JPS6070672A - Method of operating redox-flow secondary battery - Google Patents

Method of operating redox-flow secondary battery

Info

Publication number
JPS6070672A
JPS6070672A JP58177617A JP17761783A JPS6070672A JP S6070672 A JPS6070672 A JP S6070672A JP 58177617 A JP58177617 A JP 58177617A JP 17761783 A JP17761783 A JP 17761783A JP S6070672 A JPS6070672 A JP S6070672A
Authority
JP
Japan
Prior art keywords
anolyte
cell
ferrous
secondary battery
ferric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58177617A
Other languages
Japanese (ja)
Inventor
Takeshi Nozaki
健 野崎
Takeo Ozawa
小沢 丈夫
Osamu Hamamoto
修 浜本
Hidetaka Izawa
伊沢 英孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Mitsui Zosen KK
Original Assignee
Agency of Industrial Science and Technology
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Agency of Industrial Science and Technology
Priority to JP58177617A priority Critical patent/JPS6070672A/en
Publication of JPS6070672A publication Critical patent/JPS6070672A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4214Arrangements for moving electrodes or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To stabilize charge-and-discharge cycles of a redox-flow secondary battery by equalizing the charged states of anolyte and catholyte by detecting the concentrations of a ferrous and a ferric compound in the anolyte in order to detect the overcharged state of the anolyte and reducing an excess of ferric ion contained in the anolyte into ferrous ion according to the result of the detection. CONSTITUTION:A detection means such as a voltammetry cell 1 is installed in a stream located in the back of a chamber 12 (for reducing the active material of anolyte) which is a component of a balance cell 11 installed in an anolyte line 2. The cell 1 is used to observe oxidoreductive waves of anolyte to measure the concentrations of a ferrous compound and a ferric compound in order to detect the overcharged state of the anolyte. On the basis of the result of the detection, reduction of the ferric compound is performed in the rebalance cell 11 according to the required amount of anolyte rebalance calculated from the value determined by a detector 1 and the measured open circuit voltage. By the means mentioned above, it is possible to repeat charge-and-discharge cycles of a redox-flow secondary battery over a prolonged period of time.

Description

【発明の詳細な説明】 本発明はレドックス・フロー型二次電池の運転方法に関
し、特に両極液の充電状態を一致させるに好適な運転方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a redox flow type secondary battery, and particularly to a method of operating a redox flow type secondary battery suitable for matching the state of charge of both electrolytes.

電力負荷の平担化要請に沿って、最近二次電池の開発が
注目されているが、その1つとして電解液流通産の二次
電池が知られている。この電池は電解液が電解槽へ流入
または流出する間に充電または放電の電池反応が行われ
るものであシ、電解液はよシアノ−ディックな電池反応
を起こす正極液と、よりカッ−ディツタな電池反応を起
こす負極液とに分けられる。この正、負極液に酸化・還
元性、すなわち酸化反応と還元反応とが可逆的に起こり
得る物質、例えば、正極液には塩酸酸性下の塩化鉄(第
一鉄または第二鉄)、負極液には塩酸酸性下の塩化クロ
ムまたは塩化チタン等を用いたものが、いわゆるレドッ
クス・フロー型二次電池である。
In line with the demand for flattening the power load, the development of secondary batteries has recently been attracting attention, and one example of such batteries is known as a secondary battery manufactured using electrolyte. In this battery, charging or discharging reactions occur while the electrolyte flows into or out of the electrolytic cell. It can be divided into negative electrode liquid, which causes battery reactions. The positive and negative electrode fluids contain substances that have oxidizing and reducing properties, that is, substances that can cause oxidation and reduction reactions reversibly, such as iron chloride (ferrous or ferric iron) under acidic hydrochloric acid, and negative electrode fluids. A so-called redox flow type secondary battery uses chromium chloride or titanium chloride under hydrochloric acid acidity.

従来のこの種のレドックス・フロー型二次電池は、第1
図に示す通り(本発明に従い特徴的に設ける活物質濃度
等の検出器1を除く)、その本体部をなすセル(電解槽
)7はプロトンを選択的に透過自在とする隔膜10によ
シ正極寛8と負極室9とに分割されている。
Conventional redox flow type secondary batteries of this type
As shown in the figure (excluding the detector 1 for detecting active material concentration, etc., which is characteristically provided according to the present invention), the cell (electrolytic cell) 7 forming the main body is equipped with a diaphragm 10 that selectively allows protons to pass therethrough. It is divided into a positive electrode chamber 8 and a negative electrode chamber 9.

このような構成において、正極m81c塩酸酸性下の塩
化鉄溶液を、また負極室9に塩酸酸性下の塩化クロム溶
液を流出入させれば、各室で独自に充放電反応が進行す
る。すなわち、充電時には正極室8で第一鉄が第二鉄に
、まだ、負極室9で第ニクロムが第一りpムに電解され
、その際、隔膜lOを通ってプロトンが正極室8から負
極室9へ透過する。この充電により正極室8からは第二
鉄化合物を多く含む溶液が、まだ負極室9からは第一ク
ロム化合物を多く含む溶液が得られるが、それらはそれ
ぞれ対応するタンク(図示省略)に一時貯蔵され、放電
時に再びセルフの各室へ送液される。この放電時には上
記充電時とは逆の反応が起とシ、電池外部へ出力がとり
出される。
In such a configuration, if an iron chloride solution under hydrochloric acid acidity of the positive electrode m81c and a chromium chloride solution under hydrochloric acid acidity are introduced into and out of the negative electrode chamber 9, a charge/discharge reaction proceeds independently in each chamber. That is, during charging, ferrous iron is electrolyzed to ferric iron in the positive electrode chamber 8, and nichrome is electrolyzed to first PM in the negative electrode chamber 9. At this time, protons are transferred from the positive electrode chamber 8 to the negative electrode through the diaphragm IO. Transmits to chamber 9. Through this charging, a solution containing a large amount of ferric compounds is obtained from the positive electrode chamber 8, and a solution containing a large amount of chromium compounds is obtained from the negative electrode chamber 9, but these are temporarily stored in their respective tanks (not shown). The liquid is then sent to each chamber of the cell again during discharge. During this discharging, a reaction opposite to that during charging occurs, and an output is taken out to the outside of the battery.

このような電池が二次電池として長い期間の使用に耐え
るためには、上記した充放電サイクルが良好に継続され
る必要があり、そのためには正極室および負極室におけ
る充放電反応時の電流効率が互いに一致していなければ
ならない。一般に正極液に鉄化合物の溶液を用いると、
正極室における充放電反応ははt’z i o o%進
行する。しかし、上記に例示したクロム化合物の溶液を
負極液とすると、負極室での反応は放電時にはほぼ10
0チの箆流効率下で進行するが、充電時においては第ニ
クロム化合物が第一クロム化合物へ還元される反応とと
もに、プロトンが還元されて水素を生成するという副反
応も発生する。このため、充電終了時には、正wS室で
生成した第二鉄化合物置に比して負極室で生成した第一
クロム化合物量が相対的に少なくなるので(正極液が負
極液に対して過充電状態となる)、このまま充放電サイ
クルを繰シ返せば両極液の充電状態(充11.深度の割
合)が大きく崩れ、遂には充放電反応を繰シ返すことが
困難となる。このような事情から、レドックス・フロー
型二次電池で1通常、両極液の充電状態を丹一致させる
リバー令・グという操作が必要とされておシ、実際にク
ロム−鉄系二次電池の場合には、充電時に負極室から発
生した水素ガスに上り第二鉄化合物を還元するなどのり
バランス法がとられている。この方法は両極液の充電状
態のずれが充電時に負極室から発生する水素ガスのみに
起因するものとみなし、該発生水素ガスを回収してこれ
を全て第二鉄化合物の還元に消費するようにしたもので
あり、これにより正極液の過充電を防止でき、充放電サ
イクルを成る程度長期にわたって行うことが可能となる
。しかし、このような従来法には下記(1)および0)
に示すような欠点がある。
In order for such a battery to withstand long-term use as a secondary battery, the charge/discharge cycle described above must be continued well, and for this purpose, the current efficiency during charge/discharge reactions in the positive electrode chamber and negative electrode chamber must be improved. must match each other. Generally, when a solution of an iron compound is used as the catholyte,
The charge/discharge reaction in the positive electrode chamber proceeds at a rate of t'z i o o%. However, if the solution of the chromium compound exemplified above is used as the negative electrode liquid, the reaction in the negative electrode chamber will be approximately 10% during discharge.
Although the process proceeds under a flow efficiency of 0, during charging, a reaction occurs in which the nichrome compound is reduced to the monochrome compound, and a side reaction in which protons are reduced to generate hydrogen also occurs. Therefore, at the end of charging, the amount of ferrous compounds generated in the negative electrode chamber is relatively small compared to the ferric compound generated in the positive wS chamber (the positive electrode liquid is overcharged with respect to the negative electrode liquid). If the charging/discharging cycle is repeated in this state, the charging state (charge 11. depth ratio) of the bipolar liquid will be greatly disrupted, and it will eventually become difficult to repeat the charging/discharging reaction. Due to these circumstances, in redox flow type secondary batteries, it is usually necessary to perform a reversing operation to match the charging states of both electrolytes, and it is actually In some cases, a glue balance method is used in which hydrogen gas generated from the negative electrode chamber during charging rises to reduce the ferric compound. This method assumes that the difference in the state of charge of the bipolar liquid is caused only by the hydrogen gas generated from the negative electrode chamber during charging, and collects the generated hydrogen gas and consumes it all for the reduction of the ferric compound. This makes it possible to prevent overcharging of the catholyte and to allow charging and discharging cycles to be carried out over a fairly long period of time. However, such conventional methods have the following (1) and 0)
There are drawbacks as shown below.

(1)両極液間の充電状態のバラツキは上記した水素ガ
スの発生のみに起因するのではなく、寄−りは小さいが
例えば電池活物質が一方的に他極基へ漏れ込む等によっ
ても発生するので、どΔ二鉄化合物の還元を発生水素ガ
スのみ罠よって行うのは長期的にみて無理がある。
(1) Variations in the state of charge between the two electrodes are not only caused by the generation of hydrogen gas mentioned above, but can also occur due to, for example, the battery active material leaking unilaterally into the other electrode group, although the deviation is small. Therefore, it is unreasonable in the long term to reduce the delta diiron compound by trapping only the generated hydrogen gas.

(2)両極液の充電状態の把握は主にセル(電解槽)な
どにおける開路電圧や充放躍、眠圧の測定から行われて
いるが、このような把握力xノ=を長期にわた゛つて充
放電サイクルを繰り返す場合についても適用することは
桔度上困難である。
(2) The state of charge of bipolar fluids is mainly determined by measuring the open circuit voltage, charge release, and sleep pressure in cells (electrolytic cells), etc. It is also difficult to apply this method to cases where charging and discharging cycles are repeated.

本発明の目的は、上記し、た従来技術の欠点を解消し、
長期にわたって充放電−リ゛イクルを繰返す場合であっ
ても、両極液間の充電状態を一致させることができるレ
ドックス・フロー型二次電池の運転方法を提供すること
にある。
The purpose of the present invention is to solve the above-mentioned drawbacks of the prior art,
An object of the present invention is to provide a method of operating a redox flow type secondary battery that can match the state of charge between both electrodes even when charging/discharging and recycling is repeated over a long period of time.

上記の目的を達成するため、本発明は、正極液として互
に転化性の第一鉄化合物および第二鉄化合物から選ばれ
る鉄化合物の含有溶液を用いたレドックス・フロー型二
次電池の運転法において、上記第一鉄化合物および第二
鉄化合物の@度を測定することにより正極液の過充電状
態を検出し、該検出結果に基づき正極液中の過剰第二鉄
化合物を第一鉄化合物へ還元して正極液を正常な充電状
態へ移行させることを特徴とする。
In order to achieve the above object, the present invention provides a method for operating a redox flow type secondary battery using a solution containing an iron compound selected from mutually convertible ferrous and ferric compounds as a positive electrode liquid. In this step, the overcharged state of the positive electrode solution is detected by measuring the @ degree of the ferrous compound and the ferric compound, and based on the detection result, the excess ferric compound in the positive electrode solution is converted to the ferrous compound. It is characterized by reducing the catholyte and bringing the catholyte into a normal charging state.

本発明に用いられる極液中の電池活物質は、正極液につ
いては上記のように第一鉄化合物および第二鉄化合物か
ら選ばれる鉄化合物が用いられるが、対極液である負極
液についてはその機能を有するものである限り特に制限
はなく、一般に従来から使用されているクロムまたはチ
タン等の化合物が適用される。
Regarding the battery active material in the electrode solution used in the present invention, an iron compound selected from ferrous compounds and ferric compounds is used for the positive electrode solution, as described above, but for the negative electrode solution, which is the counter electrode solution, an iron compound selected from ferrous compounds and ferric compounds is used. There is no particular restriction as long as it has a function, and conventionally used compounds such as chromium or titanium are generally applicable.

また、正極液の過充電状態を検出するための手段(以下
、単に検出器と称する)シj2、かかる目的が達成され
る限り公知の手段が適用可能であるが、特に作用電極に
電流または電圧を印加して第一鉄化合物および/または
第二鉄化合物に基づく電流または電圧波形を観測し、こ
れから両者の濃度をめる構成のポルタンメトリー、作用
電極に電流または電圧を印加して第一鉄化合物および/
または第二鉄化合物に基づく屯気量を得、これから両者
の濃度をめる構成のクーロメトリ−および第一鉄化合物
や第二鉄化合物の光学的吸収を利用し、これから両者の
濃度をめる構成の吸光光度法が適している。このように
して正極液中におりる電池活物質(全鉄化合物)の1度
と充1ざ、深度(全鉄化合物量に対する第二鉄化合物風
の割合)とをめておけば、これと開路電圧値からめられ
る負極液の充電状態とから両極液の充電深度の割合を把
握できるので、これをもとにして第二鉄化合物を還元す
るに必要なバランス所要具をめることが可能となる。
In addition, as for the means (hereinafter simply referred to as a detector) for detecting the overcharge state of the catholyte, any known means can be applied as long as this purpose is achieved, but in particular, it is possible to apply current or voltage to the working electrode. In portammetry, the current or voltage waveform based on ferrous and/or ferric compounds is observed by applying a current or voltage to the working electrode, and the concentration of both is determined from this. Iron compounds and/
Alternatively, coulometry is used to obtain the tonicity based on a ferric compound and calculate the concentration of both, and a configuration that uses optical absorption of ferrous or ferric compounds to calculate the concentration of both. Absorption photometry is suitable. If we take into account the degree and charging time of the battery active material (total iron compound) that falls into the positive electrode liquid in this way, and the depth (ratio of ferric compound wind to total iron compound amount), this Since it is possible to determine the ratio of the charge depth of the bipolar liquid from the state of charge of the anode liquid determined from the open-circuit voltage value, it is possible to set up the balance required to reduce the ferric compound based on this. Become.

以下、実施例により本発明をさらに詳しく説明する。な
お、実施例で用いる装置(図示)には、電源や電子負荷
装置等を含め電気系統の表示は省略されている。
Hereinafter, the present invention will be explained in more detail with reference to Examples. In addition, in the apparatus (illustrated) used in the examples, the display of the electrical system including the power supply, electronic load device, etc. is omitted.

実施例1 正極液として4N塩酸酸性1モル/l塩化鉄水fn液、
負極液として4N塩酸酸性1モル/l塩化クロム水溶液
をそれぞれ使用し、第1図に示す小型単電池装置によシ
充放電運転を行った。第1図に示す装置は、隔膜例の陽
イオン交換MIOにょシ分割された正極室8および負極
室9を有すレドックス・フロー型セルフと、負極室9に
付設される負極液2イン3に設ゆられた気液分離器15
と、正極室8に付設される正極液ライン2に設けられ、
かつ隔膜例の陽イオン交換膜10Aにょシ水素ガス反応
室13と分割されたりバランスセル11の1措成室であ
る正極液活物質還元室12(セルフの正、負極室と同禄
栴造)と、該正極液活物質還元室12の後流において本
発明に従い特徴的に設けられた後記第2図参照の検出器
例であるポルタンメトリーセルlと、上記各ラインの1
!兎液を送液するだめの循環ポンプ14とから主に構成
される。
Example 1 4N hydrochloric acid acidic 1 mol/l iron chloride water fn solution as positive electrode liquid,
A 1 mol/l chromium chloride aqueous solution acidified with 4N hydrochloric acid was used as the negative electrode liquid, and charging and discharging operations were carried out using the small cell device shown in FIG. The apparatus shown in FIG. 1 consists of a cation exchange MIO system with a diaphragm as an example, a redox flow type self-contained system having a positive electrode chamber 8 and a negative electrode chamber 9, which are divided into a positive electrode chamber 8 and a negative electrode chamber 9, and a negative electrode liquid 2-in-3 attached to the negative electrode chamber 9. Installed gas-liquid separator 15
and is provided in the positive electrode liquid line 2 attached to the positive electrode chamber 8,
In addition, the cation exchange membrane 10A, which is an example of a diaphragm, is divided from the hydrogen gas reaction chamber 13, and the positive electrode liquid active material reduction chamber 12, which is one component chamber of the balance cell 11 (same as the self-contained positive and negative electrode chambers) , a portametry cell l, which is an example of a detector shown in FIG.
! It mainly consists of a circulation pump 14 for feeding rabbit liquid.

なお、図中、14Aおよび15Aはそれぞれ水素ガス反
応室13に付設される電解液(本実施例では4N塩酸水
溶液)のライン4に設けられた循環ポンプおよび気液分
離器、5は水素ガスボンベ6から送られる水素ガスを循
環ポンプ14Aの吐出側電屏液ラインへ案内するための
水素ラインである。
In the figure, 14A and 15A are respectively a circulation pump and a gas-liquid separator installed in the electrolyte (4N hydrochloric acid aqueous solution in this example) line 4 attached to the hydrogen gas reaction chamber 13, and 5 is a hydrogen gas cylinder 6. This is a hydrogen line for guiding hydrogen gas sent from the circulation pump 14A to the discharge side electrolyte line of the circulation pump 14A.

検出器1の例として適用される第2図参照のポルタンメ
トリーセルは、両端部に正極液人口18および出口19
と、中央部に静止金)α9極からなる作用極16と、コ
イル状に巻いた白金線からなる対極17とから主として
構成されており、このような構成において直流電圧を掃
引すると、正仮液について第3図に示す酸化還元波が観
がすされ、これらの波高から対応する化学種の1農度を
1亨出することができる。なお、上記の直流1a圧11
を引に’(7i(てパルス電圧の印加を行う場合も同様
な結果が得られる。セルフの正極室8および負A室9並
びにリバランスセル11の正極液活物質還元室12およ
び水素ガス反応室13にはそれぞれ電極として炭素布が
充填される。セルフは単に充放電を行うだりでなく、時
々充放電を断って開路電圧を測定するだめの機能も合せ
有している。リバランスセル11では、検出器1による
測定値と開路電圧の測定値とから算出される正極液リバ
ランス所要量に応じて第二鉄化合物の還元が行われる。
The portammetry cell shown in FIG. 2, which is applied as an example of the detector 1, has a positive electrolyte population 18 and an outlet 19 at both ends.
It mainly consists of a working electrode 16 consisting of a stationary gold α9 pole in the center, and a counter electrode 17 consisting of a platinum wire wound in a coil. When the DC voltage is swept in such a configuration, the positive and temporary liquids are The oxidation-reduction waves shown in FIG. 3 can be observed for these waves, and from these wave heights one degree of the corresponding chemical species can be calculated. In addition, the above DC 1a pressure 11
Similar results can be obtained when a pulse voltage is applied by applying a pulse voltage. Each chamber 13 is filled with carbon cloth as an electrode.The self cell not only performs charging and discharging, but also has the function of occasionally cutting off charging and discharging and measuring the open circuit voltage.Rebalance cell 11 Then, the ferric compound is reduced according to the required amount of positive electrode fluid rebalance calculated from the measured value by the detector 1 and the measured value of the open circuit voltage.

このような構成の小型単電池装置において、先ずリバラ
ンスセル11を動作させることなく、かつレドックス・
フロー型セルフの充放電電流密度を40mA/c++!
としながら両極液の繰返し充放電を10回行った。その
結果、開路宵1圧と検出器1の各測定値とから負極液に
対する正極液の過充電割合は約20チであることが分っ
た。そこで、今度は充放電を行うことなくポンプ14を
動かすのみにより両極液を循環させ、その一方でリバラ
ンスセル11を動作させて両極液の充電深度の割合をほ
ぼ等しくシ、その後レドックス・フロー型セルフとりバ
ランスセル11とを同時に動作させて連続充放電実験を
行った。この閥、開路電圧と検出器1の測定とを時々行
い、その結果を基にリバランスセルの動作量調整を行っ
た。その結果、40回にわたる連続充放電テストの結果
は良好で、終了時における両極液の充電深度差は、3%
弱であった。
In a small cell device with such a configuration, first, without operating the rebalance cell 11, and without operating the redox
Flow type self charging/discharging current density is 40mA/c++!
The bipolar liquids were repeatedly charged and discharged 10 times. As a result, it was found from the open circuit evening pressure and each measurement value of the detector 1 that the overcharge ratio of the positive electrode liquid to the negative electrode liquid was about 20 degrees. Therefore, this time, the bipolar liquids are circulated only by operating the pump 14 without charging and discharging, and at the same time, the rebalance cell 11 is operated to make the charge depth ratio of the bipolar liquids almost equal, and then the redox flow type A continuous charging/discharging experiment was conducted by operating the self-balancing cell 11 at the same time. At this point, the open circuit voltage and the detector 1 were measured from time to time, and the operating amount of the rebalance cell was adjusted based on the results. As a result, the results of continuous charging and discharging tests over 40 times were good, and the difference in the charging depth of both electrolytes at the end was 3%.
It was weak.

実施例2 第4図に示すように1第1図の単電池(1枚のレドック
ス・フロー展セル)7に代えて電極面積が432dのレ
ドックス・フロー型セル96枚を用いて作製したKW級
電池スタック21を用い、また負極液ライン3と正極液
ライン2内にそれぞれ対応する負極液タンク23と正極
液タンク22を、また該両タンク間に開路電圧測定セル
20を、さらに正極液タンク22から送られる正極液の
内、うち1部をリバランスセル11の正極液活物質還元
室12を経たのち正極液ラインの艮りラインへ案内する
ためのラインを設け、かつ水素ガス反応室13を出た電
解液へ水素ガスを導入する代りに、該電解液ヘアスコル
ビン酸等の還元性有機物、金属鉄または塩化第−鉄等の
還元剤を添加するとともにこれを貯蔵するための電解タ
ンク24を設ける以外は第1図に示すものと同様な構成
のkw級電池装置を用い、実施例1と同様にして所要リ
バランス員の決定とこれに基づくソバ2ンシングを行い
ながら40回の連続充放電運転を行った。
Example 2 As shown in Fig. 4, a KW class cell was manufactured using 96 redox flow cells each having an electrode area of 432 d in place of the unit cell (one redox flow cell) 7 shown in Fig. 1. A battery stack 21 is used, and a negative electrode liquid tank 23 and a positive electrode liquid tank 22 are provided in the negative electrode liquid line 3 and a positive electrode liquid line 2, respectively, an open circuit voltage measuring cell 20 is placed between the two tanks, and a positive electrode liquid tank 22 is provided. A line is provided to guide a portion of the positive electrode liquid sent from the rebalance cell 11 through the positive electrode active material reduction chamber 12 to the positive electrode liquid line, and a hydrogen gas reaction chamber 13 is provided. Instead of introducing hydrogen gas into the electrolytic solution, a reducing organic substance such as hairscorbic acid, a reducing agent such as metallic iron or ferrous chloride is added to the electrolytic solution, and an electrolytic tank 24 for storing the electrolytic solution is added. Using a kW class battery device having the same configuration as shown in Fig. 1 except for the above, continuous charging and discharging was carried out 40 times while determining the required rebalancing member and performing balancing based on this in the same manner as in Example 1. I drove.

その結果、上記還元剤のいずれを添加する場合であって
も良好にリバランス反応が進行し、両極液間に生ずる充
電深度のずれは運転上特に問題とならない程度の軽微な
ものであった。
As a result, the rebalance reaction progressed well no matter which of the above reducing agents was added, and the difference in the depth of charge that occurred between the two electrode liquids was so slight that it did not pose any particular problem during operation.

なお、比較のため、リバランスを行うことなく(検出器
不使用)本装置を動かす場合には、−回の充放電で正極
液は約3−程度過充電になる仁とが分った。tた、仁の
場合、上記過充電の割合は一般に徐Aに大急くなったり
、あるいは1〜2−の変動を生ずることがあるので、正
極液モニターを使用せず、常に一定のりバランス速度和
する方法は好ましくない。
For comparison, it was found that when the device was operated without rebalancing (no detector was used), the catholyte was overcharged by approximately 3 times after 1 charge and discharge. In addition, in the case of heat, the rate of overcharging mentioned above generally becomes very rapid, or it may fluctuate by 1 to 2. This method is not preferred.

実施例3 実施例1に用いた装置の検出器に代えてポルタンメトリ
ーセルとクーαメトリーセルおよび第二鉄化合物濃度を
モニターする吸光光度セルとを直列に接続したものを使
用する以外は同様な構成の小型単電池装置を用いて正極
液の電池活物質濃度と充電深度の測定を行い、同時にこ
9測定結果につきポルタンメトリーセルとの相関性につ
いても検討した。その結果、クーロメトリ−セルおよび
吸光光度セルはともにポルタンメトリーセルと良好な相
関性のおることがわかシ、然して本発明における検出器
として十分に使用できることが明らかになった。
Example 3 Same as the device used in Example 1, except that instead of the detector, a portammetry cell, a Cou-α measurement cell, and an absorbance cell for monitoring the ferric compound concentration were connected in series. We measured the battery active material concentration in the catholyte and the depth of charge using a small cell device with a similar configuration, and at the same time examined the correlation of these measurement results with the portammetry cell. As a result, it was found that both the coulometry cell and the absorbance cell had a good correlation with the portammetry cell, and therefore, it became clear that they could be satisfactorily used as a detector in the present invention.

以上、本発明罠よれば、レドックス・フロー型二次電池
の正極液に含有される第一鉄化合物および第二鉄化合物
の濃度測定を行って正極液の過充電状態を検出するとと
もに、これに基づき正極液中の過剰第二鉄化合物を第一
鉄化合物へ還元するという構成としたことにより、FI
ii極液間の充放電状態を一致させることができ、これ
によシ長期に。
As described above, according to the present invention, the concentration of ferrous compounds and ferric compounds contained in the catholyte of a redox flow type secondary battery is measured to detect an overcharged state of the catholyte, and the overcharge state of the catholyte is also detected. Based on the structure, excess ferric compounds in the positive electrode solution are reduced to ferrous compounds, and FI
ii) It is possible to match the charging and discharging conditions between the polar liquids, which allows for long-term use.

わたって充放電サイクルを繰返すことが可能となる。It becomes possible to repeat charging and discharging cycles over a period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例に係るレドックス・フロー戚
二次電池装置の系統図、第2図は、第1図の検出器例と
して適用されるポルタンメトリーセルの側断面図、第3
図は、第2図のボランメトリーセルに電圧掃引法を適用
した場合の電流−電圧曲線図、第4図は、本発明の他の
実施例に係るレドックス・フロー型二次電池装置の系統
図である。図中の符号の説明は以下のとおりである。 1・・・(正極液過充電)検出器、2・・・正極液ライ
ン、3・・・負極液ライン、電解液ライン、6・・・水
素ガスボンベ、7・・・レドックス・フロー型セル、8
・・・正極良、9・・・負極室、10.10人・・・陽
イオン交換膜、11・・・リバランスセル、12・・・
正極液活物質還元室、13・・・水素ガス反応室、14
.14A、141.142.143.144・・・循環
ポンプ、16・・・作用極、17・・・対極、18・・
・正極液入口、19・・・正極液出口、20・・・開路
電圧測定セル、21・・・電池スタック、22・・・正
極液タンク、23・・・負極液タンク、24・・・電解
液タンク。 第3図 0. 020 −0.2 −0.4 電 圧 (V)
FIG. 1 is a system diagram of a redox flow related secondary battery device according to an embodiment of the present invention, FIG. 2 is a side sectional view of a portammetry cell applied as an example of the detector shown in FIG. 3
The figure is a current-voltage curve diagram when the voltage sweep method is applied to the volumometric cell of Figure 2, and Figure 4 is a system diagram of a redox flow type secondary battery device according to another embodiment of the present invention. It is. Explanations of the symbols in the figure are as follows. 1... (Positive electrode overcharge) detector, 2... Positive electrode liquid line, 3... Negative electrode liquid line, electrolyte line, 6... Hydrogen gas cylinder, 7... Redox flow type cell, 8
... Positive electrode good, 9... Negative electrode chamber, 10.10 people... Cation exchange membrane, 11... Rebalance cell, 12...
Positive electrode liquid active material reduction chamber, 13... hydrogen gas reaction chamber, 14
.. 14A, 141.142.143.144...Circulation pump, 16...Working electrode, 17...Counter electrode, 18...
- Positive electrode liquid inlet, 19... Positive electrode liquid outlet, 20... Open circuit voltage measurement cell, 21... Battery stack, 22... Positive electrode liquid tank, 23... Negative electrode liquid tank, 24... Electrolysis liquid tank. Figure 3 0. 020 -0.2 -0.4 Voltage (V)

Claims (1)

【特許請求の範囲】 、(1)正極液として互いに転化性の第一鉄化合物およ
び第二鉄化合物から選ばれる鉄化合物の含有溶液を用い
たレドックス・フロー型二次電池の運転法において、上
記第一鉄化合物および第二鉄化合物の濃度を測定するこ
とにより正極液の過充電状態を検出し、該検出結果圧基
づき正極液中の過剰第二鉄化合物を第一鉄化合物へ還元
して正極液を正常な充電状態へ移行させることを特徴と
するレドックス・70−戯二次電池の運転方法。 (2、特許請求の範囲第1項において、上記正極液の過
充電状態検出をポルタンメトリー、クーロメトリ−およ
び鉄錯イオンの光学的吸収を利用する吸光光度法から選
ばれる方法により行うことを特徴とするレドックス・フ
ロー型二次電池の運転方法。。
[Scope of Claims] , (1) A method for operating a redox flow type secondary battery using a solution containing an iron compound selected from mutually convertible ferrous and ferric compounds as a positive electrode liquid, comprising: The overcharged state of the catholyte is detected by measuring the concentration of ferrous and ferric compounds, and based on the detected pressure, excess ferric compounds in the catholyte are reduced to ferrous compounds to form a positive electrode. A method of operating a redox 70-G secondary battery characterized by transferring the liquid to a normal charging state. (2. Claim 1 is characterized in that the overcharge state of the catholyte is detected by a method selected from portammetry, coulometry, and spectrophotometry that utilizes optical absorption of iron complex ions. How to operate a redox flow type secondary battery.
JP58177617A 1983-09-26 1983-09-26 Method of operating redox-flow secondary battery Pending JPS6070672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58177617A JPS6070672A (en) 1983-09-26 1983-09-26 Method of operating redox-flow secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58177617A JPS6070672A (en) 1983-09-26 1983-09-26 Method of operating redox-flow secondary battery

Publications (1)

Publication Number Publication Date
JPS6070672A true JPS6070672A (en) 1985-04-22

Family

ID=16034135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58177617A Pending JPS6070672A (en) 1983-09-26 1983-09-26 Method of operating redox-flow secondary battery

Country Status (1)

Country Link
JP (1) JPS6070672A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797566A (en) * 1986-02-27 1989-01-10 Agency Of Industrial Science And Technology Energy storing apparatus
US7855005B2 (en) 2007-02-12 2010-12-21 Deeya Energy, Inc. Apparatus and methods of determination of state of charge in a redox flow battery
US7919204B2 (en) 2008-10-10 2011-04-05 Deeya Energy, Inc. Thermal control of a flow cell battery
US7927731B2 (en) 2008-07-01 2011-04-19 Deeya Energy, Inc. Redox flow cell
US8230736B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Level sensor for conductive liquids
US8231993B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Flexible multi-walled tubing assembly
US8236463B2 (en) 2008-10-10 2012-08-07 Deeya Energy, Inc. Magnetic current collector
US8264202B2 (en) 2008-10-10 2012-09-11 Deeya Energy, Inc. Method and apparatus for determining state of charge of a battery using an open-circuit voltage
US8338008B2 (en) 2009-05-28 2012-12-25 Deeya Energy, Inc. Electrolyte compositions
US8349477B2 (en) 2009-05-28 2013-01-08 Deeya Energy, Inc. Optical leak detection sensor
US8394529B2 (en) 2009-05-28 2013-03-12 Deeya Energy, Inc. Preparation of flow cell battery electrolytes from raw materials
US8551299B2 (en) 2009-05-29 2013-10-08 Deeya Energy, Inc. Methods of producing hydrochloric acid from hydrogen gas and chlorine gas
US8587255B2 (en) 2009-05-28 2013-11-19 Deeya Energy, Inc. Control system for a flow cell battery
US8587150B2 (en) 2008-02-28 2013-11-19 Deeya Energy, Inc. Method and modular system for charging a battery
US8723489B2 (en) 2009-05-28 2014-05-13 Deeya Energy, Inc. Bi-directional buck-boost circuit
US8883297B2 (en) 2008-10-10 2014-11-11 Imergy Power Systems, Inc. Methods for bonding porous flexible membranes using solvent
US8951665B2 (en) 2010-03-10 2015-02-10 Imergy Power Systems, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
WO2015122390A1 (en) * 2014-02-17 2015-08-20 住友電気工業株式会社 Redox flow battery system and method for operating redox flow battery
CN110416648A (en) * 2018-04-17 2019-11-05 大连融科储能装备有限公司 The test method of single battery flow in flow battery module

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797566A (en) * 1986-02-27 1989-01-10 Agency Of Industrial Science And Technology Energy storing apparatus
US7855005B2 (en) 2007-02-12 2010-12-21 Deeya Energy, Inc. Apparatus and methods of determination of state of charge in a redox flow battery
US8587150B2 (en) 2008-02-28 2013-11-19 Deeya Energy, Inc. Method and modular system for charging a battery
US7927731B2 (en) 2008-07-01 2011-04-19 Deeya Energy, Inc. Redox flow cell
US8883297B2 (en) 2008-10-10 2014-11-11 Imergy Power Systems, Inc. Methods for bonding porous flexible membranes using solvent
US8230736B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Level sensor for conductive liquids
US8236463B2 (en) 2008-10-10 2012-08-07 Deeya Energy, Inc. Magnetic current collector
US8264202B2 (en) 2008-10-10 2012-09-11 Deeya Energy, Inc. Method and apparatus for determining state of charge of a battery using an open-circuit voltage
US7919204B2 (en) 2008-10-10 2011-04-05 Deeya Energy, Inc. Thermal control of a flow cell battery
US8231993B2 (en) 2008-10-10 2012-07-31 Deeya Energy, Inc. Flexible multi-walled tubing assembly
US8349477B2 (en) 2009-05-28 2013-01-08 Deeya Energy, Inc. Optical leak detection sensor
US8587255B2 (en) 2009-05-28 2013-11-19 Deeya Energy, Inc. Control system for a flow cell battery
US8394529B2 (en) 2009-05-28 2013-03-12 Deeya Energy, Inc. Preparation of flow cell battery electrolytes from raw materials
US8723489B2 (en) 2009-05-28 2014-05-13 Deeya Energy, Inc. Bi-directional buck-boost circuit
US8338008B2 (en) 2009-05-28 2012-12-25 Deeya Energy, Inc. Electrolyte compositions
US9035617B2 (en) 2009-05-28 2015-05-19 Imergy Power Systems, Inc. Control system for a flow cell battery
US9479056B2 (en) 2009-05-28 2016-10-25 Imergy Power Systems, Inc. Buck-boost circuit with protection feature
US8551299B2 (en) 2009-05-29 2013-10-08 Deeya Energy, Inc. Methods of producing hydrochloric acid from hydrogen gas and chlorine gas
US8951665B2 (en) 2010-03-10 2015-02-10 Imergy Power Systems, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
WO2015122390A1 (en) * 2014-02-17 2015-08-20 住友電気工業株式会社 Redox flow battery system and method for operating redox flow battery
JPWO2015122390A1 (en) * 2014-02-17 2017-03-30 住友電気工業株式会社 Redox flow battery system and operating method of redox flow battery
CN110416648A (en) * 2018-04-17 2019-11-05 大连融科储能装备有限公司 The test method of single battery flow in flow battery module
CN110416648B (en) * 2018-04-17 2021-03-02 大连融科储能装备有限公司 Method for testing flow of single battery in flow battery module

Similar Documents

Publication Publication Date Title
JPS6070672A (en) Method of operating redox-flow secondary battery
US11208729B2 (en) Methods and system for hydrogen production by water electrolysis
CN105794021B (en) Method and apparatus for measuring transient state of charge using inlet/outlet potentials
JP5007849B1 (en) Redox flow battery and operation method thereof
Haisch et al. Monitoring the state of charge of all-vanadium redox flow batteries to identify crossover of electrolyte
JP5772366B2 (en) Redox flow battery
CN101839964B (en) Method and device for measuring charge state of all-vanadium redox flow battery in real time
US20230231171A1 (en) Methods and systems for determining average oxidation state of redox flow battery systems
CN109716572A (en) The state-of-charge for determining vanadium redox battery group is measured using UV/vis
CN116014160B (en) Flow battery repair system and repair method
JP2006147374A (en) Method of operating vanadium redox flow battery system
JPH09101286A (en) Method and instrument for measuring atomicity and concentration of vanadium ion of electrolyte for vanadium redox flow battery
JP2023527872A (en) FE-CR Redox Flow Battery System and Method of Using the System
Xue et al. In-situ electrochemical impedance spectroscopy measurement of anodic reaction in SO2 depolarized electrolysis process
KR102063753B1 (en) Energy storage system via iodine compound redox couples
JP2003157883A (en) Electrolyte regenerating method for vanadium redox battery
JPH01115068A (en) Operation of redox-flow cell
JP2003157884A (en) Charging method of vanadium redox flow battery
Li State‐of‐Charge Monitoring for Vanadium Redox Flow Batteries
JPH04223049A (en) Zinc bromine cell
Poli et al. Rebalancing/Regeneration of Vanadium Flow Batteries
US20240097172A1 (en) Inline sensors for electrolyte precipitation detection in redox flow battery system
JPS58103660A (en) Gas sensor for carbon monoxide
JP2015175820A (en) Concentration measurement method and fuel battery system
JPH05109421A (en) Molten carbonate fuel cell and laminated fuel cell