JP2003157884A - Charging method of vanadium redox flow battery - Google Patents

Charging method of vanadium redox flow battery

Info

Publication number
JP2003157884A
JP2003157884A JP2001356767A JP2001356767A JP2003157884A JP 2003157884 A JP2003157884 A JP 2003157884A JP 2001356767 A JP2001356767 A JP 2001356767A JP 2001356767 A JP2001356767 A JP 2001356767A JP 2003157884 A JP2003157884 A JP 2003157884A
Authority
JP
Japan
Prior art keywords
charging
negative electrode
flow battery
redox flow
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001356767A
Other languages
Japanese (ja)
Inventor
Seiji Ogino
誠司 荻野
Nobuyuki Tokuda
信幸 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2001356767A priority Critical patent/JP2003157884A/en
Publication of JP2003157884A publication Critical patent/JP2003157884A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Secondary Cells (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charging method capable of efficient operation by restraining generation of gas in a method for always charging a redox flow battery. SOLUTION: This charging method of a vanadium redox flow battery includes a negative electrode active material changing to bivalent vanadium ions from a trivalent vanadium ions at charging time, and causing reverse reaction at discharging time in a negative electrode. Electric energy corresponding to self- discharge electric energy is always replenished and charged at standby time. This charging is performed so that the bivalent vanadium ions in the negative electrode active material becomes 94% or less.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、バナジウムレドッ
クスフロー電池の充電方法に関するものである。特に、
ガス発生を抑制できる充電方法に関するものである。 【0002】 【従来の技術】従来のレドックスフロー電池の運転技術
に関して、特開平8-138718号公報に記載のものが知られ
ている。この公報は、電極の劣化防止を目的として、充
電終了時において、正極活物質中の5価のバナジウムイ
オンが90%以下になるように運転を行うことを開示して
いる。正極活物質の充電を90%以下にした場合、電極の
劣化が少なくなり、析出を抑えることができる。 【0003】 【発明が解決しようとする課題】しかし、特開平8-1387
18号公報では、正極側のみについて、比較的初期にあら
われる電極の劣化と析出だけで評価を行っており、活物
質をどの程度まで充電すればよいかに関してより明確な
指針がなかった。 【0004】正極活物質を充電しすぎると、水の分解反
応により酸素が発生し、電極の酸化劣化を招いて、ひい
ては電圧効率が低下する。また、5価バナジウムは析出
しやすく、充電深度を高めると析出物が多くなるという
問題もある。しかし、以前は充放電開始初期(10日間ぐ
らい)に現れる劣化に特に注目しており、より長期的な
評価は不十分だった。また、副反応に伴う発生ガスの種
類や発生量についても前述した酸素の発生を除いて明確
な知見が得られていない。特に、負極側については、発
生ガスに関して何らの知見も得られていない。発生ガス
が長期的に蓄積すると、タンク耐圧に問題が生じる。ガ
スが水素であれば最悪の場合、発火、爆発の可能性もあ
る。また、ガスが二酸化炭素であれば電極が分解してお
り、電池効率低下としてあらわれる前に劣化が進行して
いることになる。 【0005】さらに、従来のレドックスフロー電池は、
一般に負荷平準化用途など充放電や停止を繰り返す運転
方法である。常時充電して一定電圧を維持し、放電は瞬
低・停電時のみ、年間数〜数十回するだけと言った充電
方法に関しては明確な指針が得られていなかった。 【0006】従って、本発明の主目的は、レドックスフ
ロー電池を常時充電する方法において、ガス発生の抑制
ができ、効率的な運転が可能な充電方法を提供すること
にある。 【0007】 【課題を解決するための手段】本発明は、負極において
充電時に3価のバナジウムイオンから2価のバナジウムイ
オンに変化し、放電時にはその逆の反応を起こす負極活
物質を含むバナジウムレドックスフロー電池の充電方法
である。待機中に自己放電電力量に相当する電力量を常
時補充充電する。そして、この充電は、前記負極活物質
中の2価のバナジウムイオンが94%以下になるように行
うことを特徴とする。 【0008】従来、充放電や停止を繰り返す運転方法に
関してはどの程度充電するとバナジウムの析出が少な
く、効率的な運転ができるかが検討されていた。本発明
では、常時充電するレドックスフロー電池の充電方法に
おいて、上記の充電深度となるように充電することで、
ガス発生が少なくバナジウムの析出も抑制でき、効率的
な電池の運用ができることが判明した。 【0009】充電深度は全活物質中における2価(5価)
のバナジウムイオンの濃度のことであり、次式で表され
る。 V(5価)/{V(5価)+V(4価)} V:濃度(mol/l) V(2価)/{V(3価)+V(2価)} V:濃度(mol/l) 【0010】この充電深度は、下記の表1に示すよう
に、開放電圧と一定の関係があり、予め適正電圧を決め
て充電するか、充電深度をモニターして94%を超えない
ように充電しつづけることで、上記の効果を得ることが
できる。 【0011】 【表1】 【0012】充電深度のモニターをするには、通常のセ
ル(主セル)とは別にモニター用セルを設け、このモニ
ター用セルの電解液を分析することで容易に行える。 【0013】 【発明の実施の形態】以下、本発明の実施の形態を説明
する。 <試験条件>図1に示すような小型のレドックスフロー
電池にて所定の一定電圧に維持するよう充電を40日間実
施した。このレドックスフロー電池は、イオンが通過で
きる隔膜4で正極セル1Aと負極セル1Bとに分離されたセ
ル1を具える。正極セル1Aと負極セル1Bの各々には正極
電極5と負極電極6とを内蔵している。正極セル1Aには、
正極電解液を供給及び排出する正極用タンク2が導管7、
8を介して接続されている。同様に負極セル1Bには、負
極用電解液を供給及び排出する負極用タンク3が導管1
0、11を介して接続されている。各電解液は、ポンプで
循環される。 【0014】定電圧充電後、40日間のガス発生量(負
極はH2ガス、正極はCO2ガス)の測定、電解液の析出
試験(濃度、価数分析を含む)、放電後のサイクル充
放電による効率試験の3評価を実施した。試験に用いた
電池仕様や試験条件は次のとおりである。 【0015】(電池仕様) 反応面積 1000cm2×10セル 電解液:バナジウム濃度:1.7(mol/l)、硫酸濃度:2.
6(mol/l)液量 正負各25(L) 【0016】(定電圧充電時の電位) 1.35、1.40、1.45、1.50、1.53、1.55、1.58(V/セル) 【0017】(定電圧充電時の電流密度) 0.5〜1(mA/cm2) 【0018】(液量調整)1回/1日:正極液と負極液を
連通させ、両液量のアンバランスを是正する。 【0019】(ガス分析)ガスクロマトグラフィー法で
発生ガス量を測定する。正極では二酸化炭素、負極では
水素の発生量を測定する。 【0020】(析出試験)正極は50℃での析出試験を行
い、負極は−10℃で析出試験を行う。析出試験は、電解
液中にバナジウムが析出するかどうかで判断する。併せ
て、V濃度や充電深度の測定も行う。 【0021】(効率試験)40日間の一定電圧維持試験を
行う前後での定電流:100(mA/cm2)で電圧効率測定、
効率低下量を測定する。電圧効率とは、放電電圧/充電
電圧のことである。 【0022】<試験結果> (ガス分析)各電圧における定電圧充電時のガス発生量
を図2のグラフに示す。このグラフから明らかなよう
に、1.55(V/セル)以上の高電圧において負極側で水素
ガスの発生量が急増することがわかった。正極での二酸
化炭素の発生量は1.58(V/セル)の場合でも比較的少な
い。 【0023】(析出試験)析出試験の結果、充電電位1.
58(V/セル)で充電した電解液では、負極液で析出が見
られ、それ以外の電解液では正負極共に析出は見られな
かった。 【0024】(効率試験)効率試験の結果、1.58(V/セ
ル)のみ電圧効率が2%低下しており、これ以外は1%以
内の低下であることが確認された。 【0025】(電解液分析)充電電位1.55(V/セル)で
充電した電解液を分析すると、充電開始後約3日で次の
ように一定の濃度平衡に達することがわかった。 正極…V濃度:1.74(mol/l)、充電深度:86% 負極…V濃度:1.66(mol/l)、充電深度:94% 【0026】正極液でV濃度が少し濃く、そのために充
電深度が低い。負極液は正極液の逆で、V濃度が少し低
く、充電深度が高い。本来ならば正負極ともにV濃度:
1.7(mol/l)、充電深度90%のはずである。このように
運転に伴ってV濃度にずれが生じるのは、正極側から負
極側へ主に水と硫酸成分だけが移動する液うつりがあ
り、1回/日の頻度で正負の液量を揃える液量調整をする
ことが要因と推定される。従って、負極活物質中の2価
のバナジウムイオンが94%以下になるように充電を続け
ることで、ガス発生が少なく、効率的な運転ができるこ
とがわかる。充電深度が94%以下になるようにするに
は、液量調整の頻度を一回/日以上としたり、予め適正
電圧を決めて充電することなどが好適である。 【0027】<比較試験1>一方、充放電サイクルを繰
り返す運転についても同様にガス発生量の測定を行っ
た。その試験条件は次のとおりである。 【0028】(電池仕様) 反応面積:1000cm2×10セル 電解液:V;1.7(mol/l)、硫酸;2.6(mol/l)の電解
液を正負極で各25リットル 【0029】(充電方法)まず100Aで定電流充電を始
め、次に上限充電電圧:1.60V/セルの条件で90%の充電
深度まで充電を行う。充電深度は次式で表される。 V(5価)/{V(5価)+V(4価)} V:濃度(mol/l) V(2価)/{V(3価)+V(2価)} V:濃度(mol/l) 【0030】(放電方法)100Aで定電流放電を行う。下
限放電電圧:1.0V/セルに達したところで放電を終了す
る。 【0031】(測定・評価方法)10日間にわたって上記
の連続充放電サイクルを行う。そして、発生ガスをガス
クロマトグラフィー法にて分析する。 【0032】(試験結果)試験結果を図3のグラフに示
す。図2のグラフと図3のグラフとを比較すると、充放電
を繰り返す運転に比べ、常時自己放電相当量を充電しつ
づける方が正極・負極共にガス発生量の少ないことがわ
かる。すなわち、充放電を繰り返す運転方法では充電深
度が85%以上程度から急激にガス発生量が増えている
が、充電しつづける運転では開放電圧1.55V以下の場合
にガス発生の少ない運転ができていることがわかる。 【0033】<比較試験2>次に、1.55(V/セル)で充
電する電解液について、液量調整の頻度を1回/3日とし
て、電解液分析を行った。その結果、次のように充電深
度のバラツキは一層大きくなっていることがわかる。 正極…V濃度:1.83(mol/l)、充電深度:82% 負極…V濃度:1.57(mol/l)、充電深度:98% 【0034】 【発明の効果】以上説明したように、本発明充電方法に
よれば、自己放電電力量に相当する電力量を常時補充充
電し、この充電を、前記負極活物質中の2価のバナジウ
ムイオンが94%以下になるように行うことで、ガス発生
が少なく、効率的な充電を実現することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for charging a vanadium redox flow battery. In particular,
The present invention relates to a charging method capable of suppressing gas generation. 2. Description of the Related Art A conventional redox flow battery operating technique is disclosed in Japanese Patent Application Laid-Open No. 8-138718. This publication discloses that the operation is performed so that the pentavalent vanadium ion in the positive electrode active material becomes 90% or less at the end of charging for the purpose of preventing electrode deterioration. When the charge of the positive electrode active material is set to 90% or less, deterioration of the electrode is reduced, and deposition can be suppressed. [0003] However, JP-A-8-1387
In JP-A-18, only the positive electrode side is evaluated based on deterioration and deposition of the electrode which appears relatively early, and there is no clear guide as to how much the active material should be charged. [0004] When the positive electrode active material is excessively charged, oxygen is generated by the decomposition reaction of water, which causes oxidative deterioration of the electrode, and consequently lowers the voltage efficiency. In addition, pentavalent vanadium is liable to be precipitated, and there is a problem that the amount of precipitates increases when the charge depth is increased. However, in the past, we paid special attention to the deterioration that appeared in the early stage of charge / discharge (about 10 days), and the longer-term evaluation was insufficient. In addition, no clear knowledge has been obtained regarding the type and amount of gas generated by the side reaction except for the above-described generation of oxygen. In particular, on the negative electrode side, no knowledge about the generated gas has been obtained. If the generated gas accumulates for a long time, a problem occurs in the tank pressure resistance. In the worst case, if the gas is hydrogen, it may ignite or explode. In addition, if the gas is carbon dioxide, the electrodes are decomposed and the deterioration is progressing before appearing as a decrease in battery efficiency. Further, a conventional redox flow battery is:
Generally, it is an operation method in which charging and discharging and stopping are repeated, such as for load leveling. A clear guideline has not been obtained for a charging method in which charging is always performed to maintain a constant voltage, and discharging is performed only several times to several tens of times a year only during an instantaneous voltage drop or power failure. Accordingly, it is a primary object of the present invention to provide a charging method capable of suppressing gas generation and operating efficiently in a method for constantly charging a redox flow battery. SUMMARY OF THE INVENTION The present invention provides a vanadium redox containing a negative electrode active material which changes from trivalent vanadium ions to divalent vanadium ions at the time of charging at the negative electrode and reverses the reaction at the time of discharging. This is a method of charging a flow battery. During standby, an amount of power equivalent to the amount of self-discharge power is constantly replenished and charged. The charging is performed such that the amount of divalent vanadium ions in the negative electrode active material becomes 94% or less. Heretofore, with respect to an operation method in which charge / discharge and stop are repeatedly performed, it has been studied how much charge should be performed to reduce the amount of vanadium deposited and achieve efficient operation. In the present invention, in the method for charging a redox flow battery that is constantly charged, by charging the battery so as to have the above-described charge depth,
It was found that the gas generation was small and the deposition of vanadium could be suppressed and the battery could be operated efficiently. [0009] The charge depth is divalent (pentavalent) in all active materials.
Of the vanadium ion, and is expressed by the following equation. V (pentavalent) / {V (pentavalent) + V (tetravalent)} V: concentration (mol / l) V (divalent) / {V (trivalent) + V (divalent)} V: concentration (mol / l) [0010] As shown in Table 1 below, this charging depth has a fixed relationship with the open-circuit voltage, so that charging is performed by determining an appropriate voltage in advance or monitoring the charging depth so that it does not exceed 94%. The above effect can be obtained by continuously charging the battery. [Table 1] The monitoring of the state of charge can be easily performed by providing a monitoring cell separately from a normal cell (main cell) and analyzing the electrolyte of the monitoring cell. Embodiments of the present invention will be described below. <Test Conditions> Charging was performed for 40 days using a small redox flow battery as shown in FIG. 1 so as to maintain a predetermined constant voltage. This redox flow battery includes a cell 1 separated into a positive electrode cell 1A and a negative electrode cell 1B by a diaphragm 4 through which ions can pass. Each of the positive electrode cell 1A and the negative electrode cell 1B incorporates a positive electrode 5 and a negative electrode 6. In the positive electrode cell 1A,
The positive electrode tank 2 for supplying and discharging the positive electrode electrolyte is a conduit 7,
Connected via 8. Similarly, a negative electrode tank 1 for supplying and discharging a negative electrode electrolyte is connected to the negative electrode cell 1B by a conduit 1.
0 and 11 are connected. Each electrolyte is circulated by a pump. After constant-voltage charging, measurement of gas generation (H 2 gas for negative electrode, CO 2 gas for positive electrode) for 40 days, deposition test of electrolyte (including concentration and valence analysis), cycle charging after discharge Three evaluations of the efficiency test by discharge were performed. The battery specifications and test conditions used in the test are as follows. (Battery specification) Reaction area 1000 cm 2 × 10 cell Electrolyte: Vanadium concentration: 1.7 (mol / l), sulfuric acid concentration: 2.
6 (mol / l) liquid volume 25 (L) each for positive and negative [potential during constant voltage charging] 1.35, 1.40, 1.45, 1.50, 1.53, 1.55, 1.58 (V / cell) [constant voltage charging] (Current density at the time) 0.5 to 1 (mA / cm 2 ) (Liquid volume adjustment) Once / day: The positive electrode solution and the negative electrode solution are communicated, and the imbalance between the two solutions is corrected. (Gas Analysis) The amount of generated gas is measured by gas chromatography. The amount of carbon dioxide generated at the positive electrode and the amount of hydrogen generated at the negative electrode are measured. (Precipitation Test) The positive electrode is subjected to a deposition test at 50 ° C., and the negative electrode is subjected to a deposition test at −10 ° C. The precipitation test determines whether or not vanadium precipitates in the electrolytic solution. At the same time, V concentration and charge depth are also measured. (Efficiency test) Constant current before and after performing a constant voltage maintenance test for 40 days: Voltage efficiency measurement at 100 (mA / cm 2 )
Measure the decrease in efficiency. Voltage efficiency is the discharge voltage / charge voltage. <Test Results> (Gas Analysis) The amount of gas generated during constant voltage charging at each voltage is shown in the graph of FIG. As is clear from this graph, it was found that the amount of generated hydrogen gas increased rapidly on the negative electrode side at a high voltage of 1.55 (V / cell) or more. The amount of carbon dioxide generated at the positive electrode is relatively small even at 1.58 (V / cell). (Deposition test) As a result of the deposition test, the charge potential was 1.
In the electrolytic solution charged at 58 (V / cell), precipitation was observed in the negative electrode solution, and in the other electrolyte solutions, no precipitation was observed in both the positive and negative electrodes. (Efficiency test) As a result of the efficiency test, it was confirmed that the voltage efficiency was reduced by 2% only in 1.58 (V / cell), and that the voltage efficiency was reduced within 1% in other cases. (Electrolyte Solution Analysis) When the electrolyte solution charged at a charge potential of 1.55 (V / cell) was analyzed, it was found that a certain concentration equilibrium was reached about 3 days after the start of charging as follows. Positive electrode: V concentration: 1.74 (mol / l), depth of charge: 86% Negative electrode: V concentration: 1.66 (mol / l), depth of charge: 94% Is low. The negative electrode solution is the reverse of the positive electrode solution, with a slightly lower V concentration and a higher charge depth. Originally V concentration for both positive and negative electrodes:
It should be 1.7 (mol / l) and 90% charge depth. In this way, the difference in V concentration due to operation is caused by liquid migration in which only water and sulfuric acid components mainly move from the positive electrode side to the negative electrode side, and the positive and negative liquid volumes are aligned once a day It is presumed that adjusting the liquid volume is a factor. Therefore, it can be seen that by continuing charging so that the divalent vanadium ions in the negative electrode active material become 94% or less, gas generation is small and efficient operation can be performed. In order to reduce the charging depth to 94% or less, it is preferable to adjust the liquid amount once or more times / day, or to determine an appropriate voltage in advance for charging. <Comparative Test 1> On the other hand, the amount of gas generated was measured in an operation in which the charge / discharge cycle was repeated. The test conditions are as follows. (Battery Specifications) Reaction area: 1000 cm 2 × 10 cell Electrolyte: V; 1.7 (mol / l), sulfuric acid; 2.6 (mol / l) electrolyte 25 liters each for positive and negative electrodes Method) First, start constant current charging at 100A, and then charge up to 90% charging depth under the condition of upper limit charging voltage: 1.60V / cell. The charge depth is expressed by the following equation. V (pentavalent) / {V (pentavalent) + V (tetravalent)} V: concentration (mol / l) V (divalent) / {V (trivalent) + V (divalent)} V: concentration (mol / l) (Discharge method) Constant current discharge is performed at 100A. The discharge is terminated when the lower limit discharge voltage reaches 1.0 V / cell. (Measurement / Evaluation Method) The above continuous charge / discharge cycle is performed for 10 days. Then, the generated gas is analyzed by a gas chromatography method. (Test Results) The test results are shown in the graph of FIG. Comparing the graph of FIG. 2 with the graph of FIG. 3, it can be seen that the amount of gas generated by both the positive electrode and the negative electrode is smaller when the self-discharge equivalent amount is constantly charged than when the operation is repeated charging and discharging. That is, in the operation method of repeating charge and discharge, the amount of gas generation rapidly increases from the depth of charge of about 85% or more, but in the operation where charging is continued, the operation with less gas generation can be performed when the open voltage is 1.55 V or less. You can see that. <Comparative Test 2> Next, with respect to the electrolytic solution charged at 1.55 (V / cell), the electrolytic solution analysis was performed with the frequency of the liquid amount adjustment being set to once / three days. As a result, it can be seen that the variation in the charging depth is further increased as follows. Positive electrode: V concentration: 1.83 (mol / l), charge depth: 82% Negative electrode: V concentration: 1.57 (mol / l), charge depth: 98% As described above, the present invention has been described. According to the charging method, an amount of power corresponding to the amount of self-discharge power is constantly replenished and charged, and this charging is performed so that the amount of divalent vanadium ions in the negative electrode active material becomes 94% or less, thereby generating gas. , And efficient charging can be realized.

【図面の簡単な説明】 【図1】レドックスフロー電池の動作原理の説明図であ
る。 【図2】定電圧充電時のガス発生量を示すグラフであ
る。 【図3】充放電を繰り返す運転時のガス発生量を示すグ
ラフである。 【符号の説明】 1 セル 1A 正極セル 1B 負極セル 2 正極用タンク 3 負極用タンク 4 隔膜 5 正極電極 6 負極電極 7、8、10、11 導管 9、12 ポンプ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of the operating principle of a redox flow battery. FIG. 2 is a graph showing the amount of gas generated during constant voltage charging. FIG. 3 is a graph showing a gas generation amount during an operation in which charge and discharge are repeated. [Explanation of Signs] 1 cell 1A Positive cell 1B Negative cell 2 Tank for positive electrode 3 Tank for negative electrode 4 Diaphragm 5 Positive electrode 6 Negative electrode 7, 8, 10, 11 Conduit 9, 12 Pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳田 信幸 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 Fターム(参考) 5H026 AA10 HH05 5H030 AA03 AS20 BB18    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Nobuyuki Tokuda             3-22 Nakanoshima, Kita-ku, Osaka-shi, Osaka             Kansai Electric Power Co., Inc. F-term (reference) 5H026 AA10 HH05                 5H030 AA03 AS20 BB18

Claims (1)

【特許請求の範囲】 【請求項1】 負極において充電時に3価のバナジウム
イオンから2価のバナジウムイオンに変化し、放電時に
はその逆の反応を起こす負極活物質を含むバナジウムレ
ドックスフロー電池の充電方法であって、 待機中に自己放電電力量に相当する電力量を常時補充充
電し、 この充電は、前記負極活物質中の2価のバナジウムイオ
ンが94%以下になるように行うことを特徴とするバナジ
ウムレドックスフロー電池の充電方法。
Claims: 1. A method for charging a vanadium redox flow battery containing a negative electrode active material that changes from trivalent vanadium ions to divalent vanadium ions at the time of charging at the negative electrode and reverses the reaction at the time of discharging. Wherein during standby, an amount of power corresponding to the amount of self-discharge power is constantly replenished and charged, and the charging is performed such that divalent vanadium ions in the negative electrode active material become 94% or less. To charge a vanadium redox flow battery.
JP2001356767A 2001-11-21 2001-11-21 Charging method of vanadium redox flow battery Pending JP2003157884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001356767A JP2003157884A (en) 2001-11-21 2001-11-21 Charging method of vanadium redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001356767A JP2003157884A (en) 2001-11-21 2001-11-21 Charging method of vanadium redox flow battery

Publications (1)

Publication Number Publication Date
JP2003157884A true JP2003157884A (en) 2003-05-30

Family

ID=19168225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001356767A Pending JP2003157884A (en) 2001-11-21 2001-11-21 Charging method of vanadium redox flow battery

Country Status (1)

Country Link
JP (1) JP2003157884A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136256A1 (en) 2010-04-27 2011-11-03 住友電気工業株式会社 Redox flow battery
CN102983341A (en) * 2012-12-31 2013-03-20 刘军 Battery electrode with auxiliary electrode structure and high-power battery
US8468797B2 (en) 2007-09-06 2013-06-25 United Technologies Corporation Gas turbine engine systems and related methods involving vane-blade count ratios greater than unity
US8516793B2 (en) 2007-09-06 2013-08-27 United Technologies Corp. Gas turbine engine systems and related methods involving vane-blade count ratios greater than unity
US8668997B2 (en) 2011-06-20 2014-03-11 United Technologies Corporation System and method for sensing and mitigating hydrogen evolution within a flow battery system
US8973374B2 (en) 2007-09-06 2015-03-10 United Technologies Corporation Blades in a turbine section of a gas turbine engine
WO2015068979A1 (en) * 2013-11-05 2015-05-14 롯데케미칼 주식회사 Method for operating redox flow battery
JP2017090224A (en) * 2015-11-09 2017-05-25 株式会社島津製作所 Gas analysis cell and gas analysis system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8468797B2 (en) 2007-09-06 2013-06-25 United Technologies Corporation Gas turbine engine systems and related methods involving vane-blade count ratios greater than unity
US8516793B2 (en) 2007-09-06 2013-08-27 United Technologies Corp. Gas turbine engine systems and related methods involving vane-blade count ratios greater than unity
US8973374B2 (en) 2007-09-06 2015-03-10 United Technologies Corporation Blades in a turbine section of a gas turbine engine
WO2011136256A1 (en) 2010-04-27 2011-11-03 住友電気工業株式会社 Redox flow battery
EP2581976A1 (en) 2010-04-27 2013-04-17 Sumitomo Electric Industries, Ltd. Redox flow battery
US8771857B2 (en) 2010-04-27 2014-07-08 Sumitomo Electric Industries, Ltd. Redox flow battery
US8668997B2 (en) 2011-06-20 2014-03-11 United Technologies Corporation System and method for sensing and mitigating hydrogen evolution within a flow battery system
US9356303B2 (en) 2011-06-20 2016-05-31 United Technologies Corporation System and method for sensing and mitigating hydrogen evolution within a flow battery system
CN102983341A (en) * 2012-12-31 2013-03-20 刘军 Battery electrode with auxiliary electrode structure and high-power battery
WO2015068979A1 (en) * 2013-11-05 2015-05-14 롯데케미칼 주식회사 Method for operating redox flow battery
US10014545B2 (en) 2013-11-05 2018-07-03 Lotte Chemical Corporation Method for operating redox flow battery
JP2017090224A (en) * 2015-11-09 2017-05-25 株式会社島津製作所 Gas analysis cell and gas analysis system

Similar Documents

Publication Publication Date Title
KR101178327B1 (en) Redox flow battery
EP1551074B1 (en) Method for operating redox flow battery and redox flow battery cell stack
KR102219191B1 (en) Redox flow battery system, monitoring method for redox flow battery and control method for redox flow battery
JP5422083B2 (en) Non-flow redox battery
Hsieh et al. Measurement of local current density of all-vanadium redox flow batteries
JP7429919B2 (en) Hydrogen generation system, hydrogen generation system control device, and hydrogen generation system control method
JP2006147374A (en) Method of operating vanadium redox flow battery system
JPS6070672A (en) Method of operating redox-flow secondary battery
CN109301300A (en) The method for adjusting Vanadium valence in electrolyte of vanadium redox battery
JP2003157884A (en) Charging method of vanadium redox flow battery
CN109273786A (en) Utilize the method for sulfuric acid system vanadium cell failure anode electrolyte regeneration V electrolyte
CN113820610B (en) Method and system for detecting health state of mixed liquid of all-vanadium redox flow battery
JP2016517160A (en) Flow battery health maintenance method
JP2003157882A (en) Operation method of redox flow battery
JP7229476B2 (en) Hydrogen generation system
CN210535764U (en) Self-corrosion-prevention metal-air battery
JP2003157883A (en) Electrolyte regenerating method for vanadium redox battery
JP2003142141A (en) Operating method for vanadium redox flow battery
JP4155745B2 (en) Operating method of redox flow battery
KR100711894B1 (en) Fuel Cell and Fuel Cell Battery Carging Contrl Method
EP3067977A1 (en) Method for operating redox flow battery
KR20160064545A (en) Zn-Br Redox Flow Battery System
JP2007294124A (en) Manufacturing method of lead-acid battery
JPH01115068A (en) Operation of redox-flow cell
Pavlov et al. Mechanism of the oxygen cycle reactions proceeding at the negative plates of VRLA batteries