaction,
A photocatalyst having a more excellent photocatalytic function has been desired in order to downsize a device used for the photocatalytic reaction, but no photocatalyst which is sufficiently satisfactory is available.

【0004】[0004]

【課題を解決するための手段】本発明者らは、優れた光
触媒機能を有する酸化チタン光触媒体を得るべく研究し
た結果、(1)酸化チタンにバナジウム化合物を含有さ
せると、酸化チタンの光触媒機能が向上すること、
(2)酸化チタン粒子の表面にバナジウム化合物を担持
すると、酸化チタンの光触媒機能がさらに向上すること
などを見出し、本発明を完成した。すなわち、本発明は
優れた光触媒機能を有する酸化チタン光触媒体を提供す
ることにある。
As a result of research to obtain a titanium oxide photocatalyst having an excellent photocatalytic function, the present inventors have found that (1) when a vanadium compound is contained in titanium oxide, the photocatalytic function of titanium oxide is obtained. Can be improved,
(2) The present invention has been completed by finding that the photocatalytic function of titanium oxide is further improved by supporting a vanadium compound on the surface of titanium oxide particles. That is, the present invention is to provide a titanium oxide photocatalyst having an excellent photocatalytic function.

【0005】本発明は、酸化チタンとバナジウム化合物
とを含有してなる光触媒体である。本発明の光触媒体
は、酸化チタンとバナジウム化合物との単なる混合物、
酸化チタン粒子の内部にバナジウム化合物が取り込まれ
ている状態を保持した粒子、酸化チタン粒子の表面にバ
ナジウム化合物が担持されている状態を保持した粒子が
好ましい。本発明において、酸化チタンとはアナタース
型酸化チタン、ルチル型酸化チタン、無定形酸化チタ
ン、メタチタン酸、オルトチタン酸などの各種の酸化チ
タンあるいは水酸化チタン、含水酸化チタンを意味す
る。酸化チタンの平均粒子径は、Scherrerの式
より算出して、1〜500nm、好ましくは5〜250
nm、もっとも好ましくは5〜50nmである。また、
本発明において、バナジウム化合物は、バナジウムの酸
化物、水酸化物、硫酸塩、ハロゲン化物、硝酸塩、アシ
ド錯化合物やバナジウム酸塩、さらにはバナジウムイオ
ンを含む。バナジウム化合物の含有量は、対象とする光
触媒反応により任意に変えられるが、酸化チタンのTi
2 重量基準に対して、バナジウム化合物をV基準に換
算して0.0005〜10重量%、好ましくは0.00
1〜5重量%、より好ましくは0.001〜3重量%、
もっとも好ましくは0.001〜1重量%である。バナ
ジウム化合物が前記範囲より少なかったり、また逆に多
かったりすると光触媒機能が低下する傾向にある。
The present invention is a photocatalyst containing titanium oxide and a vanadium compound. The photocatalyst of the present invention is a mere mixture of titanium oxide and a vanadium compound,
A particle in which the vanadium compound is retained inside the titanium oxide particles and a particle in which the vanadium compound is retained on the surface of the titanium oxide particles are preferable. In the present invention, titanium oxide means various titanium oxides such as anatase type titanium oxide, rutile type titanium oxide, amorphous titanium oxide, metatitanic acid, orthotitanic acid, etc., or titanium hydroxide and hydrous titanium oxide. The average particle size of titanium oxide is 1 to 500 nm, preferably 5 to 250, calculated from Scherrer's formula.
nm, most preferably 5 to 50 nm. Also,
In the present invention, the vanadium compounds include vanadium oxides, hydroxides, sulfates, halides, nitrates, acid complex compounds and vanadate salts, and further vanadium ions. The content of the vanadium compound can be arbitrarily changed depending on the target photocatalytic reaction.
Relative to O 2 by weight, 0.0005% by weight in terms of the vanadium compound to V reference, preferably 0.00
1 to 5% by weight, more preferably 0.001 to 3% by weight,
Most preferably, it is 0.001 to 1% by weight. If the vanadium compound content is less than the above range, or vice versa, the photocatalytic function tends to deteriorate.

【0006】本発明においては、光触媒体に含まれるバ
ナジウム化合物は、酸化チタン粒子の表面に担持されて
いる状態がもっとも好ましく、この場合のバナジウム化
合物の担持量は酸化チタン粒子の表面積1m2 当たり、
バナジウム化合物をV基準に換算して0.05〜500
0μg、好ましくは0.1〜3000μg、より好まし
くは0.1〜2000μg、もっとも好ましくは0.3
〜1000μgである。バナジウム化合物が前記範囲よ
り少なかったり、また逆に多かったりすると光触媒機能
が低下する傾向にある。
In the present invention, the vanadium compound contained in the photocatalyst is most preferably supported on the surface of the titanium oxide particles. In this case, the supported amount of the vanadium compound is 1 m 2 of the surface area of the titanium oxide particles,
Vanadium compound converted to V standard 0.05 to 500
0 μg, preferably 0.1-3000 μg, more preferably 0.1-2000 μg, most preferably 0.3
~ 1000 μg. If the vanadium compound content is less than the above range, or vice versa, the photocatalytic function tends to deteriorate.

【0007】本発明の酸化チタンとバナジウム化合物と
を含有した光触媒体は種々の方法によって得ることがで
きる。たとえば、酸化チタンとバナジウム化合物とを
機械的に混合する方法、硫酸チタニル、塩化チタン、
有機チタン化合物などのチタン化合物をバナジウム化合
物の存在下に、必要に応じてさらに核形成用種子の存在
下に、チタン化合物を加水分解あるいは中和する方法、
バナジウム化合物の溶液に酸化チタン粒子あるいは酸
化チタン粒子を保持した支持体を浸漬する方法、酸化
チタン粒子の懸濁液あるいは酸化チタン粒子を保持した
支持体を入れた液にバナジウム化合物を添加し、バナジ
ウム化合物を中和する方法などがあるが、これらの方法
は、優れた特性のものが得られるため好ましいものであ
る。前記の、の方法によると、酸化チタン粒子の表
面にバナジウム化合物を担持できる。前記の方法に用い
るバナジウム化合物としては、たとえば、バナジウムの
硫酸塩、塩化物、硝酸塩、バナジウム酸塩などの水可溶
性バナジウム化合物が好ましい。また、中和に用いるア
ルカリとしては、たとえば、水酸化ナトリウム、水酸化
カリウム、炭酸アンモニウム、アンモニア、アミン類な
ど種々のアルカリが挙げられる。
The photocatalyst containing the titanium oxide and the vanadium compound of the present invention can be obtained by various methods. For example, a method of mechanically mixing titanium oxide and a vanadium compound, titanyl sulfate, titanium chloride,
A method of hydrolyzing or neutralizing a titanium compound such as an organic titanium compound in the presence of a vanadium compound, and optionally in the presence of seeds for nucleation, in the presence of a vanadium compound,
Method of immersing titanium oxide particles or a support holding titanium oxide particles in a solution of a vanadium compound, adding a vanadium compound to a suspension of titanium oxide particles or a liquid containing a support holding titanium oxide particles, vanadium There are methods for neutralizing the compound, but these methods are preferable because excellent characteristics can be obtained. According to the above method, the vanadium compound can be supported on the surface of the titanium oxide particles. The vanadium compound used in the above method is preferably a water-soluble vanadium compound such as a vanadium sulfate, chloride, nitrate or vanadate. Examples of the alkali used for neutralization include various alkalis such as sodium hydroxide, potassium hydroxide, ammonium carbonate, ammonia and amines.

【0008】前記、の方法において用いる酸化チタ
ン粒子は種々の公知の方法で得ることができる。その方
法としては、たとえば、(i)硫酸チタニル、塩化チタ
ン、有機チタン化合物などのチタン化合物を、必要に応
じて核形成用種子の存在下に、加水分解する方法、(i
i)硫酸チタニル、塩化チタン、有機チタン化合物など
のチタン化合物に、必要に応じて核形成用種子の存在下
に、アルカリを添加し、中和する方法、(iii)塩化
チタン、有機チタン化合物などを気相酸化する方法、
(iv)前記(i)、(ii)、(iii)の方法で得
た酸化チタンを焼成、あるいは、酸化チタンの懸濁液
を、必要に応じて酸またはアルカリを加え、水熱処理す
る方法などがあり、前記(i)、(ii)、(iv)の
方法で得られた酸化チタンを用いると優れた光触媒機能
を有する光触媒体が得られるため好ましい。
The titanium oxide particles used in the above method can be obtained by various known methods. As the method, for example, (i) a method of hydrolyzing a titanium compound such as titanyl sulfate, titanium chloride, or an organic titanium compound in the presence of seeds for nucleation, if necessary, (i
i) A method of adding an alkali to a titanium compound such as titanyl sulfate, titanium chloride, or an organic titanium compound in the presence of seeds for nucleation, if necessary, and (iii) titanium chloride, an organic titanium compound, or the like. Gas phase oxidation,
(Iv) A method in which the titanium oxide obtained by the method of (i), (ii), or (iii) above is calcined, or a suspension of titanium oxide is hydrothermally treated by adding an acid or an alkali, if necessary. Therefore, it is preferable to use the titanium oxide obtained by the methods (i), (ii), and (iv) because a photocatalyst having an excellent photocatalytic function can be obtained.

【0009】前記の〜の方法において得られた生成
物を本発明の光触媒体として用いることができるが、必
要に応じて、該生成物を分別し、洗浄し、乾燥あるいは
焼成してもよい。分別は通常の濾過や傾斜法などの方法
によって行うことができる。乾燥は任意の温度で行うこ
とができるが、100〜200℃の温度が適当である。
焼成の温度は200〜800℃の温度が適当である。な
お、本発明の方法においては、バナジウム化合物、チタ
ン化合物、アルカリなどの濃度および添加速度、加水分
解反応や中和反応の温度、分散液中の酸化チタンの濃度
などの条件は、特に制限がなく適宜設定することができ
る。
The product obtained by any one of the above methods (1) to (2) can be used as the photocatalyst of the present invention. If necessary, the product may be separated, washed, dried or calcined. Fractionation can be performed by a method such as ordinary filtration or decantation. The drying can be performed at any temperature, but a temperature of 100 to 200 ° C is suitable.
A suitable firing temperature is 200 to 800 ° C. In the method of the present invention, conditions such as concentration and addition rate of vanadium compound, titanium compound, alkali, temperature of hydrolysis reaction or neutralization reaction, concentration of titanium oxide in the dispersion liquid are not particularly limited. It can be set appropriately.

【0010】本発明の光触媒体を、有機物質の合成反応
や有害物質の分解反応などの種々の光触媒反応に用いる
には、処理対象物質の存在下、該光触媒体にそのバンド
ギャップ以上のエネルギーを持つ波長の光を照射する。
本発明の光触媒体は、使用場面に応じて、溶媒に懸濁し
た状態、支持体に保持あるいは被覆した状態、該光触媒
体を粉末の状態、あるいは該粉末を粉砕した状態、さら
には、該粉末を成形した状態で用いることもできる。酸
化チタンの光触媒反応により分解あるいは酸化して除去
する有害物質としては、人体や生活環境に悪影響を及ぼ
す物質やその可能性がある物質であり、たとえば、種々
の生物学的酸素要求物質、大気汚染物質などの環境汚染
物質や除草剤、殺菌剤、殺虫剤、殺線虫剤などの種々の
農薬などの物質、細菌、放線菌、菌類、藻類、カビ類な
どの微生物などが挙げられる。環境汚染物質としては、
有機ハロゲン化合物、有機リン化合物やそれ以外の有機
化合物、窒素化合物、硫黄化合物、シアン化合物、クロ
ム化合物などの無機化合物が挙げられる。有機ハロゲン
化合物としては、具体的には、ポリ塩化ビフェニル、フ
ロン、トリハロメタン、トリクロロエチレン、テトラク
ロロエチレンが例示できる。有機ハロゲン化合物、有機
リン化合物以外の有機物質としては、具体的には、界面
活性剤や油類などの炭化水素類、アルデヒド類、メルカ
プタン類、アルコール類、アミン類、アミノ酸、蛋白質
が例示できる。また、窒素化合物としては、具体的に
は、アンモニア、窒素酸化物が例示できる。バンドギャ
ップ以上のエネルギーを持つ波長の光としては、紫外線
を含有した光が好ましく、たとえば、太陽光や蛍光灯、
ブラックライト、ハロゲンランプ、キセノンフラッシュ
ランプ、水銀灯などの光を用いることができる。特に3
00〜400nmの近紫外線を含有した光が好ましい。
光の照射量や照射時間などは処理対象物質の量などによ
って適宜設定できる。
In order to use the photocatalyst of the present invention for various photocatalytic reactions such as a synthetic reaction of an organic substance and a decomposition reaction of a harmful substance, the photocatalyst is supplied with energy above its band gap in the presence of a substance to be treated. Irradiate with the light of its own wavelength.
The photocatalyst of the present invention may be in a state of being suspended in a solvent, being held or coated on a support, being in the form of powder of the photocatalyst, or being in the form of crushed powder, and further, the powder depending on the use scene. It can also be used in a molded state. Hazardous substances that are decomposed or oxidized by the photocatalytic reaction of titanium oxide and removed are substances that may adversely affect the human body and living environment, and substances that may possibly be such substances. For example, various biological oxygen-requiring substances and air pollution. Examples include environmental pollutants such as substances, substances such as herbicides, fungicides, insecticides, nematicides, and various other agricultural chemicals, and microorganisms such as bacteria, actinomycetes, fungi, algae, and molds. As environmental pollutants,
Examples thereof include organic halogen compounds, organic phosphorus compounds and other organic compounds, nitrogen compounds, sulfur compounds, cyan compounds, and chromium compounds. Specific examples of the organic halogen compound include polychlorinated biphenyl, freon, trihalomethane, trichloroethylene, and tetrachloroethylene. Specific examples of organic substances other than organic halogen compounds and organic phosphorus compounds include hydrocarbons such as surfactants and oils, aldehydes, mercaptans, alcohols, amines, amino acids, and proteins. Specific examples of the nitrogen compound include ammonia and nitrogen oxides. As the light having a wavelength having an energy of a band gap or more, light containing ultraviolet rays is preferable, for example, sunlight or a fluorescent lamp,
Light such as a black light, a halogen lamp, a xenon flash lamp, or a mercury lamp can be used. Especially 3
Light containing near-ultraviolet rays of 00 to 400 nm is preferable.
The irradiation amount and irradiation time of light can be appropriately set depending on the amount of the substance to be treated.

【0011】[0011]

【実施例】【Example】

実施例1 80g/lの硫酸チタニルの水溶液1リットルを85℃
の温度に加熱し3時間保持して、硫酸チタニルを加水分
解した。このようにして得られた加水分解生成物を濾過
し、洗浄した後、水に懸濁させ、TiO2 に換算して5
0g/lの懸濁液とした。次いで、前記の懸濁液に硝酸
水溶液を添加して液のpHを1.0に調整した後、該懸
濁液をオートクレーブに入れ、飽和蒸気圧下、180℃
の温度で13時間水熱処理した。この後、得られた生成
物を濾過し、洗浄し、乾燥し、次いで、500℃の温度
で2時間焼成して、酸化チタン(試料1)を得た。な
お、試料1の比表面積は51.5m2 /gであり、アナ
タース型結晶を有しており、Scherrerの式から
求めた平均粒子径は18.2nmであった。前記の試料
1の酸化チタン10gを水に懸濁させ、TiO2 に換算
して100g/lの懸濁液とした。次いで、前記の懸濁
液に攪拌下、バナジウム酸アンモニウム(NH4
3 )0.69mgを溶解した水溶液を添加し、16時
間攪拌した後、濾過し、洗浄し、乾燥して、本発明のバ
ナジウム化合物を含有した酸化チタン光触媒体(試料
A)を得た。この試料Aは、酸化チタンのTiO2 重量
基準に対して、V基準に換算して0.003重量%のバ
ナジウム化合物を含有しており、酸化チタン粒子の表面
積1m2 当たりのバナジウム化合物の担持量はV基準に
換算して0.58μgであった。
Example 1 1 liter of an aqueous solution of 80 g / l titanyl sulfate at 85 ° C.
The mixture was heated to the temperature of and maintained for 3 hours to hydrolyze the titanyl sulfate. The hydrolysis product thus obtained is filtered, washed, suspended in water, and converted to TiO 2 to give 5
The suspension was 0 g / l. Next, a nitric acid aqueous solution was added to the above suspension to adjust the pH of the solution to 1.0, and then the suspension was put into an autoclave and kept at 180 ° C. under saturated vapor pressure.
Was hydrothermally treated at the temperature of 13 hours. After this time, the product obtained was filtered, washed, dried and then calcined at a temperature of 500 ° C. for 2 hours to obtain titanium oxide (Sample 1). Sample 1 had a specific surface area of 51.5 m 2 / g, had anatase type crystals, and had an average particle diameter of 18.2 nm obtained from Scherrer's equation. 10 g of the titanium oxide of the sample 1 was suspended in water to obtain a suspension of 100 g / l in terms of TiO 2 . Next, ammonium vanadate (NH 4 V
An aqueous solution in which 0.63 mg of O 3 ) was dissolved was added, and the mixture was stirred for 16 hours, then filtered, washed, and dried to obtain a titanium oxide photocatalyst body (Sample A) containing the vanadium compound of the present invention. This sample A contains 0.003% by weight of vanadium compound in terms of V standard, based on the TiO 2 weight standard of titanium oxide, and the loading amount of vanadium compound per 1 m 2 of surface area of titanium oxide particles. Was 0.58 μg in terms of V standard.

【0012】実施例2 実施例1において、バナジウム酸アンモニウム(NH4
VO3 )6.89mgを溶解した水溶液を用いたこと以
外は、実施例1と同様に処理して、本発明のバナジウム
化合物を含有した酸化チタン光触媒体(試料B)を得
た。この試料Bは、酸化チタンのTiO2 重量基準に対
して、V基準に換算して0.03重量%のバナジウム化
合物を含有しており、酸化チタン粒子の表面積1m2
たりのバナジウム化合物の担持量はV基準に換算して
5.83μgであった。
Example 2 In Example 1, ammonium vanadate (NH 4
A titanium oxide photocatalyst body (sample B) containing the vanadium compound of the present invention was obtained by the same treatment as in Example 1 except that an aqueous solution in which 6.89 mg of VO 3 ) was dissolved was used. This sample B contains 0.03% by weight of vanadium compound in terms of V standard with respect to TiO 2 weight standard of titanium oxide, and the amount of vanadium compound supported per 1 m 2 of surface area of titanium oxide particles. Was 5.83 μg in terms of V standard.

【0013】実施例3 実施例1において、バナジウム酸アンモニウム(NH4
VO3 )68.9mgを溶解した水溶液を用いたこと以
外は、実施例1と同様に処理して、本発明のバナジウム
化合物を含有した酸化チタン光触媒体(試料C)を得
た。この試料Cは、酸化チタンのTiO2 重量基準に対
して、V基準に換算して0.3重量%のバナジウム化合
物を含有しており、酸化チタン粒子の表面積1m2 当た
りのバナジウム化合物の担持量はV基準に換算して5
8.3μgであった。
Example 3 In Example 1, ammonium vanadate (NH 4
A titanium oxide photocatalyst body (sample C) containing the vanadium compound of the present invention was obtained by the same treatment as in Example 1 except that an aqueous solution in which 68.9 mg of VO 3 ) was dissolved was used. This sample C contains 0.3% by weight of vanadium compound calculated on the basis of V based on TiO 2 weight of titanium oxide, and the amount of vanadium compound supported per 1 m 2 of surface area of titanium oxide particles. Is 5 converted to V standard
It was 8.3 μg.

【0014】実施例4 前記の試料1の酸化チタン10gを、バナジウム酸アン
モニウム(NH4 VO3 )6.89mgを溶解した水溶
液に浸漬し、次いで、蒸発乾固し、さらに、110℃の
温度で乾燥して、本発明のバナジウム化合物を含有した
酸化チタン光触媒体(試料D)を得た。この試料Dは、
酸化チタンのTiO2 重量基準に対して、V基準に換算
して0.03重量%のバナジウム化合物を含有してお
り、酸化チタン粒子の表面積1m2 当たりのバナジウム
化合物の担持量はV基準に換算して5.83μgであっ
た。
Example 4 10 g of titanium oxide of the above-mentioned sample 1 was immersed in an aqueous solution in which 6.89 mg of ammonium vanadate (NH 4 VO 3 ) was dissolved, then evaporated to dryness, and further at a temperature of 110 ° C. After drying, a titanium oxide photocatalyst containing the vanadium compound of the present invention (Sample D) was obtained. This sample D is
It contains 0.03% by weight of vanadium compound in terms of V based on TiO 2 weight of titanium oxide, and the supported amount of vanadium compound per 1 m 2 of surface area of titanium oxide particles is converted in V basis. It was 5.83 μg.

【0015】実施例5 前記の実施例4で得られた試料Dを、200℃の温度で
3時間焼成して、本発明のバナジウム化合物を含有した
酸化チタン光触媒体(試料E)を得た。この試料Eは、
酸化チタンのTiO2 重量基準に対して、V基準に換算
して0.03重量%のバナジウム化合物を含有してい
た。
Example 5 Sample D obtained in Example 4 above was calcined at a temperature of 200 ° C. for 3 hours to obtain a titanium oxide photocatalyst body (sample E) containing the vanadium compound of the present invention. This sample E is
The vanadium compound was contained in an amount of 0.03% by weight in terms of V standard based on the TiO 2 weight standard of titanium oxide.

【0016】実施例6 前記の実施例4で得られた試料Dを、300℃の温度で
3時間焼成して、本発明のバナジウム化合物を含有した
酸化チタン光触媒体(試料F)を得た。この試料Fは、
酸化チタンのTiO2 重量基準に対して、V基準に換算
して0.03重量%のバナジウム化合物を含有してい
た。
Example 6 Sample D obtained in Example 4 above was calcined at a temperature of 300 ° C. for 3 hours to obtain a titanium oxide photocatalyst body (sample F) containing the vanadium compound of the present invention. This sample F is
The vanadium compound was contained in an amount of 0.03% by weight in terms of V standard based on the TiO 2 weight standard of titanium oxide.

【0017】実施例7 前記の実施例4で得られた試料Dを、500℃の温度で
3時間焼成して、本発明のバナジウム化合物を含有した
酸化チタン光触媒体(試料G)を得た。この試料Gは、
酸化チタンのTiO2 重量基準に対して、V基準に換算
して0.03重量%のバナジウム化合物を含有してい
た。
Example 7 Sample D obtained in Example 4 above was calcined at a temperature of 500 ° C. for 3 hours to obtain a titanium oxide photocatalyst body (sample G) containing the vanadium compound of the present invention. This sample G is
The vanadium compound was contained in an amount of 0.03% by weight in terms of V standard based on the TiO 2 weight standard of titanium oxide.

【0018】比較例1 実施例1において得られた試料1の酸化チタンを比較試
料Hとして用いた。
Comparative Example 1 The titanium oxide of Sample 1 obtained in Example 1 was used as Comparative Sample H.

【0019】実施例および比較例で得られた試料(A〜
H)の光触媒機能を以下のようにして調べた。各試料
0.1gを純水に分散させ、TiO2 に換算して4g/
lの懸濁液とした。これらの懸濁液25mlに2−プロ
パノール25μlを添加した後、ブラックライト(ピー
ク波長365nm)を2時間照射して、2−プロパノー
ルの光触媒反応を行った。光量は2mW/cm2 であっ
た。反応前の2−プロパノールの濃度と反応後の2−プ
ロパノールの濃度から各々の試料による分解速度を算出
した。その結果を表1に示す。この表から明らかなよう
に、本発明の酸化チタン光触媒体は光触媒機能に優れて
いることがわかった。また、本発明の酸化チタン光触媒
体は熱による光触媒機能の劣化が少ないため、高温度で
の光触媒反応に用いることができ、また、本発明の酸化
チタン光触媒体を加熱して支持体に接着させることがで
きる。
Samples obtained in Examples and Comparative Examples (A to
The photocatalytic function of H) was investigated as follows. Disperse 0.1 g of each sample in pure water and convert to TiO 2 4 g /
l of suspension. After 25 μl of 2-propanol was added to 25 ml of these suspensions, black light (peak wavelength 365 nm) was irradiated for 2 hours to carry out a photocatalytic reaction of 2-propanol. The light intensity was 2 mW / cm 2 . The decomposition rate of each sample was calculated from the concentration of 2-propanol before the reaction and the concentration of 2-propanol after the reaction. The results are shown in Table 1. As is clear from this table, it was found that the titanium oxide photocatalyst of the present invention has an excellent photocatalytic function. Further, since the titanium oxide photocatalyst of the present invention has little deterioration of its photocatalytic function due to heat, it can be used for a photocatalytic reaction at high temperature, and the titanium oxide photocatalyst of the present invention is heated to adhere to a support be able to.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】本発明の酸化チタン光触媒は、酸化チタ
ンとバナジウム化合物とを含有してなるものであって、
バナジウム化合物を含有させることにより酸化チタンの
光触媒機能を向上させることができる。特に、酸化チタ
ン粒子の表面にバナジウム化合物を担持すると、より一
層酸化チタンの光触媒機能を向上させることができる。
本発明の光触媒体の光触媒機能を利用して人体や生活環
境に悪影響を及ぼす物質やその可能性がある物質を迅
速、かつ、効率よく除去することができるので、工業用
途ばかりでなく一般家庭用の脱臭体、殺菌体などとして
極めて有用なものである。また、本発明の酸化チタン光
触媒は、安全性が高く、さらに、廃棄しても環境を汚さ
ないため、種々の用途に用いることができる。
The titanium oxide photocatalyst of the present invention comprises titanium oxide and a vanadium compound,
By incorporating the vanadium compound, the photocatalytic function of titanium oxide can be improved. In particular, by supporting a vanadium compound on the surface of titanium oxide particles, the photocatalytic function of titanium oxide can be further improved.
By utilizing the photocatalytic function of the photocatalyst of the present invention, it is possible to quickly and efficiently remove substances that may adversely affect the human body or living environment and substances that have the possibility of causing such adverse effects. It is extremely useful as a deodorant and sterilizer. Further, the titanium oxide photocatalyst of the present invention has high safety and does not pollute the environment even if it is discarded, and thus can be used for various purposes.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】酸化チタンとバナジウム化合物とを含有し
てなることを特徴とする光触媒体。
1. A photocatalyst body comprising titanium oxide and a vanadium compound.
【請求項2】酸化チタン粒子の表面にバナジウム化合物
を担持してなることを特徴とする光触媒体。
2. A photocatalyst body comprising a vanadium compound supported on the surface of titanium oxide particles.
【請求項3】酸化チタンのTiO2 重量基準に対して、
V基準に換算して0.001〜10重量%の量のバナジ
ウム化合物を含有してなることを特徴とする請求項1に
記載の光触媒体。
3. Based on the TiO 2 weight basis of titanium oxide,
The photocatalyst body according to claim 1, which comprises a vanadium compound in an amount of 0.001 to 10% by weight in terms of V standard.
【請求項4】酸化チタン粒子の表面積1m2 当たり、V
基準に換算して0.05〜5000μgの量のバナジウ
ム化合物を担持してなることを特徴とする請求項2に記
載の光触媒体。
4. Vitamin per 1 m 2 of surface area of titanium oxide particles
The photocatalyst body according to claim 2, which carries a vanadium compound in an amount of 0.05 to 5000 μg in terms of a standard.
JP09371894A 1994-04-06 1994-04-06 Photocatalyst Expired - Lifetime JP3579082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09371894A JP3579082B2 (en) 1994-04-06 1994-04-06 Photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09371894A JP3579082B2 (en) 1994-04-06 1994-04-06 Photocatalyst

Publications (2)

Publication Number Publication Date
JPH07275704A true JPH07275704A (en) 1995-10-24
JP3579082B2 JP3579082B2 (en) 2004-10-20

Family

ID=14090204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09371894A Expired - Lifetime JP3579082B2 (en) 1994-04-06 1994-04-06 Photocatalyst

Country Status (1)

Country Link
JP (1) JP3579082B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167727A (en) * 1995-10-26 1998-06-23 Matsumoto Seiyaku Kogyo Kk Modified titanium oxide sol, photocatalyst composition and its forming agent
JP2000262906A (en) * 1999-03-19 2000-09-26 Akio Komatsu Metal-carrying titanium dioxide photocatalyst and method for mass production of the same
JP2001096154A (en) * 1999-09-29 2001-04-10 Yamada Sangyo Kk Vanadium oxide/titania hybrid photocatalyst and its manufacturing method
WO2003080244A1 (en) * 2002-03-25 2003-10-02 Sumitomo Titanium Corporation Titanium oxide photocatalyst, process for producing the same and application
JP2004043282A (en) * 2002-05-20 2004-02-12 Sumitomo Chem Co Ltd Method of manufacturing titanium oxide
CN100375649C (en) * 2005-12-27 2008-03-19 中国科学院上海硅酸盐研究所 Method for preparing kernel-shell structure, visible light catalysis activity type nanometer composite material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167727A (en) * 1995-10-26 1998-06-23 Matsumoto Seiyaku Kogyo Kk Modified titanium oxide sol, photocatalyst composition and its forming agent
JP2000262906A (en) * 1999-03-19 2000-09-26 Akio Komatsu Metal-carrying titanium dioxide photocatalyst and method for mass production of the same
JP2001096154A (en) * 1999-09-29 2001-04-10 Yamada Sangyo Kk Vanadium oxide/titania hybrid photocatalyst and its manufacturing method
WO2003080244A1 (en) * 2002-03-25 2003-10-02 Sumitomo Titanium Corporation Titanium oxide photocatalyst, process for producing the same and application
US7521133B2 (en) 2002-03-25 2009-04-21 Osaka Titanium Technologies Co., Ltd. Titanium oxide photocatalyst, process for producing the same and application
JP2004043282A (en) * 2002-05-20 2004-02-12 Sumitomo Chem Co Ltd Method of manufacturing titanium oxide
CN100375649C (en) * 2005-12-27 2008-03-19 中国科学院上海硅酸盐研究所 Method for preparing kernel-shell structure, visible light catalysis activity type nanometer composite material

Also Published As

Publication number Publication date
JP3579082B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
KR100336662B1 (en) Titanium oxide for photocatalyst and method of producing the same
JP2909403B2 (en) Titanium oxide for photocatalyst and method for producing the same
JP4018161B2 (en) Method for producing titanium oxide for photocatalyst and method for removing harmful substances using the same
Waghmode et al. Studies on the titanium dioxide nanoparticles: Biosynthesis, applications and remediation
KR100518956B1 (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
US5480636A (en) Titanium oxide particles and method of scavenging noxious materials
M’bra et al. Heterogeneous photodegradation of Pyrimethanil and its commercial formulation with TiO2 immobilized on SiC foams
JP2775399B2 (en) Porous photocatalyst and method for producing the same
JP2636158B2 (en) Titanium oxide porous thin film photocatalyst and method for producing the same
JP2600103B2 (en) Photocatalytic filter and method for producing the same
US5707915A (en) Photocatalyst sheet and method for producing thereof
JP2832342B2 (en) Photocatalyst particles and method for producing the same
JPH10305230A (en) Photocatalyst, its production and decomposing and removing method of harmful substance
JP4621859B2 (en) Method for producing porous photocatalyst
JP3579082B2 (en) Photocatalyst
CN103341356A (en) Processing method of water purifying agent of ceramic tourmaline-loaded titanium dioxide film
JP5403584B2 (en) Stain resistant material synthesized by reprecipitation method and having weather resistance and method for producing the same
JP3567004B2 (en) Photocatalyst and method for producing the same
JP3567693B2 (en) Method for producing immobilized photocatalyst and method for decomposing and removing harmful substances
CN1290573A (en) Light catalyst for purifying air
JP2000288405A (en) Photocatalyst body and removing method of harmful material using the same
JP3276297B2 (en) Photocatalyst
JP3118558B2 (en) Water treatment catalyst and water treatment method
JP2789157B2 (en) Titanium oxide powder and method for producing the same
JP4182210B2 (en) Process for producing titanium oxide composite coated with silicate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140723

Year of fee payment: 10

EXPY Cancellation because of completion of term