JP2003303611A - Operating method of redox flow battery - Google Patents

Operating method of redox flow battery

Info

Publication number
JP2003303611A
JP2003303611A JP2002108507A JP2002108507A JP2003303611A JP 2003303611 A JP2003303611 A JP 2003303611A JP 2002108507 A JP2002108507 A JP 2002108507A JP 2002108507 A JP2002108507 A JP 2002108507A JP 2003303611 A JP2003303611 A JP 2003303611A
Authority
JP
Japan
Prior art keywords
negative electrode
electrolytic solution
tank
electrolyte
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002108507A
Other languages
Japanese (ja)
Inventor
Hiroshige Deguchi
洋成 出口
Nobuyuki Tokuda
信幸 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2002108507A priority Critical patent/JP2003303611A/en
Publication of JP2003303611A publication Critical patent/JP2003303611A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operating method of a redox flow battery that can suppress reduction of battery capacity without adding a new electrolyte from the outside, even if the balance of the valence value is deviated from 3.5. <P>SOLUTION: This is an operating method of a redox flow battery in which an electrolyte of each electrode is supplied for circulation respectively from a positive electrode tank storing a positive electrode electrolyte and a negative electrode tank storing a negative electrode electrolyte to the positive electrode and the negative electrode that are divided by a diaphragm. In particular, when the balance of the valence value of the electrolyte of both electrodes is deviated from 3.5, the electrolyte of one tank is moved to the other tank through a piping. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レドックスフロー
電池の運転方法に関するものである。特に、価数バラン
スが3.5からずれていても、電池容量の低下を抑制する
ことが可能なレドックスフロー電池の運転方法に関する
ものである。
TECHNICAL FIELD The present invention relates to a method for operating a redox flow battery. In particular, the present invention relates to a method for operating a redox flow battery that can suppress a decrease in battery capacity even if the valence balance deviates from 3.5.

【0002】[0002]

【従来の技術】負荷平準化用途や瞬低・停電対策用途な
どにレドックスフロー電池を利用することが提案されて
いる。
2. Description of the Related Art It has been proposed to use a redox flow battery for load leveling applications, voltage sag / blackout countermeasures, and the like.

【0003】特に、バナジウムレドックスフロー電池
は、起電力が高く、エネルギー密度が大きく、電
解液が単一元素系であるため正極電解液と負極電解液と
が混合しても充電によって再生することができると言っ
た多くの利点を有している。
Particularly, the vanadium redox flow battery has a high electromotive force, a large energy density, and since the electrolytic solution is a single element system, it can be regenerated by charging even if the positive electrode electrolytic solution and the negative electrode electrolytic solution are mixed. It has many advantages that it can.

【0004】しかし、このようなレドックスフロー電池
でも、充放電を繰り返すと隔膜を通して電解液中の各種
イオンや溶媒が移動し、正極及び負極の電解液量の増減
が起こる。例えば、アニオン隔膜を用いた場合、通常、
正極側から負極側へ液移りが起こり、電解液量がアンバ
ランスになることで一方の電気容量が著しく低下するこ
とになる。
However, even in such a redox flow battery, various ions and solvents in the electrolytic solution move through the diaphragm when charging and discharging are repeated, and the amount of the electrolytic solution in the positive electrode and the negative electrode increases or decreases. For example, when an anion diaphragm is used,
Liquid transfer occurs from the positive electrode side to the negative electrode side, and the amount of the electrolytic solution becomes unbalanced, so that one of the electric capacities significantly decreases.

【0005】このような液移りに伴う問題を解消するた
め、従来、一定回数の充放電サイクルごとに正極電解液
と負極電解液とを連通あるいは混合して液量調整を行っ
ている。この液量調整に関する従来の技術としては、実
公平4-11340号公報、実開平4-124754号公報、特開平11-
204124号公報、特開2001-167787号公報に記載のものが
知られている。
In order to solve the problem associated with such liquid transfer, conventionally, the liquid amount is adjusted by connecting or mixing the positive electrode electrolytic solution and the negative electrode electrolytic solution every fixed number of charge / discharge cycles. As a conventional technique for adjusting the liquid amount, Japanese Utility Model Publication No. 4-11340, Japanese Utility Model Publication No. 4-124754, and Japanese Patent Application Laid-Open No. 11-
Those described in JP-A-204124 and JP-A-2001-167787 are known.

【0006】また、上記電解液を再生する技術として、
例えば、特開2000-30721号公報に記載のものがある。
Further, as a technique for regenerating the above electrolytic solution,
For example, there is one described in Japanese Patent Laid-Open No. 2000-30721.

【0007】[0007]

【発明が解決しようとする課題】しかし、レドックスフ
ロー電池は、充放電を繰り返すことで、電解液の価数バ
ランスが3.5からずれる、即ち価数バランスが崩れて、
電池容量が低下するという問題がある。
However, in the redox flow battery, by repeating charging and discharging, the valence balance of the electrolytic solution deviates from 3.5, that is, the valence balance collapses,
There is a problem that the battery capacity decreases.

【0008】上記液量調整に関する従来の技術は、いず
れも電解液の価数バランスについて考慮したものでな
く、電解液の価数バランスが崩れた際について、全く検
討していない。
None of the conventional techniques for adjusting the liquid amount described above considers the valence balance of the electrolytic solution, and does not consider when the valence balance of the electrolytic solution is broken.

【0009】一方、上記特開2000-30721号公報には、価
数バランスが崩れた際、外部から新たに電解液を加えて
価数バランスの崩れを回復させる方法が記載されてい
る。しかし、この技術では、新たに電解液を加えるため
の液入れ作業が必要であるだけでなく、タンクの容量に
よっては、必要な電解液量を追加できない恐れもある。
また、この技術では、正極のV4+のモル濃度と負極のV3+
のモル濃度を等しくすることのみを開示しているに過ぎ
ず、追加する電解液量を具体的に開示していない。更
に、追加する電解液を別途用意するため、コストが増加
するという問題もある。
On the other hand, the above-mentioned Japanese Patent Laid-Open No. 2000-30721 describes a method for recovering the balance of the valence balance by newly adding an electrolytic solution from the outside when the balance of the valence balance is lost. However, with this technique, not only the liquid filling work for newly adding the electrolytic solution is necessary, but also the required amount of the electrolytic solution may not be added depending on the capacity of the tank.
Also, with this technology, the molar concentration of V 4+ in the positive electrode and V 3+ in the negative electrode
However, it does not specifically disclose the amount of electrolyte to be added. Furthermore, there is also a problem that the cost increases because an additional electrolytic solution is prepared separately.

【0010】そこで、本発明の主目的は、価数バランス
が3.5からずれていても、外部から新たに電解液を追加
することなく、電池容量の低下を抑制することができる
レドックスフロー電池の運転方法を提供することにあ
る。
Therefore, the main object of the present invention is to operate a redox flow battery capable of suppressing a decrease in battery capacity without adding an electrolytic solution from the outside even if the valence balance deviates from 3.5. To provide a method.

【0011】[0011]

【課題を解決するための手段】本発明は、価数バランス
が3.5からずれた際、一方のタンクの電解液を他方のタ
ンクに移動させて電解液量を調整することで上記目的を
達成する。
The present invention achieves the above object by moving the electrolytic solution of one tank to the other tank and adjusting the amount of electrolytic solution when the valence balance deviates from 3.5. .

【0012】即ち、本発明は、正極電解液を貯蔵する正
極タンク及び負極電解液を貯蔵する負極タンクから各極
の電解液を隔膜で分離される正極及び負極にそれぞれ循
環供給するレドックスフロー電池の運転方法である。そ
して、両極の電解液の価数バランスが3.5からずれた際
に、一方のタンクの電解液を他方のタンクに配管を介し
て移動させる。価数バランスKは、次の数式1により定義
される。両極の電解液にバナジウム溶液を用いた場合を
例に示す。
That is, the present invention relates to a redox flow battery in which the electrolytic solution of each electrode is circulated and supplied from the positive electrode tank storing the positive electrode electrolytic solution and the negative electrode tank storing the negative electrode electrolytic solution to the positive electrode and the negative electrode separated by the diaphragm. It is a driving method. Then, when the valence balance of the electrolytic solutions of both electrodes deviates from 3.5, the electrolytic solution of one tank is moved to the other tank via a pipe. The valence balance K is defined by Equation 1 below. An example is shown in which a vanadium solution is used as the electrolytic solution for both electrodes.

【0013】[0013]

【数2】 [Equation 2]

【0014】上記数式1で求めた価数バランスKが3.5で
ある場合、電池容量が最も大きくなる。この価数バラン
スは、電池反応以外に生じるガス反応などの副反応や酸
素の侵入などによって消費される電気量が正極と負極と
で異なると崩れる。例えば、副反応で消費される電気量
が負極側<正極側であれば価数バランスは3.0側にず
れ、負極側>正極側であれば価数バランスは4.0側にず
れる。その他、事故などにより電解液が流出することな
どでも崩れる。従来、価数バランスが3.5からずれて
も、そのまま運転を続けており、電池容量の低下を抑制
することができなかった。また、このような電池容量の
低下を抑制する方法としては、特開2000-30721号公報に
記載されているように外部から新たに電解液を追加して
価数バランスの崩れを回復させるしかなかった。
When the valence balance K calculated by the above mathematical formula 1 is 3.5, the battery capacity becomes maximum. This valence balance is broken when the positive electrode and the negative electrode differ in the amount of electricity consumed by side reactions such as gas reactions other than battery reactions and the intrusion of oxygen. For example, if the amount of electricity consumed in the side reaction is negative electrode side <positive electrode side, the valence balance shifts to 3.0 side, and if negative electrode side> positive electrode side, the valence balance shifts to 4.0 side. It also collapses when the electrolyte flows out due to an accident. Conventionally, even if the valence balance deviates from 3.5, the operation is continued as it is, and the decrease in battery capacity cannot be suppressed. In addition, as a method of suppressing such a decrease in battery capacity, as described in JP 2000-30721 A, there is no choice but to add a new electrolytic solution from the outside to recover the collapse of the valence balance. It was

【0015】ここで、価数バランスの崩れによる電池容
量の減少を一定限度内で許容して運転することも考えら
れる。具体的には、価数バランスが3.5のときをベスト
として、電池容量の減少や副反応などが許容限度内とな
るように価数バランスの許容範囲を決めて運転するので
ある。しかし、この運転方法は、電池容量の減少をある
程度許容するもので、電池容量の低下を積極的に抑える
ものではない。また、この運転方法では、価数バランス
を規定の許容範囲内に保持するために保守・管理などの
手間がかかるだけでなく、再生プラントコストなども必
要となってコスト高になる恐れもある。
[0016] Here, it is also conceivable to allow the battery capacity to decrease within a certain limit due to the loss of the valence balance, and to operate the battery. Specifically, when the valence balance is 3.5, it is best to determine the allowable range of the valence balance so that the decrease in battery capacity and side reactions are within the allowable limits. However, this operation method allows the decrease of the battery capacity to some extent, and does not positively suppress the decrease of the battery capacity. In addition, this operation method not only requires maintenance and management in order to maintain the valence balance within a prescribed allowable range, but also requires a cost for a remanufacturing plant, which may increase the cost.

【0016】そこで、本発明者らは、上記の問題を解決
するべく種々検討した結果、以下の知見を得ることによ
り本発明を規定するものである。 充放電の繰り返しによる液移りが生じても価数バラ
ンスが変化しない。 価数バランスの崩れと電池容量とには、理論的な関
係、具体的には、価数バランスによって、電池容量がピ
ークとなる際の負極電解液量比が異なるという関係があ
る。 上記の関係から、後述するように価数バランスが3.
5からずれていても、価数バランスが3.5のときの電池容
量とほぼ同等の電池容量を保持できる、或いは電池容量
の低下を抑制することが十分に可能である。
Therefore, the present inventors define the present invention by obtaining the following knowledge as a result of various studies to solve the above problems. Even if liquid transfer occurs due to repeated charging and discharging, the valence balance does not change. There is a theoretical relationship between the breakage of the valence balance and the battery capacity, specifically, the relationship that the negative electrode electrolyte amount ratio at the time when the battery capacity reaches a peak varies depending on the valence balance. From the above relationship, the valence balance is 3.
Even if it deviates from 5, it is possible to maintain a battery capacity almost equal to the battery capacity when the valence balance is 3.5, or it is possible to sufficiently suppress the decrease in battery capacity.

【0017】これらの知見に基づき、本発明は、上記の
ように副反応などが生じることで価数バランスが3.5か
らずれた際、従来のように価数バランスを3.5に回復さ
せるのではなく、価数バランスは3.5からずれた状態の
ままにして変化させず、配管によりタンク内の電解液を
移動して電解液量を変化させることで、電池容量の低下
を抑制する。なお、負極電解液量比とは、両極の電解液
量の平均に対する負極電解液量の割合であり、下記の数
式2で表される。
Based on these findings, the present invention does not restore the valence balance to 3.5 as in the conventional case when the valence balance deviates from 3.5 due to the side reaction as described above. The valence balance remains deviated from 3.5 and is not changed, and the electrolytic solution in the tank is moved by piping to change the amount of electrolytic solution, thereby suppressing the decrease in battery capacity. The negative electrode electrolyte solution amount ratio is the ratio of the negative electrode electrolyte solution amount to the average of the electrolyte solution amounts of both electrodes, and is represented by the following mathematical formula 2.

【0018】[0018]

【数3】 [Equation 3]

【0019】以下、本発明をより詳しく説明する。本発
明において電解液の移動は、価数バランスに対して電池
容量の低下が抑制できるように行う。特に、電解液の価
数バランスが3.5を上回った(正に崩れた)場合、負極電
解液を正極タンクに移動させ、価数バランスが3.5を下
回った(負に崩れた)場合、正極電解液を負極タンクに移
動させることが好ましい。価数バランスが3.5を上回る
場合、後述するように電池容量がピークとなる際の負極
電解液量比は、1よりも小さい傾向がある。従って、負
極電解液量比を1より小さい状態にするために、負極電
解液を正極タンクに移動させ、正極電解液を増加させ
る。逆に、価数バランスが3.5を下回る場合、同様に電
池容量がピークとなる際の負極電解液量比は、1よりも
大きい傾向がある。従って、負極電解液量比を1より大
きい状態にするために、正極電解液を負極タンクに移動
させ、負極電解液を増加させる。
The present invention will be described in more detail below. In the present invention, the movement of the electrolytic solution is performed so that the decrease in the battery capacity can be suppressed with respect to the valence balance. In particular, when the valence balance of the electrolyte solution exceeds 3.5 (disrupted to the positive), the negative electrode electrolyte solution is moved to the positive electrode tank, and when the valence balance falls below 3.5 (disrupted to the negative), the positive electrode electrolyte solution Is preferably transferred to the negative electrode tank. When the valence balance exceeds 3.5, the ratio of the amount of the negative electrode electrolyte when the battery capacity reaches its peak tends to be smaller than 1 as described later. Therefore, in order to make the amount ratio of the negative electrode electrolyte solution smaller than 1, the negative electrode electrolyte solution is moved to the positive electrode tank and the positive electrode electrolyte solution is increased. On the contrary, when the valence balance is less than 3.5, the amount ratio of the negative electrode electrolyte at the time when the battery capacity reaches a peak also tends to be larger than 1. Therefore, in order to make the amount ratio of the negative electrode electrolyte solution larger than 1, the positive electrode electrolyte solution is moved to the negative electrode tank to increase the negative electrode electrolyte solution.

【0020】より好ましくは、価数バランスに対して電
池容量が最大となる、即ちピーク値をとる負極電解液量
比になるように電解液を移動させることである。具体的
には、各タンクの電解液量が下記の数式3、数式4を満た
す量となるまで電解液の移動を行うとよい。
More preferably, the electrolytic solution is moved so that the battery capacity becomes maximum with respect to the valence balance, that is, the negative electrode electrolytic solution amount ratio takes a peak value. Specifically, it is advisable to move the electrolytic solution until the amount of the electrolytic solution in each tank becomes the amount that satisfies the following formulas 3 and 4.

【0021】[0021]

【数4】 [Equation 4]

【0022】後述するように価数バランスKが3.5を上回
っていても、電池容量がピークとなる際の負極電解液量
比(Rmax)より実際の負極電解液量比(R)が小さい場合
や、逆に、Kが3.5を下回っていても、RmaxよりRが大き
い場合もあり得る。前者の場合、正極電解液を負極タン
クに移動させ、後者の場合、負極電解液を正極タンクに
移動させることが好ましい。従って、電池容量の低下を
より確実に抑制するには、上記数式3及び4に規定する電
解液量になるように電解液を移動させることが好まし
い。
As will be described later, even when the valence balance K exceeds 3.5, the actual negative electrode electrolyte solution amount ratio (R) is smaller than the negative electrode electrolyte solution amount ratio (Rmax) when the battery capacity reaches a peak, Conversely, R may be larger than Rmax even when K is less than 3.5. In the former case, it is preferable to move the positive electrode electrolytic solution to the negative electrode tank, and in the latter case, it is preferable to move the negative electrode electrolytic solution to the positive electrode tank. Therefore, in order to suppress the decrease in the battery capacity more reliably, it is preferable to move the electrolytic solution so that the amount of the electrolytic solution is defined by the above mathematical expressions 3 and 4.

【0023】本発明において、タンク内にある電解液の
移動は、電解液を電池システムから取り出して行うので
はなく、電池に具える配管を用いて行う。このような配
管として、例えば、電解液の供給排出用の配管が挙げら
れる。供給排出用配管を用いる場合は、アニオン交換膜
もしくはカチオン交換膜を用い、電池を作動させること
で電解液を移動させることができる。或いは、一方の送
液圧力を大きく、他方の送液圧力を小さくするなどの電
解液の送液圧力を変化させることでも移動させることが
できる。また、配管は、別途電解液移動用に設けてもよ
く、例えば、両タンクを連通管により接続し、この連通
管を用いることが好ましい。そして、電解液の移動は、
この連通管を介して行う。連通管には、バルブを設けて
おくことが好ましい。また、連通管には電解液を移動さ
せ易いようにポンプなどを具えておいてもよい。ポンプ
を用いずに連通管を介して電解液を移動させる方法とし
て、例えば、各タンク内の電解液の液面に高低差を設け
て重力によって移動させたりすることなどが挙げられ
る。電解液の液面に高低差を設けるには、一方のタンク
の底面積を他方のタンクの底面積よりも小さくしてもよ
い。また、一方のタンク内に錘材を収納させておいても
よい。錘材は、例えば、水やおもりなどを入れた樹脂製
タンクやゴム製タンク、プラスチックライニングしたコ
ンクリート塊など、タンク底部に沈められるようにした
ものが好ましい。その他、タンクの容積を変化できるゴ
ム製タンクなどを用いることなどが挙げられる。
In the present invention, the movement of the electrolytic solution in the tank is carried out not by taking the electrolytic solution out of the battery system, but by using the piping provided in the battery. As such a pipe, for example, a pipe for supplying and discharging an electrolytic solution can be cited. When the supply / discharge pipe is used, an anion exchange membrane or a cation exchange membrane is used, and the electrolytic solution can be moved by operating the battery. Alternatively, it can also be moved by changing the liquid supply pressure of the electrolyte such as increasing the liquid supply pressure on one side and decreasing the liquid supply pressure on the other side. Further, the pipe may be separately provided for moving the electrolytic solution. For example, it is preferable to connect both tanks by a communication pipe and use this communication pipe. And the movement of the electrolyte is
This is done via this communication pipe. A valve is preferably provided in the communication pipe. In addition, a pump or the like may be provided in the communication pipe so that the electrolytic solution can be easily moved. As a method of moving the electrolytic solution through the communication pipe without using a pump, for example, there is a method of moving the electrolytic solution by gravity by providing a height difference on the liquid level of the electrolytic solution in each tank. In order to provide a height difference in the liquid level of the electrolytic solution, the bottom area of one tank may be smaller than the bottom area of the other tank. Further, the weight member may be stored in one of the tanks. The weight material is preferably a resin tank or rubber tank containing water, a weight, or the like, which can be submerged at the bottom of the tank, such as a plastic-lined concrete block. In addition, it is possible to use a rubber tank or the like that can change the volume of the tank.

【0024】本発明運転方法は、バナジウム溶液を電解
液とするバナジウムレドックスフロー電池だけでなく、
正極電解液にFe3+/Fe2+溶液、負極電解液にCr2+/Cr3+
液を用いたものや、正極電解液にBr2/Br-溶液、負極電
解液にCr2+/Cr3+溶液を用いたレドックスフロー電池な
どに最適である。
The operation method of the present invention is not limited to the vanadium redox flow battery using a vanadium solution as an electrolytic solution.
Fe 3+ / Fe 2+ solution for positive electrode electrolyte, Cr 2+ / Cr 3+ solution for negative electrode electrolyte, Br 2 / Br - solution for positive electrode electrolyte, Cr 2+ / for negative electrode electrolyte It is most suitable for redox flow batteries using Cr 3+ solution.

【0025】正極電解液にFe3+/Fe2+溶液、負極電解液
にCr2+/Cr3+溶液を用いたレドックスフロー電池の場
合、価数バランスKは、以下の値から求めるとよい。 NP5:正極タンク内の3価鉄イオン(Fe3+)のモル濃度(mol
/l) Nn5:負極タンク内の3価鉄イオン(Fe3+)のモル濃度(mol
/l) NP4:正極タンク内の2価鉄イオン(Fe2+)のモル濃度(mol
/l) Nn4:負極タンク内の2価鉄イオン(Fe2+)のモル濃度(mol
/l) NP3:正極タンク内の3価クロムイオン(Cr3+)のモル濃度
(mol/l) Nn3:負極タンク内の3価クロムイオン(Cr3+)のモル濃度
(mol/l) NP2:正極タンク内の2価クロムイオン(Cr2+)のモル濃度
(mol/l) Nn2:負極タンク内の2価クロムイオン(Cr2+)のモル濃度
(mol/l)
In the case of a redox flow battery using a Fe 3+ / Fe 2+ solution as the positive electrode electrolyte and a Cr 2+ / Cr 3+ solution as the negative electrode electrolyte, the valence balance K may be calculated from the following values. . N P5 : Molar concentration (mol 3 ) of trivalent iron ion (Fe 3+ ) in the positive electrode tank
/ l) N n5 : molar concentration of ferric ion (Fe 3+ ) in the anode tank (mol
/ l) N P4 : Molar concentration of ferrous iron (Fe 2+ ) in the positive electrode tank (mol
/ l) N n4 : Molar concentration of ferrous ion (Fe 2+ ) in the negative electrode tank (mol
/ l) N P3 : Molar concentration of trivalent chromium ion (Cr 3+ ) in the positive electrode tank
(mol / l) N n3 : molar concentration of trivalent chromium ion (Cr 3+ ) in the negative electrode tank
(mol / l) N P2 : Molar concentration of divalent chromium ion (Cr 2+ ) in the positive electrode tank
(mol / l) N n2 : Molar concentration of divalent chromium ion (Cr 2+ ) in the negative electrode tank
(mol / l)

【0026】一方、正極電解液にBr2/Br-溶液、負極電
解液にCr2+/Cr3+溶液を用いたレドックスフロー電池の
場合、価数バランスKは、以下の値から求めるとよい。 NP5:正極タンク内の臭素(Br2)のモル濃度×2(mol/l) Nn5:負極タンク内の臭素(Br2)のモル濃度×2(mol/l) NP4:正極タンク内の臭素イオン(Br-)のモル濃度(mol/
l) Nn4:負極タンク内の臭素イオン(Br-)のモル濃度(mol/
l) NP3:正極タンク内の3価クロムイオン(Cr3+)のモル濃度
(mol/l) Nn3:負極タンク内の3価クロムイオン(Cr3+)のモル濃度
(mol/l) NP2:正極タンク内の2価クロムイオン(Cr2+)のモル濃度
(mol/l) Nn2:負極タンク内の2価クロムイオン(Cr2+)のモル濃度
(mol/l)
On the other hand, in the case of a redox flow battery using a Br 2 / Br solution as the positive electrode electrolyte and a Cr 2+ / Cr 3+ solution as the negative electrode electrolyte, the valence balance K may be obtained from the following value. . N P5 : Molar concentration of bromine (Br 2 ) in the positive electrode tank × 2 (mol / l) N n5 : Molar concentration of bromine (Br 2 ) in the negative electrode tank × 2 (mol / l) N P4 : In the positive electrode tank bromine ion (Br -) molar (mol /
l) N n4: bromide ions in the negative electrode in the tank (Br - molar) (mol /
l) N P3 : molar concentration of trivalent chromium ion (Cr 3+ ) in the positive electrode tank
(mol / l) N n3 : molar concentration of trivalent chromium ion (Cr 3+ ) in the negative electrode tank
(mol / l) N P2 : Molar concentration of divalent chromium ion (Cr 2+ ) in the positive electrode tank
(mol / l) N n2 : Molar concentration of divalent chromium ion (Cr 2+ ) in the negative electrode tank
(mol / l)

【0027】[0027]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。価数バランスを変化させて、価数バランスに対す
る電池容量と負極電解液量比との関係を調べてみた。ま
ず、本実施例に用いたバナジウムレドックスフロー電池
の概要を説明する。図1は、レドックスフロー電池の概
要を示す説明図、図2は正極タンクと負極タンクとを連
通管で接続した状態を示す模式図である。図1では、両タ
ンクを接続する連通管を省略しており、図2では、セル
を省略して両タンクの接続状態のみを示す。この電池
は、イオンが通過できる隔膜4で正極セル1Aと負極セル1
Bとに分離されたセル1を具える。正極セル1Aと負極セル
1Bの各々には正極電極5と負極電極6とを内蔵している。
正極セル1Aには、正極電解液を供給及び排出する正極タ
ンク2が導管(配管)7、8を介して接続されている。同様
に負極セル1Bには、負極電解液を供給及び排出する負極
タンク3が導管(配管)10、11を介して接続されている。
各電解液は、価数が変化するバナジウムイオンの水溶液
を用い、ポンプ9、12で循環させ、正極電極5及び負極電
極6におけるイオンの価数変化反応に伴って充放電を行
う。本例において、正極タンク2と負極タンク3とは、一
方のタンクから他方のタンクに電解液を移動させるため
の連通管20、21(図2参照)で接続している。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. The valence balance was changed and the relationship between the battery capacity and the negative electrode electrolyte amount ratio with respect to the valence balance was examined. First, an outline of the vanadium redox flow battery used in this example will be described. FIG. 1 is an explanatory diagram showing an outline of a redox flow battery, and FIG. 2 is a schematic diagram showing a state in which a positive electrode tank and a negative electrode tank are connected by a communication pipe. In FIG. 1, the communication pipe that connects both tanks is omitted, and in FIG. 2, the cells are omitted and only the connected state of both tanks is shown. This battery consists of a positive electrode cell 1A and a negative electrode cell 1 with a diaphragm 4 that allows the passage of ions.
It comprises a cell 1 separated into B and. Positive cell 1A and negative cell
Each of 1B has a positive electrode 5 and a negative electrode 6 built therein.
A positive electrode tank 2 for supplying and discharging a positive electrode electrolytic solution is connected to the positive electrode cell 1A via conduits (pipes) 7 and 8. Similarly, a negative electrode tank 3 for supplying and discharging a negative electrode electrolytic solution is connected to the negative electrode cell 1B via conduits (pipes) 10 and 11.
As each electrolytic solution, an aqueous solution of vanadium ions whose valence changes is circulated by pumps 9 and 12, and charging / discharging is performed along with the valence change reaction of the ions in the positive electrode 5 and the negative electrode 6. In this example, the positive electrode tank 2 and the negative electrode tank 3 are connected by communication pipes 20 and 21 (see FIG. 2) for moving the electrolytic solution from one tank to the other tank.

【0028】次に、価数バランスの測定方法を説明す
る。価数バランスKは、先述の数式1により求めた。数式
1の規定値である正極電解液量AP(l)、負極電解液量A
n(l)は、各タンク2、3に設けた液面計や液量計などの液
量測定計27によって測定する。同様に両極の各価バナジ
ウムイオン(V5+、V4+、V3+、V2+)のモル濃度NP5〜NP2(m
ol/l)、Nn5〜Nn2(mol/l)は、オフラインで電解液を分析
したり、自然電位測定などで測定する。
Next, a method of measuring the valence balance will be described. The valence balance K was calculated by the above-mentioned mathematical formula 1. Formula
Positive electrode electrolyte amount A P (l), negative electrode electrolyte amount A which is the specified value of 1
n (l) is measured by a liquid level meter 27 such as a liquid level gauge or a liquid level meter provided in each tank 2, 3. Similarly, the molar concentration of each valence vanadium ion (V 5+ , V 4+ , V 3+ , V 2+ ) at both electrodes N P5 to N P2 (m
ol / l) and N n5 to N n2 (mol / l) are measured by analyzing the electrolytic solution off-line or by measuring the self-potential.

【0029】本例で用いた電解液は、正極電解液がV(4
価)/V(5価)の硫酸水溶液であり、負極負極液がV(3価)
/V(2価)の硫酸水溶液である。以下に実験開始時の各価
バナジウムイオンのモル濃度、各極電解液量を示す。
In the electrolytic solution used in this example, the positive electrode electrolytic solution was V (4
Value) / V (5 values) sulfuric acid aqueous solution, the negative electrode negative electrode liquid is V (3 values)
/ V (divalent) sulfuric acid aqueous solution. The molar concentration of each valent vanadium ion and the amount of each electrolyte solution at the start of the experiment are shown below.

【0030】 (正極電解液) (負極電解液) AP: 3(l) An:3(l) NP5: 0(mol/l) Nn5:0(mol/l) NP4: 2(mol/l) Nn4:0(mol/l) NP3: 0(mol/l) Nn3:2(mol/l) NP2: 0(mol/l) Nn2:0(mol/l)(Positive Electrolyte) (Negative Electrolyte) A P : 3 (l) A n : 3 (l) N P5 : 0 (mol / l) N n5 : 0 (mol / l) N P4 : 2 ( mol / l) N n4 : 0 (mol / l) N P3 : 0 (mol / l) N n3 : 2 (mol / l) N P2 : 0 (mol / l) N n2 : 0 (mol / l)

【0031】上記電解液量を調整することで価数バラン
スを変化させて、その価数バランスに対する電池容量及
び負極電解液量比Rを調べてみた。図3にその結果を示
す。図3のグラフは、価数バランス3.45、3.50、3.55に
対して、負極電解液量比Rを0.88〜1.12に変化させた際
の電池容量を表したものである。負極電解液量比Rは、
先述の数式2より求めた。図3の電池容量は、価数バラン
ス3.5、負極電解液量比Rが1のときを100%として相対な
割合を示した。
The valence balance was changed by adjusting the amount of the electrolyte solution, and the battery capacity and the ratio R of the negative electrode electrolyte solution to the valence balance were examined. Figure 3 shows the results. The graph of FIG. 3 shows the battery capacities when the negative electrode electrolyte volume ratio R is changed from 0.88 to 1.12. For the valence balances 3.45, 3.50 and 3.55. The negative electrode electrolyte volume ratio R is
It was calculated from the above-mentioned formula 2. The battery capacity in FIG. 3 shows a relative ratio with the valence balance of 3.5 and the negative electrode electrolyte amount ratio R of 1 as 100%.

【0032】図3に示すように、価数バランスKによっ
て、電池容量が最大となる負極電解液量比Rが異なるこ
とが分かる。例えば、価数バランスKが3.55の場合、負
極電解液量比Rが1より小さい(R=0.94)のとき、電池容
量がピークとなっているのに対し、価数バランスKが3.4
5の場合は、負極電解液量比Rが1より大きい(R=1.06)と
き、電池容量がピークとなっている。この結果から、価
数バランスを3.5に回復させなくても、電解液を移動さ
せて電解液量を調整することで、電池容量を改善できる
ことが予想される。例えば、価数バランスKが3.55の場
合、負極電解液を正極タンクに移動して正極電解液量を
増やすことで、同じ電池電圧での正極の充電状態を下
げ、負極の充電状態を上げることができる。仮に、電解
液を移動させる前の電解液量が等しければ、電池充電末
に正極ネックで、電池放電末に負極ネックで、電池容量
は、価数バランス3.5の場合よりも小さくなる。しか
し、本発明では、電解液を移動させ電解液量を調整する
ことで、価数バランス3.5の場合とほぼ同じ電池容量が
得られる。
As shown in FIG. 3, it can be seen that the negative electrode electrolyte amount ratio R at which the battery capacity is maximized differs depending on the valence balance K. For example, when the valence balance K is 3.55, when the negative electrode electrolyte volume ratio R is smaller than 1 (R = 0.94), the battery capacity peaks, while the valence balance K is 3.4.
In the case of 5, the battery capacity has a peak when the negative electrode electrolyte amount ratio R is larger than 1 (R = 1.06). From this result, it is expected that the battery capacity can be improved by moving the electrolytic solution and adjusting the amount of the electrolytic solution without recovering the valence balance to 3.5. For example, when the valence balance K is 3.55, it is possible to lower the charge state of the positive electrode and increase the charge state of the negative electrode at the same battery voltage by moving the negative electrode electrolyte solution to the positive electrode tank and increasing the amount of the positive electrode electrolyte solution. it can. If the amount of the electrolytic solution before the transfer of the electrolytic solution is equal, the battery capacity becomes smaller than that in the case where the valence balance is 3.5 because of the positive electrode neck after the battery charging and the negative electrode neck after the battery discharging. However, in the present invention, by moving the electrolytic solution and adjusting the amount of the electrolytic solution, almost the same battery capacity as in the case of the valence balance of 3.5 can be obtained.

【0033】また、図3から、電解液の価数バランスKが
3.5を上回った場合、負極電解液を正極タンクに移動さ
せて、負極電解液量比Rを1より小さくすると、電池容量
が最大となる傾向にあることが分かる。また、価数バラ
ンスKが3.5を下回った場合、正極電解液を負極タンクに
移動させて、負極電解液量比Rを1より大きくすると、電
池容量が最大となる傾向にあることが分かる。
From FIG. 3, the valence balance K of the electrolytic solution is
It can be seen that when the value exceeds 3.5, the battery capacity tends to be maximum when the negative electrode electrolyte solution is moved to the positive electrode tank and the negative electrode electrolyte solution amount ratio R is made smaller than 1. Further, it can be seen that when the valence balance K is less than 3.5, the battery capacity tends to be maximized when the positive electrode electrolyte solution is moved to the negative electrode tank and the negative electrode electrolyte solution amount ratio R is made larger than 1.

【0034】上記の結果に加えて、各価数バランス(K)
において電池容量が最大となる負極電解液量比Rmaxを求
めた。その結果を図4に示す。図4のグラフは、各価数バ
ランスに対して、電池容量が最大となる際の負極電解液
量比Rmaxを示すもので、活物質などの利用率が高いケー
ス1(70%、約16kWh/m3)と、利用率が低いケース2(40
%、約10kWh/m3)の二つのケースについて調べた結果で
ある。
In addition to the above results, each valence balance (K)
In, the negative electrode electrolyte amount ratio Rmax that maximizes the battery capacity was obtained. The results are shown in Fig. 4. The graph in Fig. 4 shows the negative electrode electrolyte volume ratio Rmax when the battery capacity is maximized for each valence balance, and Case 1 (70%, approximately 16kWh / m 3 ) and low utilization rate 2 (40
%, About 10kWh / m 3 ).

【0035】図4に示すように、価数バランスKが大きく
なるほど、電池容量が最大となる負極電解液量比Rmaxが
小さくなる傾向にあることが分かる。従って、電解液の
移動は、以下のように行うと、電池容量の低下をより抑
制できることが分かる。
As shown in FIG. 4, it can be seen that the larger the valence balance K, the smaller the negative electrode electrolyte volume ratio Rmax at which the battery capacity is maximized. Therefore, it is understood that the movement of the electrolytic solution can be suppressed more effectively by decreasing the battery capacity as follows.

【0036】(1) 両極の電解液量、各価バナジウムイ
オンのモル濃度を測定し、価数バランスKを算出する。 (2) 算出した価数バランスKに対して、この図4に示す
グラフから電池容量が最大となる負極電解液量比Rmaxを
求める。 (3) 負極電解液量比Rmaxを満たすように、即ち、電解
液を移動させた後の正極電解液量An'が先述の数式3、同
負極電解液量Ap'が同数式4を満たすように電解液の移動
を行う。
(1) The valence balance K is calculated by measuring the amount of the electrolytic solution on both electrodes and the molar concentration of each valent vanadium ion. (2) With respect to the calculated valence balance K, the negative electrode electrolyte amount ratio Rmax that maximizes the battery capacity is obtained from the graph shown in FIG. (3) so that the negative electrode electrolyte solution amount ratio Rmax is satisfied, that is, the positive electrode electrolyte solution amount An ′ after moving the electrolyte solution is the above-mentioned formula 3, and the same negative electrode electrolyte solution amount Ap ′ is such that the same formula 4 is satisfied. Then, move the electrolyte.

【0037】次に、図1、2に基づく両タンクを連通管で
接続したバナジウムレドックスフロー電池を用いて、電
解液の価数バランスが3.5からずれた際、電解液を移動
させて負極電解液量比Rを調整した場合の価数バランス
と電池容量の関係を調べてみた。比較として、負極電解
液量比Rを1に保った(正極電解液量:負極電解液量=1:
1に保った)場合の価数バランスと電池容量との関係を調
べてみた(従来の技術)。その結果を図5、6に示す。図5
のグラフは、活物質などの利用率が高いケース(70%、
約16kWh/m3):ケース1、図6のグラフは、利用率が低い
ケース(40%、約10kWh/m3):ケース2を示す。図5及び6
の電池容量は、価数バランス3.5、負極電解液量比Rが1
のときを100%として相対な割合を示した。
Next, using a vanadium redox flow battery in which both tanks based on FIGS. 1 and 2 were connected by a communication tube, when the valence balance of the electrolyte solution deviated from 3.5, the electrolyte solution was moved to move the negative electrode electrolyte solution. The relationship between the valence balance and the battery capacity when the volume ratio R was adjusted was examined. For comparison, the negative electrode electrolytic solution amount ratio R was maintained at 1 (positive electrode electrolytic solution amount: negative electrode electrolytic solution amount = 1:
The relationship between the valence balance and the battery capacity when kept at 1) was examined (conventional technology). The results are shown in FIGS. Figure 5
The graph shows the case where the utilization rate of active materials is high (70%,
Approximately 16kWh / m 3 ): Case 1, and the graph in Fig. 6 shows the case with low utilization (40%, about 10kWh / m 3 ): Case 2. Figures 5 and 6
Has a valence balance of 3.5 and a negative electrode electrolyte volume ratio R of 1
The relative ratio was shown by setting the value to 100%.

【0038】図5及び6に示すように、電解液の移動を行
わない従来の技術では、電池容量を90%以上に保つため
には、いずれのケースも価数バランスを3.45〜3.55程度
の範囲に保たなければならない。これに対し、電解液を
移動させて負極電解液量比Rを調整する本発明では、ケ
ース1の場合、価数バランスを3.35〜3.7程度の範囲に保
てば電池容量を90%以上に保つことができる。特に、ケ
ース2の場合では、より広い範囲(3.3〜3.8程度の範囲)
で電池容量を90%以上に保つことができる。更に、鉛電
池などの寿命として判断される電池容量80%でよければ
3.2〜3.8程度に維持すればよい。
As shown in FIGS. 5 and 6, in the conventional technique in which the electrolytic solution is not moved, in order to keep the battery capacity at 90% or more, the valence balance is in the range of 3.45 to 3.55 in each case. Must be kept at. On the other hand, in the present invention in which the electrolytic solution is moved to adjust the negative electrode electrolytic solution amount ratio R, in the case of Case 1, if the valence balance is maintained in the range of 3.35 to 3.7, the battery capacity is maintained at 90% or more. be able to. Especially in case 2, a wider range (range of about 3.3 to 3.8)
Can keep the battery capacity above 90%. Furthermore, if the battery capacity is 80%, which is judged as the life of lead batteries,
It should be maintained at about 3.2 to 3.8.

【0039】このように本発明は、価数バランスが3.5
からずれる原因となる副反応、酸素侵入や電解液の成分
の精度などに対する要求がはるかにゆるくなり、容易か
つ安価に電池容量の低下の抑制を実現することができ
る。
As described above, the present invention has a valence balance of 3.5.
The requirements for side reactions, oxygen invasion, accuracy of the components of the electrolyte solution, etc., which cause deviations, become much looser, and the reduction in battery capacity can be easily and inexpensively realized.

【0040】次に、一方のタンクから他方のタンクに電
解液を移動させるための具体的な構造をより詳しく説明
する。図2に示すように両タンク2、3は、正極タンク2か
ら負極タンク3に、或いは負極タンク3から正極タンク2
に電解液を移動させることができるように連通管20、21
によって直接接続されている。本例では、正極電解液の
液面と負極電解液の液面とが一致していなくても、重力
に逆らって電解液を移動できるように配管経路にポンプ
22を設けている。また、各連通管20、21には、バルブ23
〜26を設けている。
Next, a specific structure for moving the electrolytic solution from one tank to the other tank will be described in more detail. As shown in FIG. 2, the two tanks 2 and 3 are either the positive tank 2 to the negative tank 3 or the negative tank 3 to the positive tank 2.
Communication pipes 20, 21 so that the electrolyte can be moved to
Are directly connected by. In this example, even if the liquid surface of the positive electrode electrolyte and the liquid surface of the negative electrode electrolyte do not match, a pump is installed in the piping path so that the electrolyte can be moved against gravity.
22 are provided. In addition, a valve 23 is attached to each communication pipe 20, 21.
~ 26 are provided.

【0041】正極タンク2から負極タンク3に正極電解液
を移動させるには、バルブ23及びバルブ24を開き、バル
ブ25及びバルブ26を閉じ、適宜ポンプ22を用いて行うと
よい。一方、負極タンク3から正極タンク2に負極電解液
を移動させるには、バルブ25及びバルブ26を開き、バル
ブ23及びバルブ24を閉じ、適宜ポンプ22を用いて行うと
よい。この構成により、一方の極のタンクから他方の極
の電解液を効率よく移動させることができる。
To move the positive electrode electrolytic solution from the positive electrode tank 2 to the negative electrode tank 3, it is preferable to open the valves 23 and 24, close the valves 25 and 26, and appropriately use the pump 22. On the other hand, in order to move the negative electrode electrolytic solution from the negative electrode tank 3 to the positive electrode tank 2, the valve 25 and the valve 26 may be opened, the valve 23 and the valve 24 may be closed, and the pump 22 may be appropriately used. With this configuration, the electrolytic solution of the other pole can be efficiently moved from the tank of the one pole.

【0042】その他、電解液を移動させる方法として以
下の方法が挙げられる。 (1) 各極セルに電解液を送液循環させるポンプとクロ
ス配管とを用いる方法
Other methods for moving the electrolytic solution include the following methods. (1) Method using a pump and a cross pipe for circulating an electrolyte solution in each electrode cell

【0043】図7は、各極セルに電解液を供給及び排出
する配管にクロス配管を設けた状態を示す模式図であ
る。この方法では、両タンク2、3は、上記例の連通管の
ように直接接続されるのではなく、クロス配管70、71に
より間接的に接続され、このクロス配管70、71を介して
一方のタンクから他方の極の電解液を移動させる。即
ち、クロス配管70、71は、両タンクを間接的に接続する
連通管となる。そして、この方法では、正極セル1A、負
極セル1Bに電解液を送液循環させるためのポンプ9、12
を一方の極のタンクから他方の極の電解液を移動させる
際のポンプとしても用いる。この構成により、負極電解
液比Rを変化させるための電解液の移動専用ポンプを設
ける必要がなく、電池の生産性や経済性に優れる。な
お、不必要に電解液が混合しないようにクロス配管70、
71には、バルブ72、73を設けており、これらのバルブ7
2、73は、通常、運転中には閉じている。
FIG. 7 is a schematic diagram showing a state in which a cross pipe is provided in the pipe for supplying and discharging the electrolytic solution to each electrode cell. In this method, both tanks 2 and 3 are not directly connected like the communication pipes of the above example, but are indirectly connected by cross pipes 70 and 71, and one of them is connected through the cross pipes 70 and 71. Move the electrolyte of the other pole from the tank. That is, the cross pipes 70 and 71 are communication pipes that indirectly connect both tanks. In this method, pumps 9 and 12 for circulating the electrolyte solution in the positive electrode cell 1A and the negative electrode cell 1B.
Is also used as a pump for moving the electrolytic solution of the other pole from the tank of one pole. With this configuration, it is not necessary to provide a pump exclusively for moving the electrolytic solution for changing the negative electrode electrolytic solution ratio R, and the productivity and economy of the battery are excellent. In addition, the cross pipe 70, so that the electrolyte is not mixed unnecessarily
71 is provided with valves 72 and 73.
2, 73 are normally closed during operation.

【0044】正極タンク2から負極タンク3に正極電解液
を移動させるには、クロス配管70に設けたバルブ72を開
き、バルブ75及びバルブ77を閉じ、適宜ポンプ9を用い
て行うとよい。一方、負極タンク3から正極タンク2に負
極電解液を移動させるには、クロス配管71に設けたバル
ブ73を開き、バルブ74及びバルブ76を閉じ、適宜ポンプ
12を用いて行うとよい。
To move the positive electrode electrolytic solution from the positive electrode tank 2 to the negative electrode tank 3, it is preferable to open the valve 72 provided in the cross pipe 70, close the valves 75 and 77, and appropriately use the pump 9. On the other hand, in order to move the negative electrode electrolyte solution from the negative electrode tank 3 to the positive electrode tank 2, the valve 73 provided in the cross pipe 71 is opened, the valves 74 and 76 are closed, and the pump is appropriately pumped.
It is recommended to use 12.

【0045】(2) 特定の隔膜を用いる方法 (電解液を供給排出させる配管を用いて電解液を移動さ
せる場合)上記実施例に示した方法や(1)の方法では、ポ
ンプを用いる例を示したが、ポンプを用いない例とし
て、特定の隔膜を用いる方法が挙げられる。
(2) Method using a specific diaphragm (when moving the electrolytic solution by using a pipe for supplying and discharging the electrolytic solution) In the method shown in the above embodiment and the method (1), an example using a pump is used. As shown, an example of not using a pump is a method using a specific diaphragm.

【0046】例えば、一般に、隔膜として陰イオン交換
膜(アニオン膜)を用いて電池を作動する場合、電解液は
正極から負極に、陽イオン交換膜(カチオン膜)を用いて
作動する場合、負極から正極に移動する。ここで、上記
のように価数バランスが3.5からずれる原因は、副反応
や電池への酸素の侵入などが挙げられる。従って、実際
には、価数バランスKが3.5を上回る方向、即ち、負極電
解液を移動させて正極電解液量を増加させる方向か、価
数バランスKが3.5を下回る方向、即ち、正極電解液を移
動させて負極電解液量を増加させる方向かを事前に判断
できる場合もある。そこで、用いる隔膜によって電解液
を移動させることができる。このとき、価数バランスK
の変化に伴って電解液を移動させる方向と、隔膜を介し
て電解液が移動する方向とが一致するように隔膜を選択
することが好ましい。例えば、価数バランスKが3.5を上
回る方向の場合、陽イオン交換膜を用い、価数バランス
Kが3.5を下回る方向の場合、陰イオン交換膜を用いると
よい。電解液の移動は、電池を作動すると、電解液の供
給排出用の配管を介して行われる。なお、両タンクは、
図8に示すようにバルブ81を具える配管80によって接続
しておくことが好ましい。図8は、正極タンクと負極タ
ンクとを配管で接続した状態を示す模式図であり、セル
を省略して両タンクの接続状態のみを示す。隔膜を介し
て電解液の移動量が適切な量になるまでは、配管80のバ
ルブ81を閉じて電池を作動するとよい。移動量が過剰に
なった場合は、バルブ81を一時的に開き、配管80を介し
て電解液を移動させて、電解液量を調整するとよい。ま
た、両タンクの上方には、通気管を設けておくと、電解
液の移動がよりスムースである。
For example, in general, when an anion exchange membrane (anion membrane) is used as a diaphragm to operate a battery, the electrolyte is from the positive electrode to the negative electrode, and when a cation exchange membrane (cation membrane) is used, the electrolyte is negative electrode. To the positive electrode. Here, the reason why the valence balance deviates from 3.5 as described above is, for example, a side reaction or invasion of oxygen into the battery. Therefore, in practice, the valence balance K exceeds 3.5, that is, the direction in which the negative electrode electrolyte is moved to increase the amount of the positive electrolyte, or the valence balance K is less than 3.5, that is, the positive electrolyte. In some cases, it may be possible to determine in advance whether the direction is to move to increase the amount of the negative electrode electrolyte. Therefore, the electrolytic solution can be moved by the diaphragm used. At this time, the valence balance K
It is preferable to select the diaphragm so that the direction in which the electrolytic solution moves in accordance with the change of 1 and the direction in which the electrolytic solution moves through the diaphragm match. For example, if the valence balance K is more than 3.5, use a cation exchange membrane to
When K is less than 3.5, an anion exchange membrane may be used. When the battery is operated, the movement of the electrolytic solution is performed through a pipe for supplying and discharging the electrolytic solution. Both tanks are
As shown in FIG. 8, it is preferable to connect by a pipe 80 including a valve 81. FIG. 8 is a schematic diagram showing a state in which the positive electrode tank and the negative electrode tank are connected by a pipe, and the cell is omitted and only the connection state of both tanks is shown. It is advisable to close the valve 81 of the pipe 80 and operate the battery until the amount of movement of the electrolytic solution through the diaphragm reaches an appropriate amount. When the amount of movement becomes excessive, the valve 81 may be temporarily opened and the electrolytic solution may be moved through the pipe 80 to adjust the amount of the electrolytic solution. Further, if a vent pipe is provided above both tanks, the movement of the electrolytic solution will be smoother.

【0047】(両タンクを直接接続する連通管を用いて
電解液を移動させる場合)上記とは逆に、価数バランスK
の変化に伴って電解液を移動させる方向と、隔膜を介し
て電解液が移動する方向とが一致しない、即ち、前者の
方向と後者の方向とが逆になる場合の電解液の移動方法
を説明する。
(When the electrolytic solution is moved by using the communication pipe that directly connects both tanks) Contrary to the above, the valence balance K
Change the direction of moving the electrolytic solution and the direction of moving the electrolytic solution through the diaphragm does not match, i.e., the moving method of the electrolytic solution when the former direction and the latter direction are opposite. explain.

【0048】価数バランスKが3.5を上回る方向で陰イオ
ン交換膜を用いる場合、価数バランスKが3.5を下回る方
向で陽イオン交換膜を用いる場合は、価数バランスの変
化に伴って電解液を移動させる方向と隔膜を介して電解
液が移動する方向とが逆方向となる。これらの場合は、
両タンクを高低差がある箇所に設けたり、両タンクに断
面積差があるものを用いたりして、貯蔵される電解液の
液面に高低差を設けて重力によって電解液を移動させる
とよい。このとき、両タンクは連通管により接続してお
き、この連通管を介して電解液の移動を行うとよい。
When an anion exchange membrane is used in a direction in which the valence balance K exceeds 3.5, and when a cation exchange membrane is used in a direction in which the valence balance K is less than 3.5, the electrolyte solution is changed according to the change in the valence balance. The direction in which the electrolyte is moved is opposite to the direction in which the electrolytic solution moves through the diaphragm. In these cases,
It is advisable to install both tanks at locations where there is a difference in height, or to use tanks that have different cross-sectional areas so that there is a height difference in the level of the stored electrolyte and the electrolyte is moved by gravity. . At this time, both tanks may be connected by a communication pipe, and the electrolytic solution may be moved through this communication pipe.

【0049】図9は、負極タンクの設置場所を正極タン
クよりも高くし、両タンクを連通管により接続した状態
を示す模式図であり、図10は、正極タンクと、正極タン
クよりも断面積の小さい負極タンクとを連通管により接
続した状態を示す模式図である。また、図11は、正極タ
ンクと内部に錘材を収納した負極タンクとを連通管によ
り接続した状態を示す模式図である。いずれもセルを省
略して両タンクの接続状態のみを示す。例えば、価数バ
ランスKが3.5を上回る方向で陰イオン交換膜を用いた場
合、図9に示すように負極タンク3の設置場所を正極タン
ク2より高くしたり、図10に示すように負極タンク3を正
極タンク2より断面積(底面積)が小さい細いものを用い
たりするとよい。また、図11に示すように負極タンク3
の内部に錘材112を収納して、負極タンク3の液面を調整
してもよい。これらの構成により、正極電解液の液面と
負極電解液の液面には高低差があることで、隔膜を介し
て正極から負極に液移動があっても、連通管90、100、1
10のバルブ91、101、111を開けば、重力に従って負極か
ら正極に電解液を移動させることができる。また、両タ
ンクの上方には、通気管を設けておくと、電解液の移動
がよりスムースに行うことができる。
FIG. 9 is a schematic view showing a state in which the negative electrode tank is installed higher than the positive electrode tank and both tanks are connected by a communication pipe. FIG. 10 is a cross sectional area of the positive electrode tank and the positive electrode tank. FIG. 3 is a schematic diagram showing a state in which a negative electrode tank having a small size is connected by a communication pipe. Further, FIG. 11 is a schematic diagram showing a state in which a positive electrode tank and a negative electrode tank having a weight member stored therein are connected by a communication pipe. In both cases, the cells are omitted and only the connected state of both tanks is shown. For example, when an anion exchange membrane is used in a direction where the valence balance K exceeds 3.5, the installation location of the negative electrode tank 3 may be set higher than that of the positive electrode tank 2 as shown in FIG. 9, or the negative electrode tank 3 as shown in FIG. It is preferable to use a thin one having a cross-sectional area (bottom area) smaller than that of the positive electrode tank 2. In addition, as shown in FIG.
The weight material 112 may be housed inside to adjust the liquid level of the negative electrode tank 3. With these configurations, since there is a difference in height between the liquid surface of the positive electrode electrolyte and the liquid surface of the negative electrode electrolyte, even if there is liquid transfer from the positive electrode to the negative electrode through the diaphragm, the communication tubes 90, 100, 1
When the valves 91, 101, 111 of 10 are opened, the electrolytic solution can be moved from the negative electrode to the positive electrode according to gravity. Further, if a vent pipe is provided above both tanks, the movement of the electrolytic solution can be performed more smoothly.

【0050】(3) 送液圧力を変化させる方法 その他、電解液を供給排出させる配管及びポンプを用
い、このポンプを調節して一方の電解液の送液圧力を小
さくし、他方の電解液の送液圧力を大きくすることが挙
げられる。この方法は、送液圧力を異ならせることで電
解液の液量を変化させる。
(3) In addition to the method of changing the solution sending pressure, a pipe and a pump for supplying and discharging the electrolyte solution are used, and the pump is adjusted to reduce the solution sending pressure of one electrolyte solution and the other electrolyte solution. Increasing the delivery pressure may be mentioned. In this method, the liquid supply pressure is changed to change the liquid amount of the electrolytic solution.

【0051】[0051]

【発明の効果】以上説明したように本発明レドックスフ
ロー電池の運転方法によれば、価数バランスが3.5から
ずれても、別途電解液を用意して追加してことなく、電
池容量の低下を抑制することができるという優れた効果
を奏し得る。また、本発明は、価数バランスを回復させ
るのではなく、価数バランスが3.5からずれた状態で電
池容量の低下の抑制を図るため、価数バランスが崩れる
原因となる副反応、酸素侵入や電解液の成分の精度など
に対する要求を従来と比較して緩和させることが可能で
ある。更に、本発明は、価数バランスの回復に伴う液入
れ作業がなく作業性に優れるだけでなく、別途電解液の
追加によるコストの増加がないため経済性にも優れる。
As described above, according to the operating method of the redox flow battery of the present invention, even if the valence balance deviates from 3.5, the battery capacity can be reduced without separately preparing and adding an electrolytic solution. An excellent effect that it can be suppressed can be obtained. Further, the present invention is not to restore the valence balance, in order to suppress the decrease in battery capacity in the state where the valence balance is deviated from 3.5, side reactions that cause the valence balance to collapse, oxygen intrusion and It is possible to relax the requirement for the accuracy of the components of the electrolytic solution as compared with the conventional one. Further, the present invention is not only excellent in workability because there is no liquid filling work involved in the recovery of the valence balance, but also economical because it does not increase the cost due to the addition of an electrolytic solution.

【図面の簡単な説明】[Brief description of drawings]

【図1】レドックスフロー電池の概要を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing an outline of a redox flow battery.

【図2】正極タンクと負極タンクとを連通管で接続した
状態を示す模式図である。
FIG. 2 is a schematic diagram showing a state in which a positive electrode tank and a negative electrode tank are connected by a communication pipe.

【図3】価数バランスに対する電池容量と負極電解液量
比との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a battery capacity and a negative electrode electrolyte solution amount ratio with respect to valence balance.

【図4】価数バランスに対して、電池容量が最大となる
際の負極電解液量比を示すグラフである。
FIG. 4 is a graph showing the ratio of the amount of negative electrode electrolyte when the battery capacity is maximum with respect to valence balance.

【図5】活物質などの利用率が高い(70%)ケース(16kWh
/m3)において、負極電解液量比Rを調整した場合の価数
バランスと電池容量の関係、及び負極電解液量比Rを1に
保った場合の価数バランスと電池容量の関係を示すグラ
フである。
[Fig. 5] Case (16kWh) where the utilization rate of active materials is high (70%)
/ m 3 ) shows the relationship between the valence balance and the battery capacity when the negative electrode electrolyte volume ratio R is adjusted, and the relationship between the valence balance and the battery capacity when the negative electrode electrolyte volume ratio R is maintained at 1. It is a graph.

【図6】活物質などの利用率が低い(40%)ケース(10kWh
/m3)において、負極電解液量比Rを調整した場合の価数
バランスと電池容量の関係、及び負極電解液量比Rを1に
保った場合の価数バランスと電池容量の関係を示すグラ
フである。
[Figure 6] Case (10kWh) in which the utilization rate of active materials is low (40%)
/ m 3 ) shows the relationship between the valence balance and the battery capacity when the negative electrode electrolyte volume ratio R is adjusted, and the relationship between the valence balance and the battery capacity when the negative electrode electrolyte volume ratio R is maintained at 1. It is a graph.

【図7】各極セルに電解液を供給及び排出する配管にク
ロス配管を設けた状態を示す模式図である。
FIG. 7 is a schematic diagram showing a state in which a cross pipe is provided in a pipe for supplying and discharging an electrolytic solution to each electrode cell.

【図8】バルブを具える配管により両タンクを接続した
状態を示す模式図である。
FIG. 8 is a schematic view showing a state in which both tanks are connected by a pipe including a valve.

【図9】負極タンクの設置場所を正極タンクよりも高く
し、両タンクを連通管により接続した状態を示す模式図
である。
FIG. 9 is a schematic view showing a state in which a negative electrode tank is installed higher than a positive electrode tank and both tanks are connected by a communication pipe.

【図10】正極タンクと、正極タンクよりも断面積の小さ
い負極タンクとを連通管により接続した状態を示す模式
図である。
FIG. 10 is a schematic diagram showing a state in which a positive electrode tank and a negative electrode tank having a smaller cross-sectional area than the positive electrode tank are connected by a communication pipe.

【図11】正極タンクと内部に錘材を収納した負極タンク
とを連通管により接続した状態を示す模式図である。
FIG. 11 is a schematic diagram showing a state in which a positive electrode tank and a negative electrode tank having a weight member stored therein are connected by a communication pipe.

【符号の説明】[Explanation of symbols]

1 セル 1A 正極セル 1B 負極セル 2 正極タンク
3 負極タンク 4 隔膜 5 正極電極 6 負極電極 7、8、10、11
導管 9、12 ポンプ 20、21 連通管 22 ポンプ 23〜26 バルブ 27 液
量測定計 70、71 クロス配管 72〜77 バルブ 80 配管 81 バルブ 90、100、110 連通管 91、101、111 バルブ 112
錘材
1 cell 1A Positive cell 1B Negative cell 2 Positive tank
3 Negative tank 4 Diaphragm 5 Positive electrode 6 Negative electrode 7, 8, 10, 11
Conduit 9, 12 Pump 20, 21 Communication pipe 22 Pump 23 ~ 26 Valve 27 Liquid volume meter 70, 71 Cross piping 72 ~ 77 Valve 80 Piping 81 Valve 90, 100, 110 Communication pipe 91, 101, 111 Valve 112
Weight material

フロントページの続き (72)発明者 徳田 信幸 大阪府大阪市北区中之島三丁目3番22号 関西電力株式会社内 Fターム(参考) 5H026 AA10 CC06 CX05 HH00 RR01 5H027 AA10 KK00 Continued front page    (72) Inventor Nobuyuki Tokuda             3-22 Nakanoshima 3-chome, Kita-ku, Osaka City, Osaka Prefecture             Kansai Electric Power Co., Inc. F term (reference) 5H026 AA10 CC06 CX05 HH00 RR01                 5H027 AA10 KK00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極電解液を貯蔵する正極タンク及び負
極電解液を貯蔵する負極タンクから各極の電解液を隔膜
で分離される正極及び負極にそれぞれ循環供給するレド
ックスフロー電池の運転方法において、 両極の電解液の価数バランスが3.5からずれた際に一方
のタンクの電解液を他方のタンクに配管を介して移動さ
せることを特徴とするレドックスフロー電池の運転方
法。
1. A method of operating a redox flow battery in which an electrolytic solution of each electrode is circulated from a positive electrode tank storing a positive electrode electrolytic solution and a negative electrode tank storing a negative electrode electrolytic solution to a positive electrode and a negative electrode separated by a diaphragm, respectively. A method for operating a redox flow battery, which comprises moving the electrolyte solution of one tank to the other tank via a pipe when the valence balance of the electrolyte solutions of both electrodes deviates from 3.5.
【請求項2】 配管は、両タンクを接続する連通管であ
り、電解液の移動は、この連通管を介して行われること
を特徴とする請求項1に記載のレドックスフロー電池の
運転方法。
2. The method for operating a redox flow battery according to claim 1, wherein the pipe is a communication pipe connecting both tanks, and the movement of the electrolytic solution is performed through the communication pipe.
【請求項3】 電解液の価数バランスが3.5を上回った
場合、負極電解液を正極タンクに移動させ、価数バラン
スが3.5を下回った場合、正極電解液を負極タンクに移
動させることを特徴とする請求項1又は2に記載のレドッ
クスフロー電池の運転方法。
3. When the valence balance of the electrolyte solution exceeds 3.5, the negative electrode electrolyte solution is moved to the positive electrode tank, and when the valence balance is less than 3.5, the positive electrode electrolyte solution is moved to the negative electrode tank. The method for operating the redox flow battery according to claim 1 or 2.
【請求項4】 電解液の移動は、各タンクの電解液量が
下記の量となるまで行うことを特徴とする請求項1又は2
に記載のレドックスフロー電池の運転方法。 【数1】
4. The electrolytic solution is moved until the amount of electrolytic solution in each tank reaches the following amount.
The method for operating the redox flow battery described in. [Equation 1]
JP2002108507A 2002-04-10 2002-04-10 Operating method of redox flow battery Pending JP2003303611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002108507A JP2003303611A (en) 2002-04-10 2002-04-10 Operating method of redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002108507A JP2003303611A (en) 2002-04-10 2002-04-10 Operating method of redox flow battery

Publications (1)

Publication Number Publication Date
JP2003303611A true JP2003303611A (en) 2003-10-24

Family

ID=29392275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002108507A Pending JP2003303611A (en) 2002-04-10 2002-04-10 Operating method of redox flow battery

Country Status (1)

Country Link
JP (1) JP2003303611A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502445A (en) * 2009-10-29 2012-01-26 ペキン プルーデント センチュリー テクノロジー カンパニーリミテッド Redox flow battery and method for operating the battery continuously for a long time
WO2014142968A1 (en) 2013-03-15 2014-09-18 United Technologies Corporation Reactivation of flow battery electrode by exposure to oxidizing solution
WO2015068979A1 (en) * 2013-11-05 2015-05-14 롯데케미칼 주식회사 Method for operating redox flow battery
WO2016007555A1 (en) * 2014-07-07 2016-01-14 Unienergy Technologies, Llc Systems and methods in a redox flow battery
KR20160008212A (en) * 2013-05-03 2016-01-21 유나이티드 테크놀로지스 코포레이션 Method of maintaining health of a flow battery
JP2017505513A (en) * 2013-12-23 2017-02-16 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Distributing electrolyte in a flow battery
KR101769674B1 (en) 2015-08-14 2017-08-30 오씨아이 주식회사 Managing method for electrolyte of redox flow battery
WO2018123962A1 (en) * 2016-12-28 2018-07-05 昭和電工株式会社 Redox flow battery system and redox flow battery operation method
WO2019031129A1 (en) * 2017-08-08 2019-02-14 住友電気工業株式会社 Redox flow battery operation method and redox flow battery
JP2019508857A (en) * 2016-10-13 2019-03-28 エルジー・ケム・リミテッド Electrolyte reservoir for redox flow battery and vanadium redox flow battery including the same
WO2019106723A1 (en) * 2017-11-28 2019-06-06 住友電気工業株式会社 Redox flow battery
WO2019166970A1 (en) * 2018-03-01 2019-09-06 REDT Limited (Dublin, Ireland) Means for maintaining desired liquid level between inter-connected tanks
JP2019533890A (en) * 2017-02-10 2019-11-21 エルジー・ケム・リミテッド Electrolyte regeneration method and regeneration device for flow battery
US11056698B2 (en) 2018-08-02 2021-07-06 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
US11271226B1 (en) 2020-12-11 2022-03-08 Raytheon Technologies Corporation Redox flow battery with improved efficiency
WO2022064883A1 (en) 2020-09-23 2022-03-31 住友電気工業株式会社 Redox flow battery
CN116014160A (en) * 2023-03-27 2023-04-25 南方科技大学 Flow battery repair system and repair method

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502445A (en) * 2009-10-29 2012-01-26 ペキン プルーデント センチュリー テクノロジー カンパニーリミテッド Redox flow battery and method for operating the battery continuously for a long time
EP2339682A4 (en) * 2009-10-29 2015-09-23 Prudent Energy Inc Redox flow battery and method for continually operating the redox flow battery for a long time
US10608274B2 (en) 2009-10-29 2020-03-31 Beijing Pu Neng Century Sci. & Tech. Co. Ltd. Redox flow battery and method for operating the battery continuously in a long period of time
EP2973839A4 (en) * 2013-03-15 2016-11-09 United Technologies Corp Reactivation of flow battery electrode by exposure to oxidizing solution
WO2014142968A1 (en) 2013-03-15 2014-09-18 United Technologies Corporation Reactivation of flow battery electrode by exposure to oxidizing solution
US10044058B2 (en) 2013-03-15 2018-08-07 United Technologies Corporation Reactivation of flow battery electrode by exposure to oxidizing solution
US11831054B2 (en) 2013-05-03 2023-11-28 Rtx Corporation Method of maintaining health of a flow battery
KR20160008212A (en) * 2013-05-03 2016-01-21 유나이티드 테크놀로지스 코포레이션 Method of maintaining health of a flow battery
KR101969625B1 (en) * 2013-05-03 2019-04-16 유나이티드 테크놀로지스 코포레이션 Method of maintaining health of a flow battery
JP2016517160A (en) * 2013-05-03 2016-06-09 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Flow battery health maintenance method
WO2015068979A1 (en) * 2013-11-05 2015-05-14 롯데케미칼 주식회사 Method for operating redox flow battery
US10014545B2 (en) 2013-11-05 2018-07-03 Lotte Chemical Corporation Method for operating redox flow battery
JP2017505513A (en) * 2013-12-23 2017-02-16 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Distributing electrolyte in a flow battery
EP3087628A4 (en) * 2013-12-23 2017-09-13 United Technologies Corporation Distribution of electrolytes in a flow battery
US9853310B2 (en) 2013-12-23 2017-12-26 United Technologies Corporation Distribution of electrolytes in a flow battery
US9941527B2 (en) 2014-07-07 2018-04-10 Unienergy Technologies, Llc Gas management systems and methods in a redox flow battery
US10333159B2 (en) 2014-07-07 2019-06-25 Unienergy Technologies, Llc Charge capacity management in redox flow battery string
WO2016007555A1 (en) * 2014-07-07 2016-01-14 Unienergy Technologies, Llc Systems and methods in a redox flow battery
US9722264B2 (en) 2014-07-07 2017-08-01 Unienergy Technologies, Llc Gas management systems and methods in a redox flow battery
KR101769674B1 (en) 2015-08-14 2017-08-30 오씨아이 주식회사 Managing method for electrolyte of redox flow battery
JP2019508857A (en) * 2016-10-13 2019-03-28 エルジー・ケム・リミテッド Electrolyte reservoir for redox flow battery and vanadium redox flow battery including the same
US10763532B2 (en) 2016-10-13 2020-09-01 Lg Chem, Ltd. Electrolyte storage unit for redox flow battery and vanadium redox flow battery comprising same
CN110114925A (en) * 2016-12-28 2019-08-09 昭和电工株式会社 The operation method of redox flow battery system and redox flow batteries
WO2018123962A1 (en) * 2016-12-28 2018-07-05 昭和電工株式会社 Redox flow battery system and redox flow battery operation method
JP2019533890A (en) * 2017-02-10 2019-11-21 エルジー・ケム・リミテッド Electrolyte regeneration method and regeneration device for flow battery
WO2019031129A1 (en) * 2017-08-08 2019-02-14 住友電気工業株式会社 Redox flow battery operation method and redox flow battery
WO2019106723A1 (en) * 2017-11-28 2019-06-06 住友電気工業株式会社 Redox flow battery
JPWO2019106723A1 (en) * 2017-11-28 2020-10-08 住友電気工業株式会社 Redox flow battery
GB2571558B (en) * 2018-03-01 2023-01-04 Invinity Energy Systems Ireland Ltd Means for maintaining desired liquid level between inter-connected tanks
US11508975B2 (en) 2018-03-01 2022-11-22 Invinity Energy Systems (Ireland) Limited Means for maintaining desired liquid level between inter-connected tanks
CN111919322A (en) * 2018-03-01 2020-11-10 雷德能源(爱尔兰)有限公司 Apparatus for maintaining a desired liquid level between interconnected troughs
WO2019166970A1 (en) * 2018-03-01 2019-09-06 REDT Limited (Dublin, Ireland) Means for maintaining desired liquid level between inter-connected tanks
US11056698B2 (en) 2018-08-02 2021-07-06 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
US11637298B2 (en) 2018-08-02 2023-04-25 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
WO2022064883A1 (en) 2020-09-23 2022-03-31 住友電気工業株式会社 Redox flow battery
US11271226B1 (en) 2020-12-11 2022-03-08 Raytheon Technologies Corporation Redox flow battery with improved efficiency
CN116014160A (en) * 2023-03-27 2023-04-25 南方科技大学 Flow battery repair system and repair method

Similar Documents

Publication Publication Date Title
JP2003303611A (en) Operating method of redox flow battery
US4956244A (en) Apparatus and method for regenerating electrolyte of a redox flow battery
JP4835792B2 (en) Redox flow battery
US20100092843A1 (en) Venturi pumping system in a hydrogen gas circulation of a flow battery
EP2856549A1 (en) Electrochemical balance in a vanadium flow battery
CN105027342A (en) Operating a redox flow battery with a negative electrolyte imbalance
CN116711110A (en) Redox flow battery with balancing unit
JPH02195657A (en) Electrolyte circulation type secondary battery
KR101942904B1 (en) Module for mixing of electrolyte and method for mixing of electrolyte for flow battery using the same
CN115152065A (en) Method for iron pre-formation in redox flow batteries
JP3231273B2 (en) Electrolyte flow battery
JPH01320776A (en) Redox flow type battery
CN113314733A (en) Rebalanceable system of iron-chromium flow battery
JPS61156641A (en) Zinc-bromine battery
JP4155745B2 (en) Operating method of redox flow battery
US20160226118A1 (en) Sodium-based hybrid flow batteries with ultrahigh energy densities
JPS58176880A (en) Operation control method of redox-flow type battery
JP2528100Y2 (en) Electrolyte flow battery
JP7149623B2 (en) redox flow battery
JP2001216995A (en) Electrolyte tank for redox flow battery
JP2917304B2 (en) Redox flow battery with electrolyte regeneration device
JPH01115068A (en) Operation of redox-flow cell
JPS61211960A (en) Secondary cell
JPH10334938A (en) Power storage secondary battery
JP3396892B2 (en) Operating method of electrolyte flowing battery