JP2003157883A - Electrolyte regenerating method for vanadium redox battery - Google Patents

Electrolyte regenerating method for vanadium redox battery

Info

Publication number
JP2003157883A
JP2003157883A JP2001356770A JP2001356770A JP2003157883A JP 2003157883 A JP2003157883 A JP 2003157883A JP 2001356770 A JP2001356770 A JP 2001356770A JP 2001356770 A JP2001356770 A JP 2001356770A JP 2003157883 A JP2003157883 A JP 2003157883A
Authority
JP
Japan
Prior art keywords
valence
electrolyte
vanadium
regenerating
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001356770A
Other languages
Japanese (ja)
Inventor
Seiji Ogino
誠司 荻野
Hiroshige Deguchi
洋成 出口
Nobuyuki Tokuda
信幸 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2001356770A priority Critical patent/JP2003157883A/en
Publication of JP2003157883A publication Critical patent/JP2003157883A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a method for regenerating an electrolyte so as to be capable of performing efficient operation by reducing generation of gas, and an operation method of a redox flow battery using this regenerating method. SOLUTION: This electrolyte regenerating method for a redox battery changes ions to pentavalent vanadium ions from tetravalent vanadium ions at charging time, and causes reverse reaction at discharging time in a positive electrode, and changes the ions to bivalent vanadium ions from trivalent vanadium ions at charging time, and causes reverse reaction at discharging time in a negative electrode. The electrolyte is regenerated so that a valence number balance becomes 3.41 valence to 3.60 valence by measuring a variation from an initial adjusting valence number of a vanadium ion valence number in the preadjusted electrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、バナジウムレドッ
クス電池用電解液の再生方法と、この再生方法を利用し
たレドックス電池の運転方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for regenerating an electrolytic solution for a vanadium redox battery, and a method for operating a redox battery using this regenerating method.

【0002】[0002]

【従来の技術】負荷平準化用途や瞬低・停電対策用途な
どにレドックス電池を利用することが提案されている。
2. Description of the Related Art It has been proposed to use a redox battery for load leveling applications, voltage sag / blackout countermeasures, and the like.

【0003】特に、バナジウムレドックス電池は、起
電力が高く、エネルギー密度が大きく、電解液が単
一元素系であるため正極液と負極液とが混合しても充電
によって再生することができると言った多くの利点を有
している。
Particularly, the vanadium redox battery has a high electromotive force, a large energy density, and since the electrolytic solution is a single element system, it can be regenerated by charging even if the positive electrode solution and the negative electrode solution are mixed. It has many advantages.

【0004】このようなバナジウムレドックス電池で
も、充放電を繰り返すと隔膜を通して電解液中の各種イ
オンや溶媒が移動し、正極および負極の電解液量の増減
が起こる。通常、正極側から負極側へ液移りが起こり、
電解液量がアンバランスになることで一方の電気容量が
著しく低下することになる。
Even in such a vanadium redox battery, various ions and solvents in the electrolytic solution move through the diaphragm when charging and discharging are repeated, and the amount of the electrolytic solution in the positive electrode and the negative electrode increases and decreases. Usually, liquid transfer occurs from the positive electrode side to the negative electrode side,
The unbalanced amount of electrolytic solution significantly reduces the electric capacity of one side.

【0005】このような液移りに伴う問題を解消するた
め、一定回数の充放電サイクルごとに正極液と負極液と
を連通あるいは混合して液量調整を行っている。その液
量調整に関する従来の技術としては、特開平11-204124
号公報や実開平4-124754号公報、特開2001-167787号公
報に記載のものがある。
In order to solve the problem associated with such liquid transfer, the liquid amount is adjusted by communicating or mixing the positive electrode liquid and the negative electrode liquid every fixed number of charge / discharge cycles. Japanese Patent Laid-Open No. 11-204124 discloses a conventional technique for adjusting the liquid volume.
Japanese Patent Laid-Open No. 4-124754 and Japanese Patent Laid-Open No. 2001-167787.

【0006】また、電解液を再生する技術に関し、特開
2000-30721号公報に記載のものが知られている。
A technique for regenerating the electrolytic solution is also disclosed.
The one described in Japanese Patent Publication No. 2000-30721 is known.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記の従来技
術は、いずれも価数バランスについて考慮したものでは
なく、価数バランスが崩れる結果、電池効率の低下、液
エネルギー密度の低下やガス発生量の増加を招くと言う
問題があった。
However, none of the above-mentioned prior arts considers the valence balance, and as a result of the valence balance being broken, the battery efficiency decreases, the liquid energy density decreases, and the amount of gas generated. There was a problem that it caused an increase in.

【0008】価数バランスは、次の数式1により定義さ
れる。
The valence balance is defined by the following mathematical formula 1.

【0009】[0009]

【数1】 [Equation 1]

【0010】従来は、当初の電解液として、正極液・負
極液共に同じ液量で同じモル濃度とし、正極液に4価の
バナジウムイオン100%と負極液に3価のバナジウムイオ
ン100%を用意して、全体の価数バランスが3.5価になる
ようにしている。ところが、実際には用意された電解液
の液量、モル濃度、価数は製品ごとに多少のバラツキが
あるため出荷時にすでに価数バランスが3.5価より外れ
ることがある。また価数バランスは前述の液移りが生じ
ても変化しないが、ガス反応など、電池反応以外の副反
応により消費される電気量が正極と負極で異なると崩れ
る。すなわち、副反応で消費される電気量が負極側<正
極側であれば価数バランスは3.0側にずれ、負極側>正
極側であれば価数バランスは4.0側にずれる。しかし、
従来は価数バランスのずれる範囲が定量的にわかってお
らず、特開2000-30721号公報などの方法により電解液の
バランス修正を行うにも、そのタイミングが十分にわか
っていなかった。
Conventionally, as the initial electrolyte, both the positive electrode liquid and the negative electrode liquid were made to have the same amount and the same molar concentration, and tetravalent vanadium ion 100% was prepared for the positive electrode liquid and trivalent vanadium ion 100% was prepared for the negative electrode liquid. Then, the overall valence balance is set to 3.5 valence. However, in reality, the valence balance may already deviate from the 3.5 valence at the time of shipment because the liquid quantity, the molar concentration, and the valence of the prepared electrolyte solution vary slightly from product to product. The valence balance does not change even when the liquid transfer described above occurs, but breaks when the amount of electricity consumed by side reactions other than battery reactions such as gas reactions differs between the positive electrode and the negative electrode. That is, if the amount of electricity consumed in the side reaction is negative electrode side <positive electrode side, the valence balance shifts to 3.0 side, and if negative electrode side> positive electrode side, the valence balance shifts to 4.0 side. But,
Conventionally, the range in which the valence balance is deviated has not been quantitatively known, and the timing has not been sufficiently understood even when the balance of the electrolytic solution is corrected by the method disclosed in JP 2000-30721 A or the like.

【0011】従って、本発明は、ガス発生が少なく効率
的な運転を行うことができるように電解液を再生する方
法と、この再生方法を利用したレドックスフロー電池の
運転方法とを提供することにある。
Therefore, the present invention provides a method for regenerating an electrolytic solution so that gas generation is small and efficient operation can be performed, and a method for operating a redox flow battery using the regenerating method. is there.

【0012】[0012]

【課題を解決するための手段】本発明は、正極におい
て、充電時、4価のバナジウムイオンから5価のバナジウ
ムイオンに変化し、放電時にはその逆反応を起こし、負
極において、充電時、3価のバナジウムイオンから2価の
バナジウムイオンに変化し、放電時にはその逆反応を起
こすレドックス電池用電解液の再生方法である。ここ
で、予め調整された電解液中のバナジウムイオン価数の
初期調整価数からの変化量を測定し、価数バランスが3.
41価以上3.60価以下になるように再生することを特徴と
する。
Means for Solving the Problems In the present invention, a positive electrode changes from a tetravalent vanadium ion to a pentavalent vanadium ion at the time of charging, and the reverse reaction occurs at the time of discharging. This is a method for regenerating an electrolyte solution for redox batteries, which changes from vanadium ion to divalent vanadium ion and causes the reverse reaction during discharge. Here, the amount of change from the initial adjustment valence of the vanadium ion valence in the pre-adjusted electrolyte is measured, and the valence balance is 3.
It is characterized in that it is regenerated so that the price is from 41 to 3.60.

【0013】また、本発明バナジウムレドックス電池の
運転方法は、上記再生方法を利用して運転することを特
徴とする。
The vanadium redox battery operating method of the present invention is characterized in that the vanadium redox battery is operated by utilizing the above-mentioned regeneration method.

【0014】後述する実験から明らかなように、価数バ
ランスを3.41価以上3.60価以下になるように電解液を再
生すればガス発生が少なく、電池効率も液エネルギー密
度も高い運転を行うことができる。特に、価数バランス
を3.45以上3.5未満の間となるように再生を行うこと
で、電池効率も液エネルギー密度もより高い運転を行う
ことができる。
As will be apparent from the experiments described below, if the electrolyte is regenerated so that the valence balance is from 3.41 valence to 3.60 valence, less gas is generated and operation with high battery efficiency and high liquid energy density can be performed. it can. In particular, by performing regeneration so that the valence balance is between 3.45 and less than 3.5, it is possible to perform operation with higher battery efficiency and higher liquid energy density.

【0015】価数バランスは、電解液価数モニターによ
り容易に測定することができる。電解液価数は、一般に
よく知られているクーロメトリー法より測定する方法や
より高精度にはICP発光分光分析装置セイコーインスツ
ルメンツ社製SPS4000型などを利用すれば良い。この価
数モニターは、レドックスフロー電池システムにおける
電解液タンクとセルとをつなぐ配管の途中に設けたバル
ブから一部の電解液を抜き出し、その電解液を分析する
ように利用しても良いし、電池システム自体に直接取り
付けて価数バランスを測定できるように利用しても良
い。
The valence balance can be easily measured by an electrolyte valence monitor. The electrolytic solution valence may be measured by a generally well-known coulometry method or, for higher accuracy, an ICP emission spectroscopic analyzer SPS4000 manufactured by Seiko Instruments Inc. may be used. This valence monitor may be used to extract a part of the electrolytic solution from a valve provided in the middle of the pipe connecting the electrolytic solution tank and the cell in the redox flow battery system, and analyze the electrolytic solution, It may be directly attached to the battery system itself so that the valence balance can be measured.

【0016】価数バランスが3.41価以上3.60価以下の規
定範囲を逸脱しそうになれば、特開2000-30721号公報に
記載の方法などにより、価数バランスを規定範囲内にな
るように調整すれば良い。
If the valence balance is about to deviate from the specified range of 3.41 to 3.60, the valence balance should be adjusted to fall within the specified range by the method described in JP-A-2000-30721. Good.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。価数バランスの異なる電解液を用いてレドックス
フロー電池の充放電を行い、電池効率、液エネルギー密
度、ガス発生量を測定した。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. The redox flow battery was charged and discharged using electrolytes having different valence balances, and battery efficiency, liquid energy density, and gas generation amount were measured.

【0018】用いた電解液は、正極液がV(4価)/V(5
価)の硫酸水溶液であり、負極液がV(3価)/V(2価)
の硫酸水溶液である。正極液、負極液を同量とし、表1
に記載の価数バランスになるように調整してレドックス
フロー電池に適用する。
The electrolytic solution used is positive electrode solution V (tetravalent) / V (5
Aqueous solution of sulfuric acid, and the negative electrode solution is V (trivalent) / V (divalent)
Is an aqueous solution of sulfuric acid. The same amount of positive electrode liquid and negative electrode liquid was used.
Apply to redox flow batteries after adjusting so that the valence balance is described in.

【0019】価数バランスの調整を行う具体例として、
価数バランス3.40価の場合を以下に示す。V(4価)1.7
(mol/l),硫酸2.6(mol/l),液量:A(l)の電解液
と、V(3価)1.7(mol/l),硫酸2.6(mol/l),液量:
B(l)の電解液を用意する。下記の数式2、数式3よ
り、A=20(l)、B=30(l)としてタンクに入れ、液
量を調整して正負極で同容量にする。
As a concrete example of adjusting the valence balance,
The case where the valence balance is 3.40 is shown below. V (4 values) 1.7
(Mol / l), sulfuric acid 2.6 (mol / l), liquid amount: A (l) electrolyte solution, V (trivalent) 1.7 (mol / l), sulfuric acid 2.6 (mol / l), liquid amount:
Prepare B (l) electrolyte. According to the following formulas 2 and 3, A = 20 (l) and B = 30 (l) are put into the tank, and the liquid volume is adjusted to make the positive and negative electrodes have the same capacity.

【0020】[0020]

【数2】 [Equation 2]

【0021】次に,試験に用いた電池システムの概要を
図1に示す。この電池は、イオンが通過できる隔膜4で正
極セル1Aと負極セル1Bとに分離されたセル1を具える。
正極セル1Aと負極セル1Bの各々には正極電極5と負極電
極6とを内蔵している。正極セル1Aには、正極電解液を
供給及び排出する正極用タンク2が導管7、8を介して接
続されている。同様に負極セル1Bには、負極用電解液を
供給及び排出する負極用タンク3が導管10、11を介して
接続されている。各電解液は、バナジウムイオンなどの
価数が変化するイオンの水溶液を用い、ポンプ9、12で
循環させ、正極電極5及び負極電極6におけるイオンの価
数変化反応に伴って充放電を行う。
Next, FIG. 1 shows an outline of the battery system used in the test. This battery comprises a cell 1 in which a positive electrode cell 1A and a negative electrode cell 1B are separated by a diaphragm 4 through which ions can pass.
Each of the positive electrode cell 1A and the negative electrode cell 1B has a positive electrode 5 and a negative electrode 6 built therein. A positive electrode tank 2 for supplying and discharging a positive electrode electrolytic solution is connected to the positive electrode cell 1A via conduits 7 and 8. Similarly, a negative electrode tank 3 for supplying and discharging a negative electrode electrolytic solution is connected to the negative electrode cell 1B via conduits 10 and 11. As each electrolytic solution, an aqueous solution of ions whose valence changes, such as vanadium ions, is circulated by the pumps 9 and 12, and charging / discharging is performed along with the valence change reaction of the ions in the positive electrode 5 and the negative electrode 6.

【0022】試験条件を以下に記す。 (電池仕様) 電極の反応面積:1000cm2×10セル 電解液:V(バナジウム;1.7(mol/l)),硫酸;2.6(m
ol/l)の電解液を正負極で各25(l)
The test conditions are described below. (Battery specifications) Electrode reaction area: 1000 cm 2 × 10 cell Electrolyte: V (vanadium; 1.7 (mol / l)), sulfuric acid; 2.6 (m
25 (l) each for positive and negative electrodes of electrolytic solution (ol / l)

【0023】(充電方法)電流密度100(mA/cm2)で定
電流充電をはじめ、次に上限充電電圧:1.60(V/セル)
の条件で開放電圧:1.55(V/セル)になるまで定電圧充
電を行う。
(Charging method) Starting constant current charging at a current density of 100 (mA / cm 2 ), and then the upper limit charging voltage: 1.60 (V / cell)
Under the above conditions, constant voltage charging is performed until the open voltage becomes 1.55 (V / cell).

【0024】(放電方法)電流密度100(mA/cm2)で定
電流放電を行なう。下限放電電圧:1.00(V/セル)に達
したところで放電を終了する。
(Discharging method) Constant current discharging is performed at a current density of 100 (mA / cm 2 ). Lower limit discharge voltage: Ends discharge when reaching 1.00 (V / cell).

【0025】(液量調整)1(回/日)の割合で放電終了
時に正極液と負極液の液量を同容量に戻す。
(Adjustment of liquid amount) At the rate of 1 (times / day), the amounts of the positive electrode liquid and the negative electrode liquid are returned to the same volume at the end of discharge.

【0026】(評価方法)上記仕様の電池を用いて、ま
ず充放電を1週間連続して行なう。次に、放電終了後に
液量調整し、さらに充放電を3サイクル行う。3サイクル
目の充放電より、電池効率と液エネルギー密度を測定す
る。充放電終了後、ガス発生(水素および二酸化炭素)
量を測定する。
(Evaluation method) Using the battery having the above specifications, first, charging and discharging are continuously performed for one week. Next, after the end of the discharge, the liquid amount is adjusted, and charging and discharging are further performed for 3 cycles. Battery efficiency and liquid energy density are measured from the third cycle of charging and discharging. Gas generation (hydrogen and carbon dioxide) after charge and discharge
Measure the quantity.

【0027】電池効率は、放電電圧(V)×放電電流(A)×
放電時間(h)/充電電圧(V)×充電電流(A)×充電時間(h)
で表される。
Battery efficiency is discharge voltage (V) x discharge current (A) x
Discharge time (h) / charge voltage (V) x charge current (A) x charge time (h)
It is represented by.

【0028】ガスは正極で二酸化炭素の発生を、負極で
水素の発生量を測定した。ガス分析はガスクロマトグラ
フィー法により行った。
As for gas, carbon dioxide was generated at the positive electrode and hydrogen was measured at the negative electrode. Gas analysis was performed by a gas chromatography method.

【0029】試験結果を表1示す。また、価数バランス
3.5価に対する電池効率低下量の評価基準を表2に、同液
エネルギー密度低下量の評価基準を表3に、同ガス発生
量の評価基準を表4に示す。さらに、価数バランスと電
池効率の関係と価数バランスと液エネルギー密度の関係
を図2のグラフに示す。
The test results are shown in Table 1. Also, the valence balance
Table 2 shows the evaluation criteria for the amount of decrease in battery efficiency with respect to the 3.5 value, Table 3 shows the evaluation criteria for the amount of decrease in the liquid energy density, and Table 4 shows the evaluation criteria for the amount of gas generated. Furthermore, the relationship between valence balance and battery efficiency and the relationship between valence balance and liquid energy density are shown in the graph of FIG.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】表1および図2から明らかなように、価数バ
ランスが3.41価以上3.60価以下の場合に電池効率・液エ
ネルギー密度共に高く、ガス発生量も少ないことがわか
る。特に、価数バランスを3.45以上3.5未満の間となる
ように再生を行うことで、電池効率も液エネルギー密度
がより高い運転を行うことができる。従来、価数バラン
スが3.5価の場合に最も電池効率や液エネルギー密度が
高くなると考えられていたが、むしろ3.5よりも小さい
側に価数バランスが僅かにずれている方が好結果である
ことがわかった。
As is clear from Table 1 and FIG. 2, when the valence balance is 3.41 or more and 3.60 or less, both the battery efficiency and the liquid energy density are high, and the gas generation amount is small. In particular, by performing regeneration so that the valence balance is between 3.45 and less than 3.5, it is possible to perform operation with higher battery efficiency and liquid energy density. Conventionally, it was thought that the battery efficiency and the liquid energy density would be the highest when the valence balance was 3.5 valence, but rather the valence balance slightly shifted to a side smaller than 3.5 is the better result. I understood.

【0035】従って、価数バランスが3.41価以上3.60価
以下となるように電解液の再生を行い、あるいはこの再
生方法を用いてレドックスフロー電池を運転すること
で、ガス発生が少なく効率的な運転を行うことができ
る。
Therefore, by regenerating the electrolytic solution so that the valence balance becomes 3.41 or more and 3.60 or less, or by operating the redox flow battery using this regeneration method, the gas generation is reduced and the efficient operation is achieved. It can be performed.

【0036】[0036]

【発明の効果】以上説明したように、本発明再生方法に
よれば、価数バランスのずれ範囲を規定することで、ガ
ス発生が少なく、効率的で液エネルギー密度の高い運転
を実現することができる。特に、どのようなタイミング
で価数バランスの調整を行えば良いかも認識することが
できる。
As described above, according to the regeneration method of the present invention, by defining the deviation range of the valence balance, it is possible to realize efficient operation with less gas generation and high liquid energy density. it can. In particular, it is possible to recognize at what timing the valence balance should be adjusted.

【0037】また、この再生方法を利用してレドックス
電池を運転することにより、ガス発生を少なくし、電池
効率的や液エネルギー密度を高めることができる。
Further, by operating the redox battery by utilizing this regenerating method, it is possible to reduce gas generation and increase battery efficiency and liquid energy density.

【図面の簡単な説明】[Brief description of drawings]

【図1】レドックスフロー電池の動作原理を示す説明図
である。
FIG. 1 is an explanatory diagram showing the operating principle of a redox flow battery.

【図2】価数バランスと電池効率の関係と価数バランス
と液エネルギー密度の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between valence balance and battery efficiency, and a relationship between valence balance and liquid energy density.

【符号の説明】[Explanation of symbols]

1 セル 1A 正極セル 1B 負極セル 2 正極用タンク 3 負極用タンク 4 隔膜 5 正極電極 6 負極電極 7、8、10、11 導管 9、12 ポンプ 1 cell 1A positive electrode cell 1B negative cell 2 Positive tank 3 Negative tank 4 diaphragm 5 Positive electrode 6 Negative electrode 7, 8, 10, 11 conduits 9, 12 pumps

───────────────────────────────────────────────────── フロントページの続き (72)発明者 出口 洋成 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 徳田 信幸 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 Fターム(参考) 5H026 AA10 HH00 RR01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yosei Deguchi             1-3-3 Shimaya, Konohana-ku, Osaka Sumitomo Electric             Ki Industry Co., Ltd. Osaka Works (72) Inventor Nobuyuki Tokuda             3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture             Kansai Electric Power Co., Inc. F-term (reference) 5H026 AA10 HH00 RR01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極において、充電時、4価のバナジウ
ムイオンから5価のバナジウムイオンに変化し、放電時
にはその逆反応を起こし、負極において、充電時、3価
のバナジウムイオンから2価のバナジウムイオンに変化
し、放電時にはその逆反応を起こすレドックス電池用電
解液の再生方法において、 予め調整された電解液中のバナジウムイオン価数の初期
調整価数からの変化量を測定し、価数バランスが3.41価
以上3.60価以下になるように再生することを特徴とする
バナジウムレドックス電池用電解液の再生方法。
1. A positive electrode changes from a tetravalent vanadium ion to a pentavalent vanadium ion during charging, and a reverse reaction thereof occurs during discharging, and a negative electrode changes from a trivalent vanadium ion to a divalent vanadium ion during charging. In the method of regenerating an electrolyte for a redox battery, which changes into ions and undergoes the reverse reaction when discharged, the change in the vanadium ion valence in the electrolyte that was adjusted in advance from the initial adjustment valence was measured, and the valence balance was measured. A method for regenerating an electrolytic solution for a vanadium redox battery, characterized in that the regenerating is performed so as to be 3.41 to 3.60.
【請求項2】 請求項1に記載の再生方法を利用して運
転することを特徴とするバナジウムレドックス電池の運
転方法。
2. A method for operating a vanadium redox battery, which is operated by using the regeneration method according to claim 1.
JP2001356770A 2001-11-21 2001-11-21 Electrolyte regenerating method for vanadium redox battery Pending JP2003157883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001356770A JP2003157883A (en) 2001-11-21 2001-11-21 Electrolyte regenerating method for vanadium redox battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001356770A JP2003157883A (en) 2001-11-21 2001-11-21 Electrolyte regenerating method for vanadium redox battery

Publications (1)

Publication Number Publication Date
JP2003157883A true JP2003157883A (en) 2003-05-30

Family

ID=19168228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001356770A Pending JP2003157883A (en) 2001-11-21 2001-11-21 Electrolyte regenerating method for vanadium redox battery

Country Status (1)

Country Link
JP (1) JP2003157883A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006520520A (en) * 2003-03-14 2006-09-07 ニューサウス イノベーションズ ピューティーワイリミテッド New vanadium halide redox flow battery
CN103119713A (en) * 2010-09-22 2013-05-22 国际商业机器公司 Electrochemically powered integrated circuit package
CN104132691A (en) * 2014-07-31 2014-11-05 国网上海市电力公司 Operating parameter acquisition circuit of flow battery charging and discharging system
KR101491784B1 (en) 2013-11-05 2015-02-23 롯데케미칼 주식회사 Method of operating chemical flow battery
CN105144455A (en) * 2013-05-03 2015-12-09 联合工艺公司 Method of maintaining health of a flow battery
JP2017505513A (en) * 2013-12-23 2017-02-16 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Distributing electrolyte in a flow battery
CN109411797A (en) * 2018-10-30 2019-03-01 成都先进金属材料产业技术研究院有限公司 The method for adjusting sulfuric acid system V electrolyte Vanadium valence
CN111509278A (en) * 2020-03-20 2020-08-07 香港科技大学 Method for recovering capacity and efficiency of all-vanadium redox flow battery on line
US11056698B2 (en) 2018-08-02 2021-07-06 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
US11271226B1 (en) 2020-12-11 2022-03-08 Raytheon Technologies Corporation Redox flow battery with improved efficiency

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4728217B2 (en) * 2003-03-14 2011-07-20 ニューサウス イノベーションズ ピューティーワイリミテッド New vanadium halide redox flow battery
JP2006520520A (en) * 2003-03-14 2006-09-07 ニューサウス イノベーションズ ピューティーワイリミテッド New vanadium halide redox flow battery
CN103119713A (en) * 2010-09-22 2013-05-22 国际商业机器公司 Electrochemically powered integrated circuit package
JP2013541841A (en) * 2010-09-22 2013-11-14 インターナショナル・ビジネス・マシーンズ・コーポレーション An electrochemically powered integrated circuit package.
US11831054B2 (en) 2013-05-03 2023-11-28 Rtx Corporation Method of maintaining health of a flow battery
CN105144455A (en) * 2013-05-03 2015-12-09 联合工艺公司 Method of maintaining health of a flow battery
KR20160008212A (en) * 2013-05-03 2016-01-21 유나이티드 테크놀로지스 코포레이션 Method of maintaining health of a flow battery
KR101969625B1 (en) * 2013-05-03 2019-04-16 유나이티드 테크놀로지스 코포레이션 Method of maintaining health of a flow battery
US10014545B2 (en) 2013-11-05 2018-07-03 Lotte Chemical Corporation Method for operating redox flow battery
KR101491784B1 (en) 2013-11-05 2015-02-23 롯데케미칼 주식회사 Method of operating chemical flow battery
WO2015068979A1 (en) * 2013-11-05 2015-05-14 롯데케미칼 주식회사 Method for operating redox flow battery
US9853310B2 (en) 2013-12-23 2017-12-26 United Technologies Corporation Distribution of electrolytes in a flow battery
JP2017505513A (en) * 2013-12-23 2017-02-16 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Distributing electrolyte in a flow battery
CN104132691A (en) * 2014-07-31 2014-11-05 国网上海市电力公司 Operating parameter acquisition circuit of flow battery charging and discharging system
US11056698B2 (en) 2018-08-02 2021-07-06 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
US11637298B2 (en) 2018-08-02 2023-04-25 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
CN109411797A (en) * 2018-10-30 2019-03-01 成都先进金属材料产业技术研究院有限公司 The method for adjusting sulfuric acid system V electrolyte Vanadium valence
CN111509278A (en) * 2020-03-20 2020-08-07 香港科技大学 Method for recovering capacity and efficiency of all-vanadium redox flow battery on line
CN111509278B (en) * 2020-03-20 2023-03-17 香港科技大学 Method for recovering capacity and efficiency of all-vanadium redox flow battery on line
US11271226B1 (en) 2020-12-11 2022-03-08 Raytheon Technologies Corporation Redox flow battery with improved efficiency

Similar Documents

Publication Publication Date Title
JP5970094B2 (en) Redox flow battery evaluation method and apparatus
US10186726B2 (en) Method and apparatus for measuring transient state-of-charge using inlet/outlet potentials
EP2764378B1 (en) Apparatus and method for accurate energy device state-of-health (soh) monitoring
US20150155727A1 (en) Monitoring electrolyte concentrations in redox flow battery systems
Haisch et al. Monitoring the state of charge of all-vanadium redox flow batteries to identify crossover of electrolyte
Ngamsai et al. Measuring the state of charge of the electrolyte solution in a vanadium redox flow battery using a four-pole cell device
CN110376525A (en) A method of evaluating retired ferric phosphate lithium cell life time decay performance
JP2003157883A (en) Electrolyte regenerating method for vanadium redox battery
JP2001292534A (en) Determining apparatus for deterioration of lithium ion battery
JP3193991B2 (en) Electrolyte flow battery
JP2003157882A (en) Operation method of redox flow battery
JP2003243017A (en) Electric equivalent circuit model forming method for secondary battery and simulation method and program using this
EP3361540A1 (en) Fuel cell state determination method and state determination device
JP2003157884A (en) Charging method of vanadium redox flow battery
JP2003257467A (en) Method of operating redox flow battery
JP2003142141A (en) Operating method for vanadium redox flow battery
KR101732817B1 (en) Method and apparatus for measuring balance level of electrolyte in redox flow battery
JP2005197052A (en) Electric power selling system and electric power rate computing system
KR20160077530A (en) Method and apparatus for controlling operation of redox flow battery
JPH09297163A (en) Residual capacity meter for battery
JP2020187939A (en) Redox flow battery system and operating method thereof
JP2001091605A (en) Device and method for judging residual capacity, residual life and life of lead-acid battery
JP5934331B2 (en) Redox flow battery operation control method and apparatus
WO2023120449A1 (en) Redox flow battery
CN116125286A (en) Open-circuit voltage calculation method of all-vanadium redox flow battery