JP2003157882A - Operation method of redox flow battery - Google Patents

Operation method of redox flow battery

Info

Publication number
JP2003157882A
JP2003157882A JP2001356768A JP2001356768A JP2003157882A JP 2003157882 A JP2003157882 A JP 2003157882A JP 2001356768 A JP2001356768 A JP 2001356768A JP 2001356768 A JP2001356768 A JP 2001356768A JP 2003157882 A JP2003157882 A JP 2003157882A
Authority
JP
Japan
Prior art keywords
concentration
mol
vanadium ion
sulfuric acid
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001356768A
Other languages
Japanese (ja)
Inventor
Seiji Ogino
誠司 荻野
Nobuyuki Tokuda
信幸 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2001356768A priority Critical patent/JP2003157882A/en
Publication of JP2003157882A publication Critical patent/JP2003157882A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an operation method of a redox battery causing little deposit of vanadium, and capable of restraining the deterioration in battery capacity and battery efficiency when operated as a battery system. SOLUTION: This operation method of a redox flow battery uses a positive electrode electrolyte changing to pentavalent vanadium ions from tetravalent vanadium ions at charging time, and causing reverse reaction at discharging time in a positive electrode. The fact of being a constant concentration balancing state is specified by measuring a variation from the vanadium ion concentration and the initial adjusting concentration of the sulfuric acid concentration in this positive electrode electrolyte. The vanadium ion concentration and the sulfuric acid concentration in the positive electrode electrolyte of the concentration balancing state are adjusted so as to become the following range: the vanadium ion concentration: 0.6 mol/l to 2.6 mol/l, and the sulfuric acid concentration: 0.6 mol/l to 4.6 mol/l.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レドックスフロー
電池の運転方法に関するものである。特に、バナジウム
の析出を抑制して、電池容量や電池効率の低下を防止で
きるレドックスフロー電池の運転方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a method for operating a redox flow battery. In particular, the present invention relates to a method for operating a redox flow battery that can suppress the deposition of vanadium and prevent a decrease in battery capacity and battery efficiency.

【0002】[0002]

【従来の技術】負荷平準化用途や瞬低・停電対策用途な
どにレドックスフロー電池を利用することが提案されて
いる。
2. Description of the Related Art It has been proposed to use a redox flow battery for load leveling applications, voltage sag / blackout countermeasures, and the like.

【0003】特に、バナジウムレドックスフロー電池
は、起電力が高く、エネルギー密度が大きく、電
解液が単一元素系であるため正極液と負極液とが混合し
ても充電によって再生することができると言った多くの
利点を有している。
Particularly, the vanadium redox flow battery has a high electromotive force, a large energy density, and since the electrolytic solution is a single element system, it can be regenerated by charging even if the positive electrode solution and the negative electrode solution are mixed. It has many of the advantages mentioned.

【0004】ところが、このようなバナジウムレドック
ス電池は、バナジウム濃度、硫酸濃度、使用温度によっ
てはバナジウムが析出し、電池容量の低下、電圧効率の
低下などの問題が生じる。
However, in such a vanadium redox battery, vanadium is deposited depending on the vanadium concentration, the sulfuric acid concentration, and the operating temperature, which causes problems such as a decrease in battery capacity and a decrease in voltage efficiency.

【0005】バナジウム析出に対する対策として、特開
平8-138716号公報に記載の技術が知られている。この公
報は、バナジウム濃度を2.5mol/l以下、硫酸濃度を3mo
l/lとして、電解液の温度を50℃未満として運転する方
法を開示している。
As a countermeasure against vanadium precipitation, the technique described in Japanese Patent Application Laid-Open No. 8-138716 is known. This publication discloses that the vanadium concentration is 2.5 mol / l or less and the sulfuric acid concentration is 3 mo.
As l / l, a method of operating the temperature of the electrolytic solution below 50 ° C. is disclosed.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記公報の技
術では、バナジウムが溶解するかどうかについて電解液
自体で試験を行っており、電池システムとして運用した
場合について評価しているわけではない。電池システム
として運用した場合、充放電を繰り返すと隔膜を通して
電解液中の各種イオンや溶媒が移動し、正極および負極
の電解液量が増減する液移りが起こる。このような液移
りを考慮した際、バナジウムイオン濃度や硫酸濃度が正
極・負極の各々でどのように変化し、析出特性に差が出
るかどうか不明であった。
However, in the technique disclosed in the above publication, whether or not vanadium is dissolved is tested by the electrolytic solution itself, and it is not evaluated when it is operated as a battery system. When operated as a battery system, when charge and discharge are repeated, various ions and solvents in the electrolytic solution move through the diaphragm, and liquid transfer occurs in which the amount of the electrolytic solution in the positive electrode and the negative electrode increases and decreases. In consideration of such liquid transfer, it was unclear how the vanadium ion concentration and the sulfuric acid concentration were changed in each of the positive electrode and the negative electrode, and there was a difference in the deposition characteristics.

【0007】また、バナジウム濃度が2.5mol/lを超え
る高濃度の電解液についても、どのような挙動が起こる
か十分な検討がなされていなかった。
Further, even with respect to a high-concentration electrolytic solution having a vanadium concentration of more than 2.5 mol / l, no sufficient study has been made as to what behavior will occur.

【0008】従って、本発明の主目的は、電池システム
として運用した場合に、バナジウムの析出が起こり難
く、電池容量や電池効率の低下が抑制できるレドックス
電池の運転方法を提供することにある。
Therefore, a main object of the present invention is to provide a method of operating a redox battery in which vanadium is less likely to be deposited when operated as a battery system and a decrease in battery capacity and battery efficiency can be suppressed.

【0009】[0009]

【課題を解決するための手段】本発明は、正極・負極の
各々において、各電解液のバナジウムイオン濃度および
硫酸濃度の範囲を特定することで上記の目的を達成す
る。
The present invention achieves the above object by specifying the range of vanadium ion concentration and sulfuric acid concentration of each electrolytic solution in each of the positive electrode and the negative electrode.

【0010】本発明は、正極において、充電時、4価の
バナジウムイオンから5価のバナジウムイオンに変化
し、放電時にはその逆反応を起こす正極電解液を用いた
レドックスフロー電池の運転方法である。この正極電解
液中のバナジウムイオン濃度および硫酸濃度の初期調整
濃度からの変化量を測定して一定の濃度平衡状態である
ことを特定し、その濃度平衡状態の正極電解液中のバナ
ジウムイオン濃度および硫酸濃度が次のいずれかの範囲
になるように調整する。 バナジウムイオン濃度:0.6mol/l以上2.6mol/l以下 硫酸濃度:0.6mol/l以上4.6mol/l以下 バナジウムイオン濃度:2.6mol/l超3.1mol/l以下 硫酸濃度:1.6mol/l以上4.6mol/l以下 そして、電池運転中の正極電解液の温度を10℃以上45℃
以下とすることを特徴とする。
The present invention is a method for operating a redox flow battery using a positive electrode electrolyte in which the positive electrode changes from tetravalent vanadium ions to pentavalent vanadium ions during charging and reverse reaction occurs during discharging. The vanadium ion concentration in the positive electrode electrolyte and the amount of change from the initial adjusted concentration of the sulfuric acid concentration were measured to identify that the concentration was in a constant concentration equilibrium state, and the vanadium ion concentration in the positive electrode electrolyte solution in the concentration equilibrium state and Adjust the sulfuric acid concentration so that it falls within one of the following ranges. Vanadium ion concentration: 0.6 mol / l or more and 2.6 mol / l or less Sulfuric acid concentration: 0.6 mol / l or more and 4.6 mol / l or less Vanadium ion concentration: over 2.6 mol / l 3.1 mol / l or less Sulfuric acid concentration: 1.6 mol / l or more 4.6 mol / l or less and the temperature of the positive electrode electrolyte during battery operation is 10 ° C or more and 45 ° C
It is characterized by the following.

【0011】また、本発明は、負極において、充電時、
3価のバナジウムイオンから2価のバナジウムイオンに変
化し、放電時にはその逆反応を起こす負極電解液を用い
たレドックスフロー電池の運転方法である。この負極電
解液中のバナジウムイオン濃度および硫酸濃度の初期調
整濃度からの変化量を測定して一定の濃度平衡状態であ
ることを特定し、その濃度平衡状態の負極電解液中のバ
ナジウムイオン濃度および硫酸濃度が次のいずれかの範
囲になるように調整する。 バナジウムイオン濃度:0.4mol/l以上0.9mol/l以下 硫酸濃度:1.4mol/l以上4.9mol/l以下 バナジウムイオン濃度:0.9mol/l超1.9mol/l以下 硫酸濃度:1.4mol/l以上4.4mol/l以下 バナジウムイオン濃度:1.9mol/l超2.9mol/l以下 硫酸濃度:1.4mol/l以上3.4mol/l以下 そして、電池運転中の正極電解液の温度を10℃以上45℃
以下とすることを特徴とする。
In addition, the present invention provides a negative electrode, when charging,
This is a method of operating a redox flow battery that uses a negative electrode electrolyte that changes from trivalent vanadium ions to divalent vanadium ions and causes the reverse reaction during discharge. The vanadium ion concentration in this negative electrode electrolyte and the amount of change from the initial adjusted concentration of sulfuric acid concentration were measured to identify that it was in a constant concentration equilibrium state, and the vanadium ion concentration in the negative electrode electrolyte solution in the concentration equilibrium state and Adjust the sulfuric acid concentration so that it falls within one of the following ranges. Vanadium ion concentration: 0.4 mol / l or more and 0.9 mol / l or less Sulfuric acid concentration: 1.4 mol / l or more and 4.9 mol / l or less Vanadium ion concentration: over 0.9 mol / l 1.9 mol / l or less Sulfuric acid concentration: 1.4 mol / l or more 4.4 mol / l or less Vanadium ion concentration: more than 1.9 mol / l 2.9 mol / l or less Sulfuric acid concentration: 1.4 mol / l or more and 3.4 mol / l or less And the temperature of the positive electrode electrolyte during battery operation is 10 ° C or more and 45 ° C
It is characterized by the following.

【0012】正極電解液、負極電解液の各々を上記のバ
ナジウムイオン濃度、硫酸濃度に調整することで、実運
転時に生じる液移りを考慮した上でもバナジウムの析出
が生じ難く、電池効率に優れる運転を実現することがで
きる。
By adjusting the vanadium ion concentration and the sulfuric acid concentration of each of the positive electrode electrolyte and the negative electrode electrolyte to the above-mentioned vanadium ion concentration and sulfuric acid concentration, vanadium is less likely to be deposited even in consideration of the liquid transfer that occurs during actual operation, and the operation is excellent in battery efficiency. Can be realized.

【0013】電解液の濃度の管理は、レドックスフロー
電池システムに電解液モニターを設けて、このモニター
で測定することにより行うことが好適である。電解液モ
ニターには、ICP発光分光分析装置:セイコーインスツ
ルメンツ社製SPS4000型など、公知のものを利用するこ
とができる。
The control of the concentration of the electrolytic solution is preferably performed by providing an electrolytic solution monitor in the redox flow battery system and measuring with this monitor. As the electrolytic solution monitor, a known one such as ICP emission spectroscopic analyzer: SPS4000 manufactured by Seiko Instruments Inc. can be used.

【0014】通常、レドックスフロー電池は、イオンが
通過できる隔膜で正極セルと負極セルとに分離されたセ
ルを具える。正極セルと負極セルの各々には正極電極と
負極電極とを内蔵している。正極セルには、正極電解液
を供給及び排出する正極用タンクが導管を介して接続さ
れている。同様に負極セルには、負極用電解液を供給及
び排出する負極用タンクが導管を介して接続されてい
る。各電解液はポンプで循環される。電解液モニター
は、正負極セルと正負極用タンクとをつなぐ導管などに
設ければ良い。
Usually, a redox flow battery comprises a cell in which a positive electrode cell and a negative electrode cell are separated by a membrane through which ions can pass. Each of the positive electrode cell and the negative electrode cell contains a positive electrode and a negative electrode. A positive electrode tank for supplying and discharging a positive electrode electrolytic solution is connected to the positive electrode cell via a conduit. Similarly, a negative electrode tank for supplying and discharging a negative electrode electrolytic solution is connected to the negative electrode cell via a conduit. Each electrolyte is circulated by a pump. The electrolytic solution monitor may be provided in a conduit or the like that connects the positive and negative electrode cells and the positive and negative electrode tanks.

【0015】所定の濃度に電解液を調整するには、直接
電解液を足すことで濃度調整を行っても良いし、正極電
解液と負極電解液とを連通させて液移りに伴う電解液量
の不均一を調整する作業の頻度を増やすことで行っても
良い。この調整頻度は1回/1日以上が好ましい。
In order to adjust the electrolytic solution to a predetermined concentration, the concentration may be adjusted by directly adding the electrolytic solution, or the positive electrode electrolytic solution and the negative electrode electrolytic solution may be communicated with each other to adjust the amount of electrolytic solution. It may be performed by increasing the frequency of the work for adjusting the nonuniformity. The frequency of adjustment is preferably once / day or more.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。 (試験例1)まず、バナジウムレドックスフロー電池を
運転した場合、電解液のバナジウムイオン濃度と硫酸濃
度がどのように変化するかを調べてみた。用いたレドッ
クスフロー電池は、上述した従来のレドックスフロー電
池と同様の構成とした。試験条件は次の通りである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. (Test Example 1) First, when the vanadium redox flow battery was operated, it was examined how the vanadium ion concentration and the sulfuric acid concentration of the electrolytic solution changed. The redox flow battery used had the same structure as the above-mentioned conventional redox flow battery. The test conditions are as follows.

【0017】電池反応面積:1000cm2×5セル 充放電時間:各1時間/サイクル 充電末の開放電圧:1.55V/セル、充電状態で約90%の充
電状態 放電時の電流密度:0.07A/cm2 液量均等化頻度:1回/日(正極電解液と負極電解液と
を連通させて液移りに伴う電解液量の不均一を調整す
る) 液濃度測定:液量均等化後1サイクル終了後に測定 システム温度:25℃ 初期電解液成分濃度:バナジウムイオン濃度2mol/l、
硫酸濃度2mol/l(硫酸イオン濃度:4mol/l) ここで言う硫酸濃度はフリーの硫酸濃度であり、硫酸イ
オン濃度ではない。硫酸イオン濃度は、硫酸バナジウム
として存在するものと、硫酸として存在するものからな
る。バナジウムは電解液中で硫酸バナジウムとして存在
する。
Battery reaction area: 1000 cm2× 5 cells Charge / discharge time: 1 hour / cycle each Open voltage at the end of charging: 1.55V / cell, approximately 90% full charge
Power state Current density during discharge: 0.07A / cm2 Liquid volume equalization frequency: 1 time / day (for positive electrode electrolyte and negative electrode electrolyte
To adjust the non-uniformity of the amount of electrolyte due to liquid transfer.
) Liquid concentration measurement: Measured after the end of one cycle after equalizing the liquid volume System temperature: 25 ℃ Initial electrolyte component concentration: vanadium ion concentration 2 mol / l,
Sulfuric acid concentration 2mol / l (sulfate ion concentration: 4mol / l) The sulfuric acid concentration here is the free sulfuric acid concentration.
Not on concentration. Sulfate ion concentration is vanadium sulfate
And those that exist as sulfuric acid.
It Vanadium exists as vanadium sulfate in the electrolyte
To do.

【0018】上記の条件で充放電一週間行い、経過時間
とバナジウム濃度および硫酸濃度の関係を調べた。その
結果を表1および図1のグラフに示す。
Charging and discharging were carried out for one week under the above conditions, and the relationship between the elapsed time and the vanadium concentration and sulfuric acid concentration was investigated. The results are shown in Table 1 and the graph of FIG.

【0019】[0019]

【表1】 [Table 1]

【0020】表1および図1から明らかなように、正極
電解液・負極電解液のいずれも、初期の成分濃度からは
ずれ、一定時間経過後にほぼ一定の濃度平衡状態に達す
ることがわかる。
As is clear from Table 1 and FIG. 1, both the positive electrode electrolytic solution and the negative electrode electrolytic solution deviate from the initial component concentrations and reach a substantially constant concentration equilibrium state after a certain period of time.

【0021】(試験例2)次に、バナジウムイオン濃度
と硫酸濃度が異なる場合に、初期の電圧効率と一週間充
放電試験後の電圧効率とを比較した。ここでは、セルを
一週間充放電後に分解し、正極電極と負極電極にわけ
る。はじめに、この一週間充放電後の正極電極と新品の
負極電極を組み込んだ経過セルを用いて電圧効率を測定
し、正極電極を評価した。続いて、一週間充放電後の負
極電極と新品の正極電極を組み込んだ別の経過セルを用
いて電圧効率を測定し、負極電極を評価した。システム
温度を10℃と45℃の2通りとしたことを除いて、試験例
1と同様に液濃度の測定を行った。電圧効率は、放電電
圧/充電電圧で表される。そして、初期におけるセルの
電圧効率と一週間経過後の経過セルの電圧効率を比較
し、効率の低下が1%以下を「○」、1%超3%以下を
「△」3%超を「×」で示した。試験結果を表2に示す。
バナジウムイオン濃度および硫酸濃度の単位は「mol/
l」である。
(Test Example 2) Next, when the vanadium ion concentration and the sulfuric acid concentration were different, the initial voltage efficiency was compared with the voltage efficiency after a one-week charge / discharge test. Here, the cell is decomposed after being charged and discharged for one week, and divided into a positive electrode and a negative electrode. First, voltage efficiency was measured using a progress cell in which a positive electrode after charging and discharging for one week and a new negative electrode were incorporated, and the positive electrode was evaluated. Then, the voltage efficiency was measured using another progress cell in which the negative electrode after charging and discharging for one week and the new positive electrode were incorporated, and the negative electrode was evaluated. Test example, except that the system temperature was set to 10 ℃ and 45 ℃
The liquid concentration was measured in the same manner as in 1. The voltage efficiency is represented by discharge voltage / charge voltage. Then, the voltage efficiency of the cell in the initial stage is compared with the voltage efficiency of the elapsed cell after one week, and the decrease in efficiency is "○" when less than 1%, "△" when more than 1% and 3% or less is "△" when more than 3%. It was shown by "X". The test results are shown in Table 2.
The unit of vanadium ion concentration and sulfuric acid concentration is "mol /
l ”.

【0022】[0022]

【表2】 [Table 2]

【0023】表2から明らかなように、正極電解液の成
分濃度が次の場合に電圧効率の低下が少ないことがわか
った。 バナジウムイオン濃度:0.6mol/l以上2.6mol/l以下 硫酸濃度:0.6mol/l以上4.6mol/l以下 バナジウムイオン濃度:2.6mol/l超3.1mol/l以下 硫酸濃度:1.6mol/l以上4.6mol/l以下
As is clear from Table 2, it was found that the decrease in voltage efficiency was small when the component concentration of the positive electrode electrolyte was as follows. Vanadium ion concentration: 0.6 mol / l or more and 2.6 mol / l or less Sulfuric acid concentration: 0.6 mol / l or more and 4.6 mol / l or less Vanadium ion concentration: over 2.6 mol / l 3.1 mol / l or less Sulfuric acid concentration: 1.6 mol / l or more 4.6 mol / l or less

【0024】また、負極電解液の成分濃度が次の場合に
電圧効率の低下が少ないことがわかった。 バナジウムイオン濃度:0.4mol/l以上0.9mol/l以下 硫酸濃度が1.4mol/l以上4.9mol/l以下 バナジウムイオン濃度:0.9mol/l超1.9mol/l以下 硫酸濃度:1.4mol/l以上4.4mol/l以下 バナジウムイオン濃度:1.9mol/l超2.9mol/l以下 硫酸濃度:1.4mol/l以上3.4mol/l以下
Further, it was found that the voltage efficiency was less decreased when the component concentration of the negative electrode electrolyte was as follows. Vanadium ion concentration: 0.4 mol / l or more and 0.9 mol / l or less Sulfuric acid concentration is 1.4 mol / l or more and 4.9 mol / l or less Vanadium ion concentration: More than 0.9 mol / l and 1.9 mol / l or less Sulfuric acid concentration: 1.4 mol / l or more 4.4 mol / l or less Vanadium ion concentration: more than 1.9 mol / l 2.9 mol / l or less Sulfuric acid concentration: 1.4 mol / l or more and 3.4 mol / l or less

【0025】以上のことから、電池システムを運転後、
電解液が一定の濃度平衡状態となった際に、上記の濃度
条件を満たすように電解液濃度を調整すれば、効率的な
運転ができることがわかる。
From the above, after operating the battery system,
It can be seen that efficient operation can be achieved by adjusting the concentration of the electrolyte so that the above-mentioned concentration condition is satisfied when the electrolyte is in a constant concentration equilibrium state.

【0026】[0026]

【発明の効果】以上説明したように、本発明運転方法に
よれば、バナジウムイオン濃度と硫酸濃度並びに運転温
度を特定することで、電解液の析出が抑制でき、効率の
良い運転を実現することができる。
As described above, according to the operating method of the present invention, by prescribing the vanadium ion concentration, the sulfuric acid concentration and the operating temperature, the precipitation of the electrolytic solution can be suppressed and the efficient operation can be realized. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】通電経過日数と正負極電解液成分濃度との関係
を示すグラフである。
FIG. 1 is a graph showing the relationship between the number of days that electricity has passed and the concentration of positive and negative electrode electrolyte components.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳田 信幸 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 Fターム(参考) 5H026 AA10 EE01 EE11 HH05 HH08 RR01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Nobuyuki Tokuda             3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture             Kansai Electric Power Co., Inc. F-term (reference) 5H026 AA10 EE01 EE11 HH05 HH08                       RR01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極において、充電時、4価のバナジウ
ムイオンから5価のバナジウムイオンに変化し、放電時
にはその逆反応を起こす正極電解液を用いたレドックス
フロー電池の運転方法において、 前記正極電解液中のバナジウムイオン濃度および硫酸濃
度の初期調整濃度からの変化量を測定して一定の濃度平
衡状態であることを特定し、その濃度平衡状態の正極電
解液中のバナジウムイオン濃度が0.6mol/l以上2.6mol/
l以下で、硫酸濃度が0.6mol/l以上4.6mol/l以下にな
るように調整し、 電池運転中の正極電解液の温度が10℃以上45℃以下のレ
ドックスフロー電池の運転方法。
1. A method for operating a redox flow battery using a positive electrode electrolytic solution, which changes from a tetravalent vanadium ion to a pentavalent vanadium ion during charging in a positive electrode and causes a reverse reaction thereof during discharging. It was determined that the vanadium ion concentration and sulfuric acid concentration in the solution from the initial adjusted concentration were measured to determine that the concentration was in a constant concentration equilibrium state, and the vanadium ion concentration in the positive electrode electrolyte solution in the concentration equilibrium state was 0.6 mol / min. l or more 2.6 mol /
A method of operating a redox flow battery in which the sulfuric acid concentration is adjusted to 0.6 mol / l or more and 4.6 mol / l or less and the temperature of the positive electrode electrolyte during battery operation is 10 ° C. or more and 45 ° C. or less.
【請求項2】 正極において、充電時、4価のバナジウ
ムイオンから5価のバナジウムイオンに変化し、放電時
にはその逆反応を起こす正極電解液を用いたレドックス
フロー電池の運転方法において、 前記正極電解液中のバナジウムイオン濃度および硫酸濃
度の初期調整濃度からの変化量を測定して一定の濃度平
衡状態であることを特定し、その濃度平衡状態の正極電
解液中のバナジウムイオン濃度が2.6mol/l超3.1mol/l
以下で、硫酸濃度が1.6mol/l以上4.6mol/l以下になる
ように調整し、 電池運転中の正極電解液の温度が10℃以上45℃以下のレ
ドックスフロー電池の運転方法。
2. A method for operating a redox flow battery using a positive electrode electrolyte, which changes from a tetravalent vanadium ion to a pentavalent vanadium ion at the time of charging in a positive electrode and causes a reverse reaction at the time of discharging. It was determined that the concentration of vanadium ion and sulfuric acid in the solution from the initial adjusted concentration was constant and that the concentration was in a constant concentration equilibrium state. more than 3.1 mol / l
Below is a method for operating a redox flow battery in which the concentration of sulfuric acid is adjusted to 1.6 mol / l or more and 4.6 mol / l or less, and the temperature of the positive electrode electrolyte during battery operation is 10 ° C or more and 45 ° C or less.
【請求項3】 負極において、充電時、3価のバナジウ
ムイオンから2価のバナジウムイオンに変化し、放電時
にはその逆反応を起こす負極電解液を用いたレドックス
フロー電池の運転方法において、 前記負極電解液中のバナジウムイオン濃度および硫酸濃
度の初期調整濃度からの変化量を測定して一定の濃度平
衡状態であることを特定し、その濃度平衡状態の負極電
解液中のバナジウムイオン濃度が0.4mol/l以上0.9mol/
l以下で、硫酸濃度が1.4mol/l以上4.9mol/l以下にな
るように調整し、 電池運転中の負極電解液の温度が10℃以上45℃以下のレ
ドックスフロー電池の運転方法。
3. A method for operating a redox flow battery using a negative electrode electrolytic solution, which changes from a trivalent vanadium ion to a divalent vanadium ion during charging in the negative electrode and causes a reverse reaction thereof during discharging. The amount of change in vanadium ion concentration and sulfuric acid concentration from the initial adjusted concentration was measured to identify a constant concentration equilibrium state, and the vanadium ion concentration in the negative electrode electrolyte solution at that concentration equilibrium state was 0.4 mol / l or more 0.9 mol /
A method for operating a redox flow battery in which the sulfuric acid concentration is adjusted to 1.4 mol / l or more and 4.9 mol / l or less and the temperature of the negative electrode electrolyte during battery operation is 10 ° C. or more and 45 ° C. or less.
【請求項4】 負極において、充電時、3価のバナジウ
ムイオンから2価のバナジウムイオンに変化し、放電時
にはその逆反応を起こす負極電解液を用いたレドックス
フロー電池の運転方法において、 前記負極電解液中のバナジウムイオン濃度および硫酸濃
度の初期調整濃度からの変化量を測定して一定の濃度平
衡状態であることを特定し、その濃度平衡状態の負極電
解液中のバナジウムイオン濃度が0.9mol/l超1.9mol/l
以下で、硫酸濃度が1.4mol/l以上4.4mol/l以下になる
ように調整し、 電池運転中の負極電解液の温度が10℃以上45℃以下のレ
ドックスフロー電池の運転方法。
4. A method for operating a redox flow battery using a negative electrode electrolyte, which changes from a trivalent vanadium ion to a divalent vanadium ion during charging in a negative electrode and causes a reverse reaction thereof during discharging. The amount of change in vanadium ion concentration and sulfuric acid concentration from the initial adjusted concentration was measured to identify a constant concentration equilibrium state, and the vanadium ion concentration in the negative electrode electrolyte solution in the concentration equilibrium state was 0.9 mol / over 1.9mol / l
The following is a method for operating a redox flow battery in which the concentration of sulfuric acid is adjusted to 1.4 mol / l or more and 4.4 mol / l or less, and the temperature of the negative electrode electrolyte during battery operation is 10 ° C or more and 45 ° C or less.
【請求項5】 負極において、充電時、3価のバナジウ
ムイオンから2価のバナジウムイオンに変化し、放電時
にはその逆反応を起こす負極電解液を用いたレドックス
フロー電池の運転方法において、 前記負極電解液中のバナジウムイオン濃度および硫酸濃
度の初期調整濃度からの変化量を測定して一定の濃度平
衡状態であることを特定し、その濃度平衡状態の負極電
解液中のバナジウムイオン濃度が1.9mol/l超2.9mol/l
以下で、硫酸濃度が1.4mol/l以上3.4mol/l以下になる
ように調整し、 電池運転中の負極電解液の温度が10℃以上45℃以下のレ
ドックスフロー電池の運転方法。
5. A method for operating a redox flow battery using a negative electrode electrolytic solution, which changes from a trivalent vanadium ion to a divalent vanadium ion during charging in the negative electrode and causes a reverse reaction during discharging, wherein the negative electrode electrolysis is performed. It was determined that the vanadium ion concentration and the sulfuric acid concentration in the solution from the initial adjusted concentration were measured to determine that the concentration was in a constant concentration equilibrium state, and the vanadium ion concentration in the negative electrode electrolyte solution in the concentration equilibrium state was 1.9 mol / over 2.9mol / l
Below is a method for operating a redox flow battery in which the sulfuric acid concentration is adjusted to 1.4 mol / l or more and 3.4 mol / l or less, and the temperature of the negative electrode electrolyte during battery operation is 10 ° C or more and 45 ° C or less.
JP2001356768A 2001-11-21 2001-11-21 Operation method of redox flow battery Pending JP2003157882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001356768A JP2003157882A (en) 2001-11-21 2001-11-21 Operation method of redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001356768A JP2003157882A (en) 2001-11-21 2001-11-21 Operation method of redox flow battery

Publications (1)

Publication Number Publication Date
JP2003157882A true JP2003157882A (en) 2003-05-30

Family

ID=19168226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001356768A Pending JP2003157882A (en) 2001-11-21 2001-11-21 Operation method of redox flow battery

Country Status (1)

Country Link
JP (1) JP2003157882A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093942A (en) * 2007-10-10 2009-04-30 Loopwing Kk Electric power storage system
CN103280591A (en) * 2013-05-25 2013-09-04 成都赢创科技有限公司 Method for manufacturing solid electrolyte for vanadium flow battery
EP2648258A1 (en) * 2012-04-04 2013-10-09 Bozankaya BC&C Charge state monitoring of a vanadium redox flow battery
CN103367785A (en) * 2013-07-17 2013-10-23 大连融科储能技术发展有限公司 All-vanadium redox flow battery and operation method thereof
WO2014174999A1 (en) * 2013-04-25 2014-10-30 住友電気工業株式会社 Electrolyte solution for redox flow batteries, and redox flow battery
WO2015126131A1 (en) * 2014-02-20 2015-08-27 오씨아이 주식회사 Redox flow battery
WO2015126132A1 (en) * 2014-02-24 2015-08-27 오씨아이 주식회사 Redox flow battery
WO2015190889A1 (en) * 2014-06-13 2015-12-17 주식회사 엘지화학 Vanadium solution, electrolyte comprising same, secondary battery comprising same, and method for preparing same
JP2016540347A (en) * 2013-11-15 2016-12-22 ロッキード・マーティン・アドバンスト・エナジー・ストレージ・エルエルシーLockheed Martin Advanced Energy Storage, LLC Method for determining state of charge of redox flow battery and method for calibration of reference electrode
KR101862368B1 (en) * 2016-09-08 2018-05-29 롯데케미칼 주식회사 Method for operating zinc-bromine chemical flow battery
CN108270026A (en) * 2016-12-30 2018-07-10 湖南汇锋高新能源有限公司 High energy gel static vanadium cell

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093942A (en) * 2007-10-10 2009-04-30 Loopwing Kk Electric power storage system
EP2648258A1 (en) * 2012-04-04 2013-10-09 Bozankaya BC&C Charge state monitoring of a vanadium redox flow battery
WO2014174999A1 (en) * 2013-04-25 2014-10-30 住友電気工業株式会社 Electrolyte solution for redox flow batteries, and redox flow battery
CN103280591A (en) * 2013-05-25 2013-09-04 成都赢创科技有限公司 Method for manufacturing solid electrolyte for vanadium flow battery
CN103367785A (en) * 2013-07-17 2013-10-23 大连融科储能技术发展有限公司 All-vanadium redox flow battery and operation method thereof
WO2015007204A1 (en) * 2013-07-17 2015-01-22 大连融科储能技术发展有限公司 All-vanadium redox flow battery and operation method thereof
JP2016540347A (en) * 2013-11-15 2016-12-22 ロッキード・マーティン・アドバンスト・エナジー・ストレージ・エルエルシーLockheed Martin Advanced Energy Storage, LLC Method for determining state of charge of redox flow battery and method for calibration of reference electrode
JP2019160804A (en) * 2013-11-15 2019-09-19 ロッキード マーティン エナジー, エルエルシーLockheed Martin Energy, Llc Method for determining charging state of redox flow battery and reference electrode calibration method
WO2015126131A1 (en) * 2014-02-20 2015-08-27 오씨아이 주식회사 Redox flow battery
US9966626B2 (en) 2014-02-20 2018-05-08 Oci Company Ltd. Redox flow battery
KR101558081B1 (en) * 2014-02-24 2015-10-06 오씨아이 주식회사 Redox flow battery
WO2015126132A1 (en) * 2014-02-24 2015-08-27 오씨아이 주식회사 Redox flow battery
WO2015190889A1 (en) * 2014-06-13 2015-12-17 주식회사 엘지화학 Vanadium solution, electrolyte comprising same, secondary battery comprising same, and method for preparing same
US10096842B2 (en) 2014-06-13 2018-10-09 Lg Chem, Ltd. Vanadium solution, electrolyte comprising same, secondary battery comprising same, and method for preparing same
KR101862368B1 (en) * 2016-09-08 2018-05-29 롯데케미칼 주식회사 Method for operating zinc-bromine chemical flow battery
CN108270026A (en) * 2016-12-30 2018-07-10 湖南汇锋高新能源有限公司 High energy gel static vanadium cell
CN108270026B (en) * 2016-12-30 2021-06-18 湖南汇锋高新能源有限公司 High-energy gel static vanadium battery

Similar Documents

Publication Publication Date Title
US10199672B2 (en) Method of operating redox flow battery, and redox flow battery system
Pezeshki et al. The cell-in-series method: A technique for accelerated electrode degradation in redox flow batteries
JP5007849B1 (en) Redox flow battery and operation method thereof
JP5772366B2 (en) Redox flow battery
TWI489687B (en) Redox flow battery
WO2003092111A1 (en) Method for operating redox flow battery and redox flow battery cell stack
JP2003157882A (en) Operation method of redox flow battery
JP2006147374A (en) Method of operating vanadium redox flow battery system
US11811110B2 (en) System and method for determining state of charge for an electric energy storage device
JP2009016216A (en) Operation method of redox flow battery composed of plurality of modules
KR102357651B1 (en) Module system of redox flow battery
KR20190007573A (en) Redox flow battery and method for measuring state of charge of the same
JP2016538680A (en) Method for operating and conditioning an electrochemical cell containing electrodeposited fuel
CN114552038A (en) Lithium battery lithium-analysis-free quick charging method and system based on dynamic programming
JP2003157883A (en) Electrolyte regenerating method for vanadium redox battery
CN110783645B (en) Method for improving charging efficiency of secondary battery
Yang et al. Electrolyte compositions in a vanadium redox flow battery measured with a reference cell
JP2003157884A (en) Charging method of vanadium redox flow battery
JP2003257467A (en) Method of operating redox flow battery
JP2020187939A (en) Redox flow battery system and operating method thereof
CN110611109A (en) Regulating and controlling method and system of electrolyte and flow battery energy storage system
JP2007294124A (en) Manufacturing method of lead-acid battery
WO2022074912A1 (en) Redox flow battery operation method , and redox flow battery system
WO2022074911A1 (en) Electrolytic solution and redox flow cell
JP2003208916A (en) Operating method of vanadium redox flow battery