JP2003257467A - Method of operating redox flow battery - Google Patents

Method of operating redox flow battery

Info

Publication number
JP2003257467A
JP2003257467A JP2002052299A JP2002052299A JP2003257467A JP 2003257467 A JP2003257467 A JP 2003257467A JP 2002052299 A JP2002052299 A JP 2002052299A JP 2002052299 A JP2002052299 A JP 2002052299A JP 2003257467 A JP2003257467 A JP 2003257467A
Authority
JP
Japan
Prior art keywords
amount
electrolytic solution
negative electrode
electrolyte
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002052299A
Other languages
Japanese (ja)
Other versions
JP4155745B2 (en
Inventor
Hiroshige Deguchi
洋成 出口
Seiji Ogino
誠司 荻野
Nobuyuki Tokuda
信幸 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2002052299A priority Critical patent/JP4155745B2/en
Publication of JP2003257467A publication Critical patent/JP2003257467A/en
Application granted granted Critical
Publication of JP4155745B2 publication Critical patent/JP4155745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of operating a redox flow battery having superior battery efficiency, a less generation amount of gas and lower cost. <P>SOLUTION: The redox flow battery comprises positive and negative electrodes separated from each other with a separating membrane, a positive electrode electrolyte storage tank for storing a positive electrode electrolyte to be circulated and supplied to the positive electrode, and a negative electrode electrolyte storage tank for storing a negative electrode electrolyte to be circulated and supplied to the negative electrode. The electrolyte is stored in the same amount in each tank at starting charge/discharge. When the rate of an amount change of the electrolyte moved through the separating membrane with the repetition of charge/discharge cycles is within a range of -15% to +17%, the electrolytes in both tanks are restored into the same amount. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レドックスフロー
電池の運転方法に関するものである。特に、電池効率が
より高く、ガス発生量が少ないレドックスフロー電池の
運転方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for operating a redox flow battery. In particular, the present invention relates to a method of operating a redox flow battery having higher battery efficiency and a small amount of gas generation.

【0002】[0002]

【従来の技術】負荷平準化用途や瞬低・停電対策用途な
どにレドックスフロー電池を利用することが提案されて
いる。
2. Description of the Related Art It has been proposed to use a redox flow battery for load leveling applications, voltage sag / blackout countermeasures, and the like.

【0003】特に、バナジウムレドックスフロー電池
は、起電力が高く、エネルギー密度が大きく、電
解液が単一元素系であるため正極電解液と負極電解液と
が混合しても充電によって再生することができると言っ
た多くの利点を有している。
Particularly, the vanadium redox flow battery has a high electromotive force, a large energy density, and since the electrolytic solution is a single element system, it can be regenerated by charging even if the positive electrode electrolytic solution and the negative electrode electrolytic solution are mixed. It has many advantages that it can.

【0004】このようなバナジウムレドックスフロー電
池は、充放電を繰り返すと隔膜を通して電解液中の各種
イオンや溶媒が移動し、正極及び負極の電解液量の増減
が起こる。例えば、アニオン隔膜を用いた場合、通常、
正極側から負極側へ液移りが起こり、電解液量がアンバ
ランスになることで一方の電気容量が著しく低下するこ
とになる。
In such a vanadium redox flow battery, when the charge and discharge are repeated, various ions and solvents in the electrolytic solution move through the diaphragm, and the amount of the electrolytic solution in the positive electrode and the negative electrode increases or decreases. For example, when an anion diaphragm is used,
Liquid transfer occurs from the positive electrode side to the negative electrode side, and the amount of the electrolytic solution becomes unbalanced, so that one of the electric capacities significantly decreases.

【0005】このような液移りに伴う問題を解消するた
め、従来、一定回数の充放電サイクルごとに正極電解液
と負極電解液とを連通あるいは混合して液量調整を行っ
ている。この液量調整に関する従来の技術としては、特
開2001-167787号公報、実開平4-124754号公報、特開平1
1-204124号公報や、特開平2-195657号公報に記載のもの
が知られている。
In order to solve the problem associated with such liquid transfer, conventionally, the liquid amount is adjusted by connecting or mixing the positive electrode electrolytic solution and the negative electrode electrolytic solution every fixed number of charge / discharge cycles. As a conventional technique relating to this liquid amount adjustment, JP 2001-167787 A, JP-A 4-124754 JP, JP 1
The ones described in 1-204124 and JP-A-2-195657 are known.

【0006】例えば、特開2001-167787号公報に記載の
技術では、液量が増加したタンクから液量が減少したタ
ンクに配管を通して電解液を戻すことで、各タンクの液
量変化を一定の範囲に保持している。
[0006] For example, in the technique described in Japanese Patent Laid-Open No. 2001-167787, the electrolytic solution is returned from a tank having an increased liquid amount to a tank having an decreased liquid amount through a pipe, so that the change in the liquid amount in each tank is kept constant. Holds in range.

【0007】[0007]

【発明が解決しようとする課題】しかし、従来は、具体
的にどの程度の液量変化でどの程度の液量を移動させる
かについて詳しく検討されていなかった。そのため、従
来の技術では、例えば、電池効率をより向上させること
が困難である。
However, heretofore, detailed examination has not been made in detail as to how much the liquid amount should be changed and how much the liquid amount should be moved. Therefore, it is difficult for the conventional technique to further improve the battery efficiency, for example.

【0008】また、特開2001−167787号公報に記載の技
術では、充放電前の設定条件として、充放電サイクルの
繰り返しにより液量が減少するタンクの液量を予め他方
のタンクの液量よりも多くした場合を主に評価してい
る。しかし、液量が減少するタンクの液量を予め他方の
タンクの液量よりも多くすると、充放電に利用されない
電解液を余分に含むことになり、コストアップとなる。
Further, in the technique disclosed in Japanese Patent Laid-Open No. 2001-167787, as a setting condition before charging / discharging, the liquid amount of a tank whose liquid amount decreases due to repeated charging / discharging cycles is set in advance from the liquid amount of the other tank. Most of the cases are mainly evaluated. However, if the liquid amount of the tank whose liquid amount is reduced is made larger than the liquid amount of the other tank in advance, the electrolytic solution that is not used for charging / discharging is additionally included, resulting in an increase in cost.

【0009】更に、従来は、電池評価として必要な発生
ガスに関する評価をほとんど実施していない。充放電の
副反応として、ガスが発生する。しかし、上記従来の技
術では、発生ガスの種類や発生量について明確な知見が
得られていない。そのため、電池の評価項目を効率(電
力、電圧、電流)と放電電力量(初期状態との比較)のみ
としており、十分な電池評価が行われていなかった。
Further, conventionally, almost no evaluation has been carried out on the evolved gas required for battery evaluation. Gas is generated as a side reaction of charge and discharge. However, in the above-mentioned conventional techniques, no clear knowledge about the type and amount of generated gas has been obtained. Therefore, the evaluation items of the battery are only efficiency (power, voltage, current) and discharge power amount (compared with the initial state), and sufficient battery evaluation has not been performed.

【0010】そこで、本発明の主目的は、ガス発生量が
少なく電池効率により優れ、かつより低コストであるレ
ドックスフロー電池の運転方法を提供することにある。
Therefore, a main object of the present invention is to provide a method of operating a redox flow battery which produces less gas, is more excellent in battery efficiency, and is lower in cost.

【0011】[0011]

【課題を解決するための手段】本発明は、充放電の開始
時において正負両極の電解液貯蔵用タンクに貯蔵する電
解液量を同量とし、かつ充放電サイクルの繰り返しに伴
う電解液の液量変化の割合が規定の範囲を超える前に両
タンクの液量を同等にすることで、上記の目的を達成す
る。
According to the present invention, at the start of charging / discharging, the amount of the electrolytic solution stored in the electrolytic solution storage tanks of both positive and negative electrodes is set to the same amount, and the solution of the electrolytic solution accompanying the repetition of the charging / discharging cycle. The above object is achieved by equalizing the liquid amounts in both tanks before the rate of change in volume exceeds the specified range.

【0012】即ち、本発明は、隔膜で分離される正極及
び負極と、前記正極に循環供給される正極電解液を貯蔵
する正極電解液貯蔵用タンクと、前記負極に循環供給さ
れる負極電解液を貯蔵する負極電解液貯蔵用タンクとを
具えるレドックスフロー電池の運転方法である。前記各
タンクには、充放電の開始時において電解液を同量貯蔵
する。そして、充放電サイクルの繰り返しに伴い隔膜を
通して移動した電解液の液量変化の割合が−15%以上+1
7%以下の範囲内にあるときに各タンクの電解液を同量
に戻す。特に、液量変化の割合が0%超+5%以下の範囲
内にあるときに電解液を同量に戻すことが最適である。
本発明において、電解液の液量変化の割合とは、充放電
の開始時における両電解液の和を2で割った平均液量に
対する正極電解液量から負極電解液量を引いた液量差の
割合である。
That is, according to the present invention, a positive electrode and a negative electrode separated by a diaphragm, a positive electrode electrolyte storage tank for storing a positive electrode electrolytic solution circulated and supplied to the positive electrode, and a negative electrode electrolytic solution circulated and supplied to the negative electrode. A method for operating a redox flow battery, comprising: a negative electrode electrolyte storage tank for storing The same amount of electrolytic solution is stored in each of the tanks at the start of charging / discharging. Then, the rate of change in the amount of the electrolytic solution that has moved through the diaphragm with the repetition of the charge / discharge cycle is -15% or more +1.
When it is within the range of 7% or less, return the same amount of electrolyte in each tank. In particular, when the rate of change in the liquid amount is within the range of more than 0% and less than + 5%, it is optimal to return the electrolytic solution to the same amount.
In the present invention, the rate of change in the liquid amount of the electrolytic solution is a liquid amount difference obtained by subtracting the negative electrode electrolytic solution amount from the positive electrode electrolytic solution amount with respect to the average liquid amount obtained by dividing the sum of both electrolytic solutions at the start of charge / discharge by 2. Is the ratio.

【0013】上記構成を具える本発明は、充放電の開始
時、即ち設定条件において各タンクに貯蔵する電解液を
同量にすることで、コストの低減を図る。また、電解液
の液量変化の割合を規定し、この規定の範囲を超える前
に両タンクの電解液量を等しくするべく、液移りにより
増加した液量分を減少した側のタンクに移動させること
で、ガスの発生をより少なくし、電池効率をより向上さ
せる。
According to the present invention having the above-mentioned structure, the cost is reduced by making the same amount of the electrolytic solution stored in each tank at the start of charging / discharging, that is, under the set condition. In addition, the rate of change in the amount of electrolytic solution is specified, and in order to equalize the amounts of electrolytic solution in both tanks before this specified range is exceeded, the amount of liquid that has increased due to liquid transfer is moved to the tank on the side that has decreased. As a result, the generation of gas is reduced and the battery efficiency is further improved.

【0014】本発明において電解液の液量変化の割合を
規定し、この規定の範囲を超える前に両タンクの電解液
量を同量にする理由を説明する。従来は、充放電の開始
時において両タンクの電解液量を同量にして充放電を行
い、作業効率上、一定時間の充放電毎に液量調整を行う
ことが多かった。この液量調整の頻度は、せいぜい1日1
回程度であり、どれだけの液量変化でどの程度の量を移
動させれば電池効率をより向上させられるかについて、
明確な指針がなかった。また、従来の技術として、一方
の送液圧力を大きくし、他方の送液圧力を小さくするこ
とで、両タンクの液量を常に同量に保つ技術がある。即
ち、この技術は、一方のセルに流される電解液流量を他
方のセルに流される電解液流量よりも小さくして流量差
をつけるものである。しかし、セルの耐圧制限のため、
特にセルの面積が大きい場合、流量を小さくせざるを得
ないことがある。すると、流量を小さくすることでエネ
ルギー密度が小さくなり、結果として電池性能が低下す
ることがある。そこで、本発明者らが検討した結果、液
量変化が一定の範囲を超える前に、液が増加したタンク
から液が減少したタンクに、増加した液だけ戻して両タ
ンクの液量を同量にすれば、より優れた電池効率が得ら
れると共に、ガスの発生量が比較的少ないことを見出し
た。特に、この場合、流量を調整して各タンクの液量を
常に同量に維持して運転する場合よりもむしろ電池効
率、エネルギー密度がよいことも見出した。
In the present invention, the reason why the rate of change in the amount of the electrolytic solution is specified and the amounts of the electrolytic solution in both tanks are made equal before the specified range is exceeded will be explained. Conventionally, at the start of charging / discharging, the amount of electrolytic solution in both tanks was set to the same amount to perform charging / discharging, and in order to improve work efficiency, the amount of liquid was often adjusted every charging / discharging period of time. The frequency of this liquid volume adjustment is at most 1 day a day.
It is about the number of times, and about how much change in liquid volume can be moved to improve battery efficiency,
There was no clear guideline. Further, as a conventional technique, there is a technique in which the liquid supply pressure in one tank is increased and the liquid supply pressure in the other is decreased so that the liquid amounts in both tanks are always kept the same. That is, in this technique, the flow rate of the electrolytic solution that flows in one cell is made smaller than the flow rate of the electrolytic solution that flows in the other cell to make the flow rate difference. However, due to the limitation of withstand voltage of the cell,
Especially when the area of the cell is large, the flow rate may have to be reduced. Then, the energy density is reduced by decreasing the flow rate, and as a result, the battery performance may be deteriorated. Therefore, as a result of examination by the present inventors, before the liquid amount change exceeds a certain range, the increased liquid is returned from the liquid-increased tank to the liquid-depleted tank so that the liquid amounts of both tanks are the same. It has been found that, when the above is satisfied, more excellent battery efficiency is obtained and the amount of gas generated is relatively small. In particular, it was also found that in this case, the battery efficiency and the energy density are better than in the case where the flow rate is adjusted and the liquid amount in each tank is always maintained at the same amount.

【0015】また、充放電サイクルの繰り返しに伴う各
タンクの液量の増減は、隔膜の種類及び正負極への送液
圧力差で決まる。しかし、特開平2001-167787号公報の
ように隔膜の種類だけで液量が増減すると認識している
場合、液量の増減を明確に把握できない。
Further, the increase / decrease in the amount of liquid in each tank due to the repetition of the charge / discharge cycle is determined by the type of diaphragm and the difference in the pressure of liquid fed to the positive and negative electrodes. However, when it is recognized that the liquid amount increases or decreases only by the type of diaphragm as in JP-A-2001-167787, it is not possible to clearly grasp the increase or decrease in the liquid amount.

【0016】上記事項及び知見に基づき、本発明は、各
タンクの電解液量を同量とした設定条件において、電解
液の液量変化の割合が規定の範囲に達してそれを超える
前に各タンクの電解液量を同量に戻す。
Based on the above matters and findings, according to the present invention, under the setting conditions in which the amount of the electrolytic solution in each tank is the same, the ratio of the change in the amount of the electrolytic solution reaches the specified range and before it exceeds the specified range. Return the amount of electrolyte in the tank to the same amount.

【0017】次に、本発明において、ガス発生をより少
なくする理由を説明する。バナジウムレドックスフロー
電池は、充放電の副反応としてガスが発生する。例え
ば、正極活物質を充電しすぎると、副反応として水の分
解反応により酸素が発生し、電極の酸化劣化を招き、ひ
いては電圧効率が低下する。
Next, the reason for reducing the amount of gas generation in the present invention will be described. In the vanadium redox flow battery, gas is generated as a side reaction of charge / discharge. For example, if the positive electrode active material is overcharged, oxygen is generated as a side reaction due to the decomposition reaction of water, which leads to oxidative deterioration of the electrode, which in turn lowers the voltage efficiency.

【0018】また、本発明者らは、負極から水素、正極
から二酸化炭素などのガスが発生するとの知見も得た。
水素であれば最悪の場合、発火、爆発の可能性もある。
二酸化炭素であれば電極が分解しており、電池効率低下
としてあらわれる前に劣化が進行していることになる。
The present inventors have also found that gas such as hydrogen is generated from the negative electrode and carbon dioxide is generated from the positive electrode.
In the worst case, hydrogen may cause ignition or explosion.
In the case of carbon dioxide, the electrode is decomposed, and the deterioration is progressing before it appears as a decrease in battery efficiency.

【0019】更に、このようにガスが発生して長期的に
蓄積すると、タンク耐圧に問題が生じる。そのため、ガ
スの発生をより少なくすることが好ましい。
Further, if the gas is generated and accumulated for a long period of time, there arises a problem in the tank pressure resistance. Therefore, it is preferable to reduce the generation of gas.

【0020】本発明において電解液量を調整する方法
は、公知の技術を適用すればよい。例えば、両タンクを
連通管で連結し、連通管の両端を各タンクに貯蔵する電
解液の液面より上の位置で連結したり(実開平4-124754
号公報参照)、連通管の両端を電解液の液面より下の位
置で連結したり(特開平11-204124号公報参照)、少なく
とも一方の送液圧力を調整することにより隔膜を通して
電解液を逆向きに移動させたりする(特開平2-195657号
公報参照)とよい。また、本発明において電解液を同量
に戻すには、例えば、両タンクを連通管で連結してお
き、一方のタンクから他方のタンクに電解液が移動でき
るよう構成することが好ましい。
A known technique may be applied to the method of adjusting the amount of the electrolytic solution in the present invention. For example, both tanks may be connected by communication pipes, and both ends of the communication pipes may be connected at a position above the liquid level of the electrolyte stored in each tank (actual open flat 4-124754
(See Japanese Patent Publication No.), the both ends of the communication tube is connected at a position below the liquid surface of the electrolytic solution (see Japanese Patent Laid-Open No. 11-204124), and the electrolytic solution is passed through the diaphragm by adjusting at least one of the liquid sending pressures. It may be moved in the opposite direction (see Japanese Patent Laid-Open No. 2-195657). Further, in the present invention, in order to return the amount of the electrolytic solution to the same amount, for example, it is preferable that both tanks are connected by a communication pipe and the electrolytic solution can be moved from one tank to the other tank.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。充放電の開始時において、正極電解液量と負極電
解液量とを同量としたレドックスフロー電池の充放電を
行い、電池効率、液エネルギー密度、ガス発生量を測定
した。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. At the start of charging / discharging, the redox flow battery was charged / discharged with the same amount of the positive electrode electrolyte solution and the negative electrode electrolyte solution, and the battery efficiency, liquid energy density, and gas generation amount were measured.

【0022】本試験に用いたレドックスフロー電池の概
要を図1に示す。この電池は、イオンが通過できる隔膜4
で正極セル1Aと負極セル1Bとに分離されたセル1を具え
る。正極セル1Aと負極セル1Bの各々には正極電極5と負
極電極6とを内蔵している。正極セル1Aには、正極電解
液を供給及び排出する正極電解液貯蔵用タンク2が導管
7、8を介して接続されている。同様に負極セル1Bには、
負極電解液を供給及び排出する負極電解液貯蔵用タンク
3が導管10、11を介して接続されている。各電解液は、
バナジウムイオンなどの価数が変化するイオンの水溶液
を用い、ポンプ9、12で循環させ、正極電極5及び負極電
極6におけるイオンの価数変化反応に伴って充放電を行
う。
An outline of the redox flow battery used in this test is shown in FIG. This battery has a diaphragm 4 that allows the passage of ions.
The cell 1 is divided into a positive electrode cell 1A and a negative electrode cell 1B. Each of the positive electrode cell 1A and the negative electrode cell 1B has a positive electrode 5 and a negative electrode 6 built therein. A positive electrode electrolyte storage tank 2 for supplying and discharging a positive electrode electrolyte is provided in the positive electrode cell 1A.
Connected via 7,8. Similarly, in the negative electrode cell 1B,
Negative electrolyte storage tank for supplying and discharging negative electrolyte
3 are connected via conduits 10, 11. Each electrolyte is
An aqueous solution of ions whose valence changes, such as vanadium ions, is circulated by pumps 9 and 12, and charging / discharging is performed along with the valence change reaction of the ions in the positive electrode 5 and the negative electrode 6.

【0023】本試験において電解液を移動させて両タン
クの電解液量を同量にする方法を説明する。まず、両極
電解液貯蔵用タンクには、同量の電解液を貯蔵してお
く。各タンクの側壁には、液位センサが設けてあり、タ
ンク内の電解液量を把握することができる。この両タン
クをポンプを介して連通管で連結する。そして、充放電
に伴い、各タンクの電解液量が表1に示す量に達した
ら、この連通管を介して充放電に伴って増加した量だけ
を一方のタンクから他方のタンクにポンプを利用して移
動させ、両タンクの電解液量を同量に調整する。表1に
示す両極電解液の量(l)、及び電解液の液量変化の割合
は、同量に調整する前に測定したものである。次に、本
試験において電解液量の調整方法を説明する。本試験で
は、図1に示すポンプ12を調整して、電解液の送液圧力
を調整することで液量を変化させた。具体的には、いず
れの試料も正極電解液の流量を7l/min、送液圧力を0.6
×105Paと等しくし、負極電解液の流量、送液圧力を異
ならせた。正極側の電解液を増加させる試料No1〜4は、
負極電解液の流量を14l/min、送液圧力を1.4×105Paと
し、各極の液量が表1に示す量となるまで変化させた。
負極側の電解液を増加させる試料No6〜8は、負極電解液
の流量を7l/min、送液圧力を0.7×105Paとし、同様に
各極の液量が表1に示す量となるまで変化させた。両極
の電解液を等量に維持する試料5は、負極電解液の流量
を10l/min、送液圧力を1.0×105Paとした。
In this test, a method of moving the electrolytic solution to make the amounts of the electrolytic solution in both tanks the same will be described. First, the same amount of electrolytic solution is stored in the bipolar electrolytic solution storage tank. A liquid level sensor is provided on the side wall of each tank so that the amount of electrolytic solution in the tank can be grasped. Both tanks are connected by a communication pipe via a pump. Then, when the amount of electrolyte in each tank reaches the amount shown in Table 1 with charging and discharging, only the amount increased with charging and discharging from this tank is used from one tank to the other tank through this communicating pipe. And move it to adjust the amount of electrolyte in both tanks to the same amount. The amount (l) of the bipolar electrolytic solution and the rate of change in the electrolytic solution amount shown in Table 1 were measured before adjusting to the same amount. Next, a method for adjusting the amount of electrolyte in this test will be described. In this test, the liquid amount was changed by adjusting the pump 12 shown in FIG. 1 and adjusting the liquid feeding pressure of the electrolytic solution. Specifically, in all the samples, the flow rate of the positive electrode electrolyte was 7 l / min, and the sending pressure was 0.6.
The flow rate of the negative electrode electrolytic solution and the solution sending pressure were made different by making them equal to × 10 5 Pa. Sample Nos. 1 to 4, which increase the electrolytic solution on the positive electrode side,
The flow rate of the negative electrode electrolytic solution was 14 l / min, the solution sending pressure was 1.4 × 10 5 Pa, and the amount of solution in each electrode was changed to the amount shown in Table 1.
For sample Nos. 6 to 8 in which the amount of electrolyte on the negative electrode side is increased, the flow rate of the negative electrode electrolyte is 7 l / min, the liquid sending pressure is 0.7 × 10 5 Pa, and similarly, the liquid amount of each electrode is the amount shown in Table 1. Changed. In sample 5 in which the electrolytes of both electrodes were maintained at the same amount, the flow rate of the negative electrode electrolyte was 10 l / min, and the sending pressure was 1.0 × 10 5 Pa.

【0024】[0024]

【表1】 【table 1】

【0025】試験条件を以下に示す。 (電池仕様) 電極の反応面積:1000cm2×10セル 隔膜:陰イオン(アニオン)交換膜 正極電解液:4価のバナジウムイオン1.7mol/l 硫酸2.6
mol/lの電解液25l 負極電解液:3価のバナジウムイオン1.7mol/l 硫酸2.6
mol/lの電解液25l
The test conditions are shown below. (Battery specifications) Electrode reaction area: 1000 cm 2 × 10 Cell diaphragm: Anion (anion) exchange membrane Cathode electrolyte: Tetravalent vanadium ion 1.7 mol / l Sulfuric acid 2.6
mol / l electrolyte 25l negative electrode electrolyte: trivalent vanadium ion 1.7mol / l sulfuric acid 2.6
25 l mol / l electrolyte

【0026】(本試験における電解液量)上記正極電解液
と上記負極電解液とを混合して、価数バランス3.5価の
電解液を50l用意する。この混合電解液を正極電解液貯
蔵用タンクと負極電解液貯蔵用タンクとにそれぞれ同量
25l入れる。
(Amount of Electrolyte Solution in this Test) The positive electrode electrolyte solution and the negative electrode electrolyte solution are mixed to prepare 50 liters of an electrolyte solution having a valence balance of 3.5. The same amount of this mixed electrolyte is stored in each of the positive and negative electrode electrolyte storage tanks.
Add 25 liters.

【0027】(充電方法)電流密度100mA/cm2で定電流充
電をはじめ、次に上限充電電圧1.60V/セルの条件で開放
電圧1.55V/セルになるまで定電圧充電を行う。
(Charging Method) Constant current charging is started at a current density of 100 mA / cm 2 , and then constant voltage charging is performed under the condition of an upper limit charging voltage of 1.60 V / cell until an open circuit voltage of 1.55 V / cell is reached.

【0028】(放電方法)電流密度100mA/cm2で定電流放
電を行う。下限放電電圧1.0V/セルに達したところで放
電を終了する。
(Discharging method) Constant current discharging is performed at a current density of 100 mA / cm 2 . The discharge is terminated when the lower limit discharge voltage of 1.0 V / cell is reached.

【0029】(評価方法)上記仕様の電池を用いて、充放
電開始後、各タンクの液量が表1に示す液量に変化した
時点で両タンクの電解液量を同量に戻すという操作を繰
り返す。このような充放電と液量調整とを繰り返す運転
を1週間連続して行う。1週間の前後で、電池効率と液エ
ネルギー密度を測定する。1週間連続充放電終了後、ガ
ス(水素及び二酸化炭素)の発生量を測定する。
(Evaluation method) An operation of returning the amount of electrolytic solution in both tanks to the same amount when the amount of liquid in each tank changes to the amount shown in Table 1 after starting charging / discharging using the battery having the above specifications repeat. The operation of repeating such charging / discharging and liquid amount adjustment is continuously performed for one week. Measure the battery efficiency and liquid energy density around one week. After the end of continuous charge / discharge for one week, the amount of gas (hydrogen and carbon dioxide) generated is measured.

【0030】電池効率は、{放電電圧(V)×放電電流(A)
×放電時間(h)}/{充電電圧(V)×充電電流(A)×充電
時間(h)}で表される。
The battery efficiency is {discharge voltage (V) × discharge current (A)
X discharge time (h)} / {charge voltage (V) x charge current (A) x charge time (h)}.

【0031】ガスは正極で二酸化炭素の発生を、負極で
水素の発生量を測定した。ガス分析はガスクロマトグラ
フィー法によって行った。
As for gas, carbon dioxide was generated at the positive electrode and hydrogen was measured at the negative electrode. Gas analysis was carried out by a gas chromatography method.

【0032】試験結果を表2に示す。また、本試験にお
ける電池効率の低下量の評価基準を表3に、同液エネル
ギー密度低下量の評価基準を表4に、同ガス発生量の評
価基準を表5に示す。更に、電解液の液量変化の割合を
示す(正極電解液量-負極電解液量)/{(正極電解液量+負
極電解液量)/2}と電池効率の関係、及び(正極電解液量
-負極電解液量)/{(正極電解液量+負極電解液量)/2}と
液エネルギー密度の関係を図2のグラフに示す。
The test results are shown in Table 2. In addition, Table 3 shows the evaluation criteria for the reduction amount of battery efficiency in this test, Table 4 shows the evaluation criteria for the reduction amount of the same liquid energy density, and Table 5 shows the evaluation criteria for the same gas generation amount. Furthermore, the relationship between the battery efficiency and the ratio of the change in the amount of electrolyte solution (positive electrode electrolyte amount-negative electrode electrolyte amount) / {(positive electrode electrolyte amount + negative electrode electrolyte amount) / 2}, and (positive electrode electrolyte amount amount
The graph of FIG. 2 shows the relationship between the negative electrode electrolytic solution amount) / {(positive electrode electrolytic solution amount + negative electrode electrolytic solution amount) / 2} and the liquid energy density.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【表5】 [Table 5]

【0037】表2及び図2のグラフから明らかなように、
(正極電解液量-負極電解液量)/{(正極電解液量+負極電
解液量)/2}が-0.15未満(-15%未満)、又は+0.17超(+17
%超)となる前に両タンクの電解液の量を同量に戻す操
作を行った試料No3、4及び6は、電池効率及び液エネル
ギー密度が高く、ガスの発生量も少ないことが分かる。
特に、(正極電解液量-負極電解液量)/{(正極電解液量+
負極電解液量)/2}が0超から+0.05以下(0%超から+5%
以下)を超える前に各タンクの電解液を同量に戻した試
料No4は、電池効率及び液エネルギー密度がより高い値
を示し、ガスの発生量も極めて少ない。また、従来は、
電解液を十分に流し、液量を同量に保つように運転する
場合、即ち(正極電解液量-負極電解液量)/{(正極電解
液量+負極電解液量)/2}が0となるように運転する場合
(試料No5)、電池効率が最も優れていると考えられてい
た。しかし、液量変化が0(0%)よりも大きい範囲、より
具体的には0(0%)超から+0.05(+5%)以下の範囲内で両
タンクの液量を同量に戻す操作を行う試料No4の方が好
ましい結果が得られることが分かった。また、液量を同
量に戻す操作を行う試料No4は、この操作を行わない試
料No5と比較してエネルギー密度も優れていた。
As is clear from Table 2 and the graph of FIG.
(Amount of positive electrode electrolyte-amount of negative electrode electrolyte) / {(amount of positive electrode electrolyte + amount of negative electrode electrolyte) / 2} is less than -0.15 (less than -15%) or +0.17 (+17
It can be seen that Sample Nos. 3, 4, and 6 in which the amount of the electrolytic solution in both tanks was returned to the same amount before becoming (more than%)), the cell efficiency and the liquid energy density are high, and the amount of gas generated is small.
In particular, (amount of positive electrode electrolyte-amount of negative electrode electrolyte) / {(amount of positive electrode electrolyte +
Anode electrolyte amount) / 2} is more than 0 to less than +0.05 (more than 0% to + 5%
Sample No. 4 in which the electrolytic solution in each tank was returned to the same amount before exceeding (below), the battery efficiency and the liquid energy density were higher, and the amount of gas generated was extremely small. Also, conventionally,
When operating so as to flow the electrolytic solution sufficiently and maintain the same amount, that is, (amount of positive electrode electrolytic solution-amount of negative electrode electrolytic solution) / {(amount of positive electrode electrolytic solution + amount of negative electrode electrolytic solution) / 2} is 0 When driving so that
(Sample No. 5) was considered to have the best battery efficiency. However, within the range where the liquid volume change is greater than 0 (0%), more specifically, within the range from 0 (0%) to +0.05 (+ 5%) or less, the liquid volumes in both tanks are returned to the same volume. It was found that the sample No. 4 in which the operation was performed gave better results. Further, the sample No. 4 in which the operation for returning the liquid amount to the same amount was performed was superior in energy density to the sample No. 5 in which this operation was not performed.

【0038】本例において、電解液を移動させて両極の
電解液量を同量に調整する機構を具体的に説明する。本
例では、連通管にポンプを設置して正負極各タンクのど
ちらからでも電解液を移動させることが可能な機構を用
いた。図3は、各タンクを連通管で連結した状態を示す
模式図である。正極電解液貯蔵用タンク20及び負極電解
液貯蔵用タンク21とは2本の連通管22及び23とで連結さ
れ、連通管22及び23は、ポンプ24を具える接続管25で連
結されている。
In this example, a mechanism for moving the electrolytic solution to adjust the amounts of the electrolytic solution at both electrodes to the same amount will be specifically described. In this example, a mechanism is used in which a pump is installed in the communication pipe and the electrolytic solution can be moved from either of the positive and negative electrode tanks. FIG. 3 is a schematic diagram showing a state in which each tank is connected by a communication pipe. The positive electrode electrolyte storage tank 20 and the negative electrode electrolyte storage tank 21 are connected by two communication pipes 22 and 23, and the communication pipes 22 and 23 are connected by a connection pipe 25 including a pump 24. .

【0039】この場合、正極電解液貯蔵用タンク20から
負極電解液貯蔵用タンク21に電解液を移動させるには、
バルブ30及びバルブ31を開き、バルブ32及びバルブ33を
閉じ、適宜ポンプ24を用いて行うとよい。一方、負極電
解液貯蔵用タンク21から正極電解液貯蔵用タンク20に電
解液を移動させるには、バルブ32及びバルブ33を開き、
バルブ30及びバルブ31を閉じ、適宜ポンプ24を用いて行
うとよい。この構成により、一方のタンクから他方のタ
ンクへの電解液の移動をより効率よく行うことができ
る。
In this case, in order to move the electrolytic solution from the positive electrode electrolytic solution storage tank 20 to the negative electrode electrolytic solution storage tank 21,
The valves 30 and 31 may be opened, the valves 32 and 33 may be closed, and the pump 24 may be used as appropriate. On the other hand, in order to move the electrolytic solution from the negative electrode electrolytic solution storage tank 21 to the positive electrode electrolytic solution storage tank 20, open the valve 32 and the valve 33,
It is preferable that the valve 30 and the valve 31 are closed and the pump 24 is appropriately used. With this configuration, the electrolytic solution can be more efficiently moved from one tank to the other tank.

【0040】本例では、連通管にポンプ24を設けた例を
示したが、ポンプ24を設けず連通管とバルブのみ設け、
バルブを開くことで重力に従って液が移動するようにし
てもよい。
In this example, the pump 24 is provided in the communication pipe, but the pump 24 is not provided and only the communication pipe and the valve are provided.
The liquid may move according to gravity by opening the valve.

【0041】[0041]

【発明の効果】以上説明したように本発明レドックスフ
ロー電池によれば、充放電に伴う電解液の液量変化の割
合が規定値を超える前に両極の電解液量を同量に戻すこ
とで、従来に比べてガス発生が少なく、かつ電池効率が
高いという優れた効果を奏し得る。また、各タンクにお
いて充放電開始時の電解液量を同量とすることで、余分
な電解液を含むことなく経済的である。
As described above, according to the redox flow battery of the present invention, the amount of electrolytic solution of both electrodes is returned to the same amount before the rate of change in the amount of electrolytic solution due to charging and discharging exceeds the specified value. Further, it is possible to achieve the excellent effects of less gas generation and higher battery efficiency than in the past. In addition, since the amount of the electrolytic solution at the start of charging / discharging is the same in each tank, it is economical without including an extra electrolytic solution.

【図面の簡単な説明】[Brief description of drawings]

【図1】レドックスフロー電池の動作原理を示す説明図
である。
FIG. 1 is an explanatory diagram showing the operating principle of a redox flow battery.

【図2】電解液の液量変化の割合と電池効率の関係、及
び電解液の液量変化の割合と液エネルギー密度の関係を
示すグラフである。
FIG. 2 is a graph showing the relationship between the rate of change in the amount of electrolytic solution and battery efficiency, and the relationship between the rate of change in the amount of electrolytic solution and liquid energy density.

【図3】正極電解液貯蔵用タンクと負極電解液貯蔵用タ
ンクとを連通管で連結した状態を示す模式図である。
FIG. 3 is a schematic view showing a state in which a positive electrode electrolyte solution storage tank and a negative electrode electrolyte solution storage tank are connected by a communication pipe.

【符号の説明】[Explanation of symbols]

1 セル 1A 正極セル 1B 負極セル 2 正極電解液
貯蔵用タンク 3 負極電解液貯蔵用タンク 4 隔膜 5 正極電極 6
負極電極 7、8、10、11 導管 9、12 ポンプ 20 正極電解液貯蔵用タンク 21 負極電解液貯蔵用タ
ンク 22、23 連通管 24 ポンプ 25 接続管 30、31、32、33 バルブ
1 Cell 1A Positive Cell 1B Negative Cell 2 Positive Electrolyte Storage Tank 3 Negative Electrolyte Storage Tank 4 Diaphragm 5 Positive Electrode 6
Negative electrode 7, 8, 10, 11 Conduit 9, 12 Pump 20 Positive electrolyte storage tank 21 Negative electrolyte storage tank 22, 23 Communication pipe 24 Pump 25 Connection pipe 30, 31, 32, 33 Valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荻野 誠司 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 徳田 信幸 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 Fターム(参考) 5H026 AA10 CX04 HH05 RR01 5H027 AA10 BE07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Seiji Ogino             1-3-3 Shimaya, Konohana-ku, Osaka Sumitomo Electric             Ki Industry Co., Ltd. Osaka Works (72) Inventor Nobuyuki Tokuda             3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture             Kansai Electric Power Co., Inc. F term (reference) 5H026 AA10 CX04 HH05 RR01                 5H027 AA10 BE07

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 隔膜で分離される正極及び負極と、前記
正極に循環供給される正極電解液を貯蔵する正極電解液
貯蔵用タンクと、前記負極に循環供給される負極電解液
を貯蔵する負極電解液貯蔵用タンクとを具えるレドック
スフロー電池の運転方法において、 前記各タンクには、充放電の開始時において電解液が同
量貯蔵され、 充放電サイクルの繰り返しに伴い隔膜を通して移動した
電解液の液量変化の割合が-15%以上+17%以下の範囲内
にあるときに両タンクの電解液を同量に戻すことを特徴
とするレドックスフロー電池の運転方法。但し、液量変
化の割合は、充放電の開始時における両電解液の和を2
で割った平均液量に対する正極電解液量から負極電解液
量を引いた液量差の割合とする。
1. A positive electrode and a negative electrode that are separated by a diaphragm, a positive electrode electrolyte storage tank that stores a positive electrode electrolyte solution that is circulated and supplied to the positive electrode, and a negative electrode that stores a negative electrode electrolyte solution that is circulated and supplied to the negative electrode. In a method of operating a redox flow battery comprising a tank for storing an electrolyte solution, in each of the tanks, an equal amount of electrolyte solution is stored at the start of charging / discharging, and the electrolyte solution that has moved through the diaphragm as the charging / discharging cycle is repeated. The method for operating a redox flow battery, which comprises returning the electrolytic solution in both tanks to the same amount when the rate of change in the liquid amount is within the range of -15% to + 17%. However, the rate of change in the liquid volume should be the sum of both electrolytes at the start of charging / discharging.
The ratio is the ratio of the liquid amount difference obtained by subtracting the negative electrode electrolyte amount from the positive electrode electrolyte amount with respect to the average liquid amount divided by.
【請求項2】 液量変化の割合が0%超+5%以下の範囲
内にあるときに両タンクの電解液を同量に戻すことを特
徴とする請求項1に記載のレドックスフロー電池の運転
方法。
2. The redox flow battery according to claim 1, wherein the electrolytic solution in both tanks is returned to the same amount when the rate of change in the liquid amount is within the range of more than 0% and + 5% or less. how to drive.
JP2002052299A 2002-02-27 2002-02-27 Operating method of redox flow battery Expired - Fee Related JP4155745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002052299A JP4155745B2 (en) 2002-02-27 2002-02-27 Operating method of redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002052299A JP4155745B2 (en) 2002-02-27 2002-02-27 Operating method of redox flow battery

Publications (2)

Publication Number Publication Date
JP2003257467A true JP2003257467A (en) 2003-09-12
JP4155745B2 JP4155745B2 (en) 2008-09-24

Family

ID=28664040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002052299A Expired - Fee Related JP4155745B2 (en) 2002-02-27 2002-02-27 Operating method of redox flow battery

Country Status (1)

Country Link
JP (1) JP4155745B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012523103A (en) * 2009-04-06 2012-09-27 24エム・テクノロジーズ・インコーポレイテッド Fuel system using redox flow battery
CN104143646A (en) * 2013-05-09 2014-11-12 中国科学院大连化学物理研究所 Flow energy storage cell or pile running method
KR101491784B1 (en) 2013-11-05 2015-02-23 롯데케미칼 주식회사 Method of operating chemical flow battery
WO2019031101A1 (en) * 2017-08-08 2019-02-14 住友電気工業株式会社 Redox flow battery operating method
WO2019106723A1 (en) * 2017-11-28 2019-06-06 住友電気工業株式会社 Redox flow battery
US11342567B2 (en) 2008-06-12 2022-05-24 Massachusetts Institute Of Technology High energy density redox flow device
US11909077B2 (en) 2008-06-12 2024-02-20 Massachusetts Institute Of Technology High energy density redox flow device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11342567B2 (en) 2008-06-12 2022-05-24 Massachusetts Institute Of Technology High energy density redox flow device
US11909077B2 (en) 2008-06-12 2024-02-20 Massachusetts Institute Of Technology High energy density redox flow device
JP2012523103A (en) * 2009-04-06 2012-09-27 24エム・テクノロジーズ・インコーポレイテッド Fuel system using redox flow battery
CN104143646A (en) * 2013-05-09 2014-11-12 中国科学院大连化学物理研究所 Flow energy storage cell or pile running method
KR101491784B1 (en) 2013-11-05 2015-02-23 롯데케미칼 주식회사 Method of operating chemical flow battery
WO2015068979A1 (en) * 2013-11-05 2015-05-14 롯데케미칼 주식회사 Method for operating redox flow battery
CN105723554A (en) * 2013-11-05 2016-06-29 乐天化学株式会社 Method for operating redox flow battery
JP2016536775A (en) * 2013-11-05 2016-11-24 ロッテ ケミカル コーポレーション Operation method of chemical fluidized battery
EP3067977A4 (en) * 2013-11-05 2017-05-31 Lotte Chemical Corporation Method for operating redox flow battery
US10014545B2 (en) 2013-11-05 2018-07-03 Lotte Chemical Corporation Method for operating redox flow battery
WO2019031101A1 (en) * 2017-08-08 2019-02-14 住友電気工業株式会社 Redox flow battery operating method
US20190198905A1 (en) * 2017-08-08 2019-06-27 Sumitomo Electric Industries, Ltd. METHOD FOR OPERATING REDOX FLOW BATTERY (as amended)
JPWO2019031101A1 (en) * 2017-08-08 2020-07-02 住友電気工業株式会社 How to operate a redox flow battery
US10938054B2 (en) * 2017-08-08 2021-03-02 Sumitomo Electric Industries, Ltd. Method for operating redox flow battery
CN109661741B (en) * 2017-08-08 2021-11-23 住友电气工业株式会社 Method of operating a redox flow battery
JP7038977B2 (en) 2017-08-08 2022-03-22 住友電気工業株式会社 How to operate a redox flow battery
CN109661741A (en) * 2017-08-08 2019-04-19 住友电气工业株式会社 The method for operating redox flow batteries
JPWO2019106723A1 (en) * 2017-11-28 2020-10-08 住友電気工業株式会社 Redox flow battery
WO2019106723A1 (en) * 2017-11-28 2019-06-06 住友電気工業株式会社 Redox flow battery

Also Published As

Publication number Publication date
JP4155745B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
US4956244A (en) Apparatus and method for regenerating electrolyte of a redox flow battery
EP3522281B1 (en) Method and device for recycling electrolyte of flow battery
CN107112567B (en) Assembly for regenerating electrolyte of flow battery and method for regenerating electrolyte of flow battery using same
JP5422083B2 (en) Non-flow redox battery
EP2436080A2 (en) Electrolyte compositions
US11876270B2 (en) Redox-flow battery for energy storage
JP2022535691A (en) Redox flow battery system and methods of manufacture and operation
CN113906167B (en) Control method of hydrogen generation system and hydrogen generation system
CN113061903A (en) Water electrolysis system and control method thereof
JP2003303611A (en) Operating method of redox flow battery
CN115152065A (en) Method for iron pre-formation in redox flow batteries
KR102357651B1 (en) Module system of redox flow battery
JP2003257467A (en) Method of operating redox flow battery
JPH02195657A (en) Electrolyte circulation type secondary battery
WO2019131944A1 (en) Redox flow battery and operation method therefor
JPH07211347A (en) Electrolyte flowing type battery having electrolyte readjusting device
JPH0227668A (en) Battery capacity maintaining method for redox flow battery
JP2003157882A (en) Operation method of redox flow battery
KR20160085113A (en) Module for mixing of electrolyte and method for mixing of electrolyte for flow battery using the same
JP2003157883A (en) Electrolyte regenerating method for vanadium redox battery
JPH01115068A (en) Operation of redox-flow cell
JP2001216995A (en) Electrolyte tank for redox flow battery
JPH01146267A (en) Operation of redox-flow cell
JP2020024889A (en) Fuel cell system and electric vehicle
JP2003208916A (en) Operating method of vanadium redox flow battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4155745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees