JP2006114360A - Method for operating redox flow battery system - Google Patents

Method for operating redox flow battery system Download PDF

Info

Publication number
JP2006114360A
JP2006114360A JP2004300812A JP2004300812A JP2006114360A JP 2006114360 A JP2006114360 A JP 2006114360A JP 2004300812 A JP2004300812 A JP 2004300812A JP 2004300812 A JP2004300812 A JP 2004300812A JP 2006114360 A JP2006114360 A JP 2006114360A
Authority
JP
Japan
Prior art keywords
cell
voltage
discharge
battery system
redox flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004300812A
Other languages
Japanese (ja)
Inventor
Naohiro Inui
直浩 乾
Koichi Kinoshita
浩一 木下
Yasumitsu Tsutsui
康充 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2004300812A priority Critical patent/JP2006114360A/en
Publication of JP2006114360A publication Critical patent/JP2006114360A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a redox flow battery system that can fully secure a battery capacity for emergency without increasing the amount of an electrolyte excessively. <P>SOLUTION: In the operation method of the redox flow battery system for discharging by supplying an electrolyte to a cell, a computer is allowed to perform: a step for controlling the stop of discharge for securing a capacity for emergency, a step for measuring a cell terminal voltage, an open voltage, and a load current (1), a step for computing the voltage difference between the terminal voltage and the open voltage (2), a step for computing cell resistance based on the computed voltage difference and a load current (3), a step for determining the lower-limit value of the open voltage for securing the capacity for emergency based on the computed cell resistance (4), and a step for continuing discharge when the measured open voltage is equal to or higher than the lower-limit value and stopping discharge when it is less than the lower-limit value by comparing the lower-limit value of the determined open voltage with the measured open voltage (5). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電解液をセルに供給して放電を行うレドックスフロー電池システムの運転方法に関するものである。特に、電解液量を過剰に増大することなく、非常用の電池容量を十分に確保することができるレドックスフロー電池システムの運転方法に関するものである。   The present invention relates to a method for operating a redox flow battery system in which an electrolytic solution is supplied to a cell for discharging. In particular, the present invention relates to a method for operating a redox flow battery system capable of sufficiently securing an emergency battery capacity without excessively increasing the amount of electrolyte.

レドックスフロー電池は、従来、負荷平準化や瞬低対策などとして利用されている。図3はレドックスフロー電池の動作原理を示す説明図である。この電池は、イオン交換膜からなる隔膜101で正極セル100Aと負極セル100Bとに分離されたセル100を具える。正極セル100A、負極セル100Bにはそれぞれ、正極電極102、負極電極103を内蔵している。正極セル100Aには、正極電極102に供給されると共に、正極電極102から排出される正極電解液を貯留する正極電解液タンク104Aが電解液の輸送路となる導管106Aを介して接続されている。負極セル100Bには、負極電極103に供給されると共に、負極電極103から排出される負極電解液を貯留する負極電解液タンク104Bが電解液の輸送路となる導管106Bを介して接続されている。各極電解液にはバナジウムイオンなど原子価が変化するイオンの水溶液を用い、ポンプ105A、105Bで循環させ、正極電極102、負極電極103におけるイオンの価数変化反応に伴って充放電を行う。例えば、バナジウムイオンを含む電解液を用いた場合、セル内で充放電時に生じる反応は次の通りである。
正極:V4+→V5++e-(充電) V4+←V5++e-(放電)
負極:V3++e-→V2+(充電) V3++e-←V2+(放電)
The redox flow battery is conventionally used as a load leveling or a voltage drop countermeasure. FIG. 3 is an explanatory diagram showing the operating principle of the redox flow battery. This battery includes a cell 100 separated into a positive electrode cell 100A and a negative electrode cell 100B by a diaphragm 101 made of an ion exchange membrane. The positive electrode cell 100A and the negative electrode cell 100B each incorporate a positive electrode 102 and a negative electrode 103. Connected to the positive electrode cell 100A is a positive electrode electrolyte tank 104A that stores the positive electrode electrolyte that is supplied to the positive electrode 102 and discharged from the positive electrode 102 via a conduit 106A that serves as a transport path for the electrolyte. . The negative electrode cell 100B is connected to a negative electrode electrolyte tank 104B that stores the negative electrode electrolyte that is supplied to the negative electrode 103 and discharged from the negative electrode 103 via a conduit 106B that serves as an electrolyte transport path. . An aqueous solution of ions such as vanadium ions whose valence changes is used for each electrode electrolyte, and is circulated by pumps 105A and 105B, and charging and discharging are performed in accordance with the valence change reaction of the positive electrode 102 and the negative electrode 103. For example, when an electrolytic solution containing vanadium ions is used, the reaction that occurs during charging and discharging in the cell is as follows.
The positive electrode: V 4+ → V 5+ + e - ( charging) V 4+ ← V 5+ + e - ( discharge)
The negative electrode: V 3+ + e - → V 2+ ( charging) V 3+ + e - ← V 2+ ( discharge)

上記レドックスフロー電池システムは、交流/直流変換器に接続させ、交流/直流変換器を介して、発電所などの充電電力源や需要家などの放電対象と接続され、各対象に対して充放電を行う。負荷平準化用途のレドックスフロー電池の場合、充電時間帯域、放電時間帯域、待機時間帯域を予め決めておき、充電→放電→待機を繰り返し行っている。このようなレドックスフロー電池システムにおいて、火災時の消火負荷(消火設備)への供給などを目的とした非常用途の電池では、非常時に十分な電力供給が行えるように常に一定の電池容量を確保しておく必要がある。そこで、図4に示すグラフのように非常用容量が維持できる端子電圧v1(又は開放電圧v2)を予め設定しておき、セルの端子電圧(又は開放電圧)を常時監視して、放電中、端子電圧(又は開放電圧)が上記設定した電圧v1(又は電圧v2)に達したら、放電を停止する(又は待機状態にする)ことが行われている。また、特許文献1では、通常の運転に使用する電解液を貯留するタンクと別に充電深度が高い電解液を貯留した非常用タンクを具えて、火災時などの非常時に非常用タンクに切り替えて充電深度が高い電解液を用いて、負荷に電力供給を行う電池システムを開示している。 The above redox flow battery system is connected to an AC / DC converter and connected to a charging power source such as a power plant or a discharge target such as a consumer via the AC / DC converter. I do. In the case of a redox flow battery for load leveling, a charging time band, a discharging time band, and a standby time band are determined in advance, and charging, discharging, and standby are repeated. In such a redox flow battery system, an emergency battery intended for supply to a fire extinguishing load (fire extinguishing equipment) in the event of a fire always ensures a certain battery capacity so that sufficient power can be supplied in an emergency. It is necessary to keep. Therefore, as shown in the graph of FIG. 4, the terminal voltage v 1 (or open circuit voltage v 2 ) that can maintain the emergency capacity is set in advance, and the cell terminal voltage (or open circuit voltage) is constantly monitored to discharge the battery. When the terminal voltage (or open circuit voltage) reaches the set voltage v 1 (or voltage v 2 ), the discharge is stopped (or put into a standby state). In addition, Patent Document 1 includes an emergency tank that stores an electrolyte solution with a high charging depth separately from a tank that stores an electrolyte solution used for normal operation, and is charged by switching to an emergency tank in an emergency such as a fire. The battery system which supplies electric power to load using the electrolyte solution with a high depth is disclosed.

特開2002-329522号公報JP 2002-329522 A

しかし、上記従来の技術では、電池システムの大型化、コストアップを招くという問題がある。
端子電圧が同じであっても、セルの内部抵抗によって放電可能な電池容量が変化する。セルの内部抵抗の変化は、温度変化や経年劣化などに起因する。そこで、温度変化や経年劣化などを予め想定しておき、セルの内部抵抗が増大した最悪の条件であっても非常用の容量が確保できるように、放電の停止時を決定する電圧を充分高めに設定して時間容量を大きくするべく、電解液を増大していた。しかし、電解液を多くすることで、貯留するタンクを大型にせざるを得ず、電池システムの大型化を招いていた。また、セルの内部抵抗が増大した最悪の条件下となることはほとんどなく、通常は、セルの内部抵抗がほとんどない良好な条件下で放電されるため、運転時間の大部分に対して過剰な設計となっていた。また、運転時間の大部分が余分な容量を残して運転しており、電池効率の改善が望まれている。
However, the above conventional technique has a problem that the battery system is increased in size and cost.
Even if the terminal voltage is the same, the dischargeable battery capacity varies depending on the internal resistance of the cell. The change in the internal resistance of the cell is caused by temperature change or aging deterioration. Therefore, the voltage that determines when the discharge is stopped is sufficiently high so that an emergency capacity can be secured even under the worst conditions where the internal resistance of the cell has increased, assuming temperature changes and deterioration over time. The electrolyte was increased to increase the time capacity by setting to. However, by increasing the amount of electrolyte, the tank to be stored has to be enlarged, leading to an increase in the size of the battery system. In addition, the worst condition under which the internal resistance of the cell has increased is rare, and since the discharge is normally performed under good conditions with little internal resistance of the cell, it is excessive for most of the operation time. It was designed. In addition, most of the operation time is operated with an extra capacity remaining, and improvement in battery efficiency is desired.

一方、特許文献1では、充電深度が高い電解液を貯留した非常用タンクを具えているため、通常の運転に使用する電解液を貯留したタンクを大型にしなくてもよいが、別途非常用タンクを設けることで電池システムの大型化を招いてしまう。   On the other hand, Patent Document 1 includes an emergency tank that stores an electrolytic solution having a high charging depth, so the tank storing the electrolytic solution used for normal operation need not be large, but a separate emergency tank The increase in the size of the battery system is caused by the provision of.

従って、本発明の主目的は、電池システムを大型化することなく、非常用の容量を確実に維持することができるレドックスフロー電池システムの運転方法を提供することにある。   Therefore, a main object of the present invention is to provide a method for operating a redox flow battery system that can reliably maintain an emergency capacity without increasing the size of the battery system.

本発明は、放電時、セルの内部抵抗を常に検出し、内部抵抗に応じて放電の停止時期を変化させることで上記目的を達成する。   The present invention achieves the above object by always detecting the internal resistance of the cell during discharge and changing the discharge stop timing according to the internal resistance.

即ち、本発明は、セルに電解液を供給して放電を行うレドックスフロー電池システムの運転方法であって、コンピュータに以下のステップを行わせて、非常用容量を確保するために放電の停止を制御することを特徴とする。
1. セルの端子電圧、開放電圧、及び負荷電流を測定するステップ
2. 端子電圧と開放電圧との電圧差を演算するステップ
3. 演算した電圧差と負荷電流とに基づきセル抵抗を演算するステップ
4. 演算したセル抵抗に基づき、非常用容量を確保できる開放電圧の下限値を決定するステップ
5. 決定した開放電圧の下限値と測定した開放電圧とを比較し、測定した開放電圧が下限値以上の場合、放電を継続させ、下限値未満の場合、放電を停止させるステップ
That is, the present invention is a method for operating a redox flow battery system in which an electrolytic solution is supplied to a cell to perform discharge, and the computer performs the following steps to stop the discharge in order to ensure an emergency capacity. It is characterized by controlling.
1. Measuring cell terminal voltage, open circuit voltage and load current
2. Step to calculate voltage difference between terminal voltage and open circuit voltage
3. Step of calculating cell resistance based on calculated voltage difference and load current
4. Based on the calculated cell resistance, the step to determine the lower limit of the open circuit voltage that can secure the emergency capacity
5. Comparing the lower limit value of the determined open-circuit voltage with the measured open-circuit voltage, and if the measured open-circuit voltage is greater than or equal to the lower-limit value, continue the discharge, and if less than the lower-limit value, stop the discharge

以下、本発明をより詳しく説明する。
本発明運転方法に利用するレドックスフロー電池システムは、負荷に接続されて充放電を行うレドックスフロー電池用のセル(主セル)と、このセルに供給/排出される電解液を貯留するタンクと、セルとタンクとを連結する電解液の輸送路とを具える構成が挙げられる。タンクから電解液をセルに供給し易いようにポンプを具えていてもよい。上記電池用のセルとしては、隔膜を介して正極セルと負極セルとを具える構成が挙げられる。電解液としては、1.起電力が高く、2.エネルギー密度が大きく、3.電解液が単一元素系であるため正極電解液と負極電解液とが混合しても充電によって再生することができるといった多くの利点を有しているバナジウムイオン溶液が好適である。電解液の輸送路としては、電解液が接触しても短絡などの事故が生じないように絶縁材料にて形成されたパイプ(配管)などを利用するとよい。その他、本発明では、通常の運転時、特に放電時において開放電圧(非通電時の電圧)を測定するため、通電状態においても非通電状態の電圧を測定できる構成としておく。具体的には、負荷に接続されて充放電を行う上記主セルとは別に開放電圧測定用のモニタセルを具えておくことが挙げられる。モニタセルは、上記主セルと同様の構成のものを利用してもよい。公知のレドックスフロー電池システムを利用してもよい。上記構成を具えるレドックスフロー電池システムは、交流/直流変換器に接続させ、交流/直流変換器を介して系統(発電所などの充電電力源、需要家などの放電対象(負荷))に接続させて、充放電を行えるようにしておく。
Hereinafter, the present invention will be described in more detail.
The redox flow battery system used in the operation method of the present invention is a cell for a redox flow battery (main cell) that is connected to a load for charging and discharging, a tank for storing an electrolyte solution supplied / discharged to the cell, The structure which comprises the transport path of the electrolyte solution which connects a cell and a tank is mentioned. You may provide the pump so that electrolyte solution may be easily supplied to a cell from a tank. Examples of the battery cell include a configuration including a positive electrode cell and a negative electrode cell through a diaphragm. As the electrolyte, 1. High electromotive force 2. High energy density 3. Since the electrolyte is a single element system, it can be regenerated by charging even if the cathode electrolyte and anode electrolyte are mixed Vanadium ion solutions having many advantages such as being possible are preferred. As a transportation path for the electrolytic solution, a pipe (pipe) formed of an insulating material may be used so that an accident such as a short circuit does not occur even when the electrolytic solution contacts. In addition, in the present invention, in order to measure the open circuit voltage (voltage during non-energization) during normal operation, in particular during discharge, the voltage in the non-energized state can be measured even in the energized state. Specifically, it is possible to provide a monitor cell for measuring an open-circuit voltage separately from the main cell connected to a load for charging and discharging. A monitor cell having the same configuration as that of the main cell may be used. A known redox flow battery system may be used. A redox flow battery system having the above configuration is connected to an AC / DC converter and connected to the system (charging power source such as a power plant, discharge target (load) such as a consumer) via the AC / DC converter. To charge and discharge.

そして、本発明では、記憶、演算、判定などの種々の処理を行うことが可能なコンピュータを利用して、放電の停止時期の制御を行う。具体的には、以下に示す所定の制御プログラムをコンピュータに予め入力しておき、コンピュータの命令に従い、放電を継続或いは停止させる。
(1) セルの端子電圧、開放電圧、及び負荷電流を測定するステップ
(2) 測定した端子電圧、開放電圧、負荷電流に基づきセル抵抗を演算するステップ
(3) 演算したセル抵抗に基づき、非常用容量を確保できる開放電圧の下限値を決定し、決定した下限値と測定した開放電圧とを比較して放電の継続/停止を判定するステップ
In the present invention, the discharge stop timing is controlled using a computer capable of performing various processes such as storage, calculation, and determination. Specifically, a predetermined control program shown below is input to a computer in advance, and discharging is continued or stopped according to a computer command.
(1) Step of measuring cell terminal voltage, open circuit voltage, and load current
(2) Step of calculating cell resistance based on measured terminal voltage, open circuit voltage, and load current
(3) Step of determining the lower limit value of the open-circuit voltage that can secure the emergency capacity based on the calculated cell resistance, and comparing the determined lower limit value with the measured open-circuit voltage to determine the continuation / stop of discharge

上記第一ステップを行うにあたり、端子電圧の測定手段、開放電圧の測定手段、負荷電流の測定手段を具えておく。端子電圧、負荷電流の測定手段を具える交流/直流変換器を利用してもよい。開放電圧の測定手段は、電圧を測定できるものであればよい。これら測定手段とコンピュータとは、測定結果(電気信号)を伝送する配線を介して連結させておく。また、処理手段は、信号受信部に各測定手段からの電気信号が入力されるようにしておく。   In performing the first step, terminal voltage measuring means, open-circuit voltage measuring means, and load current measuring means are provided. An AC / DC converter having means for measuring terminal voltage and load current may be used. Any open-circuit voltage measuring means may be used as long as it can measure the voltage. These measurement means and the computer are connected via a wiring for transmitting a measurement result (electric signal). Further, the processing means is configured so that an electric signal from each measuring means is input to the signal receiving unit.

上記第二ステップを行うにあたり、コンピュータに具える演算手段では、端子電圧と開放電圧との差を求め、この電圧差を負荷電流で割ってセル抵抗を求めるようにしておく。   In performing the second step, the computing means included in the computer obtains the difference between the terminal voltage and the open circuit voltage and divides this voltage difference by the load current to obtain the cell resistance.

上記第三ステップを行うに当たり、セル抵抗と、非常用容量を確保できる開放電圧との関係を予め求めておき、コンピュータの記憶手段にこの関係値データを予め入力しておく。所望の非常用容量を複数設けておき、これら容量ごとに関係値データを作成して、所望の非常用容量の関係値データを適宜選択できるようにしておいてもよい。そして、コンピュータに具える照合決定手段は、演算手段から得られたセル抵抗と記憶手段から呼び出した関係値データとを照らし合わせて、非常用容量が確保可能な開放電圧の下限値を求めるようにしておく。次に、コンピュータの判定手段は、測定した開放電圧を記憶手段から呼び出し、この測定値と上記下限値との大小関係を判定するようにしておく。具体的には、測定値が下限値以上の場合、非常用容量を充分に確保できるため、そのまま運転(放電)を継続すると判定するようにしておく。一方、測定値が下限値未満の場合、放電を続けると非常用容量を確保できなくなるため、運転(放電)を停止する(或いは待機状態に移行する)と判定するようにしておく。なお、コンピュータの他、上記のような記憶、演算、判定などの種々の処理を行える処理装置を利用してもよい。   In performing the third step, the relationship between the cell resistance and the open-circuit voltage that can secure the emergency capacity is obtained in advance, and this relationship value data is input in advance to the storage means of the computer. A plurality of desired emergency capacities may be provided, and relation value data may be created for each of these capacities so that the desired value of the related capacity data can be appropriately selected. Then, the collation determining means included in the computer compares the cell resistance obtained from the computing means with the relational value data called from the storage means so as to obtain the lower limit value of the open-circuit voltage that can secure the emergency capacity. Keep it. Next, the determination means of the computer calls the measured open circuit voltage from the storage means, and determines the magnitude relationship between the measured value and the lower limit value. Specifically, when the measured value is equal to or higher than the lower limit value, the emergency capacity can be sufficiently secured, so that it is determined that the operation (discharge) is continued as it is. On the other hand, if the measured value is less than the lower limit value, it is determined that the operation (discharge) is to be stopped (or shifted to the standby state) because the emergency capacity cannot be secured if the discharge is continued. In addition to the computer, a processing device that can perform various processes such as storage, calculation, and determination as described above may be used.

上記構成を具える本発明運転方法は、非常用容量を確保するべく、放電の停止時期を決定する電圧を固定値とするのではなく、セル抵抗に応じて変更するため、非常用容量を確実に確保できると共に、電解液のタンクを大型化したり、非常用タンクを設けることがなく、電池システムの大型化を招くことがない。そのため、小型な電池システム、或いは従来と同等の大きさの電池システムであっても、非常用容量を充分に確保することができ、また、余分な容量を残すことがなく、効率的な運転を行うことができる。   The operation method of the present invention having the above-described configuration ensures that the emergency capacity is secured because the voltage for determining the discharge stop timing is not a fixed value but is changed according to the cell resistance in order to secure the emergency capacity. The size of the battery system is not increased without increasing the size of the tank of the electrolyte or providing an emergency tank. For this reason, even a small battery system or a battery system of the same size as the conventional one can sufficiently secure an emergency capacity, and does not leave an excessive capacity and operates efficiently. It can be carried out.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

図1は、本発明運転方法を適用するレドックスフロー電池システムの概略構成図である。このレドックスフロー電池システム1は、セルスタック2と、セルスタック2に供給/排出される正極電解液を貯留する正極電解液タンク3aと、セルスタック2に供給/排出される負極電解液を貯留する負極電解液タンク3bと、セルスタック2と各タンク3a、3bとを連結する電解液の輸送路となる配管4a、4b、5a、5bとを具える。また、セルスタック2に電解液を容易に供給できるように供給用の配管4a、4bには、それぞれポンプ6a、6bを具える。   FIG. 1 is a schematic configuration diagram of a redox flow battery system to which the operation method of the present invention is applied. This redox flow battery system 1 stores a cell stack 2, a positive electrolyte tank 3a for storing a positive electrolyte supplied / discharged to the cell stack 2, and a negative electrolyte supplied / discharged to the cell stack 2. A negative electrode electrolyte tank 3b, and pipes 4a, 4b, 5a, and 5b serving as electrolyte transport paths connecting the cell stack 2 and the tanks 3a and 3b are provided. Further, the supply pipes 4a and 4b are respectively provided with pumps 6a and 6b so that the electrolyte can be easily supplied to the cell stack 2.

セルスタック2は、レドックスフロー電池用のセルを複数積層させた積層体構造であり、通常の運転に使用する主セル2aと、開放電圧を測定するためのモニタセル2bとを具える。主セル2aは、交流/直流変換器11に接続され、交流/直流変換器11を介して、発電所などの充電電力源や需要家などの放電対象といった系統に接続される。モニタセル2bは、主セル2aと共通して各極の電解液が輸送されるセルであり、系統に接続されず、充放電に用いられないセルである。即ち、このモニタセル2bは、常時非通電状態となる。このようなセルスタック2と正極電解液タンク3a及び配管4a、5aにて正極電解液循環路を構成し、セルスタック2と負極電解液タンク3b及び配管4b、5bにて負極電解液循環路を構成する。   The cell stack 2 has a stacked structure in which a plurality of cells for redox flow batteries are stacked, and includes a main cell 2a used for normal operation and a monitor cell 2b for measuring an open circuit voltage. The main cell 2a is connected to an AC / DC converter 11, and is connected via the AC / DC converter 11 to a system such as a charging power source such as a power plant or a discharge target such as a consumer. The monitor cell 2b is a cell through which the electrolyte solution of each electrode is transported in common with the main cell 2a, and is not connected to the system and is not used for charging / discharging. That is, the monitor cell 2b is always in a non-energized state. The cell stack 2 and the positive electrode electrolyte tank 3a and the pipes 4a and 5a constitute the positive electrode electrolyte circuit, and the cell stack 2 and the negative electrode electrolyte tank 3b and the pipes 4b and 5b form the negative electrode circuit. Constitute.

主セル2a、モニタセル2bを構成するセルの基本的構成は、図3に示すセル100と同様であり、イオン交換膜(隔膜)により正極セルと負極セルとに分離され、正極セルに正極電極、負極セルに負極電極を内蔵し、各電極にそれぞれ正極電解液、負極電解液が供給される。本例では、正極電解液にV5+を含む溶液、負極電解液にV2+を含む溶液を用いた。 The basic structure of the cells constituting the main cell 2a and the monitor cell 2b is the same as that of the cell 100 shown in FIG. 3, and is separated into a positive electrode cell and a negative electrode cell by an ion exchange membrane (diaphragm). A negative electrode is built in the negative electrode cell, and a positive electrode electrolyte and a negative electrode electrolyte are supplied to each electrode. In this example, a solution containing V 5+ was used as the positive electrode electrolyte, and a solution containing V 2+ was used as the negative electrode electrolyte.

上記交流/直流変換器11は、主セル2aの端子電圧A(V)、負荷電流C(A)が測定できる測定手段(図示せず)を具えているものを用い、各測定手段からの測定結果がコンピュータ20に伝送されるように配線を介してコンピュータ20に接続される。モニタセル2bには、開放電圧を測定するべく電圧測定手段12を接続させ、この電圧測定手段12は、測定結果がコンピュータ20に伝送されるように配線を介してコンピュータ20に接続される。なお、本例では、コンピュータ20にて交流/直流変換器11を制御して、外部からの充電、外部への放電を制御する。また、ポンプ6a、6bもコンピュータ20に配線を介して接続させており、コンピュータ20にてポンプ6a、6bの駆動も制御する。本例においてコンピュータ20は、記憶、演算、判定などの種々の処理が行える公知のものを用いた。   The AC / DC converter 11 is provided with measuring means (not shown) capable of measuring the terminal voltage A (V) and load current C (A) of the main cell 2a, and measured from each measuring means. The result is connected to the computer 20 via wiring so that the result is transmitted to the computer 20. A voltage measuring means 12 is connected to the monitor cell 2b to measure the open circuit voltage, and the voltage measuring means 12 is connected to the computer 20 via wiring so that the measurement result is transmitted to the computer 20. In this example, the computer 20 controls the AC / DC converter 11 to control external charging and external discharging. The pumps 6a and 6b are also connected to the computer 20 via wiring, and the computer 20 controls the driving of the pumps 6a and 6b. In this example, a known computer that can perform various processes such as storage, calculation, and determination is used as the computer 20.

上記構成を具えるレドックスフロー電池システムにおいて、消火設備などへの電力供給を行うなどといった非常用の電池容量を確保するために、放電の停止時期を制御する本発明運転方法を具体的に説明する。図2は、本発明レドックスフロー電池システムの運転方法の制御手順を示すフローチャートである。なお、本例では、放電時、交流/直流変換器に具える測定手段により、端子電圧A(V)及び負荷電流C(A)を、電圧測定手段により開放電圧B(V)を常時測定し、コンピュータに入力させる構成とした。   In the redox flow battery system having the above-described configuration, the operation method of the present invention for controlling the discharge stop timing in order to secure an emergency battery capacity such as supplying power to a fire extinguishing facility will be specifically described. . FIG. 2 is a flowchart showing a control procedure of the operation method of the redox flow battery system of the present invention. In this example, during discharge, the terminal voltage A (V) and the load current C (A) are constantly measured by the measuring means included in the AC / DC converter, and the open circuit voltage B (V) is constantly measured by the voltage measuring means. The computer is configured to be input.

本発明運転方法は、まず、交流/直流変換器の測定手段により端子電圧A(V)、負荷電流C(A)を測定し(ステップS1)、電圧測定手段により開放電圧B(V)を測定する(ステップS2)。測定結果(電気信号)はコンピュータの信号受信部に入力されるようにする。このとき、コンピュータは、入力された電気信号をそれぞれ端子電圧A(V)、開放電圧B(V)、負荷電流C(A)に読み替え、記憶手段に一時的に保存しておく。   In the operation method of the present invention, first, the terminal voltage A (V) and the load current C (A) are measured by the measuring means of the AC / DC converter (step S1), and the open voltage B (V) is measured by the voltage measuring means. (Step S2). The measurement result (electrical signal) is input to the signal receiver of the computer. At this time, the computer reads the input electrical signals as terminal voltage A (V), open circuit voltage B (V), and load current C (A), respectively, and temporarily stores them in the storage means.

次に、コンピュータの演算手段は、測定した端子電圧A(V)と開放電圧B(V)との差E(V)=A-Bを演算し(ステップS3)、この電圧差E(V)を測定した負荷電流C(A)で割って、セル抵抗F(Ω)=E/Cを演算する(ステップS4)。そして、コンピュータの照合決定手段は、記憶手段に保存されているセル抵抗と開放電圧との関係値データを呼び出し、セル抵抗F(Ω)に照らし合わせて、非常用容量が確保できる開放電圧の下限値G(V)を決定する(ステップS5)。本例では、ステップS5を行うにあたり、種々の要望の非常用容量に対応することができるように、複数の非常用容量を予め設定して、非常用容量ごとにセル抵抗と開放電圧との関係値データを作成してコンピュータに入力しておき、所望の非常用容量の関係値データを選択するようにしている。   Next, the computing means of the computer calculates the difference E (V) = AB between the measured terminal voltage A (V) and the open circuit voltage B (V) (step S3), and measures this voltage difference E (V) The cell resistance F (Ω) = E / C is calculated by dividing by the load current C (A) (step S4). Then, the computer verification determining means calls the relation value data between the cell resistance and the open voltage stored in the storage means, and compares the cell resistance F (Ω) with the lower limit of the open voltage that can secure the emergency capacity. A value G (V) is determined (step S5). In this example, when performing step S5, a plurality of emergency capacitors are set in advance so as to be able to cope with various requested emergency capacitors, and the relationship between the cell resistance and the open circuit voltage for each emergency capacitor. Value data is created and input to a computer, and desired value data of emergency capacity is selected.

次に、コンピュータの判定手段は、決定した開放電圧の下限値G(V)と測定した開放電圧B(V)との大小関係を判定する(ステップS6)。測定した開放電圧B(V)が下限値G(V)以上の場合、レドックスフロー電池システムは、非常用容量を充分維持できる。従って、放電を停止する必要がないため、コンピュータの判定手段は、放電を継続すると判定する(ステップS7)。その後、本例では、放電を行っている間、放電停止の制御を行うため、ステップS1以降の手順を繰り返す。一方、測定した開放電圧B(V)が下限値G(V)未満の場合、このまま放電を続けると非常用容量を確保できなくなる。そこで、コンピュータの判定手段は、放電を停止すると判定し(ステップS8)、制御を終了する。放電を終了した場合、待機とし、その後、予め設定した各動作時間帯域(充電、放電、待機)となったら、各動作を行うように設定しておくとよい。そして、放電を行っている際は、上記放電停止の制御を行う。   Next, the determination means of the computer determines the magnitude relationship between the determined lower limit value G (V) of the open-circuit voltage and the measured open-circuit voltage B (V) (step S6). When the measured open circuit voltage B (V) is equal to or higher than the lower limit G (V), the redox flow battery system can sufficiently maintain the emergency capacity. Therefore, since it is not necessary to stop the discharge, the determination means of the computer determines that the discharge is continued (step S7). Thereafter, in this example, the procedure after step S1 is repeated in order to control the discharge stop during the discharge. On the other hand, if the measured open circuit voltage B (V) is less than the lower limit G (V), the emergency capacity cannot be secured if the discharge is continued as it is. Therefore, the determination means of the computer determines that the discharge is stopped (step S8), and ends the control. When the discharge is finished, it is preferable to set it to stand by, and then to perform each operation when each preset operation time band (charge, discharge, standby) is reached. Then, when discharging is performed, the discharge stop is controlled.

上記構成を具える本発明は、セルの内部抵抗に応じて放電を停止する電圧を変化させるため、セル抵抗によって放電可能な電池容量が変化しても、非常用容量を充分に確保することができる。また、過剰設計することがなく、従来のレドックスフロー電池システムに適用した場合、より効率的な運転を行うことができる。   The present invention having the above configuration changes the voltage at which discharge stops according to the internal resistance of the cell, so that even if the dischargeable battery capacity changes due to the cell resistance, sufficient emergency capacity can be secured. it can. In addition, when applied to a conventional redox flow battery system without excessive design, more efficient operation can be performed.

本発明は、特に、負荷平準化用途に加えて火災時の消火負荷への供給などを目的とした非常用のレドックスフロー電池システムの運転に利用することが好適である。   The present invention is particularly suitable for use in the operation of an emergency redox flow battery system for the purpose of supplying to a fire extinguishing load in a fire in addition to a load leveling application.

本発明レドックスフロー電池システムの運転方法を適用するレドックスフロー電池システムの概略構成図である。It is a schematic block diagram of the redox flow battery system to which the operation method of the redox flow battery system of the present invention is applied. 本発明レドックスフロー電池システムの運転方法の操作手順を示すフローチャートである。It is a flowchart which shows the operation procedure of the operating method of this invention redox flow battery system. バナジウムレドックスフロー電池システムの動作原理を示す説明図である。It is explanatory drawing which shows the operating principle of a vanadium redox flow battery system. 電池容量と電圧との関係を示すグラフである。It is a graph which shows the relationship between battery capacity and voltage.

符号の説明Explanation of symbols

1 レドックスフロー電池システム 2 セルスタック 2a 主セル
2b モニタセル 3a 正極電解液タンク 3b 負極電解液タンク
4a,4b,5a,5b 配管 6a,6b ポンプ
11 交流/直流変換器 12 電圧測定手段 20 コンピュータ
100 セル 100A 正極セル 100B 負極セル 101 隔膜 102 正極電極
103 負極電極 104A 正極電解液タンク 104B 負極電解液タンク
105A,105B ポンプ 106A,106B 導管
1 Redox flow battery system 2 Cell stack 2a Main cell
2b Monitor cell 3a Positive electrolyte tank 3b Negative electrolyte tank
4a, 4b, 5a, 5b Piping 6a, 6b Pump
11 AC / DC converter 12 Voltage measurement means 20 Computer
100 cells 100A positive electrode cell 100B negative electrode cell 101 diaphragm 102 positive electrode
103 Negative electrode 104A Positive electrolyte tank 104B Negative electrolyte tank
105A, 105B Pump 106A, 106B Conduit

Claims (1)

セルに電解液を供給して放電を行うレドックスフロー電池システムの運転方法であって、
コンピュータに以下のステップを行わせて、非常用容量を確保するために放電の停止を制御することを特徴とするレドックスフロー電池システムの運転方法。
1. セルの端子電圧、開放電圧、及び負荷電流を測定するステップ
2. 端子電圧と開放電圧との電圧差を演算するステップ
3. 演算した電圧差と負荷電流とに基づきセル抵抗を演算するステップ
4. 演算したセル抵抗に基づき、非常用容量を確保できる開放電圧の下限値を決定するステップ
5. 決定した開放電圧の下限値と測定した開放電圧とを比較し、測定した開放電圧が下限値以上の場合、放電を継続させ、下限値未満の場合、放電を停止させるステップ
A method of operating a redox flow battery system that discharges by supplying an electrolytic solution to a cell,
A method for operating a redox flow battery system, comprising: causing a computer to perform the following steps to control stop of discharge in order to ensure an emergency capacity.
1. Measuring cell terminal voltage, open circuit voltage and load current
2. Step to calculate voltage difference between terminal voltage and open circuit voltage
3. Step of calculating cell resistance based on calculated voltage difference and load current
4. Based on the calculated cell resistance, the step to determine the lower limit of the open circuit voltage that can secure the emergency capacity
5. Comparing the lower limit value of the determined open-circuit voltage with the measured open-circuit voltage, and if the measured open-circuit voltage is greater than or equal to the lower-limit value, continue the discharge, and if less than the lower-limit value, stop the discharge
JP2004300812A 2004-10-14 2004-10-14 Method for operating redox flow battery system Pending JP2006114360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004300812A JP2006114360A (en) 2004-10-14 2004-10-14 Method for operating redox flow battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004300812A JP2006114360A (en) 2004-10-14 2004-10-14 Method for operating redox flow battery system

Publications (1)

Publication Number Publication Date
JP2006114360A true JP2006114360A (en) 2006-04-27

Family

ID=36382706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004300812A Pending JP2006114360A (en) 2004-10-14 2004-10-14 Method for operating redox flow battery system

Country Status (1)

Country Link
JP (1) JP2006114360A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855005B2 (en) 2007-02-12 2010-12-21 Deeya Energy, Inc. Apparatus and methods of determination of state of charge in a redox flow battery
US7919204B2 (en) 2008-10-10 2011-04-05 Deeya Energy, Inc. Thermal control of a flow cell battery
US7927731B2 (en) 2008-07-01 2011-04-19 Deeya Energy, Inc. Redox flow cell
US8231993B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Flexible multi-walled tubing assembly
US8230736B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Level sensor for conductive liquids
US8236463B2 (en) 2008-10-10 2012-08-07 Deeya Energy, Inc. Magnetic current collector
US8264202B2 (en) 2008-10-10 2012-09-11 Deeya Energy, Inc. Method and apparatus for determining state of charge of a battery using an open-circuit voltage
US8338008B2 (en) 2009-05-28 2012-12-25 Deeya Energy, Inc. Electrolyte compositions
US8349477B2 (en) 2009-05-28 2013-01-08 Deeya Energy, Inc. Optical leak detection sensor
JP2013037857A (en) * 2011-08-05 2013-02-21 Sumitomo Electric Ind Ltd Redox flow cell
US8394529B2 (en) 2009-05-28 2013-03-12 Deeya Energy, Inc. Preparation of flow cell battery electrolytes from raw materials
US8551299B2 (en) 2009-05-29 2013-10-08 Deeya Energy, Inc. Methods of producing hydrochloric acid from hydrogen gas and chlorine gas
US8587150B2 (en) 2008-02-28 2013-11-19 Deeya Energy, Inc. Method and modular system for charging a battery
US8587255B2 (en) 2009-05-28 2013-11-19 Deeya Energy, Inc. Control system for a flow cell battery
US8723489B2 (en) 2009-05-28 2014-05-13 Deeya Energy, Inc. Bi-directional buck-boost circuit
DE102012222236A1 (en) * 2012-12-04 2014-06-05 Siemens Aktiengesellschaft Method for electrical protection of redox flow battery stack through single cell monitoring, involves detecting operation voltage on single cell by battery management system, for electrical protecting redox flow battery
WO2014091283A1 (en) * 2012-12-14 2014-06-19 Hydraredox Technologies Inc. Redox flow battery system and method of controlling it
US8785023B2 (en) 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
US8877365B2 (en) 2009-05-28 2014-11-04 Deeya Energy, Inc. Redox flow cell rebalancing
US8883297B2 (en) 2008-10-10 2014-11-11 Imergy Power Systems, Inc. Methods for bonding porous flexible membranes using solvent
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8951665B2 (en) 2010-03-10 2015-02-10 Imergy Power Systems, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
US9281535B2 (en) 2010-08-12 2016-03-08 Imergy Power Systems, Inc. System dongle

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855005B2 (en) 2007-02-12 2010-12-21 Deeya Energy, Inc. Apparatus and methods of determination of state of charge in a redox flow battery
US8587150B2 (en) 2008-02-28 2013-11-19 Deeya Energy, Inc. Method and modular system for charging a battery
US7927731B2 (en) 2008-07-01 2011-04-19 Deeya Energy, Inc. Redox flow cell
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
US8785023B2 (en) 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
US7919204B2 (en) 2008-10-10 2011-04-05 Deeya Energy, Inc. Thermal control of a flow cell battery
US8231993B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Flexible multi-walled tubing assembly
US8230736B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Level sensor for conductive liquids
US8236463B2 (en) 2008-10-10 2012-08-07 Deeya Energy, Inc. Magnetic current collector
US8264202B2 (en) 2008-10-10 2012-09-11 Deeya Energy, Inc. Method and apparatus for determining state of charge of a battery using an open-circuit voltage
US8883297B2 (en) 2008-10-10 2014-11-11 Imergy Power Systems, Inc. Methods for bonding porous flexible membranes using solvent
US8723489B2 (en) 2009-05-28 2014-05-13 Deeya Energy, Inc. Bi-directional buck-boost circuit
US9035617B2 (en) 2009-05-28 2015-05-19 Imergy Power Systems, Inc. Control system for a flow cell battery
US8587255B2 (en) 2009-05-28 2013-11-19 Deeya Energy, Inc. Control system for a flow cell battery
US8394529B2 (en) 2009-05-28 2013-03-12 Deeya Energy, Inc. Preparation of flow cell battery electrolytes from raw materials
US9479056B2 (en) 2009-05-28 2016-10-25 Imergy Power Systems, Inc. Buck-boost circuit with protection feature
US8338008B2 (en) 2009-05-28 2012-12-25 Deeya Energy, Inc. Electrolyte compositions
US8349477B2 (en) 2009-05-28 2013-01-08 Deeya Energy, Inc. Optical leak detection sensor
US8877365B2 (en) 2009-05-28 2014-11-04 Deeya Energy, Inc. Redox flow cell rebalancing
US8551299B2 (en) 2009-05-29 2013-10-08 Deeya Energy, Inc. Methods of producing hydrochloric acid from hydrogen gas and chlorine gas
US8951665B2 (en) 2010-03-10 2015-02-10 Imergy Power Systems, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
US9281535B2 (en) 2010-08-12 2016-03-08 Imergy Power Systems, Inc. System dongle
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
JP2013037857A (en) * 2011-08-05 2013-02-21 Sumitomo Electric Ind Ltd Redox flow cell
DE102012222236A1 (en) * 2012-12-04 2014-06-05 Siemens Aktiengesellschaft Method for electrical protection of redox flow battery stack through single cell monitoring, involves detecting operation voltage on single cell by battery management system, for electrical protecting redox flow battery
WO2014091283A1 (en) * 2012-12-14 2014-06-19 Hydraredox Technologies Inc. Redox flow battery system and method of controlling it
JP2016503943A (en) * 2012-12-14 2016-02-08 ハイドラレドックス テクノロジーズ ホールディングス リミテッド Redox flow battery system and method for controlling the same
US9680174B2 (en) 2012-12-14 2017-06-13 Hydraredox Technologies Holdings Ltd. Redox flow battery system and method of controlling it
AU2012396353B2 (en) * 2012-12-14 2017-11-16 Hydraredox Technologies Holdings Ltd Redox flow battery system and method of controlling it

Similar Documents

Publication Publication Date Title
JP2006114360A (en) Method for operating redox flow battery system
US11626605B2 (en) Flow battery control method, flow battery control system and flow battery
JP3961950B2 (en) Hybrid power supply
EP1614183B8 (en) Fuel cell system and control method
JP5191129B2 (en) Fuel cell system and starting method thereof
KR102336475B1 (en) Fast starting fuel cell
JP2005322447A (en) Operation method of redox flow battery system
JP2006147376A (en) Redox flow battery
US20060216555A1 (en) Fuel cell system and method for removing residual fuel gas
JP2006351346A (en) Redox flow battery system
US8277993B2 (en) Fuel cell system
JP2006313691A (en) Redox flow battery system
JP2006108124A (en) Technique for controlling efficiency of fuel cell system
JP5329111B2 (en) Fuel cell system and method for determining deterioration of power storage device in the system
KR102219191B1 (en) Redox flow battery system, monitoring method for redox flow battery and control method for redox flow battery
WO2007004732A1 (en) Fuel cell system and method for measuring ac impedance
JP2008130424A (en) Fuel cell system
CN101911357A (en) Fuel cell system
JP2009152067A (en) Fuel cell system
US20090110968A1 (en) Method and apparatus for controlling fuel concentration in direct liquid fuel cell
JP5191130B2 (en) Fuel cell system and starting method thereof
JP2008077920A (en) Fuel cell system
US10707508B2 (en) Fuel cell system
JP2006114359A (en) Method for operating redox flow battery
JP2007080708A (en) Deterioration diagnostic method of battery power source