WO2017115637A1 - Particulate laminated material for forming charges on substrate surface and film shaping liquid for forming charges on substrate surface - Google Patents

Particulate laminated material for forming charges on substrate surface and film shaping liquid for forming charges on substrate surface Download PDF

Info

Publication number
WO2017115637A1
WO2017115637A1 PCT/JP2016/086757 JP2016086757W WO2017115637A1 WO 2017115637 A1 WO2017115637 A1 WO 2017115637A1 JP 2016086757 W JP2016086757 W JP 2016086757W WO 2017115637 A1 WO2017115637 A1 WO 2017115637A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
titanium oxide
silicon oxide
charge
dielectric
Prior art date
Application number
PCT/JP2016/086757
Other languages
French (fr)
Japanese (ja)
Inventor
緒方 四郎
義光 松井
Original Assignee
サスティナブル・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サスティナブル・テクノロジー株式会社 filed Critical サスティナブル・テクノロジー株式会社
Priority to JP2017558920A priority Critical patent/JPWO2017115637A1/en
Publication of WO2017115637A1 publication Critical patent/WO2017115637A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides

Definitions

  • the present invention forms a particulate laminate that charges the substrate surface on the substrate surface or substrate surface layer, and repels or adsorbs on the substrate surface contaminants that float in the atmosphere and adversely affect the substrate.
  • the present invention relates to a technique for protecting the substrate surface or reducing the influence of the contaminant on the substrate by separating the substrate and changing the contaminant into a safety material.
  • Patent Document 1 generates a positive charge on the surface of the substrate by disposing a composite of a conductor and a dielectric or semiconductor on the surface of the substrate or the substrate surface layer.
  • a technique for protecting a substrate surface by electrostatically attracting or repelling is disclosed.
  • the applicant arranges a positively charged substance and a negatively charged substance on the substrate surface or the substrate surface layer, and positively and negatively charges the substrate surface, so that contaminants from the outside are introduced into the substrate.
  • a technique for protecting a substrate surface by electrostatically attracting or repelling the surface is disclosed.
  • the charged voltage on the substrate surface due to the positively charged substance and / or the negatively charged substance arranged on the substrate surface or the substrate surface layer exhibits the function for protecting the substrate as described above. Even if this technology is applied to the surface of an electronic device, the voltage is so weak that the function of the electronic device itself is not impaired.
  • Patent Document 1 and Patent Document 2 what kind of substance can be selected as a positively charged substance or a negatively charged substance in order to arrange a positively charged substance and / or a negatively charged substance on the substrate surface or the substrate surface layer. It is disclosed. Further, in the above document, as one of means for disposing a positively charged substance or a negatively charged substance on a substrate surface or a substrate surface layer, a film-forming solution having a positively charged substance and / or a negatively charged substance is used. It is disclosed that forming a coating or layer on the surface is an effective means.
  • a dielectric or semiconductor for stably forming charges is appropriately interposed between the conductive materials.
  • the dielectric or semiconductor an appropriate substance is selected from the viewpoint of function and cost, and further, a charge substance and a dielectric or semiconductor for stably functioning formation and fixation of charges on the substrate surface or surface layer.
  • a method for forming a functionally excellent coating film or layer of the particulate laminate on the substrate surface or the substrate surface layer must be solved.
  • the present invention provides a substrate protection technique in which contaminants from the outside are electrostatically repelled or adsorbed by positively and / or negatively charging the substrate surface or the substrate surface layer. It is an object of the present invention to provide means for forming charges efficiently and stably without uneven distribution.
  • the particulate laminate for forming a substrate surface charge according to the present invention includes a titanium oxide as a dielectric or semiconductor between a substance having a positive charge and / or a substance having a negative charge on the surface of the substrate or the surface layer of the substrate. It is characterized by interposing silicon oxide (including titanium oxide and / or silicon oxide compounds).
  • One embodiment of the particulate laminate includes particles made of a substance having a positive charge and / or a substance having a negative charge, and titanium oxide and / or silicon oxide (dioxide or semiconductor oxide as a dielectric or semiconductor). It is characterized in that it is formed by adjoining and adhering to a particle comprising the above compound.
  • the substance having a positive charge and / or the substance having a negative charge includes titanium oxide and / or silicon oxide (a compound of titanium oxide and / or silicon oxide) as a dielectric or semiconductor. It is characterized in that colloidal particles encapsulated in (1) are joined.
  • Still another embodiment of the particulate laminate includes a positively charged substance and / or a negatively charged substance and titanium oxide and / or silicon oxide as a dielectric or semiconductor (a compound of titanium oxide and / or silicon oxide). And the like) are bonded as particles of a complex at a molecular level.
  • the substrate surface charge forming film forming liquid according to the present invention includes a positively charged substance and / or a negatively charged substance, and titanium oxide and / or silicon oxide (titanium oxide and / or oxide) as a dielectric or semiconductor. Including a compound of silicon).
  • the above-mentioned film forming solution for forming a surface charge on a substrate includes titanium oxide and / or silicon oxide (including a compound of titanium oxide and / or silicon oxide) as the dielectric or semiconductor, a substance having the positive charge, and
  • titanium oxide including a titanium oxide compound
  • the ratio of the negative charge to the substance having a negative charge is 1: 0.01 to 1: 0.3 when silicon oxide (including a titanium oxide compound) is used.
  • silicon oxide including a titanium oxide compound
  • a compound of silicon 1: 0.03 to 1: 2.7
  • titanium oxide and silicon oxide (including these compounds) 1: 0.01 to 1: 0.
  • a ratio of 3 is preferable.
  • the substance having a positive charge and / or the substance having a negative charge is (1) Cation (2) Conductor having positive charge, composite of conductor having positive charge and dielectric, composite of conductor having positive charge and semiconductor, two or more kinds having positive charge A dielectric or / and a composite made of a semiconductor, a positively charged conductor or a composite (3) an anion (4) a negatively charged conductor, a negatively charged conductor and a dielectric Conductor or composite having negative charge of composite, composite of conductor having negative charge and semiconductor, composite of two or more kinds of dielectric having negative charge or / and semiconductor (5) ) Substance having photocatalytic function (6) Dielectric or semiconductor excluding titanium oxide and / or silicon oxide (including titanium oxide and / or silicon oxide compound) selected from the group consisting of (1) to (6) above A substance having at least one positive charge It is preferably a substance having a beauty / or negative charge.
  • particles that positively and / or negatively charge the substrate surface or the substrate surface layer by arranging and charging a substance having a positive charge and / or a substance having a negative charge on the substrate or the substrate surface layer.
  • a substance having a positive charge and / or a substance having a negative charge on the substrate or the substrate surface layer can be formed efficiently and stably without uneven distribution of charges, so that external contaminants can be electrostatically repelled or adsorbed to effectively protect the substrate.
  • the surface of the substrate or the surface of the substrate can be obtained by interposing titanium oxide and / or silicon oxide (including these compounds) as a dielectric or semiconductor in a substance having a positive charge and / or a substance having a negative charge.
  • a thin and highly transparent film with a particulate laminate can be formed on the surface layer of the substrate without using a binder.
  • the substrate surface be protected by electrostatically adsorbing or repelling contaminants from the outside by charging the substrate surface positively and / or negatively, but also a substrate by electromagnetic waves. It is also possible to reduce the oxidative degradation. That is, the oxidative degradation of the substrate is caused by the generation of radicals such as 1 O 2 , .OH, etc. on the substrate surface or in the substrate to cause an oxidative decomposition reaction. Let these radicals be stable molecules. Therefore, it is considered that the oxidative deterioration of the substrate is prevented or reduced. In addition, when a base
  • the inventor of the present application electrostatically repels or adsorbs contaminants from the outside by placing and charging a positively charged substance and / or a negatively charged substance on the substrate surface or substrate surface layer.
  • a positively charged substance and / or a negative charge In the process of developing a substrate protection or environmental improvement method, in order to efficiently and stably form a charge on the surface or surface layer of the substrate without uneven distribution, a positively charged substance and / or a negative charge
  • the present inventors have found that it is important to form a particulate laminate in the surface or surface layer of a substrate, with a dielectric or semiconductor appropriately interposed between materials having sinter.
  • the particulate laminate refers to a film or layer formed of particulate substances arranged in layers and formed on the surface of the substrate or the surface layer.
  • the inventor of the present application is an excellent dielectric material in that it is a material that is relatively low in cost and easy to handle as a dielectric or semiconductor interposed between substances for charging the substrate surface or the substrate surface layer in the particulate laminate.
  • Titanium oxide and / or silicon oxide (including titanium oxide and / or silicon oxide compounds) from the point of having excellent characteristics such as characteristics and semiconductor characteristics and capable of forming a no-binder film I found that I can choose.
  • titanium oxide and / or silicon oxide including a titanium oxide and / or silicon oxide compound
  • a dielectric or semiconductor excluding titanium oxide and / or silicon oxide including titanium oxide and / or silicon oxide compound
  • the surface of the substrate or the surface layer of the substrate is positively or negatively charged both positively and negatively depending on the type of dielectric or semiconductor.
  • a substance that positively charges the substrate surface or the substrate surface layer is referred to as a “substance having a positive charge”, and a substance that negatively charges the substrate surface or the substrate surface layer is referred to as a “substance having a negative charge”.
  • the substance having a positive charge and the substance having a negative charge are defined as “a dielectric or semiconductor excluding titanium oxide and / or silicon oxide (including a compound of titanium oxide and / or silicon oxide)”. Shall also be included. These dielectrics or semiconductors have excellent electrostatic polarization and electrostatic induction properties, and have the property that the charge dipoles in these materials fluctuate due to the irradiation of electromagnetic waves, heat or light energy. desirable.
  • the particulate laminate is applied to the substrate surface or surface.
  • the dried and solidified particles are regularly taken in and a uniform and uniform charge is formed.
  • preferred examples of such a particulate laminate include the following (a) to (c).
  • the particle size of the particulate laminate formed in is preferably 0.1 nm to 100 nm.
  • the layer thickness of the laminate is not particularly limited, but is preferably in the range of 10 nm to 1 ⁇ m, and more preferably in the range of 10 nm to 100 nm.
  • the principle of charge formation will be described below mainly by the particulate laminate formed on the substrate surface or the substrate surface layer described in (a) above.
  • the substrate surface or the substrate surface layer is positively charged, negatively charged, or positively charged.
  • the principle of charge formation for applying a negative charge will be described with reference to FIGS.
  • FIG. 5 (1), FIG. 5 (2), and FIG. 5 (3) show a substance having a positive charge and / or a substance having a negative charge, and titanium oxide or silicon oxide as a dielectric or semiconductor (these compounds are combined).
  • a particle BB of titanium oxide or silicon oxide (including these compounds) as a dielectric or semiconductor is adjacent to a conductive particle AP having a positive charge.
  • the dielectric or semiconductor adjacent to the conductor is dielectrically polarized due to the influence of the surface charge state of the conductor, and the negative charge is present on the side adjacent to the positively charged conductor and the side adjacent to the negatively charged conductor. Has a positive charge state, and a reverse charge state is generated on the counter electrode side. Therefore, uniform and uniform charges are formed on the surface of the formed particulate laminate.
  • FIG. 6 (1), FIG. 6 (2), and FIG. 6 (3) show a dielectric or semiconductor excluding titanium oxide and silicon oxide (including these compounds), and titanium oxide or oxidation as a dielectric or semiconductor. It is the figure which showed typically the principle which provides a positive charge, a negative charge, a positive charge, and a negative charge, respectively, to a substrate surface or a substrate surface layer using silicon (including these compounds). 6 (1) to (3), dielectric or semiconductor particles CC excluding titanium oxide and silicon oxide (including these compounds), and titanium oxide or silicon oxide (these compounds) as a dielectric or semiconductor. In the state where the particles BB of the substrate surface are adjacent to each other, a film or a layer is formed on the substrate surface or the substrate surface layer, respectively.
  • the electrical dipole that forms the material is adjacent to the material (ie, titanium oxide or silicon oxide (including these compounds). )) Reacts quickly to the dielectric-polarized surface charge, and if the dipole moves with a charge opposite to the dielectric-polarized charge, it is considered that a uniform positive or negative charge is generated on the substrate surface or surface layer. .
  • a uniform positive charge is generated.
  • a uniform negative charge is generated.
  • a uniform positive charge and a negative charge are generated.
  • FIG. 1 (1) is a diagram schematically showing a film formation cross section on the substrate S1 according to the embodiment (a).
  • colored circles are particles of a substance having a positive charge and / or a substance having a negative charge
  • non-colored circles are titanium oxide and / or silicon oxide (a compound of these compounds as a dielectric or semiconductor). Particle).
  • single particles formed of a substance having a positive charge and / or a substance having a negative charge are uniformly dispersed during bonding of single particles formed of titanium oxide and / or silicon oxide. It is a form that has been.
  • a method for forming a particulate laminate according to this embodiment will be described below.
  • a substance having a positive charge and / or a substance having a negative charge and titanium oxide and / or silicon oxide as a dielectric or semiconductor are preferably combined at a ratio of 1: 1 for film formation.
  • Various methods can be considered as a method of forming such a composite film or layer on the surface of the substrate or the surface layer, and the method is not particularly limited.
  • One example is a method using a film-forming solution. Specifically, after preparing particles of titanium oxide and / or silicon oxide (including these compounds) and particles of a substance having a positive charge and / or a substance having a negative charge, these particles are , Dispersed in water or an organic medium to form a film-forming solution. And the film forming method by the wet system which apply
  • a film-forming solution in which particles of titanium oxide and / or silicon oxide (including these compounds) and particles of a substance having a positive charge and / or a substance having a negative charge are dispersed in water, an organic medium, or the like.
  • the ratio of these particles is theoretically preferably 1: 1 as described above, but the stability of the film-forming solution is stable.
  • titanium oxide and / or silicon oxide (including these compounds) when used, it is preferably 1: 0.01 to 1: 0.3, and when silicon oxide (including a compound of silicon oxide) is used, preferably 1: 0. .03 to 1: 2.7, titanium oxide and silicon oxide When using (containing these compounds) is preferably 1: 0.01 to 1: 0.3, a ratio of.
  • FIG. 1 (2) is a schematic cross-sectional view of the film formed on the substrate S1 according to the embodiment (b). It is the figure shown in.
  • a colored circle is a substance having a positive charge and / or a substance having a negative charge
  • a non-colored circle is titanium oxide and / or silicon oxide (including these compounds) as a dielectric or semiconductor.
  • a film is formed by joining colloidal particles in which titanium oxide and / or silicon oxide (including these compounds) contain a positively charged substance and / or a negatively charged substance. ing.
  • titanium oxide or silicon oxide (including these compounds) has a positive charge in a step of mixing or combining with a substance having a positive charge and / or a substance having a negative charge.
  • titanium oxide and / or silicon oxide (including these compounds) has a positive charge and / or a negative charge.
  • the colloidal particles are formed by encapsulating a substance having a charge. That is, when titanium oxide and / or silicon oxide (including these compounds) and a positively charged substance and / or a negatively charged substance are solidified by drying, ions are integrated as colloidal particles. Can be laminated.
  • the composite ratio of titanium oxide and / or silicon oxide (including titanium oxide and / or silicon oxide compound) in the above-described film-forming solution to a positively charged substance and / or a negatively charged substance is a solid type.
  • titanium oxide (including titanium oxide compound) preferably 1: 0.01 to 1: 0.3
  • silicon oxide (including silicon oxide compound) Is preferably a ratio of 1: 0.03 to 1: 2.7, preferably 1: 0.01 to 1: 0.3 when titanium oxide and silicon oxide (including these compounds) are used. It is.
  • film formation to the substrate, the peroxo group and a methyl group is a self-pinning modifications of titanium oxide or silicon oxide, or H 2 O, such Shiranmonima or polysiloxane polymer which is an organic silicon compound, by separation of CO 2 No-binder fixing by a condensation polymerization reaction is preferable.
  • FIG. 1 (3) is a view schematically showing a cross section of the film formed on the substrate S1 according to the embodiment (c).
  • a colored circle is a substance having a positive charge and / or a substance having a negative charge
  • a non-colored circle is titanium oxide and / or silicon oxide (including these compounds) as a dielectric or semiconductor.
  • the circles displayed on the outside indicate that the particles at the molecular level have a crystal structure or pseudo-crystal structure in which ions are incorporated.
  • the composite ratio of titanium oxide and / or silicon oxide to be reacted (including a compound of titanium oxide and / or silicon oxide) and a substance having a positive charge and / or a substance having a negative charge is expressed as a solid molar ratio.
  • titanium oxide including a titanium oxide compound
  • silicon oxide including a silicon oxide compound
  • the ratio is preferably 1: 0.01 to 1: 0.3.
  • the above-mentioned composite crystal has a perovskite type crystal structure or pseudo crystal structure in which a composite molecule is incorporated as an ion in a generally known inside, and Ti or Si is contained from the composite crystal particle.
  • a positive charge O 2 functions as a negative charge. Therefore, the composite crystal particle can selectively exhibit an amphoteric, positive> negative, or negative> positive charge depending on the included ions.
  • a film in which a substance having a positive charge and / or a substance having a negative charge is interposed with titanium oxide and / or silicon oxide (including these compounds) as a dielectric or semiconductor is used. An example of a method for forming a film was described. When the film forming method using FIG.
  • FIG. 1 film formation is possible with any type of substrate.
  • 1 (1), (2) and (3) in FIG. 1 show an example in which the particle layer of the particulate laminate formed on the surface of the substrate has one or two layers. In order to exhibit the function, it is desirable that the particulate laminate is formed of a plurality of layers.
  • FIG. 2 shows a substance having a positive charge in a surface layer of a substrate containing titanium oxide and silicon oxide (including these compounds) as dielectrics or semiconductors.
  • (1), (2), and (3) of FIG. 2 are drawings schematically showing a cross section of the substrate according to these embodiments.
  • colored circles are particles of a substance having a positive charge and / or a substance having a negative charge
  • non-colored circles are titanium oxide and / or silicon oxide (a compound of these compounds as a dielectric or semiconductor). Particle).
  • particles of a substance having a positive charge and / or a substance having a negative charge are formed, and a layer of these particles is formed as titanium oxide and / or silicon oxide as a dielectric or semiconductor. It is formed on the surface layer of the substrate S2 made of (including these compounds).
  • a method of forming such a surface layer on the substrate S2 there is a method in which particles of a positively charged substance and / or a negatively charged substance are pressed against the surface of the substrate S2 by pressing or the like.
  • particles of titanium oxide and / or silicon oxide are formed, and these particles, a substance having a positive charge and / or a substance having a negative charge.
  • the surface layer as shown in the figure can be produced by pressure-bonding to the substrate S3 by press working or by molding at the time of producing the substrate S3.
  • particles of titanium oxide and silicon oxide (including these compounds) as a dielectric or semiconductor are interposed between particles having a positive charge and / or a substance having a negative charge.
  • the layer is formed in advance on a sheet-like or block-like substrate S4 (which may contain an inorganic component inside) using an organic polymer resin or the like before curing, and the substrate S4 is irradiated with ultraviolet electromagnetic waves.
  • a layer in which particles of titanium oxide and silicon oxide (including these compounds) as a dielectric or semiconductor are interposed in particles of a substance having a positive charge and / or a substance having a negative charge is formed on the substrate S4.
  • particles of a substance having a positive charge and / or a substance having a negative charge and a dielectric or semiconductor as shown in FIG. It is not an embodiment in which particles of titanium oxide and / or silicon oxide (including these compounds) are adjacently bonded, but from titanium oxide and / or silicon oxide (including these compounds) as a dielectric or semiconductor.
  • Titanium oxide and / or silicon oxide as a dielectric or a semiconductor Titanium oxide and / or silicon oxide as a dielectric or semiconductor interposed in a substance having a positive charge and / or a substance having a negative charge has dielectric properties and semiconductor characteristics.
  • An excellent thin film having high hardness and high transparency can be formed without using a binder. Further, it can be used at a relatively low cost from the viewpoint of cost.
  • Various oxides and peroxides of titanium oxide and silicon oxide, and compounds thereof can be used as a dielectric or semiconductor interposed in a substance having a positive charge and / or a substance having a negative charge.
  • metals alkaline earth metals, group 3 scandium and yttrium, and lanthanoids such as lanthanum and cerium, group 4 zirconium and hafnium, and other compounds such as dielectrics and semiconductors other than conductive metals Or coexist.
  • Substance having positive charge and / or substance having negative charge As substance having positive charge and / or substance having negative charge combined with titanium oxide and / or silicon oxide (including these compounds) as dielectric or semiconductor Any substance having any positive or negative charge can be used as long as it can impart a positive charge or a negative charge to the surface of the substrate, but it is selected from the group consisting of the following (1) to (6): It is preferable that the substance has at least one positive charge and / or a negative charge.
  • Cation (2) Conductor having positive charge, composite of conductor having positive charge and dielectric, composite of conductor having positive charge and semiconductor, two or more kinds having positive charge A dielectric or / and a composite made of a semiconductor, a positively charged conductor or a composite (3) an anion (4) a negatively charged conductor, a negatively charged conductor and a dielectric Conductor or composite having negative charge of composite, composite of conductor having negative charge and semiconductor, composite of two or more kinds of dielectric having negative charge or / and semiconductor (5) ) Substance having photocatalytic function (6) Dielectric or semiconductor excluding titanium oxide and / or silicon oxide (including compounds of titanium oxide and / or silicon oxide)
  • (1) to (6) cations, anions, negatively charged or positively charged conductors, substances that function as photocatalysts, dielectrics or semiconductors include organic substances, inorganic substances, and composites of organic and inorganic substances. Regardless of the type of substance such as the body, a stable charge can be formed on the surface of the substrate, and in order to protect the substrate by electrostatically adsorbing or repelling contaminants, It is particularly preferable to use a metal or a part of an inorganic substance other than a metal from the viewpoint that a charge can be formed in accordance with the use conditions of a substrate to which energy is irradiated.
  • a substance having a positive charge and / or a substance having a negative charge to be combined with titanium oxide and / or silicon oxide (including these compounds) as a dielectric or a semiconductor is mainly a metal
  • a composite of a metal or a part of an inorganic substance other than metal and titanium oxide (including a titanium oxide compound) as a dielectric or semiconductor is hereinafter referred to as metal-doped titanium oxide.
  • metal-doped titanium oxide A composite of a part of the inorganic substance and silicon oxide (including a silicon oxide compound) as a dielectric or semiconductor is referred to as metal-doped silicon oxide.
  • Metals to be combined with titanium oxide and / or silicon oxide (including these compounds) as a dielectric or semiconductor include gold, silver, platinum, copper, manganese, nickel, cobalt, iron, zirconium, hafnium and the like It is preferably at least one metal element or inorganic element selected from transition metals, typical metals such as zinc and tin, alkali metals, alkaline earth metals, lanthanides such as lanthanum and cerium, and metal elements More preferably, two of these are combined.
  • the metal element to be combined silver and copper are particularly preferable.
  • silicon is preferable as the inorganic substance other than the metal to be combined with titanium oxide and / or silicon oxide (including these compounds) as a dielectric or semiconductor.
  • titanium oxide As for the metal-doped titanium oxide , a metal (including some inorganic substances other than the metal) and a titanium oxide as a dielectric or semiconductor, which are preferable as a material for composing the particulate laminated film for surface charge formation according to the present invention.
  • a combination with (including a titanium oxide compound) will be described.
  • Titanium oxide (including a titanium oxide compound) as a dielectric or semiconductor compounded with a metal (including some inorganic substances other than metals) includes TiO 2 , TiO 3 , TiO, TiO 3 / nH 2 O, etc.
  • Various oxides and peroxides can be used. In particular, titanium peroxide having a peroxo group is preferable.
  • the titanium oxide may be any of amorphous type, anatase type, brookite type, and rutile type, and these may be mixed, but amorphous type titanium oxide is preferred. However, the titanium oxide after the titanium oxide is combined with a metal to form a solid content exhibits anatase type crystals or anatase type crystal precursors.
  • titanium oxide exhibits a photocatalytic function on the surface of the substrate, the substrate itself may be decomposed and deteriorated by the photocatalytic action depending on the type of the substrate.
  • titanium oxides amorphous type titanium oxide and anatase type crystal precursor titanium oxide do not have a photocatalytic function.
  • anatase-type, brookite-type and rutile-type titanium oxides have a photocatalytic function.
  • titanium oxides when copper, manganese, nickel, cobalt, iron, or zinc is combined with these titanium oxides above a certain concentration, the photocatalytic function is reduced or lost To do.
  • amorphous type titanium oxide and anatase type crystal precursor titanium oxide are converted to anatase type titanium oxide over time by heating with sunlight, etc., but when combined with copper, manganese, nickel, cobalt, iron or zinc Anatase-type titanium oxide has a reduced photocatalytic function. Therefore, regardless of the type of titanium oxide, the titanium oxide doped with copper, manganese, nickel, cobalt, iron or zinc does not have to take into account the adverse effects of photocatalysis.
  • Titanium oxide doped with gold, silver and platinum has photocatalytic performance, including the case where amorphous titanium oxide is converted to anatase titanium oxide, but titanium oxide doped with gold, silver and platinum
  • photocatalytic performance is not exhibited. Therefore, metal-doped titanium oxide combined with gold, silver, platinum, copper, manganese, nickel, cobalt, iron, or zinc can eventually lose or reduce the photocatalytic performance. It is not necessary.
  • a photocatalytic substance is used as the negatively charged substance, a surface negative charge or a negatively charged substance generated by the photocatalytic function can be used effectively.
  • the above metal-doped titanium oxide may employ a production method based on a hydrochloric acid method or a sulfuric acid method, which is a common production method of titanium dioxide powder, or may employ various liquid dispersion titania solution production methods. May be.
  • the metal to be combined with titanium oxide and some inorganic substances other than the metal can be combined with titanium oxide regardless of the manufacturing stage.
  • Inorganic compounds and metal compounds can be mixed in multiple types.
  • the mixing ratio of titanium tetrachloride to the inorganic compound or metal compound is preferably 1: 0.01 to 1: 0.3, more preferably 1: 0.02 to 1: 0.1 in terms of molar ratio.
  • 25% aqueous ammonia (commercially available) is dropped to adjust the pH to around 7, and titanium, inorganic and metal hydroxides are precipitated, and the supernatant is washed until the conductivity becomes 0.9 mS / m or less. To do.
  • the concentration of titanium peroxide in the aqueous dispersion obtained by the above-described production method is as follows: 0.05 to 15 wt% is preferable, and 0.1 to 5 wt% is more preferable.
  • Gold, silver, platinum mixed to obtain inorganic materials and metals (including alkali metals and alkaline earth metals) combined with titanium oxide (including its compounds) in the above-described metal-doped titanium oxide manufacturing process examples of the compounds of nickel, cobalt, copper, manganese, iron, zinc, lithium, sodium, silicon, potassium, zirconium, cerium, and hafnium are as follows.
  • Au compound AuCl, AuCl 3 , AuOH, Au (OH) 4 , Au 2 O, Au 2 O 3, etc.
  • Ag compound AgNO 3 , AgF, AgClO 3 , AgOH, Ag (NH 3 ) OH, Ag 2 SO 4, etc.
  • Pt compound PtCl 2 , PtO, Pt (NH 3 ) Cl 2 , PtO 2 , PtCl 4 , [Pt (OH) 6 ] 2 ⁇ etc.
  • Ni compound Ni (OH) 2 , NiCl 2 etc.
  • Co compound Co (OH ) NO 3 , Co (OH) 2 , CoSO 4 , CoCl 2, etc.
  • Cu compound Cu (OH) 2 , Cu (NO 3 ) 2 , CuSO 4 , CuCl 2 , Cu (CH 3 COO) 2, etc.
  • Mn compound MnNO 4 , MnSO 4 , MnCl 2, etc.
  • Fe compound Fe (OH) 2 , Fe (OH) 3 , FeCl 3 etc.
  • Zn compound Zn (NO 3 ) 2 , Zn SO 4 , ZnCl 2 etc.
  • Na compound NaOH, NaCl, Na 2 CO 2 etc.
  • Si compound SiO 2 , SiH 4 , SiCl 4 etc.
  • K compound KOH, K 2 O , KCl, etc.
  • Zr compound Zr 2 O, Zr (OH) 2 , ZrCl, etc.
  • Ce compound CeO 2 , CeCl 2 , Ce (OH) 3 etc.
  • Hf compound HfCl 2 , Hf (OH) 3 etc.
  • the metal-doped silicon oxide a metal (including some inorganic substances other than the metal) and a silicon oxide as a dielectric or semiconductor, which are preferable as a material for forming a particulate laminated film for forming a surface charge according to the present invention.
  • a combination with (including a silicon oxide compound) will be described.
  • silicon oxide (including silicon oxide compounds) as a dielectric or semiconductor compounded with metal (including some inorganic substances other than metals) include SiO 2 , SiO 3 , SiO, SiO 3 / nH 2 O, and the like.
  • Various oxides and peroxides can be used.
  • a binding material (composite material) of an organic material and an inorganic material.
  • -A water-soluble coating agent having a methoxy group or an ethoxy group in terms of hydrolyzability in a silane coupling agent that improves the mechanical strength, bondability, and surface hydrophilicity of the composite material.
  • -Silicone oligomers that are used as resin-modified or functional coating agents by combining various substances as oligomer-type coupling agents that have organic functional groups and alkoxy groups in the molecule.
  • -Alkoxylanes and alkoxylazanes having a methyl group, a long-chain alkyl group, and a phenyl group which are used as a water repellency-imparting functional material for the substrate described later.
  • Silylating agents that have an origanosilyl group that protects active hydrogen of organic and inorganic materials, and that can be used to make organic synthetic members by controlling the reaction position of alkyl groups
  • a film-forming solution for forming a surface charge film in which a metal is combined can be produced.
  • the dispersion of the metal-doped silicon oxide in the case where the composite is a typical metal such as gold, silver, platinum, copper, manganese, nickel, cobalt, iron, zinc, or a transition metal An example of a manufacturing method will be described. First, when methyl silicate is mixed with alcohol, pure water and a predetermined amount of catalyst and hydrolyzed, a silica sol is produced. The silica sol is pure and diluted.
  • the solid content concentration in the silica sol dilution is preferably 10% to 0.2%, more preferably 4% to 0.85%.
  • This silica sol diluted solution and a metal compound adjusted to 1% concentration are preferably in a molar concentration ratio to silica of 1: 0.03 to 1: 2.7, more preferably 1 : Mix in a ratio of 0.03 to 1: 0.27.
  • the metal compound and the inorganic compound that can be complexed with silicon oxide in the preparation of the dispersion liquid described above are the same as the metal compound and the inorganic compound used when preparing the metal-doped titanium oxide. Is possible.
  • titanium tetrachloride and silica sol are mixed with pure water at a molar ratio of 1: 0.5, and a metal compound (compound having crystal water) is further mixed.
  • a metal compound compound having crystal water
  • a plurality of kinds of metal compounds can be mixed.
  • the metal compound which can be mixed can use the metal compound shown, for example in FIG. 3 used when producing metal dope titanium oxide.
  • the mixing ratio of titanium tetrachloride / silica sol and the metal compound is preferably 1: 0.01 to 1: 0.3, more preferably 1: 0.02 to 1: 0.1 in terms of molar ratio.
  • Ammonia water adjusted to 25% is added dropwise thereto to adjust the pH to around pH 7, thereby precipitating titanium, silicon, and a composite inorganic substance or metal hydroxide.
  • the precipitated hydroxide is washed with pure water until the supernatant has a conductivity of 0.9 mS / m or less.
  • Amorphous peroxidation in which metals and inorganic substances combined with silica are modified by mixing the washed hydroxide with hydrogen peroxide solution with a concentration of 35%, reacting for several hours and performing ultrafiltration. A solution in which fine particles of titanium are dispersed is obtained.
  • the concentration of titanium peroxide in the aqueous dispersion obtained by the above-described production method is 0.05 to 15 wt% is preferable, and 0.1 to 5 wt% is more preferable.
  • the substrate surface or substrate surface When titanium oxide and / or silicon oxide (including a compound of titanium oxide and / or silicon oxide) is used as a dielectric or semiconductor interposed between substances that charge the layer, titanium oxide and / or silicon oxide (oxidized) When one or more kinds of dielectrics and semiconductors excluding (including titanium and / or silicon oxide compounds) are combined, the surface of the substrate is charged with a positive charge, a negative charge and an amphoteric charge.
  • titanium oxide In order to form a film according to this embodiment on the surface of the substrate, in the same manner as the metal-doped titanium oxide, titanium oxide and / or silicon oxide (including a titanium oxide and / or silicon oxide compound), titanium oxide, in addition, a dispersion liquid in which a dielectric and a semiconductor excluding silicon oxide (including titanium oxide and / or silicon oxide compounds) are combined can be used. The method for producing this dispersion is the same as the method shown in FIGS. Next, a method for forming a particulate laminate for charging the substrate surface on the substrate surface or the substrate surface layer will be described in more detail.
  • FIG. 1 (1) shows a method for forming a charge on a surface of a substrate .
  • FIG. 1 (2) and FIG. 1 (3) show a substance having a positive charge and / or a substance having a negative charge.
  • a particulate laminated film composed of particles in which titanium oxide and / or silicon oxide as a dielectric or semiconductor is combined is formed on the substrate surface.
  • the layer thickness of these particulate laminates is not particularly limited, but is preferably in the range of 10 nm to 1 ⁇ m, and more preferably in the range of 10 nm to 100 nm.
  • the above-mentioned particulate laminate can be formed by, for example, sputtering, thermal spraying, ion plating (cathode arc discharge type), CVD coating, or electrodeposition coating.
  • the substrate is dipped in a solution / suspension or emulsion containing a positively charged substance and / or a negatively charged substance and titanium oxide and / or silicon oxide as a dielectric or semiconductor.
  • a solution / suspension or emulsion containing a positively charged substance and / or a negatively charged substance and titanium oxide and / or silicon oxide as a dielectric or semiconductor.
  • a spray, roll, brush, sponge, etc. after applying the solution / suspension or emulsion on a substrate with a spray, roll, brush, sponge, etc., and then drying and evaporating the solvent or medium at least once. I can do it.
  • the film mixture shown in FIG. 1 can be formed on the substrate through a step of drying the mixed solution after coating on the substrate.
  • the dispersion of a solid content including a positively charged substance, a negatively charged substance, and titanium oxide and / or silicon oxide as a dielectric or semiconductor in the layer it is preferable that various surfactants or dispersants coexist with a positively charged substance and / or a negatively charged substance.
  • the compounding amount of the surfactant or dispersant is in the range of 0.001 to 1.0% by weight, preferably 0.1 to 1.0% by weight, based on the total amount of the positively charged substance and / or the negatively charged substance. It can be.
  • organosilicon compounds can be used as fine powder / fine particle fixing agent for forming a uniform film.
  • organosilicon compound various silane compounds and various silicone oils, silicone rubbers and silicone resins can be used, but those having an alkyl silicate structure or a polyether structure in the molecule, or having an alkyl silicate structure and a polyether structure. Those having both are preferred.
  • middle layer can be provided between the above-mentioned particulate laminated body and a base
  • the intermediate layer or the coating layer for example, various organic or inorganic substances capable of imparting hydrophilicity or hydrophobicity or water repellency or oil repellency to the substrate can be used.
  • hydrophilic organic materials include polyether; polyvinyl alcohol; polyacrylic acid (including salts such as alkali metal salts and ammonium salts), polymethacrylic acid ( (Including salts such as alkali metal salts and ammonium salts), polyacrylic acid-polymethacrylic acid (including salts such as alkali metal salts and ammonium salts) copolymers; polyacrylamide; polyvinylpyrrolidone; hydrophilic celluloses; polysaccharides And natural hydrophilic polymer compounds such as It is also possible to use a composite material obtained by blending these polymer materials with an inorganic dielectric such as glass fiber, carbon fiber or silica. It is also possible to use a paint as the polymer material.
  • hydrophilic inorganic materials include silane coupling agents, SiO 2, and other silicon compounds.
  • examples of water-repellent inorganic materials include silane-based, siliconate-based, silicone-based and silane composite-based, or fluorine-based water repellent or water absorption prevention. Agents and the like.
  • fluorine-based water repellents are preferable, and examples include fluorine-containing compounds such as perfluoroalkyl group-containing compounds or fluorine-containing compound-containing compositions.
  • the chemical component of the intermediate layer water repellent or water absorption inhibitor reacts with the substrate to form a chemical bond, or It is not always necessary for the chemical components of the intermediate layer and the substrate to be cross-linked.
  • the fluorine-containing compound that can be used as such a fluorine-based water repellent preferably has a molecular weight of 1,000 to 20,000 containing a perfluoroalkyl group in the molecule.
  • Perfluoroalkyl phosphate ester and perfluoroalkyltrimethylammonium salt are preferable.
  • an intermediate layer containing a silane compound under a particulate laminate of the positively charged substance and / or negatively charged substance and titanium oxide and / or silicon oxide as a dielectric or semiconductor is preferably formed in advance on the substrate. Since this intermediate layer contains a large amount of Si—O bonds, the strength of the layer and the adhesion between the positively charged substance and / or the negatively charged substance and titanium oxide and / or silicon oxide as a dielectric or semiconductor are improved. It becomes possible to improve.
  • the intermediate layer also has a function of preventing moisture from entering the substrate.
  • silane compound described above examples include hydrolyzable silanes, hydrolysates thereof, and mixtures thereof. Moreover, you may mix
  • room temperature curable silicone resins such as methyl silicone resin and methyl phenyl silicone resin may be used.
  • the above-mentioned particulate laminate component composed of a positively charged substance and / or a negatively charged substance and titanium oxide and / or silicon oxide as a dielectric or semiconductor includes an intermediate layer and a coating layer of a silane compound or a silicone resin.
  • the mixing ratio (weight ratio) with these silane compounds or silicone resins is preferably in the range of 1: 2 to 1: 0.05, more preferably in the range of 1: 1 to 1: 0.1. .
  • the material of the substrate which is the subject of the present invention is not particularly limited, and various hydrophilic or hydrophobic inorganic substrates and organic substrates, or combinations thereof can be used. .
  • the inorganic substrate examples include substrates made of a material such as transparent or opaque glass such as soda lime glass, metal oxide such as zirconia, ceramics, concrete, mortar, stone, and metal.
  • the organic base examples include a base made of a substance such as an organic resin, wood, paper, and cloth. More specific examples of the organic resin include, for example, polyethylene, polypropylene, polycarbonate, acrylic resin, polyester such as PET, polyamide, polyurethane, ABS resin, polyvinyl chloride, silicone, melamine resin, urea resin, silicone resin, and fluorine resin. , Cellulose, epoxy-modified resin and the like.
  • the shape of the substrate that is the subject of the present invention is not particularly limited, and can be any shape such as a cube, a rectangular parallelepiped, a sphere, a sheet, and a fiber.
  • the substrate may be porous.
  • the surface of the substrate may be made hydrophilic by corona discharge treatment or ultraviolet irradiation treatment.
  • the substrate is preferably used for a construction / civil engineering substrate or a sealing material, a device, a body for conveying an apparatus, a display screen, or the like.
  • the present invention can be used in various fields where various design properties and high waterproof / dye-proof performance are required.
  • It is suitably used for articles used indoors and outdoors, such as ships, and face panels such as various machines, electronic devices, and televisions.
  • the present invention is particularly suitable for building materials, and buildings such as houses, buildings, roads, and tunnels that are built using building materials to which the present invention is applied exhibit a high waterproofing and dyeing effect over time. I can do it.
  • the present invention can also be applied to air purification devices (including air conditioners) and water purification devices (including pitchers, pots, etc.). An effect can be exhibited in preventing or reducing contamination of the surface of a substrate exposed to air or water, such as a light emitting element. Furthermore, it is also effective in preventing carbonized sticking adhesion in pans, pans, cooking utensils and the like.
  • Examples of the present invention will be described below, but the present invention is not limited to these examples.
  • substrates of Examples 1 to 9, Examples 11 to 19, and Examples 20 to 23 were prepared using the dispersions described in Reference Examples 1 to 9 below. Evaluation with Comparative Examples 1, 2, and 3 was performed.
  • Titanium oxide (dielectric: amorphous titanium peroxide), A substance having a positive charge (a composite of conductor: Cu and dielectric: Zr), a composite dispersion of titanium tetrachloride (manufactured by Osaka Titanium Technologies Co., Ltd.) and 97% CuCl 2 .2H 2 O Ammonia water is dropped into a solution in which (cupric chloride) (manufactured by Nippon Kagaku Sangyo Co., Ltd.) and zirconium oxychloride are completely dissolved to adjust the pH to around 7 to precipitate hydroxide.
  • cupric chloride manufactured by Nippon Kagaku Sangyo Co., Ltd.
  • zirconium oxychloride are completely dissolved to adjust the pH to around 7 to precipitate hydroxide.
  • the precipitated hydroxide is washed with pure water until the supernatant has a conductivity of 0.9 mS / m or less. Next, when hydrogen peroxide was mixed with this hydroxide and allowed to react for several hours, an amorphous titanium peroxide solution modified with copper and zirconium was produced.
  • Reference Example 3 Silicon oxide (semiconductor: polysilicate), When a composite dispersion of a positively charged substance (conductor: Cu), methyl silicate 51 (manufactured by Mitsubishi Chemical Corporation), meta-modified alcohol, pure water, and 3% hydrochloric acid is mixed and stirred while heating. A polysilicate is produced. Further, the prepared polysilicate is adjusted to a solid content concentration of 4 wt% with pure water, and Cu powder, 35% hydrogen peroxide water and ammonia water are stirred and mixed to produce a composite dispersion of silicon oxide and copper. It was done.
  • Titanium oxide (dielectric: amorphous titanium peroxide), A substance having a negative charge (composite of conductor: Sn and dielectric: Ce), a composite dispersion of titanium tetrachloride (manufactured by Osaka Titanium Technologies Co., Ltd.) and SnCl 2 .2H 2 O (chloride) Stannous) (made by Kishida Chemical Co., Ltd.) and CeCl 3 ⁇ 7H 2 O (first cerium chloride) (made by Mitsuwa Chemicals Co., Ltd.) were added dropwise with ammonia water to a pH of around 7 To prepare a hydroxide.
  • the precipitated hydroxide is washed with pure water until the supernatant has a conductivity of 0.9 mS / m or less. Next, when hydrogen peroxide was mixed with this hydroxide and allowed to react for several hours, an amorphous titanium peroxide solution modified with tin and cerium was produced.
  • Silicon oxide (semiconductor: polysilicate), A composite dispersion of a negatively charged substance (conductor: K), methyl silicate 51 (manufactured by Mitsubishi Chemical Corporation), meta-modified alcohol, pure water and 3% hydrochloric acid are mixed and stirred while warming. A polysilicate is produced. Further, the prepared polysilicate was adjusted to a solid content concentration of 4 wt% with pure water and mixed with KOH (potassium hydroxide) to prepare a composite dispersion of silicon oxide and potassium.
  • Reference Example 7 A composite dispersion obtained by mixing the dispersion of Reference Example 1 and the dispersion of Reference Example 4 at a volume ratio of 1: 1. Dispersion of Reference Example 1 (amorphous titanium peroxide doped with copper Solution) and the dispersion liquid of Reference Example 4 (amorphous titanium peroxide solution modified with cerium) were mixed at a volume ratio of 1: 1.
  • Reference Example 8 A composite dispersion in which the dispersion of Reference Example 2 and the dispersion of Reference Example 5 were mixed at a volume ratio of 1: 1. Dispersion of Reference Example 2 (amorphous type liquid modified with copper and zirconium) Titanium oxide solution) and the dispersion liquid of Reference Example 5 (amorphous titanium peroxide solution modified with tin and cerium) were mixed at a volume ratio of 1: 1 to prepare.
  • Reference Example 9 A composite dispersion obtained by mixing the dispersion of Reference Example 3 and the dispersion of Reference Example 5 at a volume ratio of 1: 1. Dispersion of Reference Example 3 (composite dispersion of silicon oxide and copper) And a dispersion of Reference Example 5 (amorphous titanium peroxide solution modified with tin and cerium) were mixed at a volume ratio of 1: 1.
  • Example 1 The dispersion liquid of Reference Example 1 was applied to the surface of a commercially available ceramic tile (100 mm ⁇ 100 mm) substrate with a spray gun at a rate of 10 g / m 2 (wet state) and heated at 200 ° C. for 10 minutes to give Example 1. .
  • Comparative Example 1 was a non-film-formed substrate that was not newly formed on the surface of a commercially available ceramic tile (100 mm ⁇ 100 mm) substrate.
  • Evaluation 1 0.007 g / 100 cm 2 of a solution obtained by diluting a commercial red ink (manufactured by Pilot Ink Co., Ltd.) containing negative dye Dye Inco red was applied to the tile surfaces of Examples 1 to 9 and Comparative Example 1, and dried at room temperature. Thus, an evaluation substrate was produced. Further, in the same procedure, a methylene blue reagent solution, which is a positively charged pigment, was applied to the tile surfaces of Examples 1 to 9 and Comparative Example 1 to prepare an evaluation substrate.
  • Each of the evaluation substrates prepared using these negatively charged dyes and positively charged pigments was irradiated with a 15 W black light fluorescent lamp (manufactured by Toshiba Corporation) from a position where the ultraviolet ray amount was 1300 ⁇ w / cm 2 , and each charge surface was decolored.
  • the rate was evaluated over time with a chromameter CR-200 (manufactured by Konica Minolta Co., Ltd.), and each surface charge state was evaluated from the decoloring rate of the evaluation substrate of each example.
  • the unit of time for evaluation over time is days.
  • the erasing rate of each evaluation substrate according to Examples 1 to 9 and Comparative Example 1 over time is shown in Table 1 for red ink and Table 2 for methylene blue reagent.
  • Examples 1 to 3 having positive charge surface characteristics have a high decoloration rate due to electrostatic repulsion in the elapsed time (5.8 days). On the contrary, the decolorization rate is low in Examples 4 to 6 having negative charge surface characteristics. It can be seen that Examples 7 to 9, which have a decolorization rate approximately halfway between the negatively charged surface and the positively charged surface, have amphoteric charge surface characteristics.
  • the non-formed film of Comparative Example 1 shows negative charge characteristics due to the surface glaze of the tile.
  • Examples 11 to 19 Apply the dispersions of Reference Example 1 to Reference Example 9 at a rate of 10 g / m 2 (wet state) on a normal float glass (100 mm ⁇ 100 mm thickness 3 mm) substrate surface with a spray gun, respectively, at 200 ° C. for 10 minutes. Heated to Examples 11-19.
  • Comparative Example 2 A non-formed glass substrate which was not newly formed on the ordinary float glass substrate used in Examples 11 to 19 was defined as Comparative Example 2.
  • Table 3 shows the following results.
  • Kanto Loam powder was used, the glosses before and after evaluation of Examples 11 to 13 which are positive charge surface characteristic film-forming substrates and Examples 17 to 19 which are amphoteric charge surface characteristic film formations
  • the rate change is low, indicating that a positive or amphoteric charge surface has an antifouling function for Kanto loam powder.
  • the antifouling function when using Caribbean desert dust powder is the same.
  • the negative charge surface characteristic film-forming substrate of Examples 14 to 16 had a low change in gloss rate before and after the evaluation. It shows that the surface has an antifouling function.
  • the non-film-formed blue float glass surface of Comparative Example 2 shows the gloss rate values due to the three types of powder adhesion.
  • Example 20 The dispersion liquid of Reference Example 1 was applied to a normal soda lime float glass (100 mm ⁇ 100 mm thickness 3 mm) substrate surface by a sponge squeegee method at a rate of 10 g / m 2 and heated at 300 ° C. for 10 minutes. It was.
  • Example 21 Example 21 was produced by the same production method as Example 20 using the dispersion liquid of Reference Example 4.
  • Example 22 Using the dispersion liquid of Reference Example 5, Example 22 was produced by the same production method as Example 20.
  • Example 23 Example 23 was produced by the same production method as Example 20 using the dispersion liquid of Reference Example 7. Comparative Example 3 Comparative Example 3 was an ordinary soda lime float glass (100 mm ⁇ 100 mm thickness 3 mm) substrate with no film formation.
  • Evaluation 3 On the upper surfaces of the evaluation substrates of Examples 20 to 23 and the substrate of Comparative Example 3, a liquid obtained by stirring chicken eggs and a commercially available olive oil liquid were applied to a width of about 20 mm and a length of about 60 mm, and then at 300 ° C. for 30 minutes. Each carbonized polymer is fixed by heating to make each evaluation board, and the ease of removal of these carbides by electrostatic repulsion is a method of absorbing a commercially available tissue paper and rubbing the surface of each evaluation board, and the softness of the kitchen sponge. Evaluation was performed by a method of wetting the side and rubbing the surface of each evaluation substrate. Further, the state of the surface film formed on the substrate of each example was visually evaluated for the presence or absence of scratches on the surface film after the carbonized polymer removal operation. The results are shown in Table 4 below.
  • Table 4 shows the removal performance of the adhered contaminants due to electrostatic repulsion when the substrate is in an environment or usage conditions where the substrate is heated. From Table 4, it can be seen that the evaluation substrate on which the negative charge film was formed before heating according to Example 21 and Example 22 had no adsorption of carbonized contaminants and was excellent in removal performance. On the other hand, it is shown that the carbonized contaminant adhered cannot be removed with the evaluation substrate on which the positively charged film is formed before heating according to Example 20 and the non-formed substrate of Comparative Example 3. Further, the evaluation substrate on which the amphoteric charge film according to Example 23 is formed shows the removal performance of carbonized contaminants almost in the middle between Example 20 and Example 21. In addition, the state of the surface film of the substrate in each example indicates that there is no scratch even after the removal of the carbonized polymer, and that it is a hard film that can withstand such an environment and operation.
  • the application of antifouling technology by surface charge formation is based on the substance considering the antifouling object and the use environment or use condition of the film-forming substrate. It can be seen that the type of charge applied to the surface needs to be designed. Further, it is shown that not only a stable surface charge can be formed by using titanium oxide or silicon oxide as a dielectric and a semiconductor, but also a hard film can be formed.

Abstract

The present invention is characterized in that: a particulate laminated material is formed on a substrate surface or in a substrate surface layer to positively and/or negatively charge the substrate surface or the substrate surface layer, in order to cause a contaminating substance from the outside to be electrostatically repelled or adsorbed; and titanium oxide and/or silicon oxide (including a compound of titanium oxide and/or silicon oxide) is interposed as a dielectric material or a semiconductor material in a substance having positive charges and/or a substance having negative charges, in order to efficiently and stably form charges in the particulate laminated material without the charges being distributed unevenly.

Description

基体表面電荷形成用粒子状積層物及び基体表面電荷形成用造膜液Substrate surface charge forming particulate laminate and substrate surface charge forming film forming liquid
 本発明は、基体表面又は基体表面層中に、基体表面を帯電させる粒子状積層物を形成して、大気中に浮遊し基体に悪影響を与える汚染物質を基体表面において反発させあるいは基体表面に吸着して離脱させることにより、また、汚染物質を安全物質に変えることにより、基体表面を保護しあるいは基体に対する汚染物質の影響を低減させる技術に関するものである。 The present invention forms a particulate laminate that charges the substrate surface on the substrate surface or substrate surface layer, and repels or adsorbs on the substrate surface contaminants that float in the atmosphere and adversely affect the substrate. The present invention relates to a technique for protecting the substrate surface or reducing the influence of the contaminant on the substrate by separating the substrate and changing the contaminant into a safety material.
 大気中には、様々な汚染物質が浮遊しており、これらの汚染物質が、基体の表面や基体表面近傍の機能や環境に影響を与えている。このように基体に外部から影響を与える汚染物質から基体を保護する代表的な技術として、光触媒技術を挙げることができる。 Various pollutants are floating in the atmosphere, and these pollutants affect the function and environment of the substrate surface and the vicinity of the substrate surface. As a typical technique for protecting the substrate from contaminants that affect the substrate from the outside in this way, a photocatalytic technique can be cited.
 一方、出願人は、特許文献1において、基体表面又は基体表面層に、導電体と誘電体又は半導体との複合体を配置することによって基体表面に正電荷を発生させ、外部からの汚染物質を静電的に吸着又は反発させることにより、基体表面を保護する技術を開示している。また、出願人は、特許文献2において、基体表面又は基体表面層に、正電荷物質及び負電荷物質を配置して、基体表面を正及び負に帯電させることにより、外部からの汚染物質を基体表面において静電的に吸着又は反発させることにより、基体表面を保護する技術を開示している。なお、この技術において、基体表面又は基体表面層に配置された正電荷物質及び/又は負電荷物質による基体表面における帯電圧は、上記したように基体を保護するための機能を発揮するが、例えば電子機器の表面にこの技術が施されたとしても、電子機器自体の機能を損なわない程度の微弱な帯電圧である。 On the other hand, the applicant, in Patent Document 1, generates a positive charge on the surface of the substrate by disposing a composite of a conductor and a dielectric or semiconductor on the surface of the substrate or the substrate surface layer. A technique for protecting a substrate surface by electrostatically attracting or repelling is disclosed. In addition, in the patent document 2, the applicant arranges a positively charged substance and a negatively charged substance on the substrate surface or the substrate surface layer, and positively and negatively charges the substrate surface, so that contaminants from the outside are introduced into the substrate. A technique for protecting a substrate surface by electrostatically attracting or repelling the surface is disclosed. In this technique, the charged voltage on the substrate surface due to the positively charged substance and / or the negatively charged substance arranged on the substrate surface or the substrate surface layer exhibits the function for protecting the substrate as described above. Even if this technology is applied to the surface of an electronic device, the voltage is so weak that the function of the electronic device itself is not impaired.
 特許文献1及び特許文献2には、基体表面又は基体表面層に正電荷物質及び/又は負電荷物質を配置するために、正電荷物質や負電荷物質として、どのような物質を選択出来るかが開示されている。また、上記文献には、正電荷物質や負電荷物質を基体表面又は基体表面層に配置する手段の一つとして、正電荷物質及び/又は負電荷物質を有する造膜液を用いて、基体の表面に被膜又は層を形成するのが有効な手段であることが開示されている。 In Patent Document 1 and Patent Document 2, what kind of substance can be selected as a positively charged substance or a negatively charged substance in order to arrange a positively charged substance and / or a negatively charged substance on the substrate surface or the substrate surface layer. It is disclosed. Further, in the above document, as one of means for disposing a positively charged substance or a negatively charged substance on a substrate surface or a substrate surface layer, a film-forming solution having a positively charged substance and / or a negatively charged substance is used. It is disclosed that forming a coating or layer on the surface is an effective means.
 一方、基体表面又は基体表面層を帯電させることにより、外部からの汚染物質を静電的に反発あるいは吸着させる機能を効果的に発揮させるためには、正電荷物質や負電荷物質を単に配置するだけではなく、基体表面又は基体表面層中に電荷を偏在することなく効率的かつ安定的に形成することが求められる。 On the other hand, in order to effectively exert the function of electrostatically repelling or adsorbing contaminants from outside by charging the substrate surface or the substrate surface layer, a positively charged substance or a negatively charged substance is simply disposed. In addition, it is required to form the substrate surface or the substrate surface layer efficiently and stably without uneven distribution of charges.
 ここで、基体表面又は基体表面層中に形成される電荷の偏在を避けるためには、導電性を有する物質間に、電荷を安定的に形成するための誘電体又は半導体を適切に介在させることが解決手段の一つである。また、その誘電体又は半導体として、機能やコストの面から適切な物質を選択し、さらに基体表面又は表面層中の電荷の形成及び固定を安定して機能させるための電荷物質と誘電体又は半導体との量的なバランスや、基体表面又は基体表面層に粒子状積層物による機能的に優れた被膜や層を形成する方法について、解決しなければならない。 Here, in order to avoid uneven distribution of charges formed on the substrate surface or substrate surface layer, a dielectric or semiconductor for stably forming charges is appropriately interposed between the conductive materials. Is one of the solutions. In addition, as the dielectric or semiconductor, an appropriate substance is selected from the viewpoint of function and cost, and further, a charge substance and a dielectric or semiconductor for stably functioning formation and fixation of charges on the substrate surface or surface layer. And a method for forming a functionally excellent coating film or layer of the particulate laminate on the substrate surface or the substrate surface layer must be solved.
国際公開WO2005/108056号公報International Publication WO2005 / 108056 国際公開WO2008/013148号公報International Publication No. WO2008 / 013148
 本発明は、基体表面又は基体表面層を正及び/又は負に帯電させることにより、外部からの汚染物質を静電的に反発あるいは吸着させる基体の保護技術において、基体の表面又は表面層中に電荷を偏在することなく効率的かつ安定的に形成する手段を提供することを目的とする。 The present invention provides a substrate protection technique in which contaminants from the outside are electrostatically repelled or adsorbed by positively and / or negatively charging the substrate surface or the substrate surface layer. It is an object of the present invention to provide means for forming charges efficiently and stably without uneven distribution.
 本発明による基体表面電荷形成用粒子状積層物は、基体の表面又は基体の表面層において、正電荷を有する物質及び/又は負電荷を有する物質の間に、誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)を介在させたことを特徴とする。 The particulate laminate for forming a substrate surface charge according to the present invention includes a titanium oxide as a dielectric or semiconductor between a substance having a positive charge and / or a substance having a negative charge on the surface of the substrate or the surface layer of the substrate. It is characterized by interposing silicon oxide (including titanium oxide and / or silicon oxide compounds).
 前記粒子状積層物の一つの態様は、正電荷を有する物質及び/又は負電荷を有する物質からなる粒子と、誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)からなる粒子とが隣接して接合してなることを特徴とする。 One embodiment of the particulate laminate includes particles made of a substance having a positive charge and / or a substance having a negative charge, and titanium oxide and / or silicon oxide (dioxide or semiconductor oxide as a dielectric or semiconductor). It is characterized in that it is formed by adjoining and adhering to a particle comprising the above compound.
 前記粒子状積層物の別の態様は、正電荷を有する物質及び/又は負電荷を有する物質が誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)に内包されてなるコロイド粒子が接合してなることを特徴する。 In another aspect of the particulate laminate, the substance having a positive charge and / or the substance having a negative charge includes titanium oxide and / or silicon oxide (a compound of titanium oxide and / or silicon oxide) as a dielectric or semiconductor. It is characterized in that colloidal particles encapsulated in (1) are joined.
 前記粒子状積層物のさらに別の態様は、正電荷を有する物質及び/又は負電荷を有する物質と誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)とが分子レベルの複合体の粒子として接合してなることを特徴とする。 Still another embodiment of the particulate laminate includes a positively charged substance and / or a negatively charged substance and titanium oxide and / or silicon oxide as a dielectric or semiconductor (a compound of titanium oxide and / or silicon oxide). And the like) are bonded as particles of a complex at a molecular level.
 また、本発明による基体表面電荷形成用造膜液は、正電荷を有する物質及び/又は負電荷を有する物質と、誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)とを含有することを特徴とする。 In addition, the substrate surface charge forming film forming liquid according to the present invention includes a positively charged substance and / or a negatively charged substance, and titanium oxide and / or silicon oxide (titanium oxide and / or oxide) as a dielectric or semiconductor. Including a compound of silicon).
 さらに、上記の基体表面電荷形成用造膜液は、前記誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)と、前記正電荷を有する物質及び/又は負電荷を有する物質と、の割合が、固型分モル比で、酸化チタン(酸化チタン化合物を含む)を使用する場合は1:0.01~1:0.3、酸化ケイ素(酸化ケイ素の化合物を含む)を使用する場合は1:0.03~1:2.7、酸化チタン及び酸化ケイ素(これらの化合物を含む)を使用する場合は1:0.01~1:0.3、の割合であることが好ましい。 Furthermore, the above-mentioned film forming solution for forming a surface charge on a substrate includes titanium oxide and / or silicon oxide (including a compound of titanium oxide and / or silicon oxide) as the dielectric or semiconductor, a substance having the positive charge, and In the case of using titanium oxide (including a titanium oxide compound), the ratio of the negative charge to the substance having a negative charge is 1: 0.01 to 1: 0.3 when silicon oxide (including a titanium oxide compound) is used. When using a compound of silicon), 1: 0.03 to 1: 2.7, and when using titanium oxide and silicon oxide (including these compounds), 1: 0.01 to 1: 0. A ratio of 3 is preferable.
 なお、上記の基体表面電荷形成用粒子状積層物又は基体表面電荷形成用造膜液において、
 前記正電荷を有する物質及び/又は負電荷を有する物質は、
 (1)陽イオン
 (2)正電荷を有する導電体、正電荷を有する導電体と誘電体との複合体、正電荷を有する導電体と半導体との複合体、正電荷を有する2種以上の誘電体又は/及び半導体からなる複合体、のいずれかの正電荷を有する導電体又は複合体
 (3)陰イオン
 (4)負電荷を有する導電体、負電荷を有する導電体と誘電体との複合体、負電荷を有する導電体と半導体との複合体、負電荷を有する2種以上の誘電体又は/及び半導体からなる複合体、のいずれかの負電荷を有する導電体又は複合体
 (5)光触媒機能を有する物質
 (6)酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)を除く誘電体又は半導体
 の上記(1)~(6)からなる群から選ばれた少なくとも1つの正電荷を有する物質及び/又は負電荷を有する物質であることが好ましい。
In the above-described particulate laminate for forming a substrate surface charge or a film forming solution for forming a substrate surface charge,
The substance having a positive charge and / or the substance having a negative charge is
(1) Cation (2) Conductor having positive charge, composite of conductor having positive charge and dielectric, composite of conductor having positive charge and semiconductor, two or more kinds having positive charge A dielectric or / and a composite made of a semiconductor, a positively charged conductor or a composite (3) an anion (4) a negatively charged conductor, a negatively charged conductor and a dielectric Conductor or composite having negative charge of composite, composite of conductor having negative charge and semiconductor, composite of two or more kinds of dielectric having negative charge or / and semiconductor (5) ) Substance having photocatalytic function (6) Dielectric or semiconductor excluding titanium oxide and / or silicon oxide (including titanium oxide and / or silicon oxide compound) selected from the group consisting of (1) to (6) above A substance having at least one positive charge It is preferably a substance having a beauty / or negative charge.
 本発明によれば、基体又は基体表面層に正電荷を有する物質及び/又は負電荷を有する物質を配置して帯電させることにより、基体表面又は基体表面層を正及び/又は負に帯電させる粒子状積層物を、電荷が偏在することなく効率的かつ安定的に形成することが出来るので、外部からの汚染物質を静電的に反発あるいは吸着させて、効果的に基体を保護することが出来る。
 また、本発明において、正電荷を有する物質及び/又は負電荷を有する物質に、誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)を介在させることによって、基体表面又は基体表面層に、バインダを用いることなく粒子状積層物による薄く透明度が高く硬い膜質を形成することが出来る。
According to the present invention, particles that positively and / or negatively charge the substrate surface or the substrate surface layer by arranging and charging a substance having a positive charge and / or a substance having a negative charge on the substrate or the substrate surface layer. Can be formed efficiently and stably without uneven distribution of charges, so that external contaminants can be electrostatically repelled or adsorbed to effectively protect the substrate. .
In the present invention, the surface of the substrate or the surface of the substrate can be obtained by interposing titanium oxide and / or silicon oxide (including these compounds) as a dielectric or semiconductor in a substance having a positive charge and / or a substance having a negative charge. A thin and highly transparent film with a particulate laminate can be formed on the surface layer of the substrate without using a binder.
 また、本発明によれば、基体表面を正及び/又は負に帯電させることによって、外部からの汚染物質を静電的に吸着又は反撥させることにより基体表面を保護出来るばかりでなく、電磁波による基体の酸化劣化をも低減することができる。すなわち、基体の酸化劣化とは、基体表面又は基体中において、、・OH、等のラジカルが生成され、酸化分解反応を生じさせることが原因であるが、基体の正電荷表面は、これらのラジカルを安定した分子とする。従って、基体の酸化劣化が防止又は低減されると考えられる。なお、基体が金属製の場合には、同様のプロセスから錆の発生を低減することが可能となる。
 さらに、本発明によれば、基体表面を正又は正及び負に帯電させることによって、基体表面に加熱により固着した炭化汚染物を除去することが可能となる。
Further, according to the present invention, not only can the substrate surface be protected by electrostatically adsorbing or repelling contaminants from the outside by charging the substrate surface positively and / or negatively, but also a substrate by electromagnetic waves. It is also possible to reduce the oxidative degradation. That is, the oxidative degradation of the substrate is caused by the generation of radicals such as 1 O 2 , .OH, etc. on the substrate surface or in the substrate to cause an oxidative decomposition reaction. Let these radicals be stable molecules. Therefore, it is considered that the oxidative deterioration of the substrate is prevented or reduced. In addition, when a base | substrate is metal, it becomes possible to reduce generation | occurrence | production of rust from the same process.
Furthermore, according to the present invention, it is possible to remove carbonized contaminants fixed to the substrate surface by heating by positively or positively and negatively charging the substrate surface.
本願発明による基体表面電荷形成用粒子状積層物の造膜断面の例を模式的に示す図である。It is a figure which shows typically the example of the film-forming cross section of the particulate-form laminated body for base surface charge formation by this invention. 本願発明による基体表面電荷形成用粒子状積層物を基体表面層へ形成した態様の断面を模式的に示す図である。It is a figure which shows typically the cross section of the aspect which formed the particulate-form laminated body for base-material surface charge formation by this invention on the base-material surface layer. 金属ドープ酸化チタンの分散液の作製方法の一例を示す図である。It is a figure which shows an example of the preparation methods of the dispersion liquid of a metal dope titanium oxide. 金属ドープ酸化ケイ素の分散液の作製方法の一例を示す図である。It is a figure which shows an example of the preparation methods of the dispersion liquid of a metal dope silicon oxide. 基体表面又は基体表面層に電荷を付与する原理を模式的に示した図である。It is the figure which showed typically the principle which provides an electric charge to a base-material surface or a base-material surface layer. 基体表面又は基体表面層に電荷を付与する原理を模式的に示した図である。It is the figure which showed typically the principle which provides an electric charge to a base-material surface or a base-material surface layer.
 以下、図面を参照しながら、本発明による実施の形態について説明する。
概要
 本願の発明者は、基体表面又は基体表面層に正電荷を有する物質及び/又は負電荷を有する物質を配置して帯電させることにより、外部からの汚染物質を静電的に反発あるいは吸着させる基体の保護や環境改善方法の開発を進める過程において、基体の表面又は表面層中に電荷を偏在することなく効率的かつ安定的に形成するためには、正電荷を有する物質及び/又は負電荷を有する物質の間に電荷を安定的に形成するための誘電体又は半導体を適切に介在させた粒子状積層物を基体の表面又は表面層中に形成することが重要であることを見出した。なお、粒子状積層物とは、層状に配列された粒子状の物質からなり、基体の表面又は表面層に形成される膜あるいは層をいう。
Embodiments according to the present invention will be described below with reference to the drawings.
Outline The inventor of the present application electrostatically repels or adsorbs contaminants from the outside by placing and charging a positively charged substance and / or a negatively charged substance on the substrate surface or substrate surface layer. In the process of developing a substrate protection or environmental improvement method, in order to efficiently and stably form a charge on the surface or surface layer of the substrate without uneven distribution, a positively charged substance and / or a negative charge The present inventors have found that it is important to form a particulate laminate in the surface or surface layer of a substrate, with a dielectric or semiconductor appropriately interposed between materials having sinter. The particulate laminate refers to a film or layer formed of particulate substances arranged in layers and formed on the surface of the substrate or the surface layer.
 さらに、本願発明者は、上記の粒子状積層物において、基体表面又は基体表面層を帯電させる物質間に介在させる誘電体又は半導体として、コストが比較的低く扱いやすい材質である点、優れた誘電特性や半導体特性を備えている点、及びノーバインダー膜を形成することが可能等機能的に優れている点から、酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)を選択できることを見出した。 Furthermore, the inventor of the present application is an excellent dielectric material in that it is a material that is relatively low in cost and easy to handle as a dielectric or semiconductor interposed between substances for charging the substrate surface or the substrate surface layer in the particulate laminate. Titanium oxide and / or silicon oxide (including titanium oxide and / or silicon oxide compounds) from the point of having excellent characteristics such as characteristics and semiconductor characteristics and capable of forming a no-binder film I found that I can choose.
 出願人が開示した先行技術において、基体表面又は基体表面層を帯電させるための物質として、正に帯電させるのであれば、陽イオン、正電荷を有する導電体、正電荷を有する導電体と誘電体との複合体、正電荷を有する導電体と半導体との複合体、負に帯電させるのであれば、陰イオン、負電荷を有する導電体、負電荷を有する導電体と誘電体との複合体、負電荷を有する導電体と半導体との複合体、光触媒機能を有する物質、を用いることが開示されている(前述した特許文献1、特許文献2等)。出願人はさらに、2種以上の誘電体又は半導体を複合させると、用いた誘電体又は半導体の種類により、正又は負に帯電することを見出した。 In the prior art disclosed by the applicant, as a substance for charging the substrate surface or the substrate surface layer, if positively charged, a cation, a positively charged conductor, a positively charged conductor and a dielectric A composite of a positively charged conductor and a semiconductor; if negatively charged, a negative ion, a negatively charged conductor, a negatively charged conductor and a dielectric, It is disclosed to use a composite of a negatively charged conductor and a semiconductor, or a substance having a photocatalytic function (Patent Document 1, Patent Document 2, and the like described above). Applicants have further found that when two or more dielectrics or semiconductors are combined, they are positively or negatively charged depending on the type of dielectric or semiconductor used.
 一方、基体表面又は基体表面層を帯電させる物質間に介在させる誘電体又は半導体として、酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)を使用した場合に、上記した正電荷を有する物質及び/又は負電荷を有する物質に代えて、酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)を除いた誘電体や半導体を用いると、これらの誘電体や半導体の種類により、基体表面又は基体表面層が正や負及び正と負の両性に帯電することを、本願発明者は新たに見出した。 On the other hand, when titanium oxide and / or silicon oxide (including a titanium oxide and / or silicon oxide compound) is used as a dielectric or semiconductor interposed between substances for charging the substrate surface or the substrate surface layer, the above-mentioned When a dielectric or semiconductor excluding titanium oxide and / or silicon oxide (including titanium oxide and / or silicon oxide compound) is used in place of the positively charged substance and / or the negatively charged substance, these The inventor of the present application has newly found that the surface of the substrate or the surface layer of the substrate is positively or negatively charged both positively and negatively depending on the type of dielectric or semiconductor.
 従って、以下、本願明細書において、基体表面又は基体表面層を正に帯電させる物質を「正電荷を有する物質」、基体表面又は基体表面層を負に帯電させる物質を「負電荷を有する物質」と定義するが、この正電荷を有する物質及び負電荷を有する物質には、「酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)を除いた誘電体又は半導体」をも含むものとする。これらの誘電体又は半導体は、優れた静電分極及び静電誘導特性を有し、電磁波や熱又は光のエネルギーの照射によりこれらの物質内の電荷双極子が変動する特質を備えていることが望ましい。 Therefore, hereinafter, in the present specification, a substance that positively charges the substrate surface or the substrate surface layer is referred to as a “substance having a positive charge”, and a substance that negatively charges the substrate surface or the substrate surface layer is referred to as a “substance having a negative charge”. The substance having a positive charge and the substance having a negative charge are defined as “a dielectric or semiconductor excluding titanium oxide and / or silicon oxide (including a compound of titanium oxide and / or silicon oxide)”. Shall also be included. These dielectrics or semiconductors have excellent electrostatic polarization and electrostatic induction properties, and have the property that the charge dipoles in these materials fluctuate due to the irradiation of electromagnetic waves, heat or light energy. desirable.
 基体表面又は基体表面層に形成された膜又は層が、外部からの汚染物質を静電的に反発あるいは吸着する機能をより効果的に発揮するためには、粒子状積層物を基体表面又は表面層に形成し、その粒子状積層物において、乾燥固体化した粒子が規則的に取り込まれ、均一かつ均等な電荷が形成されていることが望ましい。例えば、このような粒子状積層物の好ましい例として、以下の(a)~(c)を挙げることが出来る。 In order for the film or layer formed on the substrate surface or the substrate surface layer to more effectively exhibit the function of electrostatically repelling or adsorbing contaminants from the outside, the particulate laminate is applied to the substrate surface or surface. In the particulate laminate, it is desirable that the dried and solidified particles are regularly taken in and a uniform and uniform charge is formed. For example, preferred examples of such a particulate laminate include the following (a) to (c).
 (a)正電荷を有する物質及び/又は負電荷を有する物質と、誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素とが、それぞれ単粒子により粒子接合された基体表面膜又は表面層
 (b)正電荷を有する物質及び/又は負電荷を有する物質が酸化チタンや酸化ケイ素に包有されてなるコロイド粒子によって粒子接合された基体表面膜又は表面層
 (c)正電荷を有する物質及び/又は負電荷を有する物質と酸化チタン及び/又は酸化ケイ素とが、分子レベルの複合体としてのぺロブスカイト型又はペロブスカイト型疑似結晶粒子として粒子接合された基体表面膜又は表面層
 上記した基体表面又は表面層において形成されている粒子状積層物の粒子径は、0.1nm~100nmが好ましい。また、その積層物の層厚は、特に限定されるものではないが、10nm~1μmの範囲が好ましく、10nm~100nmの範囲がより好ましい。
(A) A substrate surface film or surface layer in which a substance having a positive charge and / or a substance having a negative charge and titanium oxide and / or silicon oxide as a dielectric or semiconductor are each particle-bonded by single particles (b) A) substrate surface film or surface layer in which a positively charged substance and / or a negatively charged substance is particle-bonded by colloidal particles encapsulated in titanium oxide or silicon oxide; and (c) a positively charged substance and / or Substrate surface film or surface layer in which substance having negative charge and titanium oxide and / or silicon oxide are particle-bonded as perovskite type or perovskite type pseudo crystal particles as a complex at molecular level The particle size of the particulate laminate formed in is preferably 0.1 nm to 100 nm. The layer thickness of the laminate is not particularly limited, but is preferably in the range of 10 nm to 1 μm, and more preferably in the range of 10 nm to 100 nm.
電荷形成の原理について
 以下、主として、上記の(a)に記載した基体表面や基体表面層に形成された粒子状積層物により、基体表面あるいは基体表面層に正電荷、負電荷、あるいは正電荷及び負電荷を付与する電荷形成の原理について、図5及び図6を用いて説明する。
The principle of charge formation will be described below mainly by the particulate laminate formed on the substrate surface or the substrate surface layer described in (a) above. The substrate surface or the substrate surface layer is positively charged, negatively charged, or positively charged. The principle of charge formation for applying a negative charge will be described with reference to FIGS.
 図5(1)、図5(2)、図5(3)は、正電荷を有する物質及び/又は負電荷を有する物質と、誘電体又は半導体としての酸化チタン又は酸化ケイ素(これらの化合物を含む)とを使用して、基体表面又は基体表面層に、正電荷、負電荷、正電荷及び負電荷をそれぞれ付与する原理を模式的に示した図である。図5(1)では、正電荷を有する導電体の粒子APに、誘電体又は半導体としての酸化チタン又は酸化ケイ素(これらの化合物を含む)の粒子BBが隣接した状態で、図5(2)では、負電荷を有する導電体の粒子ANに、誘電体又は半導体としての酸化チタン又は酸化ケイ素(これらの化合物を含む)の粒子BBが隣接した状態で、図5(3)では、負電荷を有する導電体の粒子ANと正電荷を有する導電体の粒子APが交互に誘電体又は半導体としての酸化チタン又は酸化ケイ素(これらの化合物を含む)の粒子BBに隣接した状態で、それぞれ、基体表面又は基体表面層に膜又は層が形成されている。導電体は、内部に自由に移動のできる自由電子が高い濃度で存在し、励起により造膜あるいは形成層の表面に正孔(ホール)又は負の電子が集中することで、正又は負の電荷状態を持つことになる。導電体に隣接する誘電体又は半導体は、導電体の表面電荷状態の影響により誘電分極され、正電荷を有する導電体に隣接する側には負電荷が、負電荷を有する導電体に隣接する側には正電荷の状態が発生し、その対極側には逆の電荷の状態が発生する。従って、形成された粒子状積層物の表面には、均一かつ均等な電荷が形成される。 5 (1), FIG. 5 (2), and FIG. 5 (3) show a substance having a positive charge and / or a substance having a negative charge, and titanium oxide or silicon oxide as a dielectric or semiconductor (these compounds are combined). Is a diagram schematically showing the principle of imparting a positive charge, a negative charge, a positive charge, and a negative charge to a substrate surface or a substrate surface layer. In FIG. 5 (1), a particle BB of titanium oxide or silicon oxide (including these compounds) as a dielectric or semiconductor is adjacent to a conductive particle AP having a positive charge. Then, in the state where the particle BB of titanium oxide or silicon oxide (including these compounds) as a dielectric or semiconductor is adjacent to the particle AN of the conductor having a negative charge, in FIG. In the state where the conductive particle AN and the conductive particle AP having a positive charge are alternately adjacent to the particle BB of titanium oxide or silicon oxide (including these compounds) as a dielectric or semiconductor, Alternatively, a film or layer is formed on the substrate surface layer. A conductor has a high concentration of free electrons that can move freely inside, and positive or negative charges are formed by the concentration of holes or negative electrons on the surface of the film forming or forming layer by excitation. Will have a state. The dielectric or semiconductor adjacent to the conductor is dielectrically polarized due to the influence of the surface charge state of the conductor, and the negative charge is present on the side adjacent to the positively charged conductor and the side adjacent to the negatively charged conductor. Has a positive charge state, and a reverse charge state is generated on the counter electrode side. Therefore, uniform and uniform charges are formed on the surface of the formed particulate laminate.
 図6(1)、図6(2)、図6(3)は、酸化チタン及び酸化ケイ素(これらの化合物を含む)を除いた誘電体又は半導体と、誘電体又は半導体としての酸化チタン又は酸化ケイ素(これらの化合物を含む)とを使用して、基体表面又は基体表面層に、正電荷、負電荷、正電荷及び負電荷をそれぞれ付与する原理を模式的に示した図である。図6(1)~(3)では、酸化チタン及び酸化ケイ素(これらの化合物を含む)を除いた誘電体又は半導体の粒子CCと、誘電体又は半導体としての酸化チタン又は酸化ケイ素(これらの化合物を含む)の粒子BBが隣接した状態で、それぞれ、基体表面又は基体表面層に膜又は層が形成されている。酸化チタン及び酸化ケイ素(これらの化合物を含む)を除いた誘電体又は半導体では、その物質を形成する電気的な双極子が、隣接する物質(すなわち、酸化チタン又は酸化ケイ素(これらの化合物を含む))の誘電分極された表面電荷に素早く反応し、誘電分極された電荷とは反対の電荷で双極子が移動すると、基体表面又は表面層に均一な正又は負電荷が生成されると考えられる。図6(1)では、均一な正電荷が生成される態様を、図6(2)では均一な負電荷が生成される態様を、図6(3)では均一な正電荷及び負電荷が生成される態様を、それぞれ示している。 6 (1), FIG. 6 (2), and FIG. 6 (3) show a dielectric or semiconductor excluding titanium oxide and silicon oxide (including these compounds), and titanium oxide or oxidation as a dielectric or semiconductor. It is the figure which showed typically the principle which provides a positive charge, a negative charge, a positive charge, and a negative charge, respectively, to a substrate surface or a substrate surface layer using silicon (including these compounds). 6 (1) to (3), dielectric or semiconductor particles CC excluding titanium oxide and silicon oxide (including these compounds), and titanium oxide or silicon oxide (these compounds) as a dielectric or semiconductor. In the state where the particles BB of the substrate surface are adjacent to each other, a film or a layer is formed on the substrate surface or the substrate surface layer, respectively. In dielectrics or semiconductors excluding titanium oxide and silicon oxide (including these compounds), the electrical dipole that forms the material is adjacent to the material (ie, titanium oxide or silicon oxide (including these compounds). )) Reacts quickly to the dielectric-polarized surface charge, and if the dipole moves with a charge opposite to the dielectric-polarized charge, it is considered that a uniform positive or negative charge is generated on the substrate surface or surface layer. . In FIG. 6 (1), a uniform positive charge is generated. In FIG. 6 (2), a uniform negative charge is generated. In FIG. 6 (3), a uniform positive charge and a negative charge are generated. Each of the embodiments is shown.
基体表面の造膜方法
 次に、段落番号0025に記載した(a)~(c)のそれぞれの基体表面の電荷表面形成方法や造膜方法について、以下の(A)~(C)において説明する。
(A)単粒子による膜の造膜方法
 図1(1)は、(a)の態様による基体S1への造膜断面を模式的に示した図である。図中、着色された円は正電荷を有する物質及び/又は負電荷を有する物質の粒子であり、着色されていない円は誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)による粒子を表している。すなわち、(a)の態様では、酸化チタン及び/又は酸化ケイ素で形成される単粒子の接合中に、正電荷を有する物質及び/又は負電荷を有する物質で形成される単粒子が均一に分散されている形態である。この形態による粒子状積層物の造膜方法を以下に説明する。
Substrate Surface Film Formation Method Next, the charge surface formation method and film formation method for each substrate surface (a) to (c) described in paragraph 0025 will be described in the following (A) to (C). .
(A) Film Formation Method Using Single Particles FIG. 1 (1) is a diagram schematically showing a film formation cross section on the substrate S1 according to the embodiment (a). In the figure, colored circles are particles of a substance having a positive charge and / or a substance having a negative charge, and non-colored circles are titanium oxide and / or silicon oxide (a compound of these compounds as a dielectric or semiconductor). Particle). That is, in the embodiment (a), single particles formed of a substance having a positive charge and / or a substance having a negative charge are uniformly dispersed during bonding of single particles formed of titanium oxide and / or silicon oxide. It is a form that has been. A method for forming a particulate laminate according to this embodiment will be described below.
 図5及び図6を用いて説明したように、理論的には、正電荷を有する物質及び/又は負電荷を有する物質と、誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)とが、成膜上、1:1の割合で複合化されていることが好ましい。このような複合化された膜又は層を基体表面又は表面層に形成する方法は、様々な方法が考えられ、特に限定されるものではない。 As described with reference to FIGS. 5 and 6, theoretically, a substance having a positive charge and / or a substance having a negative charge and titanium oxide and / or silicon oxide as a dielectric or semiconductor (these compounds). Are preferably combined at a ratio of 1: 1 for film formation. Various methods can be considered as a method of forming such a composite film or layer on the surface of the substrate or the surface layer, and the method is not particularly limited.
 その一例として、造膜液を用いる方法がある。具体的には、予め、酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)の粒子と正電荷を有する物質及び/又は負電荷を有する物質の粒子とを製造した上で、これらの粒子を、水や有機媒質等に分散して造膜液とする。そして、その造膜液を基体に塗布して造膜するウェット方式による造膜方法を用いることができる。また、上述した造膜液を使用し、造膜液に含まれる微小粉体やイオン性微小粒子を、イオンプレーティングやスパッタリング等によるドライ方式により基体に造膜する造膜方法も用いることができる。なお、この基体の造膜方法のより詳細な説明や造膜液の詳細な製造方法についての説明は後段で行う。 One example is a method using a film-forming solution. Specifically, after preparing particles of titanium oxide and / or silicon oxide (including these compounds) and particles of a substance having a positive charge and / or a substance having a negative charge, these particles are , Dispersed in water or an organic medium to form a film-forming solution. And the film forming method by the wet system which apply | coats the film forming liquid to a base | substrate, and forms a film can be used. In addition, a film-forming method can be used in which the above-described film-forming solution is used and a fine powder or ionic fine particles contained in the film-forming solution is formed on a substrate by a dry method such as ion plating or sputtering. . A more detailed description of the substrate film forming method and a detailed manufacturing method of the film forming solution will be given later.
 なお、酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)の粒子と、正電荷を有する物質及び/又は負電荷を有する物質の粒子とを、水や有機媒質等に分散した造膜液を用いて基体表面上に造膜を行う場合、これらの粒子の比率は、成膜後の比率が上記で述べたように1:1であるのが理論的には好ましいが、造膜液の安定性を考慮した場合には、酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)と、正電荷を有する物質及び/又は負電荷を有する物質との比率を固型分モル比として表すと、酸化チタン(酸化チタン化合物を含む)を使用する場合は、好ましくは1:0.01~1:0.3、酸化ケイ素(酸化ケイ素の化合物を含む)を使用する場合は、好ましくは1:0.03~1:2.7、酸化チタン及び酸化ケイ素(これらの化合物を含む)を使用する場合は、好ましくは1:0.01~1:0.3、の割合である。 A film-forming solution in which particles of titanium oxide and / or silicon oxide (including these compounds) and particles of a substance having a positive charge and / or a substance having a negative charge are dispersed in water, an organic medium, or the like. When the film is formed on the substrate surface, the ratio of these particles is theoretically preferably 1: 1 as described above, but the stability of the film-forming solution is stable. In consideration of the property, when the ratio of titanium oxide and / or silicon oxide (including these compounds) to a positively charged substance and / or a negatively charged substance is expressed as a solid molar ratio, When titanium oxide (including a titanium oxide compound) is used, it is preferably 1: 0.01 to 1: 0.3, and when silicon oxide (including a compound of silicon oxide) is used, preferably 1: 0. .03 to 1: 2.7, titanium oxide and silicon oxide When using (containing these compounds) is preferably 1: 0.01 to 1: 0.3, a ratio of.
(B)正電荷を有する物質及び/又は負電荷を有する物質を内包するコロイド粒子による膜の造膜方法
 図1(2)は、(b)の態様による基体S1への造膜断面を模式的に示した図である。図中、着色された円は正電荷を有する物質及び/又は負電荷を有する物質であり、着色されていない円は誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)を表しており、酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)が正電荷を有する物質及び/又は負電荷を有する物質を内包してなるコロイド粒子が接合されることにより膜を形成している。この形態による膜の造膜には、酸化チタンや酸化ケイ素(これらの化合物を含む)を、正電荷を有する物質及び/又は負電荷を有する物質と混合又は複合化させる工程において、正電荷を有する物質及び/又は負電荷を有する物質にアルカリ性剤や酸性剤等を添加反応させて作製したイオン錯体液に、誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)を配合した造膜液を使用し、ウェット方式またはドライ方式による造膜により基体表面に固着化するときに、酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)が正電荷を有する物質及び/又は負電荷を有する物質を内包してなるコロイド粒子となる。すなわち、酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)と正電荷を有する物質及び/又は負電荷を有する物質とが、乾燥により固体化したときに、コロイド粒子としてイオンを一体化させて積層させることができる。
(B) Method of forming a film with colloidal particles containing a positively charged substance and / or a negatively charged substance FIG. 1 (2) is a schematic cross-sectional view of the film formed on the substrate S1 according to the embodiment (b). It is the figure shown in. In the figure, a colored circle is a substance having a positive charge and / or a substance having a negative charge, and a non-colored circle is titanium oxide and / or silicon oxide (including these compounds) as a dielectric or semiconductor. A film is formed by joining colloidal particles in which titanium oxide and / or silicon oxide (including these compounds) contain a positively charged substance and / or a negatively charged substance. ing. In forming a film according to this form, titanium oxide or silicon oxide (including these compounds) has a positive charge in a step of mixing or combining with a substance having a positive charge and / or a substance having a negative charge. Incorporating titanium oxide and / or silicon oxide (including these compounds) as a dielectric or semiconductor in an ionic complex solution prepared by reacting a substance and / or a negatively charged substance with an alkaline agent or an acidic agent. When the film forming solution is used and is fixed to the substrate surface by film formation by a wet method or a dry method, titanium oxide and / or silicon oxide (including these compounds) has a positive charge and / or a negative charge. The colloidal particles are formed by encapsulating a substance having a charge. That is, when titanium oxide and / or silicon oxide (including these compounds) and a positively charged substance and / or a negatively charged substance are solidified by drying, ions are integrated as colloidal particles. Can be laminated.
 上記した造膜液中の酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)と、正電荷を有する物質及び/又は負電荷を有する物質との複合比は、固型分モル比として表すと、酸化チタン(酸化チタン化合物を含む)を使用する場合は、好ましくは1:0.01~1:0.3、酸化ケイ素(酸化ケイ素の化合物を含む)を使用する場合は、好ましくは1:0.03~1:2.7、酸化チタン及び酸化ケイ素(これらの化合物を含む)を使用する場合は、好ましくは1:0.01~1:0.3、の割合である。 The composite ratio of titanium oxide and / or silicon oxide (including titanium oxide and / or silicon oxide compound) in the above-described film-forming solution to a positively charged substance and / or a negatively charged substance is a solid type. In terms of molar ratio, when using titanium oxide (including titanium oxide compound), preferably 1: 0.01 to 1: 0.3, when using silicon oxide (including silicon oxide compound) Is preferably a ratio of 1: 0.03 to 1: 2.7, preferably 1: 0.01 to 1: 0.3 when titanium oxide and silicon oxide (including these compounds) are used. It is.
 なお、基体への造膜は、酸化チタンや酸化ケイ素の自己固着化修飾体であるペルオキソ基やメチル基、又は有機ケイ素化合物であるシランモニマーやポリシロキサンポリマー等のHO、COの離脱による縮重合反応によるノーバインダー固着が好ましい。 Note that film formation to the substrate, the peroxo group and a methyl group is a self-pinning modifications of titanium oxide or silicon oxide, or H 2 O, such Shiranmonima or polysiloxane polymer which is an organic silicon compound, by separation of CO 2 No-binder fixing by a condensation polymerization reaction is preferable.
(C)正電荷を有する物質及び/又は負電荷を有する物質と酸化チタン及び/又は酸化ケイ素とが、分子レベルの複合体としての、ぺロブスカイト型又はペロブスカイト型疑似結晶粒子として粒子接合された膜の造膜方法
 図1(3)は、(c)の態様による基体S1への造膜断面を模式的に示した図である。図中、着色された円は正電荷を有する物質及び/又は負電荷を有する物質であり、着色されていない円は誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)を表しており、外側に表示されている円によって、分子レベルの粒子が内部にイオンを取り込んだ結晶構造又は疑似結晶構造であることを示している。
(C) A film in which a substance having a positive charge and / or a substance having a negative charge and titanium oxide and / or silicon oxide are particle-bonded as a perovskite-type or perovskite-type pseudo-crystal particle as a molecular-level complex Film Forming Method FIG. 1 (3) is a view schematically showing a cross section of the film formed on the substrate S1 according to the embodiment (c). In the figure, a colored circle is a substance having a positive charge and / or a substance having a negative charge, and a non-colored circle is titanium oxide and / or silicon oxide (including these compounds) as a dielectric or semiconductor. The circles displayed on the outside indicate that the particles at the molecular level have a crystal structure or pseudo-crystal structure in which ions are incorporated.
 酸化チタン又は/及び酸化ケイ素を形成するTi分子とO分子又はO分子、あるいはSi分子とO分子又はO分子とが溶液中で解離した状態で、正電荷を有する物質及び/又は負電荷を有する物質を分子イオン状態で反応させ、酸性剤・アルカリ性剤あるいは電磁波照射等により固体化させることにより、複合結晶物を生成する。反応させる酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)と、正電荷を有する物質及び/又は負電荷を有する物質との複合比は、固型分モル比として表すと、酸化チタン(酸化チタン化合物を含む)を使用する場合は、好ましくは1:0.01~1:0.3、酸化ケイ素(酸化ケイ素の化合物を含む)を使用する場合は、好ましくは1:0.03~1:2.7、酸化チタン及び酸化ケイ素(これらの化合物を含む)を使用する場合は、好ましくは1:0.01~1:0.3、の割合である。 A substance having a positive charge in a state in which a Ti molecule and an O 2 molecule or an O 3 molecule, or a Si molecule and an O 2 molecule or an O 3 molecule forming titanium oxide or / and silicon oxide are dissociated in a solution, and / or A compound having a negative charge is reacted in a molecular ion state and solidified by an acid agent / alkaline agent or electromagnetic wave irradiation to form a composite crystal. The composite ratio of titanium oxide and / or silicon oxide to be reacted (including a compound of titanium oxide and / or silicon oxide) and a substance having a positive charge and / or a substance having a negative charge is expressed as a solid molar ratio. When titanium oxide (including a titanium oxide compound) is used, preferably 1: 0.01 to 1: 0.3, and when using silicon oxide (including a silicon oxide compound), preferably 1 : 0.03 to 1: 2.7, and when titanium oxide and silicon oxide (including these compounds) are used, the ratio is preferably 1: 0.01 to 1: 0.3.
 上記した複合結晶物は、一般的に知られている内部に複合分子がイオンとして取り込まれたペロブスカイト型の結晶構造又は疑似結晶構造を有しており、その複合結晶粒子からは、Ti又はSiが正電荷として、Oが負電荷として機能する。従って、その複合結晶粒子では、内包したイオンによって、両性、正>負、又は負>正、の電荷を選択的に呈するようにすることが出来る。
 以上、図1を用いて、正電荷を有する物質及び/又は負電荷を有する物質に、誘電体又は半導体としての酸化チタン及び又は酸化ケイ素(これらの化合物を含む)を介在させた膜を基体表面に造膜する方法の例について述べた。図1を用いた造膜方法を用いる場合は、どのような種類の基体であっても造膜が可能である。
 なお、図1の(1)、(2)及び(3)では、基体の表面に形成された粒子状積層物の粒子の層が1層又は2層の例を示しているが、本発明による機能を発揮するためには、粒子状積層物が複数の層で形成されていることが望ましい。
The above-mentioned composite crystal has a perovskite type crystal structure or pseudo crystal structure in which a composite molecule is incorporated as an ion in a generally known inside, and Ti or Si is contained from the composite crystal particle. As a positive charge, O 2 functions as a negative charge. Therefore, the composite crystal particle can selectively exhibit an amphoteric, positive> negative, or negative> positive charge depending on the included ions.
As described above, referring to FIG. 1, a film in which a substance having a positive charge and / or a substance having a negative charge is interposed with titanium oxide and / or silicon oxide (including these compounds) as a dielectric or semiconductor is used. An example of a method for forming a film was described. When the film forming method using FIG. 1 is used, film formation is possible with any type of substrate.
1 (1), (2) and (3) in FIG. 1 show an example in which the particle layer of the particulate laminate formed on the surface of the substrate has one or two layers. In order to exhibit the function, it is desirable that the particulate laminate is formed of a plurality of layers.
基体の表面層への粒子状積層物の形成
 一方、図2は、基体の表面層中に、誘電体又は半導体としての酸化チタンと酸化ケイ素(これらの化合物を含む)を、正電荷を有する物質及び/または負電荷を有する物質に介在させることにより、基体表面層中に電荷を偏在することなく効率的かつ安定的に形成することが出来る態様の例を示している。図2の(1)、(2)、(3)は、これらの態様による基板の断面を模式的に表した図面である。図中、着色された円は正電荷を有する物質及び/又は負電荷を有する物質の粒子であり、着色されていない円は誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)による粒子を表している。
Formation of a particulate laminate on a surface layer of a substrate On the other hand, FIG. 2 shows a substance having a positive charge in a surface layer of a substrate containing titanium oxide and silicon oxide (including these compounds) as dielectrics or semiconductors. In addition, an example of an aspect in which, by interposing in a substance having a negative charge, an electric charge can be efficiently and stably formed in the substrate surface layer without being unevenly distributed. (1), (2), and (3) of FIG. 2 are drawings schematically showing a cross section of the substrate according to these embodiments. In the figure, colored circles are particles of a substance having a positive charge and / or a substance having a negative charge, and non-colored circles are titanium oxide and / or silicon oxide (a compound of these compounds as a dielectric or semiconductor). Particle).
 図2(1)に示す態様では、正電荷を有する物質及び又は負電荷を有する物質の粒子を形成しておき、これらの粒子の層を、誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)からなる基板S2の表面層に形成している。このような表面層を基体S2に形成する方法として、正電荷を有する物質及び/又は負電荷を有する物質の粒子をプレス加工等により基板S2の表面に圧着する方法や、基板S2の作製時に正電荷を有する物質及び/又は負電荷を有する物質の粒子からなる層を基板S2の表面に型成形する方法、等がある。 In the embodiment shown in FIG. 2 (1), particles of a substance having a positive charge and / or a substance having a negative charge are formed, and a layer of these particles is formed as titanium oxide and / or silicon oxide as a dielectric or semiconductor. It is formed on the surface layer of the substrate S2 made of (including these compounds). As a method of forming such a surface layer on the substrate S2, there is a method in which particles of a positively charged substance and / or a negatively charged substance are pressed against the surface of the substrate S2 by pressing or the like. There is a method of molding a layer made of particles of a substance having a charge and / or a substance having a negative charge on the surface of the substrate S2.
 図2(2)に示す態様では、酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)の粒子を形成しておき、これらの粒子と、正電荷を有する物質及び/又は負電荷を有する物質の基板S3とをプレス加工等により圧着したり、基板S3の作製時に型成形することにより、図示したような表面層を作製することが出来る。 In the embodiment shown in FIG. 2 (2), particles of titanium oxide and / or silicon oxide (including these compounds) are formed, and these particles, a substance having a positive charge and / or a substance having a negative charge. The surface layer as shown in the figure can be produced by pressure-bonding to the substrate S3 by press working or by molding at the time of producing the substrate S3.
 図2(3)に示す態様では、誘電体又は半導体としての酸化チタンと酸化ケイ素(これらの化合物を含む)の粒子を、正電荷を有する物質及び/または負電荷を有する物質の粒子に介在させた層を、あらかじめ硬化前の有機高分子樹脂等によるシート状やブロック状の基体S4(内部に無機成分を含有してもよい)に形成しておき、その基体S4に紫外線の電磁波を照射することにより、あるいは、誘電体又は半導体としての酸化チタンと酸化ケイ素(これらの化合物を含む)の粒子を正電荷を有する物質及び/または負電荷を有する物質の粒子に介在させた層を基体S4に型成形することにより、図示したような表面層を作製することが出来る。 In the embodiment shown in FIG. 2 (3), particles of titanium oxide and silicon oxide (including these compounds) as a dielectric or semiconductor are interposed between particles having a positive charge and / or a substance having a negative charge. The layer is formed in advance on a sheet-like or block-like substrate S4 (which may contain an inorganic component inside) using an organic polymer resin or the like before curing, and the substrate S4 is irradiated with ultraviolet electromagnetic waves. Alternatively, a layer in which particles of titanium oxide and silicon oxide (including these compounds) as a dielectric or semiconductor are interposed in particles of a substance having a positive charge and / or a substance having a negative charge is formed on the substrate S4. By molding, a surface layer as shown can be produced.
 図2(1)及び図2(2)に示した態様では、図1(1)に示したような、正電荷を有する物質及び/又は負電荷を有する物質の粒子と誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)の粒子とが隣接して接合されている態様ではなく、誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)からなる基板S2の表面側に正電荷を有する物質及び/又は負電荷を有する物質の粒子を接合させることにより、あるいは、正電荷を有する物質及び/又は負電荷を有する物質の基板S3の表面側に酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)の粒子を接合させることにより、同様に基板表面に均一かつ均等な電荷を形成することができる。
 なお、図2の(1)、(2)及び(3)では、基体の表面層中に形成された粒子の層が1層又は2層の例を示しているが、本発明による機能を発揮するためには、基体の表面層中に形成された粒子の層が複数の層で形成されていることが望ましい。
In the embodiment shown in FIGS. 2 (1) and 2 (2), particles of a substance having a positive charge and / or a substance having a negative charge and a dielectric or semiconductor as shown in FIG. It is not an embodiment in which particles of titanium oxide and / or silicon oxide (including these compounds) are adjacently bonded, but from titanium oxide and / or silicon oxide (including these compounds) as a dielectric or semiconductor. By bonding particles of a substance having a positive charge and / or a substance having a negative charge to the surface side of the substrate S2, or on the surface side of the substrate S3 of a substance having a positive charge and / or a substance having a negative charge By bonding particles of titanium oxide and / or silicon oxide (including these compounds), a uniform and uniform charge can be similarly formed on the substrate surface.
2 (1), (2), and (3) show an example in which the layer of particles formed in the surface layer of the substrate is one or two layers, the function according to the present invention is exhibited. In order to achieve this, it is desirable that the particle layer formed in the surface layer of the substrate is formed of a plurality of layers.
 次に、本願発明による表面電荷形成のための粒子状積層膜を組成する正電荷を有する物質及び/又は負電荷を有する物質と、誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)として、どのような物質が好ましいかについて、詳しく説明する。 Next, a positively charged substance and / or a negatively charged substance constituting the particulate laminated film for surface charge formation according to the present invention, titanium oxide and / or silicon oxide as a dielectric or semiconductor (these materials) What kind of substance is preferable as the compound (including the compound) will be described in detail.
誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素
 正電荷を有する物質及び/又は負電荷を有する物質に介在させる誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素は、誘電特性や半導体特性に優れ、バインダーを使用せずに高硬度で透明性の高い薄膜を形成することができる。また、コストの面からも、比較的安価で使用することができる。正電荷を有する物質及び/又は負電荷を有する物質に介在させる誘電体又は半導体として、酸化チタンや酸化ケイ素の各種の酸化物や過酸化物やこれらの化合物も使用することが出来、さらに、アルカリ金属やアルカリ土類金属をはじめ、3族のスカンジウムやイットリウム及びランタノイド物質であるランタンやセリウム、4族のジルコニウムやハフニウムなど、これらの化合物も含め、導電性金属以外の誘電体又は半導体を複合化したり共存させてもよい。
Titanium oxide and / or silicon oxide as a dielectric or a semiconductor Titanium oxide and / or silicon oxide as a dielectric or semiconductor interposed in a substance having a positive charge and / or a substance having a negative charge has dielectric properties and semiconductor characteristics. An excellent thin film having high hardness and high transparency can be formed without using a binder. Further, it can be used at a relatively low cost from the viewpoint of cost. Various oxides and peroxides of titanium oxide and silicon oxide, and compounds thereof can be used as a dielectric or semiconductor interposed in a substance having a positive charge and / or a substance having a negative charge. Including metals, alkaline earth metals, group 3 scandium and yttrium, and lanthanoids such as lanthanum and cerium, group 4 zirconium and hafnium, and other compounds such as dielectrics and semiconductors other than conductive metals Or coexist.
正電荷を有する物質及び/又は負電荷を有する物質
 誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)と複合させる正電荷を有する物質及び/又は負電荷を有する物質としては、基体表面に正電荷又は負電荷を付与可能なものであれば、任意の正電荷又は負電荷を有する物質を用いることが出来るが、以下の(1)~(6)からなる群から選ばれた少なくとも1つの正電荷を有する物質及び/又は負電荷を有する物質であることが好ましい。
 (1)陽イオン
 (2)正電荷を有する導電体、正電荷を有する導電体と誘電体との複合体、正電荷を有する導電体と半導体との複合体、正電荷を有する2種以上の誘電体又は/及び半導体からなる複合体、のいずれかの正電荷を有する導電体又は複合体
 (3)陰イオン
 (4)負電荷を有する導電体、負電荷を有する導電体と誘電体との複合体、負電荷を有する導電体と半導体との複合体、負電荷を有する2種以上の誘電体又は/及び半導体からなる複合体、のいずれかの負電荷を有する導電体又は複合体
 (5)光触媒機能を有する物質
 (6)酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)を除く誘電体又は半導体
Substance having positive charge and / or substance having negative charge As substance having positive charge and / or substance having negative charge combined with titanium oxide and / or silicon oxide (including these compounds) as dielectric or semiconductor Any substance having any positive or negative charge can be used as long as it can impart a positive charge or a negative charge to the surface of the substrate, but it is selected from the group consisting of the following (1) to (6): It is preferable that the substance has at least one positive charge and / or a negative charge.
(1) Cation (2) Conductor having positive charge, composite of conductor having positive charge and dielectric, composite of conductor having positive charge and semiconductor, two or more kinds having positive charge A dielectric or / and a composite made of a semiconductor, a positively charged conductor or a composite (3) an anion (4) a negatively charged conductor, a negatively charged conductor and a dielectric Conductor or composite having negative charge of composite, composite of conductor having negative charge and semiconductor, composite of two or more kinds of dielectric having negative charge or / and semiconductor (5) ) Substance having photocatalytic function (6) Dielectric or semiconductor excluding titanium oxide and / or silicon oxide (including compounds of titanium oxide and / or silicon oxide)
 (1)~(6)の陽イオン、陰イオン、負電荷又は正電荷を有する導電体、光触媒として機能させる物質、誘電体又は半導体としては、有機物質、無機物質、有機物質と無機物質の複合体など、物質の種類を問わないが、基体表面に安定した電荷を形成することが出来、さらに汚染物を静電的に吸着あるいは反発させて基体を保護するために、電磁波や熱や光のエネルギーを照射される基体の使用条件にあわせた電荷を形成することが出来る点で、金属や金属以外の一部の無機物質を使用することが特に好ましい。なお、誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)と複合させる正電荷を有する物質及び/又は負電荷を有する物質として好ましいのは主として金属であるので、ここでは便宜的に、以下、金属や金属以外の一部の無機物質と誘電体又は半導体としての酸化チタン(酸化チタンの化合物を含む)との複合体を、金属ドープ酸化チタンといい、金属や金属以外の一部の無機物質と誘電体又は半導体としての酸化ケイ素(酸化ケイ素の化合物を含む)との複合体を金属ドープ酸化ケイ素という。 (1) to (6) cations, anions, negatively charged or positively charged conductors, substances that function as photocatalysts, dielectrics or semiconductors include organic substances, inorganic substances, and composites of organic and inorganic substances. Regardless of the type of substance such as the body, a stable charge can be formed on the surface of the substrate, and in order to protect the substrate by electrostatically adsorbing or repelling contaminants, It is particularly preferable to use a metal or a part of an inorganic substance other than a metal from the viewpoint that a charge can be formed in accordance with the use conditions of a substrate to which energy is irradiated. Note that, since a substance having a positive charge and / or a substance having a negative charge to be combined with titanium oxide and / or silicon oxide (including these compounds) as a dielectric or a semiconductor is mainly a metal, here, For convenience, a composite of a metal or a part of an inorganic substance other than metal and titanium oxide (including a titanium oxide compound) as a dielectric or semiconductor is hereinafter referred to as metal-doped titanium oxide. A composite of a part of the inorganic substance and silicon oxide (including a silicon oxide compound) as a dielectric or semiconductor is referred to as metal-doped silicon oxide.
 誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)と複合させる金属としては、金、銀、白金、銅、マンガン、ニッケル、コバルト、鉄、ジルコニウム、ハフニウムをはじめとする遷移金属、亜鉛やスズをはじめとする典型金属、アルカリ金属、アルカリ土類金属、ランタンやセリウムをはじめとするランタノイドから選択された金属元素や無機元素の少なくとも1つであることが好ましく、金属元素を2つ複合させることがより好ましい。複合させる金属元素としては、特に、銀と銅が好ましい。
 また、誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)と複合させる金属以外の無機物質としては、ケイ素が好ましい。
Metals to be combined with titanium oxide and / or silicon oxide (including these compounds) as a dielectric or semiconductor include gold, silver, platinum, copper, manganese, nickel, cobalt, iron, zirconium, hafnium and the like It is preferably at least one metal element or inorganic element selected from transition metals, typical metals such as zinc and tin, alkali metals, alkaline earth metals, lanthanides such as lanthanum and cerium, and metal elements More preferably, two of these are combined. As the metal element to be combined, silver and copper are particularly preferable.
In addition, silicon is preferable as the inorganic substance other than the metal to be combined with titanium oxide and / or silicon oxide (including these compounds) as a dielectric or semiconductor.
金属ドープ酸化チタンについて
 以下、本願発明による表面電荷形成のための粒子状積層膜を組成する物質として好ましい、金属(金属以外の一部の無機物質を含む)と、誘電体又は半導体としての酸化チタン(酸化チタンの化合物を含む)との組み合わせについて説明する。金属(金属以外の一部の無機物質を含む)と複合させる誘電体又は半導体としての酸化チタン(酸化チタンの化合物を含む)としては、TiO、TiO、TiO、TiO/nHO等の各種の酸化物や過酸化物が使用可能である。特に、ペルオキソ基を有する過酸化チタンが好ましい。酸化チタンは、アモルファス型、アナターゼ型、ブルッカイト型、ルチル型のいずれでもよく、これらが混在していてもよいが、アモルファス型酸化チタンが好ましい。但し、酸化チタンを金属と複合化させて固形分となった後の酸化チタンは、アナターゼ型結晶又はアナターゼ型結晶の前駆体を呈する。
As for the metal-doped titanium oxide , a metal (including some inorganic substances other than the metal) and a titanium oxide as a dielectric or semiconductor, which are preferable as a material for composing the particulate laminated film for surface charge formation according to the present invention. A combination with (including a titanium oxide compound) will be described. Titanium oxide (including a titanium oxide compound) as a dielectric or semiconductor compounded with a metal (including some inorganic substances other than metals) includes TiO 2 , TiO 3 , TiO, TiO 3 / nH 2 O, etc. Various oxides and peroxides can be used. In particular, titanium peroxide having a peroxo group is preferable. The titanium oxide may be any of amorphous type, anatase type, brookite type, and rutile type, and these may be mixed, but amorphous type titanium oxide is preferred. However, the titanium oxide after the titanium oxide is combined with a metal to form a solid content exhibits anatase type crystals or anatase type crystal precursors.
 ここで、酸化チタンが有する光触媒機能と上記の金属ドープ酸化チタンとの関係について説明する。酸化チタンが基体表面で光触媒機能を発揮すると、基体の種類によっては、光触媒作用により基体そのものが分解劣化するおそれがあるからである。酸化チタン中、アモルファス型酸化チタン及びアナターゼ型結晶前駆体酸化チタンは光触媒機能を有さない。一方、アナターゼ型、ブルッカイト型及びルチル型の酸化チタンは光触媒機能を有するが、銅、マンガン、ニッケル、コバルト、鉄又は亜鉛を一定濃度以上これらの酸化チタンに複合させると、光触媒機能が低下又は喪失する。なお、アモルファス型酸化チタン及びアナターゼ型結晶前駆体酸化チタンは、太陽光による加熱等により経時的にアナターゼ型酸化チタンに変換されるが、銅、マンガン、ニッケル、コバルト、鉄又は亜鉛と複合させるとアナターゼ型酸化チタンは光触媒機能が低下する。従って、いずれの型の酸化チタンであっても、銅、マンガン、ニッケル、コバルト、鉄又は亜鉛をドープしたチタン酸化物は、光触媒作用による悪影響を考慮しなくてよい。なお、金、銀、白金をドープしたチタン酸化物は、アモルファス型酸化チタンがアナターゼ型酸化チタンに変換された場合も含めて、光触媒性能を有するが、金、銀、白金をドープしたチタン酸化物において、正電荷物質を一定濃度以上共存させた場合は光触媒性能を示さない。従って、金、銀、白金、銅、マンガン、ニッケル、コバルト、鉄又は亜鉛を複合させた金属ドープ酸化チタンは、結局、光触媒性能を喪失あるいは低下させることが出来るので、光触媒作用による悪影響を考慮しなくてよい。但し、負電荷物質として光触媒物質を使用する場合は、光触媒機能により生成される表面負電荷又は負性電荷物を有効に使用することが出来る。 Here, the relationship between the photocatalytic function of titanium oxide and the metal-doped titanium oxide will be described. This is because if the titanium oxide exhibits a photocatalytic function on the surface of the substrate, the substrate itself may be decomposed and deteriorated by the photocatalytic action depending on the type of the substrate. Among titanium oxides, amorphous type titanium oxide and anatase type crystal precursor titanium oxide do not have a photocatalytic function. On the other hand, anatase-type, brookite-type and rutile-type titanium oxides have a photocatalytic function. However, when copper, manganese, nickel, cobalt, iron, or zinc is combined with these titanium oxides above a certain concentration, the photocatalytic function is reduced or lost To do. In addition, amorphous type titanium oxide and anatase type crystal precursor titanium oxide are converted to anatase type titanium oxide over time by heating with sunlight, etc., but when combined with copper, manganese, nickel, cobalt, iron or zinc Anatase-type titanium oxide has a reduced photocatalytic function. Therefore, regardless of the type of titanium oxide, the titanium oxide doped with copper, manganese, nickel, cobalt, iron or zinc does not have to take into account the adverse effects of photocatalysis. Titanium oxide doped with gold, silver and platinum has photocatalytic performance, including the case where amorphous titanium oxide is converted to anatase titanium oxide, but titanium oxide doped with gold, silver and platinum However, when a positively charged substance coexists with a certain concentration or more, photocatalytic performance is not exhibited. Therefore, metal-doped titanium oxide combined with gold, silver, platinum, copper, manganese, nickel, cobalt, iron, or zinc can eventually lose or reduce the photocatalytic performance. It is not necessary. However, when a photocatalytic substance is used as the negatively charged substance, a surface negative charge or a negatively charged substance generated by the photocatalytic function can be used effectively.
 次に、上記した金属ドープ酸化チタンの製造方法について説明する。上記した金属ドープ酸化チタンは、一般的な二酸化チタン粉末の製造方法である塩酸法又は硫酸法をベースとする製造方法を採用してもよいし、各種の液体分散チタニア溶液の製造方法を採用してもよい。そして、酸化チタンに複合させる金属や金属以外の一部の無機物質は、製造段階の如何を問わず、酸化チタンと複合化させることが出来る。 Next, a method for producing the above metal-doped titanium oxide will be described. The above metal-doped titanium oxide may employ a production method based on a hydrochloric acid method or a sulfuric acid method, which is a common production method of titanium dioxide powder, or may employ various liquid dispersion titania solution production methods. May be. The metal to be combined with titanium oxide and some inorganic substances other than the metal can be combined with titanium oxide regardless of the manufacturing stage.
 以下、図3を参照しながら、金属ドープ酸化チタンの分散液の製造方法の一例について説明する。まず、50%四塩化チタン(市販品)を純水で希釈した溶液に、図3の左側に例示する無機物化合物や金属化合物(結晶水を有する化合物)を、モル比で1:0.05の割合で混合する。 Hereinafter, an example of a method for producing a dispersion of metal-doped titanium oxide will be described with reference to FIG. First, an inorganic compound or a metal compound (compound having crystal water) exemplified on the left side of FIG. Mix in proportions.
 無機物化合物や金属化合物は、複数の種類を混合することができる。四塩化チタンと無機物化合物や金属化合物との混合割合は、モル比で好ましくは1:0.01~1:0.3、より好ましくは、1:0.02~1:0.1がよい。これに、25%アンモニア水(市販品)を滴下してpH7前後に調整し、チタン及び無機物や金属の水酸化物を析出させ、上澄み液の導電率が0.9mS/m以下になるまで洗浄する。洗浄された水酸化物に、濃度が35%の過酸化水素水を混合し、数時間反応させて限外濾過することにより、複合された無機物質や金属が修飾されたアモルファス型過酸化チタンの微細粒子が分散された溶液が得られる。また、上記した水酸化物に、過酸化水素水を混合して反応させた後、加熱して限外濾過することにより、複合された無機物質や金属が修飾されたアナターゼ型過酸化チタンの微細粒子が分散された溶液が得られる。 Inorganic compounds and metal compounds can be mixed in multiple types. The mixing ratio of titanium tetrachloride to the inorganic compound or metal compound is preferably 1: 0.01 to 1: 0.3, more preferably 1: 0.02 to 1: 0.1 in terms of molar ratio. To this, 25% aqueous ammonia (commercially available) is dropped to adjust the pH to around 7, and titanium, inorganic and metal hydroxides are precipitated, and the supernatant is washed until the conductivity becomes 0.9 mS / m or less. To do. Mixing the washed hydroxide with hydrogen peroxide solution with a concentration of 35%, reacting for several hours and performing ultrafiltration, the composite inorganic substance and the modified amorphous titanium peroxide modified with metal A solution in which fine particles are dispersed is obtained. In addition, after mixing and reacting hydrogen peroxide with the above-mentioned hydroxide, heating and ultrafiltration, the fine structure of anatase-type titanium peroxide modified with complex inorganic substances and metals is achieved. A solution in which the particles are dispersed is obtained.
 なお、上記した製造方法で得られる水性分散液中の過酸化チタン濃度(共存する金、銀、白金、銅、マンガン、ニッケル、コバルト、鉄、亜鉛等の金属や無機物を含む合計量)は、0.05~15wt%が好ましく、0.1~5wt%がより好ましい。 The concentration of titanium peroxide in the aqueous dispersion obtained by the above-described production method (total amount including metals and inorganic substances such as coexisting gold, silver, platinum, copper, manganese, nickel, cobalt, iron, and zinc) is as follows: 0.05 to 15 wt% is preferable, and 0.1 to 5 wt% is more preferable.
 上記の金属ドープ酸化チタンの製造工程において、酸化チタン(その化合物を含む)と複合される無機物質や金属(アルカリ金属、アルカリ土類金属を含む)を得るために混合される金、銀、白金、ニッケル、コバルト、銅、マンガン、鉄、亜鉛、リチウム、ナトリウム、ケイ素、カリウム、ジルコニウム、セリウム、ハフニウムの化合物の例としては、それぞれ以下のものが例示できる。 Gold, silver, platinum mixed to obtain inorganic materials and metals (including alkali metals and alkaline earth metals) combined with titanium oxide (including its compounds) in the above-described metal-doped titanium oxide manufacturing process Examples of the compounds of nickel, cobalt, copper, manganese, iron, zinc, lithium, sodium, silicon, potassium, zirconium, cerium, and hafnium are as follows.
 Au化合物:AuCl、AuCl、AuOH、Au(OH)、AuO、Au
 Ag化合物:AgNO、AgF、AgClO、AgOH、Ag(NH)OH、AgSO
 Pt化合物:PtCl、PtO、Pt(NH)Cl、PtO、PtCl、[Pt(OH)2-
 Ni化合物:Ni(OH)、NiCl
 Co化合物:Co(OH)NO、Co(OH)、CoSO、CoCl
 Cu化合物:Cu(OH)、Cu(NO、CuSO、CuCl、Cu(CHCOO)
 Mn化合物:MnNO、MnSO、MnCl
 Fe化合物:Fe(OH)、Fe(OH)、FeCl
 Zn化合物:Zn(NO、ZnSO、ZnCl
 Li化合物:LiOH、LiCO、LiCl等
 Na化合物:NaOH、NaCl、NaCO
 Si化合物:SiO、SiH、SiCl
 K化合物:KOH、KO、KCl等
 Zr化合物:ZrO、Zr(OH)、ZrCl等
 Ce化合物:CeO、CeCl、Ce(OH)
 Hf化合物:HfCl、Hf(OH)
 なお、図3を参照して説明した金属ドープ酸化チタン分散液の製造方法以外にも、無機物質や金属と酸化チタンを複合化する方法は多数存在し、例えば、あらかじめ酸化チタンの粒子と、複合化する無機物質や金属の粒子とを別々に作製し、それぞれを混合してもよい。本願発明において、金属ドープ酸化チタンを作製するためには、上記の製法以外にも、多種の酸化チタンの微細粒子及びその分散溶液を製造する方法があり、そのいずれを用いてもよい。
Au compound: AuCl, AuCl 3 , AuOH, Au (OH) 4 , Au 2 O, Au 2 O 3, etc. Ag compound: AgNO 3 , AgF, AgClO 3 , AgOH, Ag (NH 3 ) OH, Ag 2 SO 4, etc. Pt compound: PtCl 2 , PtO, Pt (NH 3 ) Cl 2 , PtO 2 , PtCl 4 , [Pt (OH) 6 ] 2− etc. Ni compound: Ni (OH) 2 , NiCl 2 etc. Co compound: Co (OH ) NO 3 , Co (OH) 2 , CoSO 4 , CoCl 2, etc. Cu compound: Cu (OH) 2 , Cu (NO 3 ) 2 , CuSO 4 , CuCl 2 , Cu (CH 3 COO) 2, etc. Mn compound: MnNO 4 , MnSO 4 , MnCl 2, etc. Fe compound: Fe (OH) 2 , Fe (OH) 3 , FeCl 3 etc. Zn compound: Zn (NO 3 ) 2 , Zn SO 4 , ZnCl 2 etc. Li compound: LiOH, Li 2 CO 3 , LiCl etc. Na compound: NaOH, NaCl, Na 2 CO 2 etc. Si compound: SiO 2 , SiH 4 , SiCl 4 etc. K compound: KOH, K 2 O , KCl, etc. Zr compound: Zr 2 O, Zr (OH) 2 , ZrCl, etc. Ce compound: CeO 2 , CeCl 2 , Ce (OH) 3 etc. Hf compound: HfCl 2 , Hf (OH) 3 etc. In addition to the method for producing the metal-doped titanium oxide dispersion described with reference, there are many methods for combining inorganic substances and metals with titanium oxide. For example, titanium oxide particles and inorganic substances to be combined Metal particles may be prepared separately and mixed together. In the present invention, in order to produce metal-doped titanium oxide, in addition to the above production method, there are various methods of producing fine particles of titanium oxide and dispersions thereof, any of which may be used.
金属ドープ酸化ケイ素について
 以下、本願発明による表面電荷形成のための粒子状積層膜を組成する物質として好ましい、金属(金属以外の一部の無機物質を含む)と、誘電体又は半導体としての酸化ケイ素(酸化ケイ素の化合物を含む)との組み合わせについて説明する。金属(金属以外の一部の無機物質を含む)と複合させる誘電体又は半導体としての酸化ケイ素(酸化ケイ素の化合物を含む)としては、SiO、SiO、SiO、SiO/nHO等の各種の酸化物や過酸化物が使用可能である。
As for the metal-doped silicon oxide , a metal (including some inorganic substances other than the metal) and a silicon oxide as a dielectric or semiconductor, which are preferable as a material for forming a particulate laminated film for forming a surface charge according to the present invention. A combination with (including a silicon oxide compound) will be described. Examples of silicon oxide (including silicon oxide compounds) as a dielectric or semiconductor compounded with metal (including some inorganic substances other than metals) include SiO 2 , SiO 3 , SiO, SiO 3 / nH 2 O, and the like. Various oxides and peroxides can be used.
 酸化ケイ素を含有する材として、多数の種類の製品が市販されている。例えば、有機材料と無機材料の結合材料(複合材料)として、以下のものを挙げることが出来る。
 ・複合材料の機械的強度の向上や結合性の改良や表面親水性を付与するシランカップリング剤中、加水分解性からメトキシ基やエトキシ基を有する水溶性コーティング剤。
 ・有機官能基とアルコキシ基を分子内に有するオリゴマ型のカップリング剤として、各種の物質を複合化して樹脂改質や機能性コーティング剤として使用されるシリコーンオリゴマー。
 ・後述する基材への撥水性付与機能材として使用される、メチル基や長鎖アルキル基、フェニル基を有するアルコキシランやアルコキシラザン。
 ・有機材料や無機材料の活性水素の保護機能を有するオリガノシリル基を有していたり、アルキル基の反応位置を制御することによって有機合成部材を作ることの出来るシリル化剤等
Many types of products are commercially available as materials containing silicon oxide. For example, the following can be cited as a binding material (composite material) of an organic material and an inorganic material.
-A water-soluble coating agent having a methoxy group or an ethoxy group in terms of hydrolyzability in a silane coupling agent that improves the mechanical strength, bondability, and surface hydrophilicity of the composite material.
-Silicone oligomers that are used as resin-modified or functional coating agents by combining various substances as oligomer-type coupling agents that have organic functional groups and alkoxy groups in the molecule.
-Alkoxylanes and alkoxylazanes having a methyl group, a long-chain alkyl group, and a phenyl group, which are used as a water repellency-imparting functional material for the substrate described later.
・ Silylating agents that have an origanosilyl group that protects active hydrogen of organic and inorganic materials, and that can be used to make organic synthetic members by controlling the reaction position of alkyl groups
 上記した酸化ケイ素を含有する材を使用して、金属を複合させた表面電荷膜形成用の造膜液を作ることができる。以下、図4を用いて、複合化するのが金、銀、白金、銅、マンガン、ニッケル、コバルト、鉄、亜鉛等の典型金属及び遷移金属である場合の、金属ドープ酸化ケイ素の分散液の作製方法の一例について説明する。まず、メチルシリケートに、アルコールと純水と所定量の触媒を混合して加水分解させると、シリカゾルが作製される。このシリカゾルを純粋で希釈する。シリカゾル希釈液における固形分濃度は、好ましくは10%~0.2%、より好ましくは4%~0.85%である。このシリカゾル希釈液と、1%濃度に調整した金属化合物(結晶水を持つ化合物)とを、シリカに対するモル濃度比で、好ましくは1:0.03~1:2.7、より好ましくは、1:0.03~1:0.27の割合で混合する。また、酸化ケイ素とアルカリ金属及びアルカリ土類金属等との複合化も同様である。 Using the above-mentioned material containing silicon oxide, a film-forming solution for forming a surface charge film in which a metal is combined can be produced. Hereinafter, with reference to FIG. 4, the dispersion of the metal-doped silicon oxide in the case where the composite is a typical metal such as gold, silver, platinum, copper, manganese, nickel, cobalt, iron, zinc, or a transition metal. An example of a manufacturing method will be described. First, when methyl silicate is mixed with alcohol, pure water and a predetermined amount of catalyst and hydrolyzed, a silica sol is produced. The silica sol is pure and diluted. The solid content concentration in the silica sol dilution is preferably 10% to 0.2%, more preferably 4% to 0.85%. This silica sol diluted solution and a metal compound adjusted to 1% concentration (compound having crystal water) are preferably in a molar concentration ratio to silica of 1: 0.03 to 1: 2.7, more preferably 1 : Mix in a ratio of 0.03 to 1: 0.27. The same applies to the combination of silicon oxide with an alkali metal, an alkaline earth metal, or the like.
 なお、図4に示すとおり、上記した分散液の作製において、酸化ケイ素に複合化できる金属化合物や無機化合物は、金属ドープ酸化チタンを作製するときに使用する金属化合物や無機物化合物と同様のものが可能である。 In addition, as shown in FIG. 4, the metal compound and the inorganic compound that can be complexed with silicon oxide in the preparation of the dispersion liquid described above are the same as the metal compound and the inorganic compound used when preparing the metal-doped titanium oxide. Is possible.
金属ドープ酸化チタン及び酸化ケイ素について
 最後に、酸化チタン及び酸化ケイ素に対して、金属を複合化させた溶液の作製方法について説明する。まず、純水に対して、四塩化チタンとシリカゾルを、モル比で1:0.5の割合で混合し、金属化合物(結晶水を有する化合物)を、さらに混合する。金属化合物は複数の種類を混合することができる。なお、混合できる金属化合物は、例えば、金属ドープ酸化チタンを作製するときに使用する図3に示す金属化合物を使用することができる。四塩化チタン及びシリカゾルと金属化合物との混合割合は、モル比で好ましくは1:0.01~1:0.3、より好ましくは、1:0.02~1:0.1がよい。これに25%に調整したアンモニア水を滴下して、pH7前後に調整して、チタン、ケイ素及び複合化する無機物質や金属の水酸化物を析出させる。この析出した水酸化物を純水で上澄み液の導電率が0.9mS/m以下になるまで洗浄する。洗浄された水酸化物に、濃度が35%の過酸化水素水を混合し、数時間反応させて限外濾過することにより、シリカと複合された金属や無機物質が修飾されたアモルファス型過酸化チタンの微細粒子が分散された溶液が得られる。
About metal doped titanium oxide and silicon oxide Finally, the preparation method of the solution which made the metal complex with respect to titanium oxide and silicon oxide is demonstrated. First, titanium tetrachloride and silica sol are mixed with pure water at a molar ratio of 1: 0.5, and a metal compound (compound having crystal water) is further mixed. A plurality of kinds of metal compounds can be mixed. In addition, the metal compound which can be mixed can use the metal compound shown, for example in FIG. 3 used when producing metal dope titanium oxide. The mixing ratio of titanium tetrachloride / silica sol and the metal compound is preferably 1: 0.01 to 1: 0.3, more preferably 1: 0.02 to 1: 0.1 in terms of molar ratio. Ammonia water adjusted to 25% is added dropwise thereto to adjust the pH to around pH 7, thereby precipitating titanium, silicon, and a composite inorganic substance or metal hydroxide. The precipitated hydroxide is washed with pure water until the supernatant has a conductivity of 0.9 mS / m or less. Amorphous peroxidation in which metals and inorganic substances combined with silica are modified by mixing the washed hydroxide with hydrogen peroxide solution with a concentration of 35%, reacting for several hours and performing ultrafiltration. A solution in which fine particles of titanium are dispersed is obtained.
 なお、上記した製造方法で得られる水性分散液中の過酸化チタン濃度(共存する金、銀、白金、銅、マンガン、ニッケル、コバルト、鉄、亜鉛等の金属や無機物質を含む合計量)は、0.05~15wt%が好ましく、0.1~5wt%がより好ましい。 The concentration of titanium peroxide in the aqueous dispersion obtained by the above-described production method (total amount including metals and inorganic substances such as coexisting gold, silver, platinum, copper, manganese, nickel, cobalt, iron, and zinc) is 0.05 to 15 wt% is preferable, and 0.1 to 5 wt% is more preferable.
誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(これらの化合物を含む)と、酸化チタン及び酸化ケイ素を除いた誘電体及び/又は半導体との組合せについて
 前述したように、基体表面又は基体表面層を帯電させる物質間に介在させる誘電体又は半導体として、酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)を使用した場合に、酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)を除いた誘電体や半導体を1種以上複合させると、基体表面が正電荷や負電荷及び両性電荷に帯電する。基体の表面にこの態様による造膜を形成するためには、前記の金属ドープ酸化チタンと同様に、酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)と、酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)を除いた誘電体や半導体とを複合させた分散液を用いることが出来る。また、この分散液の製造方法としては、図3及び図4に示した方法と同様である。
 次に、基体表面又は基体表面層における、基体表面を帯電させるための粒子状積層物の形成方法について、より詳細に説明する。
As described above for the combination of titanium oxide and / or silicon oxide (including these compounds) as a dielectric or semiconductor and dielectric and / or semiconductor excluding titanium oxide and silicon oxide , the substrate surface or substrate surface When titanium oxide and / or silicon oxide (including a compound of titanium oxide and / or silicon oxide) is used as a dielectric or semiconductor interposed between substances that charge the layer, titanium oxide and / or silicon oxide (oxidized) When one or more kinds of dielectrics and semiconductors excluding (including titanium and / or silicon oxide compounds) are combined, the surface of the substrate is charged with a positive charge, a negative charge and an amphoteric charge. In order to form a film according to this embodiment on the surface of the substrate, in the same manner as the metal-doped titanium oxide, titanium oxide and / or silicon oxide (including a titanium oxide and / or silicon oxide compound), titanium oxide, In addition, a dispersion liquid in which a dielectric and a semiconductor excluding silicon oxide (including titanium oxide and / or silicon oxide compounds) are combined can be used. The method for producing this dispersion is the same as the method shown in FIGS.
Next, a method for forming a particulate laminate for charging the substrate surface on the substrate surface or the substrate surface layer will be described in more detail.
基体表面への電荷形成用造膜方法
 図1(1)は、正電荷を有する物質及び/又は負電荷を有する物質の粒子と、誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素の粒子とが、規則的に取り込まれた粒子状積層膜が基体表面に形成されている態様であり、図1(2)及び図1(3)は、正電荷を有する物質及び/又は負電荷を有する物質と、誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素とが複合化された粒子による粒子状積層膜が基体表面に形成されている態様である。これらの粒子状積層物の層厚は、特に限定されるものではないが、10nm~1μmの範囲が好ましく、10nm~100nmの範囲がより好ましい。
FIG. 1 (1) shows a method for forming a charge on a surface of a substrate . A particle having a positive charge and / or a substance having a negative charge, and particles of titanium oxide and / or silicon oxide as a dielectric or semiconductor However, FIG. 1 (2) and FIG. 1 (3) show a substance having a positive charge and / or a substance having a negative charge. In addition, a particulate laminated film composed of particles in which titanium oxide and / or silicon oxide as a dielectric or semiconductor is combined is formed on the substrate surface. The layer thickness of these particulate laminates is not particularly limited, but is preferably in the range of 10 nm to 1 μm, and more preferably in the range of 10 nm to 100 nm.
 上記の粒子状積層物は、例えば、スパッタリング、溶射法、イオンプレーティング(陰極アーク放電型)、CVDコーティング、電着塗装により形成することが出来る。また、正電荷を有する物質及び/又は負電荷を有する物質と、誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素とを含む溶液・懸濁液又はエマルジョン中に、基体を浸漬してディップコーティングを行い、或いは、前記溶液・懸濁液又はエマルジョンを、基体上にスプレー、ロール、刷毛、スポンジ等で塗布した後に、乾燥させて溶媒や媒体を揮散させる工程を少なくとも一回行うことによって形成することが出来る。 The above-mentioned particulate laminate can be formed by, for example, sputtering, thermal spraying, ion plating (cathode arc discharge type), CVD coating, or electrodeposition coating. In addition, the substrate is dipped in a solution / suspension or emulsion containing a positively charged substance and / or a negatively charged substance and titanium oxide and / or silicon oxide as a dielectric or semiconductor. Or after applying the solution / suspension or emulsion on a substrate with a spray, roll, brush, sponge, etc., and then drying and evaporating the solvent or medium at least once. I can do it.
 具体的には、例えば、金、銀、白金、銅、マンガン、ニッケル、コバルト、鉄等の金属を複合させた、金属ドープアモルファス型酸化チタン分散液、金属ドープ酸化ケイ素分散液、これらの分散液の混合液、を基体上に塗布後に乾燥させる工程を経て、基体上に図1に示す造膜を行うことが出来る。 Specifically, for example, a metal-doped amorphous titanium oxide dispersion, a metal-doped silicon oxide dispersion, and a dispersion thereof, in which metals such as gold, silver, platinum, copper, manganese, nickel, cobalt, and iron are combined. The film mixture shown in FIG. 1 can be formed on the substrate through a step of drying the mixed solution after coating on the substrate.
 上記の粒子状積層物において、層中の正電荷を有する物質や負電荷を有する物質及び誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素を含む固形分の分散を均一促進するために、さらに、各種の界面活性剤又は分散剤を正電荷を有する物質及び/又は負電荷を有する物質と共存させることが好ましい。界面活性剤又は分散剤の配合量は、正電荷を有する物質及び/又は負電荷を有する物質の総量の0.001~1.0重量%、好ましくは0.1~1.0重量%の範囲とすることができる。 In the above-mentioned particulate laminate, in order to uniformly promote the dispersion of a solid content including a positively charged substance, a negatively charged substance, and titanium oxide and / or silicon oxide as a dielectric or semiconductor in the layer, It is preferable that various surfactants or dispersants coexist with a positively charged substance and / or a negatively charged substance. The compounding amount of the surfactant or dispersant is in the range of 0.001 to 1.0% by weight, preferably 0.1 to 1.0% by weight, based on the total amount of the positively charged substance and / or the negatively charged substance. It can be.
 上記した界面活性剤又は分散剤としては、均一膜を形成するための微粉体・微粒子固定剤として、各種の有機ケイ素化合物を使用することができる。有機ケイ素化合物としては各種のシラン化合物並びに各種のシリコーンオイル、シリコーンゴム及びシリコーンレジンが使用可能であるが、分子中にアルキルシリケート構造やポリエーテル構造を有するもの、又はアルキルシリケート構造とポリエーテル構造の両方を有するものが好ましい。 As the surfactant or dispersant described above, various organosilicon compounds can be used as fine powder / fine particle fixing agent for forming a uniform film. As the organosilicon compound, various silane compounds and various silicone oils, silicone rubbers and silicone resins can be used, but those having an alkyl silicate structure or a polyether structure in the molecule, or having an alkyl silicate structure and a polyether structure. Those having both are preferred.
中間層及び被覆層について
 前記した粒子状積層物と基体との間に中間層を設け、あるいは前記した粒子状積層物の表面に被覆層を設けることが出来る。この中間層あるいは被覆層は、例えば、基体に親水性若しくは疎水性又は撥水性若しくは撥油性を付与することのできる各種の有機又は無機物質を使用することができる。
About an intermediate | middle layer and a coating layer , an intermediate | middle layer can be provided between the above-mentioned particulate laminated body and a base | substrate, or a coating layer can be provided in the surface of an above-mentioned particulate laminated body. As the intermediate layer or the coating layer, for example, various organic or inorganic substances capable of imparting hydrophilicity or hydrophobicity or water repellency or oil repellency to the substrate can be used.
 中間層及び被覆層に使用できる有機又は無機物質のうち、親水性の有機物質としては、ポリエーテル;ポリビニルアルコール;ポリアクリル酸(アルカリ金属塩、アンモニウム塩等の塩を含む)、ポリメタクリル酸(アルカリ金属塩、アンモニウム塩等の塩を含む)、ポリアクリル酸-ポリメタクリル酸(アルカリ金属塩、アンモニウム塩等の塩を含む)共重合体;ポリアクリルアミド;ポリビニルピロリドン;親水性セルロース類;多糖類等の天然親水性高分子化合物等が挙げられる。これらの高分子材料にガラス繊維、炭素繊維、シリカ等の無機系誘電体を配合して複合化したものも使用可能である。また、上記の高分子材料として塗料を使用することも可能である。 Among organic or inorganic materials that can be used for the intermediate layer and the coating layer, hydrophilic organic materials include polyether; polyvinyl alcohol; polyacrylic acid (including salts such as alkali metal salts and ammonium salts), polymethacrylic acid ( (Including salts such as alkali metal salts and ammonium salts), polyacrylic acid-polymethacrylic acid (including salts such as alkali metal salts and ammonium salts) copolymers; polyacrylamide; polyvinylpyrrolidone; hydrophilic celluloses; polysaccharides And natural hydrophilic polymer compounds such as It is also possible to use a composite material obtained by blending these polymer materials with an inorganic dielectric such as glass fiber, carbon fiber or silica. It is also possible to use a paint as the polymer material.
 中間層及び被覆層に使用できる有機又は無機物質のうち、親水性の無機材料としては、例えば、シランカップリング剤、SiO又はその他のケイ素化合物が挙げられる。 Among organic or inorganic substances that can be used for the intermediate layer and the coating layer, examples of hydrophilic inorganic materials include silane coupling agents, SiO 2, and other silicon compounds.
 中間層及び被覆層に使用できる有機又は無機物質のうち、撥水性の無機系材料としては、例えば、シラン系、シリコネート系、シリコーン系及びシラン複合系、又は、フッ素系の撥水剤或いは吸水防止剤等が挙げられる。特に、フッ素系撥水剤が好ましく、例としては、パーフルロロアルキル基含有化合物などの含フッ素化合物又は含フッ素化合物含有組成物が挙げられる。なお、基材表面への吸着性が高い含フッ素化合物を中間層に含む場合に、中間層の撥水剤又は吸水防止剤の化学成分が基材と反応して化学結合を生じていたり、又は中間層と基材との化学成分同士が架橋していたりする必要はかならずしもない。 Among organic or inorganic substances that can be used for the intermediate layer and the coating layer, examples of water-repellent inorganic materials include silane-based, siliconate-based, silicone-based and silane composite-based, or fluorine-based water repellent or water absorption prevention. Agents and the like. In particular, fluorine-based water repellents are preferable, and examples include fluorine-containing compounds such as perfluoroalkyl group-containing compounds or fluorine-containing compound-containing compositions. In addition, when the intermediate layer contains a fluorine-containing compound having high adsorptivity to the substrate surface, the chemical component of the intermediate layer water repellent or water absorption inhibitor reacts with the substrate to form a chemical bond, or It is not always necessary for the chemical components of the intermediate layer and the substrate to be cross-linked.
 このようなフッ素系撥水剤として用いることができる含フッ素化合物は、分子中にパーフルオロアルキル基を含有する分子量1,000~20,000のものが好ましく、中でも、基材表面への吸着性に優れることから、パーフルオロアルキルリン酸エステル、及びパーフルオロアルキルトリメチルアンモニウム塩が好ましい。 The fluorine-containing compound that can be used as such a fluorine-based water repellent preferably has a molecular weight of 1,000 to 20,000 containing a perfluoroalkyl group in the molecule. Perfluoroalkyl phosphate ester and perfluoroalkyltrimethylammonium salt are preferable.
 なお、吸水性の基体の場合では、上記した正電荷物質及び/又は負電荷物質と誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素による粒子状積層物の下に、シラン化合物を含む中間層を予め基体上に形成することが好ましい。この中間層は、Si―O結合を大量に含有する為、正電荷物質及び/又は負電荷物質と誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素による層の強度や基体との密着性を向上することが可能になる。また、前記中間層は、基体への水分の浸入を防止する機能をも有していることになる。 In the case of a water-absorbing substrate, an intermediate layer containing a silane compound under a particulate laminate of the positively charged substance and / or negatively charged substance and titanium oxide and / or silicon oxide as a dielectric or semiconductor. Is preferably formed in advance on the substrate. Since this intermediate layer contains a large amount of Si—O bonds, the strength of the layer and the adhesion between the positively charged substance and / or the negatively charged substance and titanium oxide and / or silicon oxide as a dielectric or semiconductor are improved. It becomes possible to improve. In addition, the intermediate layer also has a function of preventing moisture from entering the substrate.
 上記したシラン化合物としては、加水分解性シラン、その加水分解物及びこれらの混合物が挙げられる。また、これらのシラン化合物に、各種のオルガノポリシロキサンを配合してもよい。 Examples of the silane compound described above include hydrolyzable silanes, hydrolysates thereof, and mixtures thereof. Moreover, you may mix | blend various organopolysiloxane with these silane compounds.
 また、中間層の構成材料としては、メチルシリコーン樹脂及びメチルフェニルシリコーン樹脂等の室温硬化型シリコーン樹脂を使用してもよい。 Also, as the constituent material of the intermediate layer, room temperature curable silicone resins such as methyl silicone resin and methyl phenyl silicone resin may be used.
 上記した正電荷を有する物質及び/又は負電荷を有する物質と誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素による粒子状積層物成分は、中間層、及び被覆層が、シラン化合物又はシリコーン樹脂を含む場合は、これらのシラン化合物又はシリコーン樹脂との混合比(重量比)は、1:2~1:0.05の範囲が好ましく、1:1~1:0.1の範囲がより好ましい。 The above-mentioned particulate laminate component composed of a positively charged substance and / or a negatively charged substance and titanium oxide and / or silicon oxide as a dielectric or semiconductor includes an intermediate layer and a coating layer of a silane compound or a silicone resin. Is included, the mixing ratio (weight ratio) with these silane compounds or silicone resins is preferably in the range of 1: 2 to 1: 0.05, more preferably in the range of 1: 1 to 1: 0.1. .
基体について
 本発明の対象となる基体の材質は、特に限定されるものではなく、各種の親水性又は疎水性の無機系基体及び有機系基体、あるいは、それらを組み合わせたものを使用することができる。
Regarding the substrate, the material of the substrate which is the subject of the present invention is not particularly limited, and various hydrophilic or hydrophobic inorganic substrates and organic substrates, or combinations thereof can be used. .
 無機系基体としては、例えば、ソーダライムガラス等の透明または不透明ガラス、ジルコニア等の金属酸化物、セラミックス、コンクリート、モルタル、石材、金属等の物質からなる基体が挙げられる。また、有機系基体としては、例えば、有機樹脂、木材、紙、布等の物質からなる基体が挙げられる。有機樹脂をより具体的に例示すると、例えば、ポリエチレン、ポリプロピレン、ポリカーボネート、アクリル樹脂、PET等のポリエステル、ポリアミド、ポリウレタン、ABS樹脂、ポリ塩化ビニル、シリコーン、メラミン樹脂、尿素樹脂、シリコーン樹脂、フッ素樹脂、セルロース、エポキシ変性樹脂等が挙げられる。 Examples of the inorganic substrate include substrates made of a material such as transparent or opaque glass such as soda lime glass, metal oxide such as zirconia, ceramics, concrete, mortar, stone, and metal. Examples of the organic base include a base made of a substance such as an organic resin, wood, paper, and cloth. More specific examples of the organic resin include, for example, polyethylene, polypropylene, polycarbonate, acrylic resin, polyester such as PET, polyamide, polyurethane, ABS resin, polyvinyl chloride, silicone, melamine resin, urea resin, silicone resin, and fluorine resin. , Cellulose, epoxy-modified resin and the like.
 本発明の対象となる基体の形状は、特に限定されるものではなく、立方体、直方体、球形、シート形、繊維状等の任意の形状をとることができる。なお、基体は多孔質であってもよい。基体表面は、コロナ放電処理又は紫外線照射処理等によって親水性化されていてもよい。基体としては、建築・土木用基板又はシーリング材や、機器、装置搬送用ボディ、表示画面等の用途が好適である。 The shape of the substrate that is the subject of the present invention is not particularly limited, and can be any shape such as a cube, a rectangular parallelepiped, a sphere, a sheet, and a fiber. The substrate may be porous. The surface of the substrate may be made hydrophilic by corona discharge treatment or ultraviolet irradiation treatment. The substrate is preferably used for a construction / civil engineering substrate or a sealing material, a device, a body for conveying an apparatus, a display screen, or the like.
 本発明は、各種のデザイン性、並びに、高い防水・防染性能が求められる任意の分野において利用可能であり、ガラス、金属、セラミックス、コンクリート、木材、石材、高分子樹脂カバー、高分子樹脂シート、繊維(衣類、カーテン等)、シーリング材等、又はこれらの組み合わせからなる、建材、空調屋外機、厨房機器天板や庫内、衛生機器、照明器具、自動車、自転車、自動二輪車、航空機、列車、船舶等の、屋内外で利用される物品や、各種機械、電子機器、テレビ等のフェイスパネル、に好適に使用される。本発明は、特に建材に好適であり、本願発明が適用された建材を使用して建造された家屋、ビルディング、道路、トンネル等の建築物は、経時的に高い防水・防染効果を発揮することが出来る。
 また、本発明は、空気浄化装置(空調機等も含む)、水浄化装置(ピッチャー、ポット等も含む)に対して適用することも可能であり、これらの機器の内部で使用される装置や発光素子等、空気あるいは水中に晒される基体表面の汚染防止又は汚染の低減に効果を発揮することが出来る。さらに、鍋やフライパン、調理器具等の炭化焦付き付着防止にも有効である。
INDUSTRIAL APPLICABILITY The present invention can be used in various fields where various design properties and high waterproof / dye-proof performance are required. Glass, metal, ceramics, concrete, wood, stone, polymer resin cover, polymer resin sheet Building materials, air-conditioning outdoor units, kitchen equipment top plates and cabinets, sanitary equipment, lighting equipment, automobiles, bicycles, motorcycles, aircraft, trains, etc., consisting of textiles (clothing, curtains, etc.), sealing materials, etc. It is suitably used for articles used indoors and outdoors, such as ships, and face panels such as various machines, electronic devices, and televisions. The present invention is particularly suitable for building materials, and buildings such as houses, buildings, roads, and tunnels that are built using building materials to which the present invention is applied exhibit a high waterproofing and dyeing effect over time. I can do it.
The present invention can also be applied to air purification devices (including air conditioners) and water purification devices (including pitchers, pots, etc.). An effect can be exhibited in preventing or reducing contamination of the surface of a substrate exposed to air or water, such as a light emitting element. Furthermore, it is also effective in preventing carbonized sticking adhesion in pans, pans, cooking utensils and the like.
 以下、本発明の実施例を説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 本発明の実施例では、以下の参考例1~参考例9に記載した分散液を使用して、実施例1~9、実施例11~19及び実施例20~23の基板を作製し、それぞれ比較例1、2及び3との評価を行った。
Examples of the present invention will be described below, but the present invention is not limited to these examples.
In Examples of the present invention, substrates of Examples 1 to 9, Examples 11 to 19, and Examples 20 to 23 were prepared using the dispersions described in Reference Examples 1 to 9 below. Evaluation with Comparative Examples 1, 2, and 3 was performed.
・参考例1 酸化チタン(誘電体:アモルファス型過酸化チタン)と、
      正電荷を有する物質(導電体:Cu)と、の複合体分散液
 四塩化チタン(株式会社大阪チタニウムテクノロジーズ製)希釈液と97%CuCl・2HO(塩化第二銅)(日本化学産業株式会社製)とを完全に溶かした溶液に、アンモニア水を滴下してpH7前後に調製して水酸化物を析出させた。この析出した水酸化物を純水で上澄み液の導電率が0.9mS/m以下になるまで洗浄する。次に、この水酸化物に過酸化水素水を混合し数時間反応させると、銅が修飾されたアモルファス型過酸化チタン溶液が得られた。
Reference Example 1 Titanium oxide (dielectric: amorphous titanium peroxide),
Composite dispersion of positively charged substance (conductor: Cu) and titanium tetrachloride (Osaka Titanium Technologies Co., Ltd.) dilution and 97% CuCl 2 · 2H 2 O (cupric chloride) (Nippon Chemical Industry) Aqueous ammonia was added dropwise to a solution in which the product was completely dissolved to prepare a hydroxide. The precipitated hydroxide is washed with pure water until the supernatant has a conductivity of 0.9 mS / m or less. Next, when hydrogen peroxide was mixed with this hydroxide and allowed to react for several hours, an amorphous type titanium peroxide solution modified with copper was obtained.
・参考例2 酸化チタン(誘電体:アモルファス型過酸化チタン)と、
      正電荷を有する物質(導電体:Cuと、誘電体:Zrとの
      複合体)と、の複合体分散液
 四塩化チタン(株式会社大阪チタニウムテクノロジーズ製)希釈液と97%CuCl・2HO(塩化第二銅)(日本化学産業株式会社製)とオキシ塩化ジルコニウムを完全に溶かした溶液に、アンモニア水を滴下してpH7前後に調製して水酸化物を析出させる。この析出した水酸化物を純水で上澄み液の導電率が0.9mS/m以下になるまで洗浄する。次に、この水酸化物に過酸化水素水を混合し数時間反応させると、銅とジルコニウムが修飾されたアモルファス型過酸化チタン溶液が作製された。
Reference Example 2 Titanium oxide (dielectric: amorphous titanium peroxide),
A substance having a positive charge (a composite of conductor: Cu and dielectric: Zr), a composite dispersion of titanium tetrachloride (manufactured by Osaka Titanium Technologies Co., Ltd.) and 97% CuCl 2 .2H 2 O Ammonia water is dropped into a solution in which (cupric chloride) (manufactured by Nippon Kagaku Sangyo Co., Ltd.) and zirconium oxychloride are completely dissolved to adjust the pH to around 7 to precipitate hydroxide. The precipitated hydroxide is washed with pure water until the supernatant has a conductivity of 0.9 mS / m or less. Next, when hydrogen peroxide was mixed with this hydroxide and allowed to react for several hours, an amorphous titanium peroxide solution modified with copper and zirconium was produced.
・参考例3 酸化ケイ素(半導体:ポリシリケート)と、
      正電荷を有する物質(導電体:Cu)と、の複合体分散液
 メチルシリケート51(三菱化学株式会社製)とメタ変性アルコールと純水と3%塩酸とを混合し、加温しながら撹拌すると、ポリシリケートが作製される。さらに、この作製されたポリシリケートを純水で固形分濃度4wt%に調整し、Cu粉末と35%過酸化水素水とアンモニア水とを撹拌混合すると、酸化ケイ素と銅の複合体分散液が作製された。
Reference Example 3 Silicon oxide (semiconductor: polysilicate),
When a composite dispersion of a positively charged substance (conductor: Cu), methyl silicate 51 (manufactured by Mitsubishi Chemical Corporation), meta-modified alcohol, pure water, and 3% hydrochloric acid is mixed and stirred while heating. A polysilicate is produced. Further, the prepared polysilicate is adjusted to a solid content concentration of 4 wt% with pure water, and Cu powder, 35% hydrogen peroxide water and ammonia water are stirred and mixed to produce a composite dispersion of silicon oxide and copper. It was done.
・参考例4 酸化チタン(誘電体:アモルファス型過酸化チタン)と、
      酸化チタン以外の誘電体(Ce:誘電体)と、の複合体分散液
      (この組み合わせによる造膜は負電荷を呈する)
 四塩化チタン(株式会社大阪チタニウムテクノロジーズ製)希釈液とCeCl・7HO(塩化第一セリウム)(三津和化学薬品株式会社製)とを完全に溶かした溶液に、アンモニア水を滴下してpH7前後に調製して水酸化物を析出させる。この析出した水酸化物を純水で上澄み液の導電率が0.9mS/m以下になるまで洗浄する。次に、この水酸化物に過酸化水素水を混合し数時間反応させると、セリウムが修飾されたアモルファス型過酸化チタン溶液が作製された。
Reference Example 4 Titanium oxide (dielectric: amorphous titanium peroxide),
Complex dispersion of dielectrics other than titanium oxide (Ce: dielectric) (film formation by this combination exhibits negative charge)
Of titanium tetrachloride (manufactured by OSAKA Titanium Technologies) dilutions CeCl 3 · 7H 2 O (chloride cerous) (Mitsuwa Chemicals Co., Ltd.) and completely dissolved solution was dropped aqueous ammonia Adjust to pH around 7 to precipitate the hydroxide. The precipitated hydroxide is washed with pure water until the supernatant has a conductivity of 0.9 mS / m or less. Next, when this hydrogen peroxide was mixed with hydrogen peroxide and allowed to react for several hours, an amorphous titanium peroxide solution modified with cerium was produced.
・参考例5 酸化チタン(誘電体:アモルファス型過酸化チタン)と、
      負電荷を有する物質(導電体:Snと、誘電体:Ceとの
 複合体)と、の複合体分散液
 四塩化チタン(株式会社大阪チタニウムテクノロジーズ製)希釈液とSnCl・2HO(塩化第一スズ)(キシダ化学株式会社製)とCeCl・7HO(塩化第一セリウム)(三津和化学薬品株式会社製)とを完全に溶かした溶液に、アンモニア水を滴下してpH7前後に調製して水酸化物を析出させる。この析出した水酸化物を純水で上澄み液の導電率が0.9mS/m以下になるまで洗浄する。次に、この水酸化物に過酸化水素水を混合し数時間反応させると、スズとセリウムが修飾されたアモルファス型過酸化チタン溶液が作製された。
Reference Example 5 Titanium oxide (dielectric: amorphous titanium peroxide),
A substance having a negative charge (composite of conductor: Sn and dielectric: Ce), a composite dispersion of titanium tetrachloride (manufactured by Osaka Titanium Technologies Co., Ltd.) and SnCl 2 .2H 2 O (chloride) Stannous) (made by Kishida Chemical Co., Ltd.) and CeCl 3 · 7H 2 O (first cerium chloride) (made by Mitsuwa Chemicals Co., Ltd.) were added dropwise with ammonia water to a pH of around 7 To prepare a hydroxide. The precipitated hydroxide is washed with pure water until the supernatant has a conductivity of 0.9 mS / m or less. Next, when hydrogen peroxide was mixed with this hydroxide and allowed to react for several hours, an amorphous titanium peroxide solution modified with tin and cerium was produced.
・参考例6 酸化ケイ素(半導体:ポリシリケート)と、
      負電荷を有する物質(導電体:K)と、の複合体分散液
 メチルシリケート51(三菱化学株式会社製)とメタ変性アルコールと純水と3%塩酸とを混合し、加温しながら撹拌すると、ポリシリケートが作製される。さらに、この作製されたポリシリケートを純水で固形分濃度4wt%に調整し、KOH(水酸化カリウム)を混合すると、酸化ケイ素とカリウムとの複合体分散液が作製された。
Reference Example 6 Silicon oxide (semiconductor: polysilicate),
A composite dispersion of a negatively charged substance (conductor: K), methyl silicate 51 (manufactured by Mitsubishi Chemical Corporation), meta-modified alcohol, pure water and 3% hydrochloric acid are mixed and stirred while warming. A polysilicate is produced. Further, the prepared polysilicate was adjusted to a solid content concentration of 4 wt% with pure water and mixed with KOH (potassium hydroxide) to prepare a composite dispersion of silicon oxide and potassium.
・参考例7 参考例1の分散液と、参考例4の分散液とを、容量比1:1で
      混合した複合体分散液
 参考例1の分散液(銅がドープされたアモルファス型過酸化チタン溶液)と参考例4の分散液(セリウムが修飾されたアモルファス型過酸化チタン溶液)とを容積比で1:1に混合し作製した。
Reference Example 7 A composite dispersion obtained by mixing the dispersion of Reference Example 1 and the dispersion of Reference Example 4 at a volume ratio of 1: 1. Dispersion of Reference Example 1 (amorphous titanium peroxide doped with copper Solution) and the dispersion liquid of Reference Example 4 (amorphous titanium peroxide solution modified with cerium) were mixed at a volume ratio of 1: 1.
・参考例8 参考例2の分散液と、参考例5の分散液とを、容量比1:1で
      混合した複合体分散液
 参考例2の分散液(銅とジルコニウムが修飾されたアモルファス型過酸化チタン溶液)と参考例5の分散液(スズとセリウムが修飾されたアモルファス型過酸化チタン溶液)とを容積比で1:1に混合し作製した。
Reference Example 8 A composite dispersion in which the dispersion of Reference Example 2 and the dispersion of Reference Example 5 were mixed at a volume ratio of 1: 1. Dispersion of Reference Example 2 (amorphous type liquid modified with copper and zirconium) Titanium oxide solution) and the dispersion liquid of Reference Example 5 (amorphous titanium peroxide solution modified with tin and cerium) were mixed at a volume ratio of 1: 1 to prepare.
・参考例9 参考例3の分散液と、参考例5の分散液とを、容量比1:1で
      混合した複合体分散液
 参考例3(酸化ケイ素と銅の複合体分散液)の分散液と参考例5(スズとセリウムが修飾されたアモルファス型過酸化チタン溶液)の分散液とを容積比で1:1に混合し作製した。
Reference Example 9 A composite dispersion obtained by mixing the dispersion of Reference Example 3 and the dispersion of Reference Example 5 at a volume ratio of 1: 1. Dispersion of Reference Example 3 (composite dispersion of silicon oxide and copper) And a dispersion of Reference Example 5 (amorphous titanium peroxide solution modified with tin and cerium) were mixed at a volume ratio of 1: 1.
実施例1
 市販陶磁器タイル(100mm×100mm)基板表面にスプレーガンで、参考例1の分散液を、10g/m(wet状態)の割合で塗布し、200℃で10分加熱して実施例1とした。
Example 1
The dispersion liquid of Reference Example 1 was applied to the surface of a commercially available ceramic tile (100 mm × 100 mm) substrate with a spray gun at a rate of 10 g / m 2 (wet state) and heated at 200 ° C. for 10 minutes to give Example 1. .
実施例2~9
 実施例1と同様の工程で、参考例2~参考例9の分散液を用いて作製した基板を各々実施例2~9とした。
比較例1
 市販陶磁器タイル(100mm×100mm)基板表面に新たな造膜しない無造膜基板を比較例1とした。
Examples 2 to 9
Substrates produced using the dispersions of Reference Example 2 to Reference Example 9 in the same process as Example 1 were designated as Examples 2 to 9, respectively.
Comparative Example 1
Comparative Example 1 was a non-film-formed substrate that was not newly formed on the surface of a commercially available ceramic tile (100 mm × 100 mm) substrate.
評価1
 実施例1~9及び比較例1によるタイルの表面に、負電荷染料であるインジコレッドを含有する市販赤インク(パイロットインキ株式会社製)を希釈した液を0.007g/100cm塗布し、常温乾燥して評価基板を作製した。
 また、同様の手順で、正電荷顔料であるメチレンブルー試薬溶液を実施例1~9及び比較例1によるタイル表面に塗布して評価基板を作製した。
Evaluation 1
0.007 g / 100 cm 2 of a solution obtained by diluting a commercial red ink (manufactured by Pilot Ink Co., Ltd.) containing negative dye Dye Inco red was applied to the tile surfaces of Examples 1 to 9 and Comparative Example 1, and dried at room temperature. Thus, an evaluation substrate was produced.
Further, in the same procedure, a methylene blue reagent solution, which is a positively charged pigment, was applied to the tile surfaces of Examples 1 to 9 and Comparative Example 1 to prepare an evaluation substrate.
 これらの負電荷染料及び正電荷顔料を用いて作製した各評価基板に、15Wブラックライト蛍光灯(株式会社東芝製)を紫外線量1300μw/cmの位置から照射し、各々の電荷表面の消色率を彩計CR-200(コニカミノルタ株式会社製)で経時評価し、各実施例の評価基板の消色率から各々の表面電荷状態を評価した。経時評価の時間の単位は日である。
 実施例1~9及び比較例1による各評価基板の経時での消色率を、赤インクの場合は表1、メチレンブルー試薬の場合は表2に示す。
Each of the evaluation substrates prepared using these negatively charged dyes and positively charged pigments was irradiated with a 15 W black light fluorescent lamp (manufactured by Toshiba Corporation) from a position where the ultraviolet ray amount was 1300 μw / cm 2 , and each charge surface was decolored. The rate was evaluated over time with a chromameter CR-200 (manufactured by Konica Minolta Co., Ltd.), and each surface charge state was evaluated from the decoloring rate of the evaluation substrate of each example. The unit of time for evaluation over time is days.
The erasing rate of each evaluation substrate according to Examples 1 to 9 and Comparative Example 1 over time is shown in Table 1 for red ink and Table 2 for methylene blue reagent.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<結果1>
・表1(負染料:インジコレッド)の経時時間(5.8日)で静電反撥により消色率が高いのは、負電荷表面特性を有する実施例4~6である。その反対に消色率が低いのは、正電荷表面特性を有する実施例1~3である。負電荷表面と正電荷表面のほぼ中間値の消色率を有する実施例7~9は、両性電荷表面特性を有することが分かる。なお、比較例1の無造膜は、表面釉薬による負電荷特性を示している。
<Result 1>
In Table 1 (negative dye: indigo red), the decoloration rate is high due to electrostatic repulsion in the elapsed time (5.8 days) in Examples 4 to 6 having negative charge surface characteristics. On the contrary, the decolorization rate is low in Examples 1 to 3 having positive charge surface characteristics. It can be seen that Examples 7 to 9, which have a decolorization rate approximately halfway between the negatively charged surface and the positively charged surface, have amphoteric charge surface characteristics. In addition, the non-formed film of Comparative Example 1 shows negative charge characteristics due to surface glaze.
・表2(正顔料:メチレンブルー)の経時時間(5.8日)で静電反撥により消色率が高いのは、正電荷表面特性を有する実施例1~3である。その反対に消色率が低いのは、負電荷表面特性を有する実施例4~6である。負電荷表面と正電荷表面のほぼ中間値の消色率を有する実施例7~9は、両性電荷表面特性を有することが分かる。
 なお、比較例1の無造膜は、タイルの表面釉薬による負電荷特性を示している。
In Table 2 (positive pigment: methylene blue), Examples 1 to 3 having positive charge surface characteristics have a high decoloration rate due to electrostatic repulsion in the elapsed time (5.8 days). On the contrary, the decolorization rate is low in Examples 4 to 6 having negative charge surface characteristics. It can be seen that Examples 7 to 9, which have a decolorization rate approximately halfway between the negatively charged surface and the positively charged surface, have amphoteric charge surface characteristics.
The non-formed film of Comparative Example 1 shows negative charge characteristics due to the surface glaze of the tile.
実施例11~19
 普通フロートガラス(100mm×100mm厚さ3mm)基板表面にスプレーガンで、参考例1~参考例9の分散液を、それぞれ10g/m(wet状態)の割合で塗布し、200℃で10分加熱して実施例11~19とした。
比較例2
 実施例11~19で用いた普通フロートガラス基板に新たに造膜をしない、無造膜ガラス基板を比較例2とした。
Examples 11 to 19
Apply the dispersions of Reference Example 1 to Reference Example 9 at a rate of 10 g / m 2 (wet state) on a normal float glass (100 mm × 100 mm thickness 3 mm) substrate surface with a spray gun, respectively, at 200 ° C. for 10 minutes. Heated to Examples 11-19.
Comparative Example 2
A non-formed glass substrate which was not newly formed on the ordinary float glass substrate used in Examples 11 to 19 was defined as Comparative Example 2.
評価2
 実施例11~19及び比較例2の砂塵吸着防汚評価を、関東ローム層砂塵、中東ドバイ砂漠砂塵、九州地方火山灰の3種を用いて行った。実施例11~19及び比較例2の基板表面に、関東ローム層砂塵、中東ドバイ砂漠砂塵、九州地方火山灰を、それぞれ小さじ一杯ずつ滴下して評価基板とし、これらの評価基板を立てて軽く2度台の上を叩き、光沢率計IG-331(株式会社堀場製作所製)を用いて光沢率を測定した。そして、砂塵や火山灰を滴下する前に測定した各実施例及び比較例の基板の光沢率との差を求めることにより、砂塵吸着防止による防汚性能を付着残による光の乱反射率で評価した結果(3ヶ所の測定平均)を下記の表3に示す(数値:粉体評価前光沢率-粉体評価後光沢率)。
Evaluation 2
The dust adsorption and antifouling evaluation of Examples 11 to 19 and Comparative Example 2 was performed using three types of Kanto loam layer dust, Middle East Dubai desert dust, and Kyushu volcanic ash. On the surface of the substrates of Examples 11 to 19 and Comparative Example 2, Kanto loam layer dust, Middle East Dubai desert dust, and Kyushu volcanic ash were dropped one teaspoon each to make an evaluation substrate, and these evaluation substrates were set up lightly twice. The gloss was measured using a gloss meter IG-331 (manufactured by Horiba, Ltd.) by hitting the top of the table. And the result of evaluating the antifouling performance by the dust adsorption prevention by the diffuse reflectance of light due to the adhesion residue by calculating the difference between the gloss rate of the substrate of each Example and Comparative Example measured before dropping dust and volcanic ash (Measurement average of three locations) is shown in Table 3 below (numerical value: gloss before powder evaluation-gloss after powder evaluation).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<結果2>
 表3は、以下の結果を示している。
 関東ローム粉体を使用した場合は、正電荷表面特性造膜基板である実施例11~13、及び、両性電荷表面特性造膜である実施例17~19が、評価前と評価後との光沢率変化が低く、関東ローム粉体に対しては正又は両性の電荷表面が防汚機能を有することを示している。ドバイ砂漠砂塵粉体を使用した場合の防汚機能も同様である。
<Result 2>
Table 3 shows the following results.
When Kanto Loam powder was used, the glosses before and after evaluation of Examples 11 to 13 which are positive charge surface characteristic film-forming substrates and Examples 17 to 19 which are amphoteric charge surface characteristic film formations The rate change is low, indicating that a positive or amphoteric charge surface has an antifouling function for Kanto loam powder. The antifouling function when using Dubai desert dust powder is the same.
 九州地方火山灰粉体を使用した場合は、負電荷表面特性造膜基板である実施例14~16が、評価前と評価後との光沢率変化が低く、火山灰粉体に対しては、負電荷表面が防汚機能を有していることを示している。これに対し、比較例2の無造膜青フロートガラス表面は、3種の粉体付着による光沢率数値を示している。 When the Kyushu volcanic ash powder was used, the negative charge surface characteristic film-forming substrate of Examples 14 to 16 had a low change in gloss rate before and after the evaluation. It shows that the surface has an antifouling function. On the other hand, the non-film-formed blue float glass surface of Comparative Example 2 shows the gloss rate values due to the three types of powder adhesion.
実施例20
 普通ソーダライムフロートガラス(100mm×100mm厚さ3mm)基板表面に、スポンジスキージ工法で参考例1の分散液を、10g/mの割合で塗布し、300℃で10分間加熱して実施例20とした。
実施例21
 参考例4の分散液を用いて、実施例20と同様の作製方法により実施例21を作製した。
実施例22
 参考例5の分散液を用いて、実施例20と同様の作製方法により実施例22を作製した。
実施例23
 参考例7の分散液を用いて、実施例20と同様の作製方法により実施例23を作製した。
比較例3
 普通ソーダライムフロートガラス(100mm×100mm厚さ3mm)基板に無造膜のものを比較例3とした。
Example 20
Example 20 The dispersion liquid of Reference Example 1 was applied to a normal soda lime float glass (100 mm × 100 mm thickness 3 mm) substrate surface by a sponge squeegee method at a rate of 10 g / m 2 and heated at 300 ° C. for 10 minutes. It was.
Example 21
Example 21 was produced by the same production method as Example 20 using the dispersion liquid of Reference Example 4.
Example 22
Using the dispersion liquid of Reference Example 5, Example 22 was produced by the same production method as Example 20.
Example 23
Example 23 was produced by the same production method as Example 20 using the dispersion liquid of Reference Example 7.
Comparative Example 3
Comparative Example 3 was an ordinary soda lime float glass (100 mm × 100 mm thickness 3 mm) substrate with no film formation.
評価3
 実施例20~23の評価基板及び比較例3の基板の上面に、鶏卵を攪拌した液体と市販のオリーブ油の液体とを、幅約20mm、長さ約60mm程度に塗布し、300℃で30分間加熱してそれぞれの炭化重合物を固定して各評価基板とし、これらの炭化物の静電反撥による除去容易性を、市販ティッシュペーパーを吸水させ各評価基板表面を擦る方法と、台所用スポンジのソフト側を湿潤して各評価基板表面を擦る方法とにより、評価した。また、各実施例の基板上に造膜された表面膜の状態について、炭化重合物の除去作業後の表面膜の擦り傷の有無を目視評価した。その結果を以下の表4に示す。
Evaluation 3
On the upper surfaces of the evaluation substrates of Examples 20 to 23 and the substrate of Comparative Example 3, a liquid obtained by stirring chicken eggs and a commercially available olive oil liquid were applied to a width of about 20 mm and a length of about 60 mm, and then at 300 ° C. for 30 minutes. Each carbonized polymer is fixed by heating to make each evaluation board, and the ease of removal of these carbides by electrostatic repulsion is a method of absorbing a commercially available tissue paper and rubbing the surface of each evaluation board, and the softness of the kitchen sponge. Evaluation was performed by a method of wetting the side and rubbing the surface of each evaluation substrate. Further, the state of the surface film formed on the substrate of each example was visually evaluated for the presence or absence of scratches on the surface film after the carbonized polymer removal operation. The results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<結果3>
 表4は、基体が加熱される環境又は使用条件にある場合の、静電反撥による固着した汚染物の除去性能を示したものである。
 表4から、実施例21及び実施例22による加熱前に負電荷膜が造膜された評価基板が、炭化汚染物の吸着が無く、除去性能に優れていることがわかる。
 これに対し、実施例20による加熱前に正電荷膜が造膜された評価基板及び比較例3の無造膜基板では、固着した炭化汚染物を除去できないことが示されている。
 また、実施例23による両性電荷膜が造膜された評価基板では、実施例20と実施例21とのほぼ中間的な炭化汚染物の除去性能を示している。
 なお、各実施例の基板の表面膜の状態については、炭化重合物除去作業後であっても擦り傷が無く、このような環境や作業に耐えうる硬質の膜であることを示している。
<Result 3>
Table 4 shows the removal performance of the adhered contaminants due to electrostatic repulsion when the substrate is in an environment or usage conditions where the substrate is heated.
From Table 4, it can be seen that the evaluation substrate on which the negative charge film was formed before heating according to Example 21 and Example 22 had no adsorption of carbonized contaminants and was excellent in removal performance.
On the other hand, it is shown that the carbonized contaminant adhered cannot be removed with the evaluation substrate on which the positively charged film is formed before heating according to Example 20 and the non-formed substrate of Comparative Example 3.
Further, the evaluation substrate on which the amphoteric charge film according to Example 23 is formed shows the removal performance of carbonized contaminants almost in the middle between Example 20 and Example 21.
In addition, the state of the surface film of the substrate in each example indicates that there is no scratch even after the removal of the carbonized polymer, and that it is a hard film that can withstand such an environment and operation.
 これらから、表面電荷形成による防汚技術付与は、防汚対象物がどのような物質であるか、造膜基体がどのような使用環境あるいは使用条件下にあるかによって、電荷を考慮して基体表面に付与する電荷の種別を設計する必要があることが分かる。
 また、酸化チタンや酸化ケイ素を誘電体および半導体として使用することで安定した表面の電荷を形成出来るだけではなく、硬質な膜を形成することが出来ることを示している。
From these, the application of antifouling technology by surface charge formation is based on the substance considering the antifouling object and the use environment or use condition of the film-forming substrate. It can be seen that the type of charge applied to the surface needs to be designed.
Further, it is shown that not only a stable surface charge can be formed by using titanium oxide or silicon oxide as a dielectric and a semiconductor, but also a hard film can be formed.

Claims (8)

  1.  基体の表面又は基体の表面層において、正電荷を有する物質及び/又は負電荷を有する物質に、誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)を介在させたことを特徴とする、基体表面電荷形成用粒子状積層物。 In the surface of the substrate or the surface layer of the substrate, the substance having a positive charge and / or the substance having a negative charge includes titanium oxide and / or silicon oxide (a compound of titanium oxide and / or silicon oxide as a dielectric or semiconductor). A particulate laminate for forming a surface charge on a substrate, characterized in that
  2.  前記粒子状積層物は、正電荷を有する物質及び/又は負電荷を有する物質からなる粒子と、誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)からなる粒子とが隣接して接合してなる、請求項1に記載の基体表面電荷形成用粒子状積層物。 The particulate laminate includes particles made of a positively charged substance and / or a negatively charged substance, and titanium oxide and / or silicon oxide (a compound of titanium oxide and / or silicon oxide as a dielectric or semiconductor). 2. The particulate laminate for forming a substrate surface charge according to claim 1, which is formed by adjoining particles composed of
  3.  前記粒子状積層物は、正電荷を有する物質及び/又は負電荷を有する物質が誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)に内包されてなるコロイド粒子が接合してなる、請求項1に記載の基体表面形成用電荷粒子状積層物。 In the particulate laminate, a substance having a positive charge and / or a substance having a negative charge is included in titanium oxide and / or silicon oxide (including a compound of titanium oxide and / or silicon oxide) as a dielectric or semiconductor. The charged particle-like laminate for forming a substrate surface according to claim 1, wherein the colloidal particles are bonded together.
  4.  前記粒子状積層物は、正電荷を有する物質及び/又は負電荷を有する物質と誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)とが分子レベルの複合体の粒子として接合してなる、請求項1に記載の基体表面電荷形成用粒子状積層物。 In the particulate laminate, a substance having a positive charge and / or a substance having a negative charge and titanium oxide and / or silicon oxide (including a compound of titanium oxide and / or silicon oxide) as a dielectric or semiconductor are molecules. The particulate laminate for forming a substrate surface charge according to claim 1, which is bonded as particles of a level composite.
  5.  正電荷を有する物質及び/又は負電荷を有する物質と、誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)とを含有する、基体表面電荷形成用造膜液。 Substrate surface charge formation comprising a positively charged substance and / or a negatively charged substance and titanium oxide and / or silicon oxide (including titanium oxide and / or silicon oxide compounds) as a dielectric or semiconductor Film-forming fluid.
  6.  前記誘電体又は半導体としての酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)と、前記正電荷を有する物質及び/又は負電荷を有する物質と、の割合が、固型分モル比で、酸化チタン(酸化チタン化合物を含む)を使用する場合は1:0.01~1:0.3、酸化ケイ素(酸化ケイ素の化合物を含む)を使用する場合は1:0.03~1:2.7、酸化チタン及び酸化ケイ素(これらの化合物を含む)を使用する場合は1:0.01~1:0.3、の割合である、請求項5に記載の基体表面電荷形成用造膜液。 The ratio of titanium oxide and / or silicon oxide (including a compound of titanium oxide and / or silicon oxide) as the dielectric or semiconductor to the substance having a positive charge and / or the substance having a negative charge is a solid ratio. When using titanium oxide (including a titanium oxide compound), the molar ratio of the mold is 1: 0.01 to 1: 0.3, and 1: 0 when using silicon oxide (including a silicon oxide compound). The substrate according to claim 5, which has a ratio of 0.03 to 1: 2.7, and a ratio of 1: 0.01 to 1: 0.3 when titanium oxide and silicon oxide (including these compounds) are used. Surface charge forming film forming liquid.
  7.  前記正電荷を有する物質及び/又は負電荷を有する物質が、
     (1)陽イオン
     (2)正電荷を有する導電体、正電荷を有する導電体と誘電体との複合体、正電荷を有する導電体と半導体との複合体、正電荷を有する2種以上の誘電体又は/及び半導体からなる複合体、のいずれかの正電荷を有する導電体又は複合体
     (3)陰イオン
     (4)負電荷を有する導電体、負電荷を有する導電体と誘電体との複合体、負電荷を有する導電体と半導体との複合体、負電荷を有する2種以上の誘電体又は/及び半導体からなる複合体、のいずれかの負電荷を有する導電体又は複合体
     (5)光触媒機能を有する物質
     (6)酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)を除く誘電体又は半導体
     の上記(1)~(6)からなる群から選ばれた少なくとも1つの正電荷を有する物質及び/又は負電荷を有する物質である、請求項1乃至請求項4に記載の基体表面電荷形成用粒子状積層物。
    The substance having a positive charge and / or the substance having a negative charge are
    (1) Cation (2) Conductor having positive charge, composite of conductor having positive charge and dielectric, composite of conductor having positive charge and semiconductor, two or more kinds having positive charge A dielectric or / and a composite made of a semiconductor, a positively charged conductor or a composite (3) an anion (4) a negatively charged conductor, a negatively charged conductor and a dielectric Conductor or composite having negative charge of composite, composite of conductor having negative charge and semiconductor, composite of two or more kinds of dielectric having negative charge or / and semiconductor (5) ) Substance having photocatalytic function (6) Dielectric or semiconductor excluding titanium oxide and / or silicon oxide (including titanium oxide and / or silicon oxide compound) selected from the group consisting of (1) to (6) above A substance having at least one positive charge Beauty / or a substance having a negative charge, according to claim 1 to the substrate surface charge forming particulate laminate of claim 4.
  8.  前記正電荷を有する物質及び/又は負電荷を有する物質が、
     (1)陽イオン
     (2)正電荷を有する導電体、正電荷を有する導電体と誘電体との複合体、正電荷を有する導電体と半導体との複合体、正電荷を有する2種以上の誘電体又は/及び半導体からなる複合体、のいずれかの正電荷を有する導電体又は複合体
     (3)陰イオン
     (4)負電荷を有する導電体、負電荷を有する導電体と誘電体との複合体、負電荷を有する導電体と半導体との複合体、負電荷を有する2種以上の誘電体又は/及び半導体からなる複合体、のいずれかの負電荷を有する導電体又は複合体
     (5)光触媒機能を有する物質
     (6)酸化チタン及び/又は酸化ケイ素(酸化チタン及び/又は酸化ケイ素の化合物を含む)を除く誘電体又は半導体
     の上記(1)~(6)からなる群から選ばれた少なくとも1つの正電荷を有する物質及び/又は負電荷を有する物質である、請求項5又は請求項6に記載の基体表面電荷形成用造膜液。
    The substance having a positive charge and / or the substance having a negative charge are
    (1) Cation (2) Conductor having positive charge, composite of conductor having positive charge and dielectric, composite of conductor having positive charge and semiconductor, two or more kinds having positive charge A dielectric or / and a composite made of a semiconductor, a positively charged conductor or a composite (3) an anion (4) a negatively charged conductor, a negatively charged conductor and a dielectric Conductor or composite having negative charge of composite, composite of conductor having negative charge and semiconductor, composite of two or more kinds of dielectric having negative charge or / and semiconductor (5) ) Substance having photocatalytic function (6) Dielectric or semiconductor excluding titanium oxide and / or silicon oxide (including titanium oxide and / or silicon oxide compound) selected from the group consisting of (1) to (6) above A substance having at least one positive charge Beauty / or a substance having a negative charge, according to claim 5 or substrate surface charge film-forming solution for according to claim 6.
PCT/JP2016/086757 2015-12-28 2016-12-09 Particulate laminated material for forming charges on substrate surface and film shaping liquid for forming charges on substrate surface WO2017115637A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017558920A JPWO2017115637A1 (en) 2015-12-28 2016-12-09 Substrate surface charge forming particulate laminate and substrate surface charge forming film forming liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015257483 2015-12-28
JP2015-257483 2015-12-28

Publications (1)

Publication Number Publication Date
WO2017115637A1 true WO2017115637A1 (en) 2017-07-06

Family

ID=59225041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086757 WO2017115637A1 (en) 2015-12-28 2016-12-09 Particulate laminated material for forming charges on substrate surface and film shaping liquid for forming charges on substrate surface

Country Status (3)

Country Link
JP (1) JPWO2017115637A1 (en)
TW (1) TW201736273A (en)
WO (1) WO2017115637A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099693A (en) * 2017-12-04 2019-06-24 星和電機株式会社 Base protective liquid, base protective method, and base

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160745A (en) * 2001-08-21 2003-06-06 Sustainable Titania Technology Inc Film-forming aqueous liquid having electroconductivity and photocatalytic property, its production method and structure equipped with film
WO2003072661A1 (en) * 2002-02-27 2003-09-04 Sustainable Titania Technology Incorporated Solution for forming ultra-hydrophilic photocatalyst film, construct provided with the film and process for producing the same
JP2005170057A (en) * 2005-01-14 2005-06-30 Sumitomo Osaka Cement Co Ltd Highly antifouling and cleanable metal- or resin-formed product
JP2005319601A (en) * 2004-05-06 2005-11-17 Sustainable Titania Technology Inc Hydrophilizing stainproof method of water repellent substrate and its use in artificial article
WO2008013148A1 (en) * 2006-07-25 2008-01-31 Sustainable Titania Technology Inc. Method for protecting base body
JP2008184025A (en) * 2007-01-30 2008-08-14 Toyota Motor Corp Method of preventing wheel for automobile from being contaminated and wheel for automobile
JP2009096661A (en) * 2007-10-16 2009-05-07 Jgc Catalysts & Chemicals Ltd Electroconductive silica particles, their manufacturing method and their application
JP2009209319A (en) * 2008-03-06 2009-09-17 Sustainable Titania Technology Inc Agent for increasing transmitting visible light amount for light-transmitting substrate and method for producing highly light-transmitting substrate using the same
WO2009125847A1 (en) * 2008-04-11 2009-10-15 株式会社エルブ Noble-metal-supporting inorganic material, process for producing the same, food additive, and process for producing food
JP2013060012A (en) * 2012-10-15 2013-04-04 Sharp Corp Method for manufacturing low reflective base, and method for reducing reflectance of the base

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160745A (en) * 2001-08-21 2003-06-06 Sustainable Titania Technology Inc Film-forming aqueous liquid having electroconductivity and photocatalytic property, its production method and structure equipped with film
WO2003072661A1 (en) * 2002-02-27 2003-09-04 Sustainable Titania Technology Incorporated Solution for forming ultra-hydrophilic photocatalyst film, construct provided with the film and process for producing the same
JP2005319601A (en) * 2004-05-06 2005-11-17 Sustainable Titania Technology Inc Hydrophilizing stainproof method of water repellent substrate and its use in artificial article
JP2005170057A (en) * 2005-01-14 2005-06-30 Sumitomo Osaka Cement Co Ltd Highly antifouling and cleanable metal- or resin-formed product
WO2008013148A1 (en) * 2006-07-25 2008-01-31 Sustainable Titania Technology Inc. Method for protecting base body
JP2008184025A (en) * 2007-01-30 2008-08-14 Toyota Motor Corp Method of preventing wheel for automobile from being contaminated and wheel for automobile
JP2009096661A (en) * 2007-10-16 2009-05-07 Jgc Catalysts & Chemicals Ltd Electroconductive silica particles, their manufacturing method and their application
JP2009209319A (en) * 2008-03-06 2009-09-17 Sustainable Titania Technology Inc Agent for increasing transmitting visible light amount for light-transmitting substrate and method for producing highly light-transmitting substrate using the same
WO2009125847A1 (en) * 2008-04-11 2009-10-15 株式会社エルブ Noble-metal-supporting inorganic material, process for producing the same, food additive, and process for producing food
JP2013060012A (en) * 2012-10-15 2013-04-04 Sharp Corp Method for manufacturing low reflective base, and method for reducing reflectance of the base

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099693A (en) * 2017-12-04 2019-06-24 星和電機株式会社 Base protective liquid, base protective method, and base
JP7101469B2 (en) 2017-12-04 2022-07-15 星和電機株式会社 Substrate protection solution, substrate protection method, and substrate

Also Published As

Publication number Publication date
TW201736273A (en) 2017-10-16
JPWO2017115637A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
JP4926176B2 (en) Substrate protection method
JP4439515B2 (en) Substrate protection method
WO2010137337A1 (en) Method for removing or detoxifying gas
JPWO2004041723A1 (en) Titania-metal composite, method for producing the same, and film forming method using the composite dispersion
JP4995738B2 (en) Substrate protection method
JP5624458B2 (en) Substrate protection method
JPWO2009008419A1 (en) Substrate reflectivity reducing agent and method for producing low reflectivity substrate using the same
JPWO2007091479A1 (en) Substrate protection method
WO2017115637A1 (en) Particulate laminated material for forming charges on substrate surface and film shaping liquid for forming charges on substrate surface
WO2013002153A1 (en) Increase in amount of light transmitted by light-transmitting substrate
JP5936132B2 (en) Method for protecting substrate surface
JP6376563B2 (en) Method for protecting surface of metal substrate or metal-containing electrode substrate
JP6436462B2 (en) Substrate surface protective film and method for forming substrate surface protective film
JP6124276B2 (en) Method for maintaining hydrophilicity of substrate surface
JP6875667B2 (en) A substance containing a substrate surface protective film, a substrate surface protective film using the substance, a film-forming liquid thereof, and a method for producing the same.
JP2012240851A (en) Method of preventing or reducing elution of alkali metal on surface of substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881616

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558920

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881616

Country of ref document: EP

Kind code of ref document: A1