JP2009016216A - Operation method of redox flow battery composed of plurality of modules - Google Patents

Operation method of redox flow battery composed of plurality of modules Download PDF

Info

Publication number
JP2009016216A
JP2009016216A JP2007177751A JP2007177751A JP2009016216A JP 2009016216 A JP2009016216 A JP 2009016216A JP 2007177751 A JP2007177751 A JP 2007177751A JP 2007177751 A JP2007177751 A JP 2007177751A JP 2009016216 A JP2009016216 A JP 2009016216A
Authority
JP
Japan
Prior art keywords
modules
module
electrolyte
flow rate
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007177751A
Other languages
Japanese (ja)
Inventor
Toshio Shigematsu
敏夫 重松
Masaki Kato
正樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2007177751A priority Critical patent/JP2009016216A/en
Publication of JP2009016216A publication Critical patent/JP2009016216A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation method of a redox flow battery composed of a plurality of modules, which can always maintain no difference of potential among a plurality of modules during operation, without adding separately a device and without deteriorating cycle efficiency. <P>SOLUTION: In the operation method of a redox flow battery composed of a plurality of modules having a plurality of electrolyte circulation systems, the flow-rate of the electrolytic liquid of the module with a small self-discharge amount is established larger than the flow-rate of the electrolytic liquid of the module with a large self-discharge amount in order to equalize the potential difference between the modules A, B. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数の電解液循環系を有する複数モジュール構成のレドックスフロー電池の運転方法に関する。   The present invention relates to a method for operating a redox flow battery having a plurality of modules having a plurality of electrolyte circulation systems.

レドックスフロー電池システムの電解液は一般に電解液貯蔵タンクから全セルに並列に供給される構成になっているが、セル電圧を高めるために、セル直列数を増加させる場合には、各セル間の配管内電解液を通じて発生する「シャントカレント(漏洩電流)」による電流損失を抑制するため、電解液循環系を電気的に分断する目的で「複数モジュール構成」をとることが多い。   The electrolyte solution of the redox flow battery system is generally configured to be supplied in parallel to all cells from the electrolyte storage tank, but in order to increase the cell voltage, when increasing the number of cells in series, In order to suppress current loss due to “shunt current” (leakage current) generated through the electrolyte in the pipe, a “multiple module configuration” is often used for the purpose of electrically separating the electrolyte circulation system.

この場合、充放電を続けてゆくと、各モジュール内の電池セルの自己放電量は必ずしも全く同じではないことから、次第に各モジュール間の充電深度に差が現れてくる。そのまま充放電を継続させると、自己放電量のより少ないモジュールの充電状態(充電深度)がより高くなり、そのモジュール内のセルには過電圧が印加されセル損失を招くことが懸念される。また、このような状態で運転が継続されると、複数モジュール構成全体の電池容量の観点からも所要の電池容量を確保できなくなることも懸念される。尚、モジュール間に自己放電量に差異が発生する原因は、隔膜(イオン交換膜)の特性のばらつきの相違および経年的な劣化の度合いの相違などに起因する。   In this case, if charging / discharging is continued, the amount of self-discharge of the battery cells in each module is not necessarily the same, and therefore a difference gradually appears in the charging depth between the modules. If charging / discharging is continued as it is, the charging state (charging depth) of a module with a smaller amount of self-discharge becomes higher, and there is a concern that an overvoltage is applied to the cells in the module, resulting in cell loss. Further, if the operation is continued in such a state, there is a concern that the required battery capacity cannot be secured from the viewpoint of the battery capacity of the entire multi-module configuration. Note that the cause of the difference in self-discharge amount between modules is due to the difference in the characteristics of the diaphragm (ion exchange membrane) and the degree of deterioration over time.

そこで、このようなモジュール間に発生する電位差の問題を解消するために、種々の提案がなされている。例えば、充電状態の高いモジュールの正極電解液と負極電解液を混合することで、より低い充電状態のモジュールに充電状態を合わせる方法、或いは、複数モジュールの正極電解液同士及び負極電解液同士を混合させることで、モジュール間の充電状態を平均化させる方法などが提案されている(例えば特許文献1参照)。   Therefore, various proposals have been made in order to solve the problem of the potential difference generated between the modules. For example, by mixing the positive and negative electrolytes of a module with a high charge state, the charge state is matched to a lower charge module, or the positive and negative electrolytes of multiple modules are mixed together Thus, a method of averaging the state of charge between modules has been proposed (see, for example, Patent Document 1).

特開2005-340029号公報JP 2005-340029 JP

上記のような従来の電位差を解消する方法は、モジュール間の電位差が、電圧測定手段によって検知されうる程度の大きさになった時点で電位差を調整する間欠的な調整方法である。従って、運転中、常に、複数モジュール間に電位差がない状態となるような調整はできない。 The conventional method for eliminating the potential difference as described above is an intermittent adjustment method in which the potential difference is adjusted when the potential difference between the modules becomes large enough to be detected by the voltage measuring means. Therefore, it is impossible to make an adjustment so that there is always no potential difference between the plurality of modules during operation.

また、電位差を調整する際には、正負の電解液、或いは複数の同極同士の電解液を混合させる等の通常の運転操作には必要とされない操作を行うための特別な配管、バルブ等の設備が別途必要とされ、そのための設備費を要するという難点もあった。 In addition, when adjusting the potential difference, special pipes, valves, etc. for performing operations that are not necessary for normal operation such as mixing positive and negative electrolytes or electrolytes of the same polarity are mixed. There is also a drawback that additional equipment is required, and that equipment costs are required.

さらに、正負極電解液を混合させた場合には、一時的にその箇所の電解液の温度が上昇することに起因して、サイクルの効率が一時的に低下するという問題もあった。即ち、正負の電解液を混合すると自己放電量の変化による発熱が生じる。また、充電された電解液を一時に放電させてしまうことになるため、その時点で電流損失が発生することとなり、一時的な効率低下を招くことになる。 Further, when the positive and negative electrode electrolytes are mixed, there is a problem that the efficiency of the cycle is temporarily lowered due to a temporary rise in the temperature of the electrolyte solution at that location. That is, when positive and negative electrolytes are mixed, heat is generated due to a change in the amount of self-discharge. Moreover, since the charged electrolyte solution will be discharged at a time, current loss will occur at that time, resulting in a temporary reduction in efficiency.

本発明は、このような事情に鑑みてなされ、別途、装置を追加することなく、サイクルの効率を低下させることなく、運転中は常時複数モジュール間で電位差がない状態に維持することができる複数モジュール構成のレドックスフロー電池の運転方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and a plurality of components that can be maintained in a state in which there is no potential difference between a plurality of modules at all times during operation without adding a separate device and without reducing cycle efficiency. An object of the present invention is to provide a method for operating a redox flow battery having a module configuration.

本発明の複数モジュール構成のレドックスフロー電池の運転方法は、複数の電解液循環系を有する複数モジュール構成のレドックスフロー電池の運転方法において、
モジュール間の電位差を均等化するために、自己放電量の少ないモジュールの電解液流量を、自己放電量の多いモジュールの電解液流量よりも大に設定して運転することを特徴とする。
The method for operating a redox flow battery having a plurality of modules according to the present invention is a method for operating a redox flow battery having a plurality of modules having a plurality of electrolyte circulation systems.
In order to equalize the potential difference between the modules, the operation is performed by setting the electrolyte flow rate of the module having a small self-discharge amount to be larger than the electrolyte flow rate of the module having a large self-discharge amount.

ところで、発明者らは、レドックスフロー電池の自己放電特性を種々検討する中で、自己放電量が電解液流量、充電状態、電解液温度等の条件によって変化する特性を見出した。特に容易に制御可能な因子として電解液流量に注目して、その特性を調査した。その結果の一例を図3に示す。この試験では、2モジュール1,2を有するレドックスフロー電池を充電状態とし、種々の流量条件下で電解液を循環させ、各モジュールのセル電圧が時間と共に低下する特性を明確に把握することができた。即ち、モジュール1,2間で僅かに自己放電量の差が認められるが、流量を増加させるほど自己放電量は増加し、逆に、流量を低下させるほど自己放電量は低下することが判った。つまり、自己放電量は流量に比例して変化する。この試験では、実際の定格流量よりもかなり広範囲に流量を変化させているが、実際には定格流量を確保した上で、1割〜2割程度の流量調整でモジュール間の自己放電量を充分に調整できることを確認することができた。つまり、この程度の流量調整によって、レドックスフロー電池の特性のバラツキを調整できることが判った。以上のような知見に基づいて、発明者らは、モジュール間で電極の特性には問題がなく隔膜の特性に差異があってモジュール間での自己放電量に差異が発生する場合等に、運転中常時複数モジュール間で電位差がない状態に維持するためには、上述のように電解液の流量を調整して運転する方法が適切であることを見出した。 By the way, the inventors have found characteristics in which the self-discharge amount changes depending on conditions such as the electrolyte flow rate, the state of charge, the electrolyte temperature, etc., while variously examining the self-discharge characteristics of the redox flow battery. In particular, we focused on the electrolyte flow rate as a readily controllable factor and investigated its characteristics. An example of the result is shown in FIG. In this test, a redox flow battery with two modules 1 and 2 is charged, the electrolyte is circulated under various flow conditions, and the characteristics that the cell voltage of each module decreases over time can be clearly understood. It was. In other words, a slight difference in self-discharge amount was observed between modules 1 and 2, but it was found that the self-discharge amount increased as the flow rate increased, and conversely, the self-discharge amount decreased as the flow rate decreased. . That is, the self-discharge amount changes in proportion to the flow rate. In this test, the flow rate is changed in a considerably wider range than the actual rated flow rate. However, in actuality, the rated flow rate is secured and the self-discharge amount between modules is sufficiently adjusted by adjusting the flow rate between 10% and 20%. We were able to confirm that it can be adjusted. That is, it has been found that variation in the characteristics of the redox flow battery can be adjusted by adjusting the flow rate to this extent. Based on the above knowledge, the inventors have operated in the case where there is no problem in the characteristics of the electrodes between the modules, there is a difference in the characteristics of the diaphragm, and there is a difference in the self-discharge amount between the modules. In order to maintain a state in which there is no potential difference among a plurality of modules at all times, it has been found that the method of operating by adjusting the flow rate of the electrolyte as described above is appropriate.

その運転方法においては、例えば運転する前に(試運転等で)、まず、モジュール間での自己放電量の多少(電池特性)を把握するために、各モジュールにて電解液を定格流量で循環させて(同一流量条件下で)、モジュール間の電位差を測定する。次いで、モジュール間に電位差があれば、モジュール間での電圧バランスを均等化するために、自己放電量の少ないモジュールの電解液流量を、自己放電量の多いモジュールの電解液流量より大に設定する。その調整の度合いは、予め実験等によって式や表等のデータとして求めておくことができる。 In that operation method, for example, before starting operation (by trial operation etc.), first, in order to grasp the amount of self-discharge between modules (battery characteristics), the electrolyte is circulated at the rated flow rate in each module. (Under the same flow conditions) and measure the potential difference between the modules. Next, if there is a potential difference between the modules, in order to equalize the voltage balance between the modules, the electrolyte flow rate of the module with a small self-discharge amount is set larger than the electrolyte flow rate of the module with a large self-discharge amount. . The degree of adjustment can be obtained in advance as data such as a formula or a table by experiments or the like.

このように電位差に応じて個々のモジュールにおける電解液流量を設定して運転を開始する。すると、運転中は、常時、電位差が発生しない状態を維持することができる。即ち、起電力をE、電流をI、抵抗をRとした場合、V=E−IRで示される放電時の端子電圧をVを表す式において、自己放電量が少なくて起電力の高いモジュールの電解液流量を大にすることにより、自己放電量を多くして起電力を下げ、モジュール間の端子電圧Vのバランスを均等化することができる。このようなモジュール間での電圧バランスを均等化した運転を行うことにより、運転中、過充電等により各電池が損傷を受ける度合いが低減され、複数モジュール構成の電池としての長期信頼性が向上する。また、本方法では、上述のように電解液流量の調整のみで済むため、別途、配管やバルブ等の装置を追加する必要がなく設備コストが少なくて済む。そして、従来のような電解液同士を混合させる操作等の特殊な操作が不要になるので電解液の温度が上昇したり効率が変動したりすることがなく、運転状態が安定化する。 Thus, the operation is started by setting the electrolyte flow rate in each module according to the potential difference. Then, during operation, a state where no potential difference is generated can be maintained at all times. That is, when the electromotive force is E, the current is I, and the resistance is R, the terminal voltage at the time of discharge represented by V = E-IR is represented by V. By increasing the electrolyte flow rate, the amount of self-discharge can be increased to lower the electromotive force, and the balance of the terminal voltage V between the modules can be equalized. By performing the operation in which the voltage balance between the modules is equalized, the degree to which each battery is damaged due to overcharging or the like during operation is reduced, and long-term reliability as a battery having a plurality of modules is improved. . Further, in this method, since only the adjustment of the electrolyte flow rate is required as described above, it is not necessary to separately add devices such as pipes and valves, and the equipment cost can be reduced. And since special operation, such as the operation which mixes electrolyte solution like the past, becomes unnecessary, the temperature of electrolyte solution does not rise or efficiency fluctuates, and an operating state is stabilized.

本発明の複数モジュール構成のレドックスフロー電池の運転方法によれば、自己放電量のより少ないモジュールの電解液流量を、自己放電量のより多いモジュールの電解液流量に比べて、より多く設定してモジュール間の電圧バランスを均等化して運転するので、運転中、常時、電位差が発生しない状態を維持することができる。これにより、過充電等による損傷が低減され、複数モジュール構成の電池としての長期信頼性が向上する。また、別途、配管やバルブ等の装置を追加する必要がなく設備コストが少なくて済む。そして、電解液の温度が上昇したり効率が変動したりすることがなく、運転状態が安定化する。   According to the method for operating a redox flow battery having a multi-module configuration according to the present invention, the electrolyte flow rate of a module with a smaller self-discharge amount is set higher than the electrolyte flow rate of a module with a higher self-discharge amount. Since the operation is performed by equalizing the voltage balance between the modules, it is possible to maintain a state in which no potential difference is always generated during the operation. Thereby, damage due to overcharging or the like is reduced, and long-term reliability as a battery having a plurality of modules is improved. Further, there is no need to add a separate device such as a pipe or a valve, and the equipment cost can be reduced. And the temperature of electrolyte solution does not rise or the efficiency fluctuates, and the operating state is stabilized.

以下に、本発明の実施の形態に係る複数モジュール構成のレドックスフロー電池の運転方法について説明する。
図1は複数モジュール構成のレドックスフロー電池の構成を示す。このレドックスフロー電池は、それぞれ一対のセルスタック100A,100Bを有する2つのモジュールA,Bで構成され、各セルスタック100A,100Bには、それぞれ共通の正極用電解液タンク2A,2Bと負極用電解液タンク3A,3Bが接続されている。尚、各タンク2A,2B、3A,3Bとセルスタック100A,100Bの間を結ぶ電解液の往路を実線で示し、復路を破線で示す。
Hereinafter, a method for operating a redox flow battery having a multi-module configuration according to an embodiment of the present invention will be described.
FIG. 1 shows a configuration of a redox flow battery having a plurality of modules. This redox flow battery is composed of two modules A and B each having a pair of cell stacks 100A and 100B. Each of the cell stacks 100A and 100B has a common positive electrode electrolyte tank 2A and 2B and a negative electrode electrolyte. Liquid tanks 3A and 3B are connected. The forward path of the electrolyte solution connecting the tanks 2A, 2B, 3A, 3B and the cell stacks 100A, 100B is indicated by a solid line, and the return path is indicated by a broken line.

また、各セルスタック100A,100Bは、図示を省略するが、例えば6個のサブスタックを直列に連結した積層構成とされ、各サブスタックは、例えば18個のセルを直列に連結した積層構成になっている。これらセルスタック100A,100Bを構成する各セルには、正極用電解液タンク2A,2Bおよび負極用電解液タンク3A,3Bから電解液を供給できるように、往路にそれぞれポンプ9A,9B,12A,12Bが設けられている。これらのポンプ9A,9B,12A,12Bは、それぞれコンピュータ200の出力側に接続される一方、コンピュータ200の入力側には、モジュールA,B間の電位差を測定するための電圧計V21A,21Bが接続されている。尚、コンピュータ200は、外部の電力系統(図2参照)との充放電に関する制御をも行う。   Although not shown, each cell stack 100A, 100B has a stacked configuration in which, for example, 6 substacks are connected in series, and each substack has a stacked configuration in which, for example, 18 cells are connected in series. It has become. In each cell constituting these cell stacks 100A and 100B, pumps 9A, 9B, 12A, and so on are respectively provided in the outward path so that the electrolyte can be supplied from the electrolyte tanks 2A and 2B for the positive electrode and the electrolyte tanks 3A and 3B for the negative electrode. 12B is provided. These pumps 9A, 9B, 12A and 12B are connected to the output side of the computer 200, respectively, while the input side of the computer 200 has voltmeters V21A and 21B for measuring the potential difference between the modules A and B. It is connected. The computer 200 also performs control related to charging / discharging with an external power system (see FIG. 2).

電池の最小単位である各セル1の基本的な構成は、図2に示すように、隔膜4の両側に正極5を備えた正極セルと負極6を備えた負極セルが配設され、その電極5,6の各々には往路7,10と帰路8,11からなる循環経路を介して正極用電解液タンク2(2A,2B)と負極用電解液タンク3(3A,3B)が接続され、正極電解液と負極電解液がそれぞれ循環供給されるようになっている。また、隣接するセル間、つまり正極電極と負極電極の間は、双極板(図示省略)によって隔てられている。   As shown in FIG. 2, the basic configuration of each cell 1 that is the minimum unit of a battery is that a positive electrode cell having a positive electrode 5 and a negative electrode cell having a negative electrode 6 are arranged on both sides of a diaphragm 4, and the electrodes Each of 5 and 6 is connected to a positive electrode electrolyte tank 2 (2A, 2B) and a negative electrode electrolyte tank 3 (3A, 3B) through a circulation path consisting of forward paths 7, 10 and return paths 8, 11. Each of the positive electrode electrolyte and the negative electrode electrolyte is circulated and supplied. Adjacent cells, that is, the positive electrode and the negative electrode are separated by a bipolar plate (not shown).

このようなセルの積層集合体からなる複数モジュール構成のレドックスフロー電池の運転方法では、まず、運転する前に(試運転等で)、モジュールA,B間での自己放電量の多少(電池特性)を把握するために、各モジュールA,Bにて、正極電解液、負極電解液を定格流量(同一流量条件)で循環させて、数回の充放電サイクルを繰返し、モジュールA,B間の電位差を測定する。その際のモジュール間での電位差の発生度合から自己放電量の差を求めることができる。 In the method of operating a redox flow battery having a multi-module configuration composed of such a stacked assembly of cells, first, before operation (by trial operation, etc.), the amount of self-discharge between modules A and B (battery characteristics) In each module A and B, the positive and negative electrolytes are circulated at the rated flow rate (same flow rate condition), and several charge / discharge cycles are repeated, and the potential difference between modules A and B is repeated. Measure. The difference in the amount of self-discharge can be determined from the degree of potential difference between the modules at that time.

次いで、モジュールA,B間での電圧バランスを均等化するために、自己放電量の少ないモジュールの電解液流量を、自己放電量の多いモジュールの電解液流量より大に設定して、運転を開始する。すると、自己放電量が少ない方のモジュールの端子電圧が、自己放電量が多くて端子電圧の低いモジュールに合わされ、モジュール間での電圧バランスが均等化された状態で運転が継続される。そのため、運転中、過充電等により各電池が損傷を受ける度合いが低減され、複数モジュール構成の電池としての長期信頼性が向上する。また、本方法では、上述のように電解液流量の調整のみでよいため、別途、配管やバルブ等の装置を追加する必要がなく設備コストが少なくて済む。そして、従来のような電解液同士を混合させる操作等の特殊な操作が不要になるので電解液の温度が上昇したり効率が変動したりすることがなく、運転状態が安定化する。 Next, in order to equalize the voltage balance between modules A and B, start the operation by setting the electrolyte flow rate of the module with less self-discharge amount higher than the electrolyte flow rate of the module with more self-discharge amount. To do. Then, the terminal voltage of the module having the smaller self-discharge amount is adjusted to the module having the larger self-discharge amount and the lower terminal voltage, and the operation is continued in a state where the voltage balance between the modules is equalized. Therefore, the degree to which each battery is damaged by overcharging or the like during operation is reduced, and long-term reliability as a battery having a plurality of modules is improved. Further, in this method, since only the adjustment of the electrolyte flow rate is required as described above, it is not necessary to add a separate device such as a pipe or a valve, and the equipment cost can be reduced. And since special operation, such as the operation which mixes electrolyte solution like the past, becomes unnecessary, the temperature of electrolyte solution does not rise or efficiency fluctuates, and an operating state is stabilized.

このようなモジュールA,B間での電解液流量の調整を伴う運転では、予め、モジュールA,B間の電位差に対応する適切な電解液流量の調整量(モジュール間での割合)を求めるデータ(式、表等)をコンピュータ200に記憶させておくことで、各ポンプ9A,9B,12A,12Bの出力(電解液流量)を設定することができる。尚、流量の調整は、流量調整用のバルブや絞りによって行ってもよく、その開度は自動調整されてもよく手動で調整されてもよい。 In such an operation involving adjustment of the electrolyte flow rate between modules A and B, data for obtaining an appropriate adjustment amount (ratio between modules) corresponding to the potential difference between modules A and B in advance. By storing (formula, table, etc.) in the computer 200, the output (electrolyte flow rate) of each pump 9A, 9B, 12A, 12B can be set. The flow rate may be adjusted by a flow rate adjusting valve or a throttle, and the opening degree may be automatically adjusted or manually adjusted.

このようなモジュールA,B間での電解液流量の調整を伴う運転方法を、従来の方法と比較することにより、その作用効果をより一層明確に理解することができる。以下に、比較例について説明する。 By comparing the operation method involving adjustment of the electrolyte flow rate between the modules A and B with the conventional method, the effect can be understood more clearly. A comparative example will be described below.

〈比較例〉
2モジュール構成のレドックスフロー電池において、正極負極共に同一の定格流量で充放電を継続させたところ、10サイクル程度経過した時点で、モジュール間の放電終了後の起電力をモニタセルで測定したところ、1セル当たりに換算して約3mVの電位差が発生していることが判った。この電位差発生状況をサイクル毎に調査すると、ほぼサイクルに比例的に発生していることが判った。この時点で、より電圧の高いモジュールの正極電解液と負極電解液を混合させるべく、バルブ付きの混合配管を設けて数十秒間混合操作を実施したところ、電位差はほぼ0mVに解消されていることを確認することができた。しかし、このような方法では、バルブや混合配管を調達するためのコストやその接続作業を必要として手間やコストがかかり実用的ではない。
<Comparative example>
In a two-module redox flow battery, both the positive and negative electrodes were charged and discharged at the same rated flow rate.When about 10 cycles passed, the electromotive force after the end of discharge between modules was measured with a monitor cell. It was found that a potential difference of about 3 mV occurred per cell. When this potential difference occurrence state was investigated for each cycle, it was found that the potential difference occurred almost in proportion to the cycle. At this point, in order to mix the positive and negative electrolytes of the module with higher voltage, a mixing pipe with a valve was installed and the mixing operation was carried out for several tens of seconds. The potential difference was eliminated to almost 0 mV. I was able to confirm. However, such a method is not practical because it requires a cost for procuring a valve and a mixed pipe and a connection work thereof, which is troublesome and costly.

〈実施例1〉
図1等に示す複数モジュール構成のレドックスフロー電池を用い、試運転の段階で、各モジュールA,Bにて、正極電解液、負極電解液を定格流量(同一流量条件)で循環させ、モジュールA,B間の電位差を電圧計21A,21Bで測定した。その結果、1セル当たりに換算して約3mVの電位差が発生していることが判った。そこで、より電圧の高いモジュールの正極電解液と負極電解液を混合させることによって、一旦、この電位差を解消させた後、電位差が高くなった方のモジュールの電解液の流量を約1割程度増加させた流量設定で運転を実施した。その結果、10サイクルを経過しても、電位差は発生せず、良好な運転状態を継続することができた。
<Example 1>
Using the redox flow battery having a multi-module configuration shown in FIG. 1 and the like, in the trial operation stage, the positive and negative electrolytes are circulated at the rated flow rate (same flow rate condition) in each module A and B. The potential difference between B was measured with voltmeters 21A and 21B. As a result, it was found that a potential difference of about 3 mV occurred per cell. Therefore, by mixing the positive and negative electrolytes of the module with higher voltage, once this potential difference is resolved, the flow rate of the electrolyte of the module with the higher potential difference is increased by about 10%. Operation was carried out at the flow rate setting. As a result, even after 10 cycles, a potential difference did not occur and a good operating state could be continued.

以上から明らかなように、本発明の複数モジュール構成のレドックスフロー電池の運転方法によれば、両モジュール間の電位差を予め測定して、その測定結果に基づいて、電解液の流量調整を行って運転を継続することで、モジュール間での電圧バランスを運転中常に均等化された状態を維持することができる。従って、過充電等による損傷が低減され、複数モジュール構成の電池としての長期信頼性が向上する。また、流量調整のためのモジュール間での電位差の測定は、運転に先立って行えばよく、運転を中断乃至は停止する必要は全くなく、高い稼働率を維持することができる。尚、本発明は、実施の形態に限定されることなく、発明の要旨を逸脱しない限りにおいて、適宜、必要に応じて改良、変更等は自由である。例えば、本運転方法は、3モジュール以上の構成からなるレドックスフロー電池にも適用できるのは言うまでもない。 As is clear from the above, according to the operation method of the redox flow battery having a multi-module configuration of the present invention, the potential difference between the two modules is measured in advance, and the flow rate of the electrolyte is adjusted based on the measurement result. By continuing the operation, the voltage balance between the modules can always be kept equalized during the operation. Therefore, damage due to overcharging or the like is reduced, and long-term reliability as a battery having a plurality of modules is improved. Further, the measurement of the potential difference between the modules for flow rate adjustment may be performed prior to the operation, and there is no need to interrupt or stop the operation, and a high operating rate can be maintained. It should be noted that the present invention is not limited to the embodiment, and can be freely improved, changed, etc. as necessary without departing from the gist of the invention. For example, it goes without saying that the present operation method can be applied to a redox flow battery having a configuration of three modules or more.

本発明の複数モジュール構成のレドックスフロー電池の運転方法によれば、モジュール間での電解液の流量を予め調整して運転することで、運転中、常時、モジュール間の電位バランスが正常に保たれるので、複数モジュール構成の電池の長期信頼性を向上させるための運転に好適である。   According to the operation method of the redox flow battery having a multi-module configuration of the present invention, the potential balance between the modules is always kept normal during the operation by adjusting the flow rate of the electrolyte solution between the modules in advance. Therefore, it is suitable for operation for improving long-term reliability of a battery having a plurality of modules.

本発明の実施の形態に係る複数モジュール構成のレドックスフロー電池の基本的な構成を示す構成図である。It is a block diagram which shows the basic composition of the redox flow battery of the multiple module structure which concerns on embodiment of this invention. 同各セルの基本的な構成の説明図である。It is explanatory drawing of the basic composition of each cell. 流量変化に対する自己放電量の変化状態を示すグラフである。It is a graph which shows the change state of the self-discharge amount with respect to a flow rate change.

符号の説明Explanation of symbols

A,B モジュール
1
セル 2,2A,2B 正極電解液タンク 3,3A,3B
負極電解液タンク
4
隔膜 5 正極 6 負極 7,10 往路 8,11 帰路
9,9A,9B,12,12A,12B ポンプ 21A,21B
電圧計
100A,100B セルスタック
200 コンピュータ
A, B module
1
Cell 2,2A, 2B Cathode electrolyte tank 3,3A, 3B
Anode electrolyte tank
Four
Diaphragm 5 Positive electrode 6 Negative electrode 7,10 Outward path 8,11 Return path
9,9A, 9B, 12,12A, 12B Pump 21A, 21B
voltmeter
100A, 100B cell stack
200 computers

Claims (2)

複数の電解液循環系を有する複数モジュール構成のレドックスフロー電池の運転方法であって、
モジュール間の電位差を均等化するために、自己放電量の少ないモジュールの電解液流量を、自己放電量の多いモジュールの電解液流量よりも大に設定して運転することを特徴とする複数モジュール構成のレドックスフロー電池の運転方法。
A method of operating a redox flow battery having a plurality of modules having a plurality of electrolyte circulation systems,
To equalize the potential difference between modules, the multi-module configuration is characterized by operating with the electrolyte flow rate of the module with a small amount of self-discharge set larger than the electrolyte flow rate of the module with a large amount of self-discharge To operate the redox flow battery.
運転前に、予め、各モジュール内で電解液を定格流量で循環させてモジュール間の電位差を測定することにより、各モジュールの自己放電量を把握することを特徴とする請求項1に記載の複数モジュール構成のレドックスフロー電池の運転方法。   2. A plurality of self-discharge amounts of each module according to claim 1, wherein the self-discharge amount of each module is grasped by measuring the potential difference between the modules by circulating the electrolyte at a rated flow rate in each module in advance before operation. Operation method of module configuration redox flow battery.
JP2007177751A 2007-07-05 2007-07-05 Operation method of redox flow battery composed of plurality of modules Pending JP2009016216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007177751A JP2009016216A (en) 2007-07-05 2007-07-05 Operation method of redox flow battery composed of plurality of modules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007177751A JP2009016216A (en) 2007-07-05 2007-07-05 Operation method of redox flow battery composed of plurality of modules

Publications (1)

Publication Number Publication Date
JP2009016216A true JP2009016216A (en) 2009-01-22

Family

ID=40356868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007177751A Pending JP2009016216A (en) 2007-07-05 2007-07-05 Operation method of redox flow battery composed of plurality of modules

Country Status (1)

Country Link
JP (1) JP2009016216A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101433048B1 (en) 2011-11-18 2014-08-25 세하특허 주식회사 Redox flow battery system for multiple storage of renewable energy
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
KR101491784B1 (en) 2013-11-05 2015-02-23 롯데케미칼 주식회사 Method of operating chemical flow battery
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
CN104852075A (en) * 2015-04-16 2015-08-19 东方电气集团东方汽轮机有限公司 A fluid flow structure of vanadium battery stack
WO2015122390A1 (en) * 2014-02-17 2015-08-20 住友電気工業株式会社 Redox flow battery system and method for operating redox flow battery
KR101855290B1 (en) * 2017-03-02 2018-05-04 스탠다드에너지(주) Redox flow battery
CN111033851A (en) * 2017-09-14 2020-04-17 东洋工程株式会社 Redox flow battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
KR101433048B1 (en) 2011-11-18 2014-08-25 세하특허 주식회사 Redox flow battery system for multiple storage of renewable energy
US10014545B2 (en) 2013-11-05 2018-07-03 Lotte Chemical Corporation Method for operating redox flow battery
KR101491784B1 (en) 2013-11-05 2015-02-23 롯데케미칼 주식회사 Method of operating chemical flow battery
WO2015122390A1 (en) * 2014-02-17 2015-08-20 住友電気工業株式会社 Redox flow battery system and method for operating redox flow battery
JPWO2015122390A1 (en) * 2014-02-17 2017-03-30 住友電気工業株式会社 Redox flow battery system and operating method of redox flow battery
CN104852075A (en) * 2015-04-16 2015-08-19 东方电气集团东方汽轮机有限公司 A fluid flow structure of vanadium battery stack
KR101855290B1 (en) * 2017-03-02 2018-05-04 스탠다드에너지(주) Redox flow battery
WO2018160050A3 (en) * 2017-03-02 2018-10-25 스탠다드에너지(주) Redox flow battery
US10665882B2 (en) 2017-03-02 2020-05-26 Standard Energy Co., Ltd. Redox flow battery
CN111033851A (en) * 2017-09-14 2020-04-17 东洋工程株式会社 Redox flow battery

Similar Documents

Publication Publication Date Title
JP2009016216A (en) Operation method of redox flow battery composed of plurality of modules
JP5138994B2 (en) Operation method of redox flow battery system
US10665881B2 (en) Redox flow battery system, pump control unit, and method for operating redox flow battery
AU2003227443B2 (en) Method for operating redox flow battery and redox flow battery cell stack
US10263270B2 (en) Redox flow battery system and method for operating redox flow battery system
JP6271742B2 (en) Distributing electrolyte in a flow battery
US11949134B2 (en) Redox flow battery arrays and methods for state of charge balancing
JP2006114360A (en) Method for operating redox flow battery system
WO2017156680A1 (en) Flow battery regulation and control method, regulation and control system thereof, and flow battery
AU2018263991A1 (en) Flowing electrolyte battery and method of controlling a flowing electrolyte battery
US11362347B2 (en) Advanced electrolyte mixing method for all vanadium flow batteries
JP2011253721A (en) Voltage monitor device
KR102357651B1 (en) Module system of redox flow battery
JP2007059120A (en) Fuel battery system
KR102028678B1 (en) Redox flow battery system for soc balancing among modules
JP2007311210A (en) Deterioration state detection method of redox flow battery
JP2003157882A (en) Operation method of redox flow battery
US20240113316A1 (en) High voltage-type redox flow battery comprising soc balancing device
CN116053532A (en) Flow battery pile control device and control method, flow battery pile and energy storage system
EP3522280A1 (en) Redox flow cell
US20200220186A1 (en) Method for controlling operation of chemical flow battery
JP2006012425A (en) Operation method of redox flow battery
JP2016134258A (en) Control device for fuel battery system
CN116073493B (en) Power control method, power energy storage system, device, equipment and storage medium
JP2018142533A (en) Fuel cell stack for high level hybrid power system